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Abstract

We refine (and give a new proof of) Nesterenko’s famous linear independence
criterion from 1985, by making use of the fact that some coefficients of linear forms
may have large common divisors. This is a typical situation appearing in the con-
text of hypergeometric constructions of Q-linear forms involving zeta values or their
q-analogues. We apply our criterion to sharpen previously known results in this
direction.

1 Introduction

1.1 Nesterenko’s criterion

In this text, we refine Nesterenko’s linear indepence criterion by taking into account the
existence of common divisors to the coefficients of the linear forms. Consider the following
situation:

(N) Let ξ0, . . . , ξr be real numbers, with r ≥ 1. Let 0 < α < 1 and β > 1.
For any n ≥ 1, let `0,n, . . . , `r,n be integers such that

lim
n→∞

∣∣∣∣ r∑
i=0

`i,nξi

∣∣∣∣1/n

= α and lim sup
n→∞

|`i,n|1/n ≤ β for any i ∈ {0, . . . , r}.

Let us recall a special case of Nesterenko’s criterion [14].

∗The work of the second author was supported by the Max Planck Institute for Mathematics (Bonn)
and the Hausdorff Center for Mathematics (Bonn).
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Theorem A (Yu. Nesterenko). Assume that hypothesis (N) holds. Then we have

dimQ SpanQ(ξ0, . . . , ξr) ≥ 1− logα

log β
.

Hypothesis (N) implies dimQ SpanQ(ξ0, . . . , ξr) ≥ 2, because otherwise ξ0, . . . , ξr would
be integer multiples of a (possibly zero) real number ξ, so that all linear forms

∑r
i=0 `i,nξi

would be integer multiples of ξ. This is impossible since these linear forms tend to 0
without vanishing (for n sufficiently large). This remark shows that the first interesting
case is trying to get a dimension greater than or equal to three. This special case of
Theorem A reads as follows.

Theorem B. Assume that hypothesis (N) holds. If αβ < 1, then

dimQ SpanQ(ξ0, . . . , ξr) ≥ 3.

In other words, among ξ0, . . . , ξr there are at least three numbers that are linearly indepen-
dent over the rationals.

1.2 A refinement

We obtain the following improvement of Nesterenko’s criterion, the proof of which relies
on Minkowski’s convex body theorem and yields a new proof of Nesterenko’s Theorem A.

Theorem 1. Assume that hypothesis (N) holds. For any n ≥ 1 and any i ∈ {1, . . . , r},
let δi,n be a positive divisor of `i,n. Assume that

(i) δi,n divides δi+1,n for any n ≥ 1 and any i ∈ {1, . . . , r − 1}, and

(ii)
δj,n
δi,n

divides
δj,n+1

δi,n+1

for any n ≥ 1 and any 0 ≤ i < j ≤ r, with δ0,n = 1.

Furthermore, assume that for any i ∈ {1, . . . , r} the limit of δ
1/n
i,n as n → ∞ exists. Let

s = dimQ SpanQ(ξ0, . . . , ξr)− 1. Then we have s ≥ 1 and

αβs ≥
s∏

i=1

lim
n→∞

δ
1/n
i,n .

The conclusion of this theorem has to be understood as a lower bound for s, namely,

s ≥ −
log

(
α/

∏s
i=1 limn→∞ δ

1/n
i,n

)
log β

;

but is should be noted that the product contains s factors.
The following special case of Theorem 1, in which we let dn = lcm(1, 2, . . . , n), is

useful when studying linear independence of zeta values (see, for example, the proofs of
Theorems 3 and 5 below).
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Corollary 1. Assume that hypothesis (N) holds. Let e1 ≤ · · · ≤ er be non-negative
integers such that dei

n divides `i,n for any n ≥ 1 and any i ∈ {1, . . . , r}.
Let s = dimQ SpanQ(ξ0, . . . , ξr)− 1. Then we have s ≥ 1 and

s ≥ e1 + · · ·+ es − logα

log β
.

Again the lower bound we obtain for s in this corollary actually depends on s itself.
Although Theorem 1 comes as a special case of a more general statement (see Theo-

rem 6 below), it is already interesting to see what happens when we just try to prove that
dimQ SpanQ(ξ0, . . . , ξr) ≥ 3, as in Theorem B. Then we may assume, without loss of gen-
erality, that δ1,n = · · · = δr,n for any n. In this case, the assumption of Theorem 1 is that
δ1,n divides δ1,n+1. Actually, we obtain the following stronger improvement of Theorem B,
in which this assumption is replaced with a lower bound on the greatest common divisor
of δ1,n and δ1,n+1.

Theorem 2. Assume that hypothesis (N) holds. For any n ≥ 1, let δn be a common
positive divisor of `1,n, . . . , `r,n. Assume that

αβ < lim inf
n→∞

(
gcd(δn, δn+1)

)1/n
.

Then
dimQ SpanQ(ξ0, . . . , ξr) ≥ 3.

The main interest of Theorem 2 is actually its proof, which is simpler than that of
Theorem 1 (cf. Sections 2.4 and 2.5 below).

1.3 Applications

A typical situation when our refinement becomes useful, refers to an arithmetic problem
for the so-called odd zeta values — the values of Riemann’s zeta function

ζ(l) =
∞∑

k=1

1

kl

at odd integers l > 1; see [1], [2], [7], [11], [20] and [22] for history and known results in
this arithmetic direction. The following theorem improves on previous bounds (i1 ≤ 145
and i2 ≤ 1971) from [20, Theorem 0.3].

Theorem 3. There exist odd integers i1 ≤ 139 and i2 ≤ 1961 such that the numbers

1, ζ(3), ζ(i1), and ζ(i2)

are linearly independent over Q.
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Another but related application is devoted to arithmetic properties of the following
q-analogue of Riemann’s zeta function (|q| < 1):

ζq(l) =
∞∑

k=1

kl−1qk

1− qk
=

∞∑
k=1

σl−1(k)q
k,

where σl−1(k) =
∑

d|k d
l−1. A usual setup for a number q is to be of the form 1/p, where

p ∈ Z \ {0,±1}. Although the irrationality of ζq(1) and even the transcendence of ζq(l)
for any even positive integer l are known, not so much is obtained for ζq(l) with l > 1
odd; we refer the reader to the works [10] and [12] for details. For example, F. Jouhet
and E. Mosaki show in [10] that at least one of the four numbers ζq(3), ζq(5), ζq(7), ζq(9)
is irrational and give further results for the odd q-zeta values in the spirit of Theorem 3
above. Our next theorem sharpens the corresponding bounds from [10].

Theorem 4. Let q be a rational of the form 1/p, where p ∈ Z \ {0,±1}. There exist odd
integers 1 < i0 < i1 < i2 < i3 such that i0 ≤ 9, i1 ≤ 37, i2 ≤ 83, i3 ≤ 145 and the numbers

1, ζq(i0), ζq(i1), ζq(i2), and ζ(i3)

are linearly independent over Q.

Our third application also appeals to arithmetic of the odd zeta values, but this time
we add log 2 to the set.

Theorem 5. There exist odd integers i1 ≤ 93 and i2 ≤ 1151 such that the numbers

1, log 2, ζ(i1), and ζ(i2)

are linearly independent over Q.

In our proof of Theorem 5 we use a (seemingly) new hypergeometric construction of
linear forms in 1, log 2 and odd zeta values. We find rather curious that a ‘degenerate’ case
of our construction, when odd zeta values do not occur at all, resembles well the rational
approximations [1] from Apéry’s proof of the irrationality of ζ(3) (cf., for example, [7]);
this is the subject of our final Section 3.4.

Acknowledgments. We would like to thank Francesco Amoroso, Nicolas Raymond, Tan-
guy Rivoal, and Michel Waldschmidt, for useful discussions.

2 The linear independence criterion

In this part, we state (Section 2.1) and prove (Sections 2.2 and 2.3) our main linear inde-
pendence criterion, as well as its special case (Section 2.4) corresponding to Theorem 2.
We gather some remarks in Section 2.5.
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2.1 Statement

Our main result is the following statement, which contains Theorem 1 as a special case (by
taking Qn = βn and τ = −(logα)/(log β)).

Theorem 6. Let ξ0, . . . , ξr be real numbers, with r ≥ 1. Let τ, γ1, . . . , γr > 0. For any
n ≥ 1 and any i ∈ {0, . . . , r}, let `i,n ∈ Z. For n ≥ 1 and i ∈ {1, . . . , r}, let δi,n be a
positive divisor of `i,n such that

(i) δi,n divides δi+1,n for any n ≥ 1 and any i ∈ {1, . . . , r − 1}, and

(ii)
δj,n
δi,n

divides
δj,n+1

δi,n+1

for any n ≥ 1 and any 0 ≤ i < j ≤ r, with δ0,n = 1.

Assume that there exists an increasing sequence (Qn)n≥1 of integers such that, as n→∞,
the following conditions are met:

Qn+1 = Q1+o(1)
n ,

max
0≤i≤r

|`i,n| ≤ Q1+o(1)
n ,∣∣∣∣ r∑

i=0

`i,nξi

∣∣∣∣ = Q−τ+o(1)
n ,

δi,n = Qγi+o(1)
n for any i ∈ {1, . . . , r}.

Let s = dimQ SpanQ(ξ0, . . . , ξr)− 1. Then we have

s ≥ τ + γ1 + · · ·+ γs.

Remark 1. The existence of arbitrarily small non-zero linear combinations of ξ0, . . . , ξr with
integer coefficients implies dimQ SpanQ(ξ0, . . . , ξr) ≥ 2, that is, s ≥ 1.

Remark 2. In the statement of Theorem 6 and in all other linear independence criteria we
prove in this text, no assumption is made on whether ξ0 vanishes or not. Actually, we can
always assume that ξ0 6= 0, because if ξ0 = 0 then Remark 1 provides an integer i such
that ξi 6= 0, and we can consider the linear forms 0ξi + `1,nξ1 + · · ·+ `r,nξr in (ξi, ξ1, . . . , ξr).

The proof of Theorem 6 splits into two parts. First we prove this result (in Section 2.2)
under the assumption that ξ0, . . . , ξr are linearly independent over the rationals. Next we
deduce the general case (in Section 2.3).

2.2 Proof in the linear independence case

In this section, we prove Theorem 6 under the assumption of the Q-linear independence of
ξ0, . . . , ξr (that is, s = r).

Denote by ξ the point (ξ0, . . . , ξr) ∈ Rr+1, and by Ln the linear form `0,nX0+· · ·+`r,nXr,
so that Ln(ξ) =

∑r
i=0 `i,nξi.
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Thanks to Remark 2, we may assume that ξ0 6= 0 and even ξ0 = 1 (dividing all ξi by ξ0
if necessary).

Let n be a sufficiently large integer. In what follows, o(1) stands for any sequence that
tends to 0 as n tends to infinity.

We take

Rn =
δr,n

2|Ln(ξ)|
and εn = δr,n

(
3|Ln(ξ)|∏r

i=1 δi,n

)1/r

,

so that
εn = Qγr−(τ+γ1+···+γr)/r+o(1)

n .

Arguing by contradiction, assume that τ + γ1 + · · · + γr > r. Now γr ≤ 1 because δr,n
divides `r,n, hence limn→∞ εn = 0.

Consider the set

Cn =

{
(p′0, . . . , p

′
r) ∈ Rr+1 : |p′0| ≤

Rn

δr,n
and, for any i ∈ {1, . . . , r}, |δi,np′0ξi−p′i| ≤

δi,n
δr,n

εn

}
.

The volume of Cn is
2r+1Rnε

r
n

∏r
i=1 δi,n

δr+1
r,n

=
3

2
· 2r+1 > 2r+1.

Since Cn is a convex body, symmetric with respect to the origin, there is a non-zero integer
point (p′0, . . . , p

′
r) in Cn. Of course, (p′0, . . . , p

′
r) also depends on n, but we do not write it

down explicitly. Then rescaling

p0 = δr,np
′
0 and pi =

δr,n
δi,n

p′i ∈ Z for any i ∈ {1, . . . , r}

we have
|p0| ≤ Rn and |p0ξi − pi| ≤ εn for any i ∈ {1, . . . , r}. (1)

Let kn denote the least positive integer such that

|p0| ≤
δr,kn

2|Lkn(ξ)|
.

By definition of Rn, we have kn ≤ n since |p0| ≤ Rn. Moreover, kn tends to infinity
with n thanks to (1), since εn → 0 and (1, ξ1, . . . , ξr) are linearly independent over Q. By
minimality of kn, we have

|p0| = Q
γr+τ+o(1)
kn

. (2)

Now we can write

r∑
i=0

`i,knpi = p0

r∑
i=0

`i,knξi +
r∑

i=0

`i,kn(pi − p0ξi).

On the right-hand side, the first term has absolute value equal to |p0Lkn(ξ)|, therefore less
than or equal to 1

2
δr,kn by definition of kn. If the second term has absolute value less than

6



the first one, then the absolute value of the right-hand side is less than δr,kn . But it is
equal to the left-hand side, which is an integer multiple of δr,kn , since

`i,knpi = `i,kn

δr,n
δi,n

p′i is a multiple of δi,kn

δr,kn

δi,kn

= δr,kn

(by condition (ii) and n ≥ kn): it has to be zero. But then both terms on the right-hand
side would have the same absolute value, in contradiction with the assumption.

Therefore, using (1) and (2) we have

Q
γr+o(1)
kn

= |p0Lkn(ξ)| =
∣∣∣∣p0

r∑
i=0

`i,knξi

∣∣∣∣ ≤ ∣∣∣∣ r∑
i=0

`i,kn(pi − p0ξi)

∣∣∣∣ ≤ Q
1+o(1)
kn

εn.

Since kn ≤ n and γr ≤ 1, this implies

1 ≤ Q
1−γr+o(1)
kn

εn ≤ Q1−γr+o(1)
n εn = Q1−(τ+γ1+···+γr)/r+o(1)

n ,

which contradicts the assumption τ+γ1 + · · ·+γr > r for n sufficiently large and completes
the proof of Theorem 6 under the assumption that ξ0, . . . , ξr are linearly independent over
the rationals.

2.3 Proof in the general case

In this section, we deduce Theorem 6 from the special case proved in Section 2.2.
Thanks to Remarks 1 and 2, we have s ≥ 1 and we may assume that ξ0 6= 0. Take

i0 = 0, and let i1 be the least positive integer such that ξ0 and ξi1 are linearly independent
over the rationals. Define inductively ik, for k ∈ {0, . . . , s}, to be the least integer such
that ξi0 , ξi1 , . . . , ξik are linearly independent over Q. Clearly, we have 0 = i0 < i1 < · · · < is
and, for any i ∈ {0, . . . , r}, we can write ξi =

∑k
j=0 ci,jξij with ci,j ∈ Q and k ∈ {0, . . . , s}

defined by ik ≤ i < ik+1 (with is+1 = r + 1). For any n, this gives

r∑
i=0

`i,nξi =
s∑

j=0

`′j,nξ
′
j

by letting ξ′j = ξij and `′j,n =
∑r

i=ij
`i,nci,j. Let d denote a common denominator of the

rational numbers ci,j; note that d is independent of n. For any n and any j ∈ {0, . . . , s},
d`′j,n is an integer and, moreover, a multiple of δij ,n, since δij ,n divides δi,n for any i between
ij and r.

Since ξ′0, . . . , ξ
′
s are linearly independent over the rationals, we can apply to these num-

bers the special case of Theorem 6 proved in Section 2.2, with the linear forms
∑s

j=0 d`
′
j,nξ

′
j,

the same sequence (Qn)n≥1 and the same τ , with divisors δ′j,n = δij ,n for j ∈ {1, . . . , s} and
exponents γ′j which satisfy γ′j = γij ≥ γj, because δ′j,n = δij ,n ≥ δj,n for any j and any n.
This completes the proof of Theorem 6.
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2.4 Proof of Theorem 2

The following statement implies Theorem 2.

Proposition 1. Let ξ0, . . . , ξr be real numbers, with r ≥ 1. For any n ≥ 1 and any
i ∈ {0, . . . , r}, let `i,n ∈ Z. Let (δn)n≥1 be a sequence of positive integers, such that δn is a
common divisor of `1,n, . . . , `r,n for any n ≥ 1. For any n ≥ 1, let Hn and εn be positive
real numbers such that

max
0≤i≤r

|`i,n| ≤ Hn and

∣∣∣∣ r∑
i=0

`i,nξi

∣∣∣∣ ≤ εn.

Assume that
∑r

i=0 `i,nξi 6= 0 for infinitely many n and that

lim
n→∞

Hnεn+1 +Hn+1εn

gcd(δn, δn+1)
= 0.

Then we have
dimQ SpanQ(ξ0, . . . , ξr) ≥ 3.

Proof. Thanks to Remarks 1 and 2, we have dimQ SpanQ(ξ0, . . . , ξr) ≥ 2 and we may
assume that ξ0 6= 0, and even that ξ0 = 1. Since ξ1, . . . , ξr play symmetric roles, we may
assume that ξ1 is irrational. Let us argue by contradiction, assuming on the contrary that
dimQ SpanQ(ξ0, . . . , ξr) = 2. Then ξ2, . . . , ξr are rational linear combinations of ξ0 = 1
and ξ1. Repeating the argument of Section 2.3, we obtain a positive integer d independent
of n and rational numbers `′0,n and `′1,n such that

r∑
i=0

`i,nξi = `′0,n + `′1,nξ1

with d`′0,n, d`
′
1,n ∈ Z of absolute value less than d′Hn for some constant d′ independent of n;

moreover, δn divides d`′1,n. Now consider the determinant

∆n =

∣∣∣∣ d`′0,n d`′1,n

d`′0,n+1 d`
′
1,n+1

∣∣∣∣ = d2`′1,n+1(`
′
0,n + `′1,nξ)− d2`′1,n(`′0,n+1 + `′1,n+1ξ)

which satisfies
|∆n| ≤ dd′(Hnεn+1 +Hn+1εn) < gcd(δn, δn+1)

if n ≥ N for some integer N . Now ∆n is the determinant of a matrix in which all entries
in the second column, namely, d`′1,n and d`′1,n+1, are integer multiples of gcd(δn, δn+1).
Therefore, ∆n = 0 for any n ≥ N and for any such n the vector (d`′0,n, d`

′
1,n) is proportional

to (d`′0,N , d`
′
1,N). This means that for any n ≥ N there exists an integer cn such that

d`′0,n = cn
d`′0,N

gcd(d`′0,N , d`
′
1,N)

and d`′1,n = cn
d`′1,N

gcd(d`′0,N , d`
′
1,N)

.
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This implies

`′0,n + `′1,nξ1 = cn
`′0,N + `′1,Nξ1

gcd(d`′0,N , d`
′
1,N)

with cn ∈ Z, in contradiction with the fact that `′0,n + `′1,nξ1 tends to 0 without being
identically equal to 0 for n sufficiently large, and Proposition 1 follows.

2.5 Remarks

In this section, we make some comments on the proofs given above.
In the case where all divisors δj,n are equal to 1, the proof of Theorem 6 gives a new proof

of Theorem A, while that of Proposition 1 yet another one in the special case of Theorem B.
Nesterenko’s general result in [14] is exactly Theorem 6 in the special case δj,n = 1, except

for one point: Nesterenko assumes that Q
−τ1+o(1)
n ≤

∣∣∑r
i=0 `i,nξi

∣∣ ≤ Q
−τ2+o(1)
n , whereas we

treat the case τ1 = τ2 only. Our method should generalize easily to the situation where
τ1 6= τ2, but we do not write it down because the equality holds in all the applications we
have in mind. For the same reason, we did not try to replace Q with another number field,
though Nesterenko’s criterion can be generalized to this setting (see [3] and [18]).

Nesterenko’s proof consists in obtaining a lower bound for the distance of ξ = (ξ0, . . . , ξr)
to any linear subspace of Rr+1, defined over Q, of dimension t < τ + 1. He proceeds by
induction on t, whereas we use in Section 2.2 only the first step (namely t = 1, see be-
low) of his induction. P. Colmez [4] writes down Nesterenko’s proof in another way (from
notes by F. Amoroso). Assume for simplicity that ξ0, . . . , ξr are Q-linearly independent
(the general case follows from this special case as in Section 2.3). For any sufficiently
large integer n0, one constructs by an analogous induction procedure a decreasing se-
quence n0 > n1 > · · · > nr of positive integers such that the determinant ∆ of the matrix
[`i,nj

]0≤i,j≤r is not zero. The easy case is when n0, . . . , nr are, roughly speaking, of same
size (for instance, if they are consecutive integers). Then replacing the first line with the

linear combination of the lines which is given by (ξ0, . . . , ξr), we obtain |∆| ≤ Q
r−τ+o(1)
n .

Since ∆ is a non-zero integer, this gives r ≥ τ and completes the proof in this case. The
difficult part of this proof is to obtain some control upon n0, . . . , nr. In Amoroso–Colmez’s
version of Nesterenko’s proof, the sequence n0 > n1 > · · · > nr is constructed, and yields
the result r ≥ τ , but there might be huge gaps between successive nj and nj+1. It would
be very interesting to know whether such a sequence can always be constructed with nr

‘nearly as large’ as n0. This is what we do (in the case r = 1) in the proof of Proposition 1
(Section 2.4): for infinitely many integers n0, we prove that n1 = n0 − 1 implies ∆ 6= 0.
This kind of method is similar to the ones used by H. Davenport and W. Schmidt (see, for
instance, [5] and [6]).

On the other hand, our proof of Theorem 6 in Section 2.2 relies on a completely different
idea. In the case when all divisors δj,n are equal to 1, it can be summarized as follows (see
[9] for a translation in terms of exponents of Diophantine approximation). Dirichlet’s box
principle yields (under the assumption that ξ0, . . . , ξr are linearly independent over Q)
very good simultaneous approximants p1/p0, . . . , pr/p0 to ξ1/ξ0, . . . , ξr/ξ0 with the same
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denominator p0. This means that (ξ0, . . . , ξr) is sufficiently close to the line generated by
(p0, . . . , pr) in Rr+1, and contradicts (if r < τ) the lower bound proved in the first induction
step of Nesterenko’s proof (see above). Actually, this first step is very easy to prove directly
(without Nesterenko’s machinery for controlling the intersection of a linear subspace with a
hyperplane). Indeed, for some n (denoted by kn in Section 2.2) the hyperplane Hn defined
by `0,nX0 + · · ·+`r,nXr = 0 has comparatively small height and is very close to (ξ0, . . . , ξr),
hence to (p0, . . . , pr), so that (p0, . . . , pr) has to belong to Hn. But then the distance from
(ξ0, . . . , ξr) to Hn is less than, or equal to, the distance of (ξ0, . . . , ξr) to (p0, . . . , pr); this
is too small, in contradiction with the lower bound for |Ln(ξ)|.

At last, let us comment briefly on the optimality of our criterion. It is likely that the
conclusion s ≥ τ+γ1 + · · ·+γs of Theorem 6 cannot be improved (see [8] and [9] for related
results when s = 1), so that another strategy has to be used for refining the lower bound

dimQ SpanQ
(
1, ζ(3), ζ(5), ζ(7), . . . , ζ(a)

)
≥ 1 + o(1)

1 + log 2
log a.

of [2], [16]. However, the assumptions of Theorem 6 can perhaps be weakened (even
though they are already weak enough to be met in all applications we have in mind).
Assumption (i) is used in Section 2.3, whereas Assumption (ii) is used (with j = r) in
Section 2.2 (and also with j = is in Section 2.3). Such a refinement might come from a
different approach, like in Proposition 1 where the assumptions of Theorem 6 are weakened
(for instance, the fact that δn should divide δn+1). It is interesting to point out that in

Proposition 1 we do not need to assume Qn+1 = Q
1+o(1)
n , nor to have a positive lower bound

for
∣∣∑r

i=0 `i,nξi
∣∣.

3 Applications of the criterion

3.1 First application: Odd zeta values

For a pair of positive integers s and t with t < s, consider the (very-well-poised) hyperge-
ometric series

hn = 2n!2(s−t)

∞∑
k=1

(
k +

n

2

)∏tn
j=1(k − j) ·

∏tn
j=1(k + n+ j)∏n

j=0(k + j)2s
. (3)

It is known [2], [16], [20] that, for some ai,n ∈ Q,

hn = a0,n +
s−1∑
i=1

ai,nζ(2i+ 1). (4)

First of all, we would like to summarize the auxiliary results from [20] (namely, Propo-
sitions 2.1, 3.1, and 4.1 with Lemma 4.5 there) and translate them for the linear forms (3),
(4).
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Denote by x0 the maximal real zero of the polynomial(
x+ t+ 1

2

)(
x− 1

2

)2s+1 −
(
x− t− 1

2

)(
x+ 1

2

)2s+1
; (5)

it belongs to the interval
]
t+ 1

2
,+∞

[
. Introduce the function

f(x) =
(
t+ 1

2

)
log

(
x+ t+ 1

2

)
+

(
t+ 1

2

)
log

(
x− t− 1

2

)
−

(
s+ 1

2

)
log

(
x+ 1

2

)
−

(
s+ 1

2

)
log

(
x− 1

2

)
.

(6)

Consider the following product over primes:

Πn = Π(t)
n =

2t−1∏
l=1

∏
√

(t+1)n<p≤n

{n/p}∈El

pl, (7)

where

E2l =

[
l

t
,
l + 1

t+ 1/2

[
for l = 0, 1, . . . , t− 1,

E2l−1 =

[
l

t+ 1/2
,
l

t

[
for l = 1, 2, . . . , t,

(8)

and { · } denotes the fractional part of a number.

Proposition 2. In the above notation,

lim
n→∞

log |hn|
n

= f(x0)

and

lim sup
n→∞

log |ai,n|
n

≤ Re f(0) = 2(s− t) log 2 + (2t+ 1) log(2t+ 1) for i = 0, 1, . . . , s− 1.

Moreover, the rational coefficients of the forms (4) satisfy

d2s
n Π−1

n a0,n ∈ Z and d2(s−i)−1
n Π−1

n ai,n ∈ Z for i = 1, . . . , s− 1,

while the asymptotic behavior of (7) is determined by

lim
n→∞

log Πn

n
= $t = 2t(1− γ)−

(
2t+

1

2

) t∑
l=1

1

l
−

t∑
l=1

(
ψ

(
l

t

)
+ ψ

(
l

t+ 1/2

))

= 2tψ(2)−
t∑

l=1

(
ψ

(
1 +

l

t

)
+ ψ

(
1 +

l

t+ 1/2

))
, (9)

where ψ(x) is the digamma function (that is, the logarithmic derivative of the Gamma
function) and γ = −ψ(1) is Euler’s constant.
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The essential news settled after the work [20] is the proof of the so-called ‘denominator
conjecture’ by C. Krattenthaler and T. Rivoal in [11]. They show that

d2s−1
n a0,n ∈ Z and d2(s−i)−2

n ai,n ∈ Z for i = 1, . . . , s− 1,

in other words, they get rid of the extra dn. Note that for primes p from the inter-
val

√
(t+ 1)n < p ≤ n, we have ordp dn = 1 and ordp Πn ≥ 1 unless {n/p} ∈ E0 =

[0, 1/(t+ 1/2)[. The proportion of the latter primes is characterized by the quantity

lim
n→∞

1

n
log

∏
√

(t+1)n<p≤n

{n/p}∈E0

p = ψ

(
1 +

1

t+ 1/2

)
− ψ(1)

(cf. [20, Lemma 4.4]), but even this tiny improvement can be taken into account to sharpen
the arithmetic part of Proposition 2. Taking

Π̂n = Π̂(t)
n =

2t−1∏
l=2

∏
√

(t+1)n<p≤n

{n/p}∈El

pl−1, (10)

we obtain the following result.

Proposition 3. In the above notation, the rational coefficients of the forms (4) satisfy

d2s−1
n Π̂−1

n a0,n ∈ Z and d2(s−i)−2
n Π̂−1

n ai,n ∈ Z for i = 1, . . . , s− 1, (11)

and the asymptotic behavior of (10) is determined by

lim
n→∞

log Π̂n

n
= $̂t = $t − 1 + ψ

(
1 +

1

t+ 1/2

)
− ψ(1)

= (2t− 1)ψ(2)−
t∑

l=1

ψ

(
1 +

l

t

)
−

t∑
l=2

ψ

(
1 +

l

t+ 1/2

)
. (12)

Proof (Theorem 3). The collection of numbers under consideration is

(ξ0, ξ1, ξ2, . . . , ξs−1) =
(
1, ζ(3), ζ(5), . . . , ζ(2s− 1)

)
.

Setting
`i,n = d2s−1

n Π̂−1
n ai,n ∈ Z for i = 0, . . . , s− 1,

from (11) we see that
d2i+1

n | `i,n for i = 1, . . . , s− 1,

hence in the notation of Theorem 1 we have r = s− 1, δi,n = d2i+1
n ,

logα = f(x0) + 2s− 1− $̂t

12



and
log β = 2(s− t) log 2 + (2t+ 1) log(2t+ 1) + 2s− 1− $̂t.

Using standard formulas for the digamma function we can write the quantity in (12)
by means of elementary functions only:

$̂t = 3t− 1

2
−

(
2t+

1

2

) t∑
l=1

1

l
+
π

2

t∑
l=2

cot
2πl

2t+ 1
+ 2

t∑
l=1

cos
4πl

2t+ 1
log sin

πl

2t+ 1

− log 2 + t log t+

(
t− 1

2

)
log(2t+ 1).

We now apply Theorem 1. With the choice s = 70, t = 10 we obtain

1− logα− 3

log β
= 2.0004232415 . . . > 2,

hence
dimQ SpanQ

(
1, ζ(3), ζ(5), . . . , ζ(139)

)
≥ 3;

in the same way, taking s = 981, t = 65 we get

1− logα− (3 + 5)

log β
= 3.0003426048 . . . > 3

yielding
dimQ SpanQ

(
1, ζ(3), ζ(5), . . . , ζ(1961)

)
≥ 4.

This computation implies Theorem 3.

3.2 Second application: Odd q-zeta values

We now fix a number q of the form 1/p, where p ∈ Z \ {0,±1}. As in the previous section,
we take a pair of positive integers s and t satisfying t < s. With the help of the basic
hypergeometric series

hn(q) = (q)2(s−t)
n

∞∑
k=1

(1− q2k+n)
(qk−tn)tn · (qk+n+1)tn

(qk)2s
n+1

qk(s−t)n+ks−k

= a0,n(q) +
s−1∑
i=1

ai,n(q)ζq(2i+ 1), (13)

where (b)n = (b; q)n =
∏n

k=1(1− qk−1b) is the q-Pochhammer symbol, it was shown in [12]
(see also [10], where the ‘q-denominator conjecture’ is proved) that

dimQ SpanQ
(
1, ζq(3), ζq(5), . . . , ζq(2s− 1)

)
≥ π + o(1)

2
√
π2 + 12

√
2s

13



as s → ∞. The coefficients ai,n(q) are, in fact, rational functions of the variable p = 1/q,
whose denominators involve only powers of p and of the cyclotomic polynomials

Φj(p) =

j∏
k=1

(k,j)=1

(p− e2π
√
−1k/j) ∈ Z[p], degp Φj(p) = ϕ(j), j = 1, 2, . . . . (14)

In these settings, the q-analogue of the quantity dn is the least common multiple of the
polynomials p− 1, p2 − 1, . . . , pn − 1, which equals

dn(p) =
n∏

j=1

Φj(p);

Mertens’ theorem asserts that, for a real number p with |p| > 1,

lim
n→∞

log |dn(p)|
n2 log |p|

=
3

π2
.

The following statement summarizes the analytic and arithmetic results of [10], [12] for
the linear forms in the odd q-zeta values.

Proposition 4. In the above notation,

lim
n→∞

log |hn(q)|
n2 log |p|

= −t(s− t),

and

lim sup
n→∞

log |ai,n(q)|
n2 log |p|

≤ s+ 2t2

4
for i = 0, 1, . . . , s− 1.

Moreover, the coefficients of the forms (13) satisfy

(2s)!pMdn(p)2s−1a0,n(q) ∈ Z[p] and

(2s)!pMdn(p)2(s−i)−2ai,n(q) ∈ Z[p] for i = 1, . . . , s− 1,
(15)

where

M =

⌈
s(n+ 1)2

4

⌉
+
tn(tn− 1)

2
+ (2s+ 1)n−

⌊
(s− t)n

2

⌋
.

The arithmetic conclusion (15) may be significantly sharpened using the argument
of [20, Section 4]: one just replaces primes by cyclotomic polynomials (14) (cf. [21, Sec-
tion 1]). In order to state the resulting improvement of Proposition 4, we introduce the
p-polynomials

Π̂n(p) = Π̂(t)
n (p) =

2t−1∏
l=2

∏
√

(t+1)n<j≤n

{n/j}∈El

Φj(p)
l−1, (16)

where the sets El are defined in (8).
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Proposition 5. In the above notation, the coefficients of the linear forms (13) satisfy

(2s)!pMdn(p)2s−1Π̂n(p)−1a0,n(q) ∈ Z[p] and

(2s)!pMdn(p)2(s−i)−2Π̂n(p)−1ai,n(q) ∈ Z[p] for i = 1, . . . , s− 1,
(17)

and the asymptotic behavior of (16) is determined by

lim
n→∞

log Π̂n(p)

n2 log |p|
= $̂′

t = (2t− 1)ψ1(2)−
t∑

l=1

ψ1

(
1 +

l

t

)
−

t∑
l=2

ψ1

(
1 +

l

t+ 1/2

)

=
(t− 1)2

2
+

3

π2

(
2t− 1− t2

t∑
l=1

1

l2

)
−

t∑
l=2

ψ1

(
1 +

l

t+ 1/2

)
,

where

ψ1(x) =
3

π2

dψ(x)

dx
= − 3

π2

∞∑
k=0

1

(x+ k)2

denotes the (normalized) trigamma function.

Proof (Theorem 4). In the notation p = 1/q ∈ Z \ {0,±1}, set

`i,n = pMdn(p)2s−1Π̂n(p)−1ai,n(q) ∈ Z for i = 0, . . . , s− 1.

To these linear forms in

(ξ0, ξ1, ξ2, . . . , ξs−1) =
(
1, ζq(3), ζq(5), . . . , ζq(2s− 1)

)
,

we apply Theorem 6 taking Qn = βn2 log |p| and τ = −(logα)/(log β), where

logα = −t(s− t) +
s+ 2t2

4
+

3(2s− 1)

π2
− $̂′

t

and

log β =
s+ 2t2

2
+

3(2s− 1)

π2
− $̂′

t.

From (17) we see that
dn(p)2i+1 | `i,n for i = 1, . . . , s− 1,

hence we may take δi,n = dn(p)2i+1 to meet the required conditions of Theorem 6. The
existence of an odd integer 3 ≤ i0 ≤ 9, for which ζq(i0) is irrational, is already shown
in [10]. The following choices of s and t and Theorem 6 ensure the truth of Theorem 4:

s = 19, t = 4 : 1− logα− 3 · 3/π2

log β
= 2.0300573456 . . . > 2,

s = 42, t = 6 : 1− logα− (3 + 5) · 3/π2

log β
= 3.0344397971 . . . > 3,

s = 73, t = 8 : 1− logα− (3 + 5 + 7) · 3/π2

log β
= 4.0108485236 . . . > 4.
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3.3 Third application: log 2 and odd zeta values

As in the two previous sections, we take a pair of positive integers s and t with t < s, but
this time we assume s to be even. Consider the hypergeometric series

h̃n = 2
(2−2n(2n)!)s

n!2t

∞∑
k=1

(
k +

n

2

)∏tn
j=1(k − j) ·

∏tn
j=1(k + n+ j)∏2n

j=0(k + j/2)s
. (18)

Its k-rational summand

Hn(k) = (2k + n)

∏tn
j=1(k − j)

n!t

∏tn
j=1(k + n+ j)

n!t

(
2−2n(2n)!∏2n
j=0(k + j/2)

)s

(19)

differs from the corresponding one in (3) a little: the s products
(
n!/

∏n
j=0(k + j)

)2
in (3)

are replaced by 2−2n(2n)!/
∏2n

j=0(k + j/2) in (18), and these two have similar asymptotics
as n→∞. This similarity allows us to compute, like in [2] or [20], the asymptotic behavior
of (18) and of the coefficients in the ‘zeta’ decomposition of (18) which we are going to
describe in the next statement.

Lemma 1. In the above notation, we have

h̃n = ã0,n + ã1,n log 2 +

s/2∑
i=2

ãi,nζ(2i− 1), (20)

where
24tnds

2nã0,n ∈ Z and 24tnds−2i+1
2n ãi,n ∈ Z for i = 1, 2, . . . , s/2. (21)

Proof. The function (19) is the product of integer-valued polynomials 2k + n,∏n
j=1(k − ln− j)

n!
, l = 0, 1, . . . , t− 1, and

∏n
j=1(k + ln+ j)

n!
, l = 1, 2, . . . , t,

and of s copies of the rational function

2−2n(2n)!∏2n
j=0(k + j/2)

=
2 · (2n)!∏

j=0(2k + j)
=

2n∑
j=0

(−1)j
(
2n
j

)
k + j/2

. (22)

It follows from the Leibniz rule for differentiating a product (cf. [20, Lemmas 1.2–1.4] and
the formula (32) below) that

Hn(k) =
s∑

i=1

2n∑
j=0

Ai,j

(k + j/2)i

with the property
24tnds−i

2n Ai,k ∈ Z. (23)
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For a variable x in the unit circle |x| < 1, we now perform the summation

∞∑
k=1

Hn(k)x2k =
∞∑

k=1

x2k

s∑
i=1

2n∑
j=0

Ai,j

(k + j/2)i
=

s∑
i=1

2n∑
j=0

Ai,jx
−j

∞∑
k=1

x2k+j

(k + j/2)i

=
s∑

i=1

n∑
j=0

Ai,2jx
−2j

( ∞∑
k=1

−
j∑

k=1

)
x2k

ki

+
s∑

i=1

n∑
j=1

Ai,2j−1x
−2j+1

( ∞∑
k=1

−
j∑

k=1

)
x2k−1

(k − 1/2)i

=
s∑

i=1

Lii(x
2)

n∑
j=0

Ai,2jx
−2j +

s∑
i=1

(
2i Lii(x)− Lii(x

2)
) n∑

j=1

Ai,2j−1x
−2j+1

−
s∑

i=1

n∑
j=0

Ai,2j

j∑
k=1

x2k−2j

ki
−

s∑
i=1

n∑
j=1

Ai,2j−1

j∑
k=1

x2k−2j

(k − 1/2)i
, (24)

where

Lii(x) =
∞∑

k=1

xk

ki

denotes the ith polylogarithm function. To compute the limit x → 1− in (24), we use
Abel’s theorem for power series, the sum residue theorem in the form

n∑
j=0

A1,2j +
n∑

j=1

A1,2j−1 =
2n∑

j=0

Resk=−j/2Hn(k) = −Resk=∞Hn(k) = 0,

and the identity Li1(x)− Li1(x
2) = −Li1(−x). Therefore,

h̃n = log 2 · 2
n∑

j=1

A1,2j−1 +
s∑

i=2

ζ(i)

( n∑
j=0

Ai,2j + (2i − 1)
n∑

j=1

Ai,2j−1

)

−
s∑

i=1

( n∑
j=0

Ai,2j

j∑
k=1

1

ki
+

n∑
j=1

Ai,2j−1

j∑
k=1

1

(k − 1/2)i

)
, (25)

where we used the evaluations −Li1(−1) = log 2 and Lii(1) = ζ(i) for i = 2, . . . , s. Finally,
note that the parity of s implies from (19) that

Hn(−k − n) = −Hn(k),

hence Ai,j = (−1)i−1Ai,2n−j and
∑n

j=0Ai,2j =
∑n

j=1Ai,2j−1 = 0 for i = 2, 4, . . . , s. This
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implies the required decomposition (20) with

ã0,n = −
s∑

i=1

( n∑
j=0

Ai,2j

j∑
k=1

1

ki
+

n∑
j=1

Ai,2j−1

j∑
k=1

1

(k − 1/2)i

)
,

ã1,n = 2
n∑

j=1

A1,2j−1, and

ãi,n =
n∑

j=0

A2i−1,2j + (22i−1 − 1)
n∑

j=1

A2i−1,2j−1 for i = 2, . . . , s/2.

(26)

Using (23) we arrive at the inclusions (21).

We are now in power to sharpen the inclusions (21) in the way we already did in
Propositions 3 and 5. Note that for an integer N > 2 and a prime p >

√
2N we have

ordp Γ(N + 1) = ordpN ! =

⌊
N

p

⌋
and ordp

Γ(N + 1/2)

Γ(1/2)
= ordp

(2N)!

22NN !
=

⌊⌊
N

p

⌋⌋
, (27)

where
bbxcc = b2xc − bxc (28)

(see the proof of Lemma 3 below for another expression of bbxcc).

Lemma 2. For the coefficients in the decomposition (20), we have the inclusions

24tnds
2nΠ̃−1

n ã0,n ∈ Z and 24tnds−2i+1
2n Π̃−1

n ãi,n ∈ Z for i = 1, 2, . . . , s/2, (29)

where
Π̃n = Π̃(t)

n =
∏

√
2(t+1)n<p≤2n

pτ(n/p) (30)

and the function τ( · ) is defined as follows:

τ(x) = τt(x) = min
y∈R

{τ1(x, y), τ2(x, y)}, (31)

τ1(x, y) =
⌊(
t+

1

2

)
x+

y

2

⌋
+

⌊(
t+

1

2

)
x− y

2

⌋
−

⌊x
2

+
y

2

⌋
−

⌊x
2
− y

2

⌋
− 2tbxc,

τ2(x, y) =
⌊⌊(

t+
1

2

)
x+

y

2

⌋⌋
+

⌊⌊(
t+

1

2

)
x− y

2

⌋⌋
−

⌊⌊x
2

+
y

2

⌋⌋
−

⌊⌊x
2
− y

2

⌋⌋
− 2tbxc.

Proof. In the notation of the above proof of Lemma 1, we can write

Ai,j =
1

(s− i)!

ds−i

dks−i

(
Hn(k)

(
k +

j

2

)s)∣∣∣
k=−j/2

for i = 1, . . . , s and j = 0, 1, . . . , 2n. (32)
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Taking into account the partial fraction decomposition (22) and∏tn
l=1(k − l)

n!t

∏tn
l=1(k + n+ l)

n!t

∣∣∣∣
k=−j/2

= (−1)tn Γ((2t+ 1)n/2 + (j − n)/2 + 1)

n!tΓ(n/2 + (j − n)/2 + 1)

Γ((2t+ 1)n/2 + (n− j)/2 + 1)

n!tΓ(n/2 + (n− j)/2 + 1)
(33)

for j = 0, 1, . . . , 2n,

with the help of [20, Lemma 4.1] we conclude that any common multiple Π of the numbers
in (33), involving primes p ≤ 2n only, can be used in sharpening the inclusions (23):

22tnds−i
2n Π−1Ai,j ∈ Z for i = 1, . . . , s and j = 0, 1, . . . , 2n.

In view of (26), it is enough to show that Π̃n defined in (30) is such a multiple. From (27)
we see that

ordp
Γ((2t+ 1)n/2 + (j − n)/2 + 1)

n!tΓ(n/2 + (j − n)/2 + 1)

Γ((2t+ 1)n/2 + (n− j)/2 + 1)

n!tΓ(n/2 + (n− j)/2 + 1)

=

{
τ1(n/p, (j − n)/p) for j even,

τ2(n/p, (j − n)/p) for j odd,
j = 0, 1, . . . , 2n,

and this implies the desired result.

Lemma 3. The quantity (30) can be written as follows:

Π̃n = Π̃(t)
n =

2t−1∏
l=1

∏
√

2(t+1)n<p≤2n

{n/p}∈El

pl, (34)

where the sets El are given in (8). In addition,

lim
n→∞

log Π̃n

n
= $̃t = 4

⌊
t

2

⌋
−

(
2t+

1

2

) bt/2c∑
l=1

1

l
+
π

2

t∑
l=1

cot
2πl

2t+ 1
+t log t+

(
t+

1

2

)
log(2t+1).

(35)

Proof. Using a simple identity b2xc = bxc + bx + 1/2c, we see that the function (28) is
nothing else but bx+ 1/2c. This implies that τ2(x, y) = τ1(x, y + 1), hence

τ(x) = min
y∈R

{τ1(x, y)}. (36)

Furthermore, it follows from (31) that τ1(x + 1, y) = τ1(x, y + 1), hence the function τ(x)
is 1-periodic:

τ(x) = τ({x}).
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Moreover, we have τ1(x, y + 2) = τ1(x, y) and τ1(x,−y) = τ1(x, y) implying that the
minimum in (36) can be performed for y ∈ [0, 1[ only:

τ(x) = min
0≤y<1

{τ1(x, y)}.

It remains to use the results of [20, Section 4] (already taken into account in Sections 3.1
and 3.2):

min
0≤y<1

{τ1(x, y)} = l for x ∈ El, l = 0, 1, . . . , 2t− 1,

where the sets E0, E1, . . . , E2t−1 are defined in (8); this gives us the desired form (34) of
the quantity (30).

To compute the asymptotics in (35) we apply [20, Lemma 4.4]:

lim
n→∞

log Π̃n

n
=

2t−1∑
l=1

l

(∫
El∩[0,1/2)

dψ(1 + x) +

∫
El∩[1/2,1)

dψ(x)

)

=
2t−1∑
l=1

l

(∫
El

dψ(1 + x) +

∫
El∩[1/2,1)

d

(
−1

x

))

= $t +
t−1∑

l=bt/2c

2l

∫
E2l

d

(
−1

x

)
− 2

⌊
t

2

⌋ ∫ 1/2

bt/2c/t

d

(
−1

x

)

+
t∑

l=bt/2c+1

(2l − 1)

∫
E2l−1

d

(
−1

x

)

= $t +
t−1∑

l=bt/2c

2l

(
t

l
− t+ 1/2

l + 1

)
− 2

⌊
t

2

⌋(
t

bt/2c
− 2

)

+
t∑

l=bt/2c+1

(2l − 1)

(
t+ 1/2

l
− t

l

)

= $t +

(
2t+

1

2

) t∑
l=bt/2c+1

1

l
− 2

(
t− 2

⌊
t

2

⌋)
,

where $t is defined in (9). It remains to apply identities for the digamma function, and
the lemma follows.

The following statement summarizes our findings in this section.

Proposition 6. For positive integers s and t with s even and t < s, the linear forms (18),
(20) and their coefficients admit the asymptotics

lim
n→∞

log |h̃n|
n

= f(x0)
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and

lim sup
n→∞

log |ãi,n|
n

≤ Re f(0) = 2(s− t) log 2 + (2t+ 1) log(2t+ 1) for i = 0, 1, . . . , s/2,

where x0 ∈
]
t+ 1

2
,+∞

[
is the maximal real zero of the polynomial (5) and the function

f(x) is defined in (6). Moreover, the coefficients in the decomposition (20) satisfy (29)
and the asymptotics of the quantities (30), (34) is determined in (35).

Proof (Theorem 5). This time we have Q-linear forms in

(ξ0, ξ1, ξ2, . . . , ξs/2) =
(
1, log 2, ζ(3), ζ(5), . . . , ζ(s− 1)

)
,

whose coefficients are

`i,n = 24tnds
2nΠ̃−1

n ãi,n ∈ Z for i = 0, 1, . . . , s/2.

Then (29) implies
d2i−1

2n | `i,n for i = 1, 2, . . . , s/2,

hence in the notation of Theorem 1 we have r = s/2, δi,n = d2i−1
2n ,

logα = f(x0) + 4t log 2 + 2s− $̃t

and
log β = 2(s+ t) log 2 + (2t+ 1) log(2t+ 1) + 2s− $̃t.

Applying the theorem with the choice s = 94, t = 11 we obtain

1− logα− 2

log β
= 2.0064440535 . . . > 2,

while the choice s = 1152, t = 67 results in

1− logα− (2 + 6)

log β
= 3.0004493689 . . . > 3.

This implies the required independence result.

3.4 Triple integrals for rational approximations to log 2

The particular case s = 2, t = 1 of our construction in Section 3.3 is of independent
interest, since the corresponding series

h̃n = 2

(
2−2n(2n)!

n!

)2 ∞∑
k=1

(
k +

n

2

)∏n
j=1(k − j) ·

∏n
j=1(k + n+ j)∏2n

j=0(k + j/2)2
(37)
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goes in parallel with Ball’s series

hn = 2n!2
∞∑

k=1

(
k +

n

2

)∏n
j=1(k − j) ·

∏n
j=1(k + n+ j)∏n

j=0(k + j)4

for Apéry’s approximations to ζ(3). Switching to the classical hypergeometric notation [17]
and using

2−2n(2n)!

n!
=

Γ(n+ 1
2
)

Γ(1
2
)

=
Γ(n+ 1/2)√

π
,

we can write the series in (37) as the following very-well-poised hypergeometric series:

h̃n =
Γ(3n+ 3)Γ(n+ 1)3Γ(n+ 1

2
)2Γ(n+ 3

2
)2

πΓ(2n+ 2)3Γ(2n+ 3
2
)2

× 7F6

(
3n+ 2, 3n+2

2
+ 1, n+ 1, n+ 1, n+ 3

2
, n+ 1, n+ 3

2
3n+2

2
, 2n+ 2, 2n+ 2, 2n+ 3

2
, 2n+ 2, 2n+ 3

2

∣∣∣∣ 1

)
.

Applying now Bailey’s transformation (see [17, Eq. (4.7.1.3)] or [22, Proposition 2]), after
a little reduction of the gamma factors we get the Barnes-type integral

h̃n =
2n+ 1

2π
· 1

2πi

∫ i∞

−i∞

Γ(n+ 1 + ξ)2Γ(n+ 1
2

+ ξ)Γ(n+ 3
2

+ ξ)Γ(−ξ)Γ(−1
2
− ξ)

Γ(2n+ 2 + ξ)Γ(2n+ 3
2

+ ξ)
dξ, (38)

where the path separates the decreasing sequence of poles ξ = −n− 1
2
,−n− 1,−n− 3

2
, . . .

and the increasing sequence of poles ξ = 0, 1
2
, 1, . . . of the integrand. The result can be

expressed as a triple real integral thanks to a theorem of Nesterenko [22, Proposition 1]:

h̃n =
2n+ 1

2π

∫∫∫
[0,1]3

xn(1− x)nyn−1/2(1− y)nzn+1/2(1− z)n−1/2

(1− (1− xy)z)n+1
dx dy dz. (39)

On the other hand, using the duplication formula Γ(z)Γ(z + 1
2
) =

√
π 21−2zΓ(2z) and

the Barnes-type and Euler integrals for the Gauss hypergeometric function (see [17, Sec-
tions 1.6.1 and 4.1]) we can transform (38) further:

h̃n = 4(2n+ 1) · 1

2πi

∫ i∞

−i∞

Γ(2n+ 1 + 2ξ)Γ(2n+ 2 + 2ξ)Γ(−1− 2ξ)

Γ(4n+ 3 + 2ξ)
dξ

= 2(2n+ 1) · 1

2πi

∫ i∞

−i∞

Γ(2n+ ξ)Γ(2n+ 1 + ξ)Γ(−ξ)
Γ(4n+ 2 + ξ)

dξ

= 2(2n+ 1)
Γ(2n)Γ(2n+ 1)

Γ(4n+ 2)
2F1

(
2n, 2n+ 1

4n+ 2

∣∣∣∣ −1

)
= 2

∫ 1

0

x2n−1(1− x)2n+1

(1 + x)2n+1
dx,

and for the latter integral the decomposition

h̃n = ã0,n + ã1,n log 2 with d2nã0,n ∈ Z and ã1,n ∈ Z (40)
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is known (see, for example, [19]). The arithmetic inclusions in (40) are much better than
the ones we have from Proposition 6; this suggests the existence of a ‘power denominator
conjecture’ for the linear forms constructed in Section 3.3. In addition, a more general form
of the triple integral in (39) could be of use in study of the quality of rational approximations
to log 2; it is due to a remarkable resemblance of such integrals with the ones used by
G. Rhin and C. Viola [15] in proving the record irrationality measure for ζ(3). For a
different construction of rational approximations to log 2 using the Rhin–Viola method,
we refer the reader to the paper [13], where R. Marcovecchio obtains a new irrationality
measure for this constant.
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