Max-Planck-Institut für Mathematik Bonn

Complete left-invariant affine structures on the oscillator group
by

Mohammed Guediri

Complete left-invariant affine structures on the oscillator group

Mohammed Guediri

Max-Planck-Institut für Mathematik	Department of Mathematics
Vivatsgasse 7	College of Science
53111 Bonn	King Saud University
Germany	P.O. Box 2455
	Riyadh 11451
	Saudi Arabia

COMPLETE LEFT-INVARIANT AFFINE STRUCTURES ON THE OSCILLATOR GROUP

MOHAMMED GUEDIRI

Abstract. The goal of this paper is to provide a method, based on the theory of extensions of left-symmetric algebras, for classifying left-invariant affine structures on a given solvable Lie group of low dimension. To better illustrate our method, we shall apply it to classify complete left-invariant affine structures on the oscillator group.

1 Introduction

It is a well known result (see [1], [17]) that a simply connected Lie group G which admits a complete left-invariant affine structure, or equivalently G acts simply transitively by affine transformations on \mathbb{R}^{n}, must be solvable. It is also well known that not every solvable (even nilpotent) Lie group can admit an affine structure [3]. On the other hand, given a simply connected solvable Lie group G which can admit a complete left-invariant structure, it is important to classify all such possible structures on G.

Our goal in the present paper is to provide a method for classifying leftinvariant affine structures on a given solvable Lie group of low dimension. Since the classification has been completely achieved up to dimension four in the nilpotent case (see [10], [13], [15]), we shall illustrate our method by applying it to the classification of complete left-invariant affine structures on the remarkable solvable non-nilpotent 4-dimensional Lie group O_{4}, known as the oscillator group. Recall that O_{4} can be viewed as a semidirect product of the real line with the Heisenberg group. Recall also that the Lie algebra \mathcal{O}_{4}

Mathematics Subject Classification (2000). 53C50, 53A15.

Key words and phrases. Left-invariant affine structures, left-symmetric algebras, extensions and Cohomologies of Lie algebras and left-symmetric algebras.
of O_{4} (that we shall call oscillator algebra) is the Lie algebra with generators $e_{1}, e_{2}, e_{3}, e_{4}$, and with nonzero brackets

$$
\left[e_{1}, e_{2}\right]=e_{3},\left[e_{4}, e_{1}\right]=e_{2},\left[e_{4}, e_{2}\right]=e_{1}
$$

Since left-invariant affine structures on a Lie group G are in one-to-one correspondence with left-symmetric structures on its Lie algebra \mathcal{G} [13], we shall carry out the classification of complete left-invariant affine structures on O_{4} in terms of complete (in the sense of [20]) left-symmetric structures on \mathcal{O}_{4}.

The paper is organized as follows. In Section 2, we shall recall the notion of extensions of Lie algebras and its relationship to the notion of \mathcal{G}-kernels. In Section 3, we shall give some necessary definitions, notations, and basic results on left-symmetric algebras and their extensions. In Section 4, we shall consider complete non-simple real left-symmetric structures on the oscillator algebra \mathcal{O}_{4}. We shall show that, if A_{4} is a complete non-simple left-symmetric algebra whose Lie algebra is \mathcal{O}_{4}, then A_{4} contains a proper two-sided ideal whose associated Lie algebra is isomorphic to the center $Z\left(\mathcal{O}_{4}\right) \cong \mathbb{R}$ or the commutator ideal $\left[\mathcal{O}_{4}, \mathcal{O}_{4}\right] \cong \mathcal{H}_{3}$ of \mathcal{O}_{4}. In the latter case, we shall show that the so-called center of A_{4} is nontrivial, and therefore we can get A_{4} as a central (in some sense that will be defined later) extension of a complete 3-dimensional left-symmetric algebra A_{3} by the trivial left-symmetric algebra \mathbb{R}.

In Section 5, we shall show that, in both cases above, we have a short exact sequence (which turns out to be central) of left-symmetric algebras of the form

$$
0 \rightarrow \mathbb{R} \xrightarrow{i} A_{4} \xrightarrow{\pi} A_{3} \rightarrow 0,
$$

where A_{3} is a complete left-symmetric algebra whose Lie algebra is isomorphic to the Lie algebra $\mathcal{E}(2)$ of the group of Euclidean motions of the plane. We shall then show that, up to left-symmetric isomorphism, there are only two non-isomorphic complete left-symmetric structures on $\mathcal{E}(2)$, and we shall use these to carry out all complete non-simple left-symmetric structures on \mathcal{O}_{4}. We shall see that one of these two left-symmetric structures on $\mathcal{E}(2)$ yields exactly one complete left-symmetric structure on \mathcal{O}_{4}. However, the second one yields a two-parameter family of complete left-symmetric algebras $A_{4}(s, t)$ whose associated Lie algebra is \mathcal{O}_{4}, and the conjugacy class of $A_{4}(s, t)$ is given as follows: $A_{4}\left(s^{\prime}, t^{\prime}\right)$ is isomorphic to $A_{4}(s, t)$ if and only if
$\left(s^{\prime}, t^{\prime}\right)=(\alpha s, \pm t)$ for some $\alpha \in \mathbb{R}^{*}$. By using the Lie group exponential maps, we shall deduce the classification of complete left-invariant affine structures on the oscillator group O_{4} in terms of simply transitive actions of subgroups of the affine group $\operatorname{Aff}\left(\mathbb{R}^{4}\right)=G L\left(\mathbb{R}^{4}\right) \ltimes \mathbb{R}^{4}$ (see Theorem 22).

Throughout this paper, all vector spaces, Lie algebras, and left-symmetric algebras are supposed to be over the filed \mathbb{R}, unless otherwise specified. We shall also suppose that all Lie groups are connected and simply connected.

2 Extensions of Lie algebras

Recall that a Lie algebra $\widetilde{\mathcal{G}}$ is an extension of the Lie algebra \mathcal{G} by the Lie algebra \mathcal{A} if there exists a short exact sequence of Lie algebras

$$
\begin{equation*}
0 \rightarrow \mathcal{A} \xrightarrow{i} \widetilde{\mathcal{G}} \xrightarrow{\pi} \mathcal{G} \rightarrow 0 \tag{1}
\end{equation*}
$$

In other words, if we identify the elements of \mathcal{A} with their images in $\widetilde{\mathcal{G}}$ via the injection i, then \mathcal{A} is an ideal in $\widetilde{\mathcal{G}}$ such that $\widetilde{\mathcal{G}} / \mathcal{A} \cong \mathcal{G}$.

Two extensions $\widetilde{\mathcal{G}}_{1}$ and $\widetilde{\mathcal{G}}_{2}$ are called equivalent if there exists an isomorphism of Lie algebras φ such that the following diagram commutes

The notion of extensions of a Lie algebra \mathcal{G} by an abelian Lie algebra \mathcal{A} is well known (see for instance, the books [8] and [12]). In light of [19], we shall describe here the notion of extension $\widetilde{\mathcal{G}}$ of a Lie algebra \mathcal{G} by a Lie algebra \mathcal{A} which is not necessarily abelian.

Suppose that a vector space extension $\widetilde{\mathcal{G}}$ of a Lie algebra \mathcal{G} by another Lie algebra \mathcal{A} is known, and we want to define a Lie structure on $\widetilde{\mathcal{G}}$ in terms of the Lie structures of \mathcal{G} and \mathcal{A}. Let $\sigma: \mathcal{G} \rightarrow \widetilde{\mathcal{G}}$ be a section, that is, a linear map such that $\pi \circ \sigma=i d$. Then the linear map $\Psi:(a, x) \mapsto i(a)+\sigma(x)$ from $\mathcal{A} \oplus \mathcal{G}$ onto $\widetilde{\mathcal{G}}$ is an isomorphism of vector spaces.

For (a, x) and (b, y) in $\mathcal{A} \oplus \mathcal{G}$, a commutator on $\widetilde{\mathcal{G}}$ must satisfy

$$
\begin{align*}
{[i(a)+\sigma(x), i(b)+\sigma(y)]=} & i([a, b])+[\sigma(x), i(b)] \tag{2}\\
& +[i(a), \sigma(y)]+[\sigma(x), \sigma(y)]
\end{align*}
$$

Now we define a linear map $\phi: \mathcal{G} \rightarrow \operatorname{End}(\mathcal{A})$ by

$$
\begin{equation*}
\phi(x) a=[\sigma(x), i(a)] \tag{3}
\end{equation*}
$$

On the other hand, since

$$
\pi([\sigma(x), \sigma(y)])=\pi(\sigma([x, y]))
$$

it follows that there exists an alternating bilinear map $\omega: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{A}$ such that

$$
[\sigma(x), \sigma(y)]=\sigma[x, y]+\omega(x, y)
$$

In summary, by means of the isomorphism above, $\widetilde{\mathcal{G}} \cong \mathcal{A} \oplus \mathcal{G}$ and its elements may be denoted by (a, x) with $a \in \mathcal{A}$ and x is simply characterized by its coordinates in \mathcal{G}. The commutator defined by (2) is now given by

$$
\begin{equation*}
[(a, x),(b, y)]=([a, b]+\phi(x) b-\phi(y) a+\omega(x, y),[x, y]), \tag{4}
\end{equation*}
$$

for all $(a, x) \in \widetilde{\mathcal{G}} \cong \mathcal{A} \oplus \mathcal{G}$.
Now, it is easy to see that this is actually a Lie bracket (i.e, it verifies the Jacobi identity) if and only if the following three conditions are satisfied

1. $\phi(x)[b, c]=[\phi(x) b, c]+[b, \phi(x) c]$,
2. $[\phi(x), \phi(y)]=\phi([x, y])+a d_{\omega(x, y)}$,
3. $\omega([x, y], z)-\omega(x,[y, z])+\omega(y,[x, z])=\phi(x) \omega(y, z)+\phi(y) \omega(z, x)+$ $\phi(z) \omega(x, y)$.

Remark 1 We see that the condition (1) above is equivalent to say that $\phi(x)$ is a derivation of \mathcal{A}. In other words, \mathcal{G} is actually acting by derivations, that is, $\phi: \mathcal{G} \rightarrow \operatorname{Der}(\mathcal{A})$. The condition (2) indicates clearly that if \mathcal{A} is supposed to be abelian, then \mathcal{A} becomes a \mathcal{G}-module in a natural way, because in this case the linear map $\phi: \mathcal{G} \rightarrow \operatorname{Der}(\mathcal{A})$ given by $\phi(x) a=[\sigma(x), i(a)]$ is well defined. The condition (3) is equivalent to the fact that, if \mathcal{A} is abelian, ω is a 2 -cocycle (i.e., $\delta_{\phi} \omega=0$, where δ_{ϕ} refers to the coboundary operator corresponding to the action ϕ).

If now $\sigma^{\prime}: \mathcal{G} \rightarrow \widetilde{\mathcal{G}}$ is another section, then $\sigma^{\prime}-\sigma=\tau$ for some linear map $\tau: \mathcal{G} \rightarrow \mathcal{A}$, and it follows that the corresponding morphism and 2-cocycle are, respectively, $\phi^{\prime}=\phi+a d \circ \tau$ and $\omega^{\prime}=\omega+\delta_{\phi} \tau+\frac{1}{2}[\tau, \tau]$, where $a d$ stands here and below (if there is no ambiguity) for the adjoint representation in \mathcal{A}, and where $[\tau, \tau]$ has the following meaning: Given two linear maps α, β : $\mathcal{G} \rightarrow \mathcal{A}$, we define $[\alpha, \beta](x, y)=[\alpha(x), \beta(y)]-[\alpha(y), \beta(x)]$. In particular, we have $\frac{1}{2}[\tau, \tau](x, y)=[\tau(x), \tau(y)]$. Note here that the Lie algebra \mathcal{A} is not necessarily abelian. Therefore, $\omega^{\prime}-\omega$ is a 2-coboundary if and only if $[\tau(x), \tau(y)]=0$ for all $x, y \in \mathcal{G}$. Equivalently, $\omega^{\prime}-\omega$ is a 2-coboundary if and only if τ has its range in the center $Z(\mathcal{A})$ of \mathcal{A}. In that case, we get $\omega^{\prime}-\omega=\delta_{\phi} \tau \in B_{\phi}^{2}(\mathcal{G}, Z(\mathcal{A}))$, the group of 2-coboundaries for \mathcal{G} with values in $Z(\mathcal{A})$.

To overcome all these difficulties, we proceed as follows. Let $C^{2}(\mathcal{G}, \mathcal{A})$ be the abelian group of all 2 -cochains, i.e. alternating bilinear mappings $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{A}$. For a given $\phi: \mathcal{G} \rightarrow \operatorname{Der}(\mathcal{A})$, let $T_{\phi} \in C^{2}(\mathcal{G}, \mathcal{A})$ be defined by

$$
T_{\phi}(x, y)=[\phi(x), \phi(y)]-\phi([x, y]), \quad \text { for all } x, y \in \mathcal{G} .
$$

If there exists some $\omega \in C^{2}(\mathcal{G}, \mathcal{A})$ such that $T_{\phi}=a d \circ \omega$ and $\delta_{\phi} \omega=0$, then the pair (ϕ, ω) is called a factor system for $(\mathcal{G}, \mathcal{A})$. Let $Z^{2}(\mathcal{G}, \mathcal{A})$ be the set of all factor systems for $(\mathcal{G}, \mathcal{A})$. It is well known that the equivalence classes of extensions of a Lie algebra \mathcal{G} by a Lie algebra \mathcal{A} are in one-to-one correspondence with the elements of the quotient space $Z^{2}(\mathcal{G}, \mathcal{A}) / C^{1}(\mathcal{G}, \mathcal{A})$, where $C^{1}(\mathcal{G}, \mathcal{A})$ is the space of linear maps from \mathcal{G} into \mathcal{A} (see for instance [19], Theorem II.7). Note that if we assume that \mathcal{A} is abelian, then we meet the well known result (see for instance [7]) stating that for a given action $\phi: \mathcal{G} \rightarrow \operatorname{End}(\mathcal{A})$, the equivalence classes of extensions of \mathcal{G} by \mathcal{A} are in one-to-one correspondence with the elements of the second cohomology group

$$
H_{\phi}^{2}(\mathcal{G}, \mathcal{A})=Z_{\phi}^{2}(\mathcal{G}, \mathcal{A}) / B_{\phi}^{2}(\mathcal{G}, \mathcal{A})
$$

In the present paper, we shall be concerned with the special case where \mathcal{A} is non-abelian and \mathcal{G} is the field \mathbb{R}, and henceforth the cocycle ω is identically zero.

Remark 2 It is worth noticing that the construction above is closely related to the notion of \mathcal{G}-kernels (considered for Lie algebras firstly in [18]) . On $\left\{\phi: \mathcal{G} \rightarrow \operatorname{Der}(\mathcal{A}): T_{\phi}=a d \circ \omega\right.$, for some $\left.\omega \in C^{2}(\mathcal{G}, \mathcal{A})\right\}$, define an equivalence relation by $\phi \sim \phi^{\prime}$ if and only if $\phi^{\prime}=\phi+a d \circ \tau$, for some linear map
$\tau: \mathcal{G} \rightarrow \mathcal{A}$. The equivalence class $[\phi]$ of ϕ is called a \mathcal{G}-kernel. It turns out that ifA is abelian, then a \mathcal{G}-kernel is nothing but a \mathcal{G}-module. By considering the quotient morphism $\Pi: \operatorname{Der}(\mathcal{A}) \rightarrow \operatorname{Out}(\mathcal{A})=\operatorname{Der}(\mathcal{A}) / a d_{\mathcal{A}}$, and remarking that $\Pi \circ a d \circ \tau=0$ for any linear $\operatorname{map} \tau: \mathcal{G} \rightarrow \mathcal{A}$, we can naturally associate to each \mathcal{G}-kernel $[\phi]$ the morphim $\phi=\Pi \circ[\phi]: \mathcal{G} \rightarrow \operatorname{Out}(\mathcal{A})$.

3 Extensions of left-symmetric algebras

The notion of a left-symmetric algebra arises naturally in various areas of mathematics and physics. It originally appeared in the works of Vinberg [21] and Koszul [14] concerning convex homogeneous cones and bounded homogeneous domains, respectively. It also appears, for instance, in connection with Yang-Baxter equation and integrable hydrodynamic systems (cf. [4], [11], [16]).

A left-symmetric algebra $(A,$.$) is a finite-dimensional algebra A$ in which the products, for all $x, y, z \in A$, satisfy the identity

$$
\begin{equation*}
(x y) z-x(y z)=(y x) z-y(x z) \tag{5}
\end{equation*}
$$

where here and frequently during this paper we simply write $x y$ instead of $x \cdot y$.

It is clear that an associative algebra is a left-symmetric algebra. Actually, for a left-symmetric algebra A, if $(x, y, z)=(x y) z-x(y z)$ is the associator of x, y, z, then we see that (5) is equivalent to $(x, y, z)=(y, x, z)$ This means that left-symmetric algebras are natural generalizations of associative algebras.

Now if A is a left-symmetric algebra, then the commutator

$$
\begin{equation*}
[x, y]=x y-y x \tag{6}
\end{equation*}
$$

defines a structure of Lie algebra on A, called the associated Lie algebra. On the other hand, if \mathcal{G} is a Lie algebra with a left-symmetric product • satisfying

$$
[x, y]=x \cdot y-y \cdot x
$$

then we say that the left-symmetric structure is compatible with the Lie structure on \mathcal{G}.

Suppose now we are given a Lie group G with a left-invariant flat affine connection ∇, and define a product \cdot on the Lie algebra \mathcal{G} of G by

$$
\begin{equation*}
x \cdot y=\nabla_{x} y, \tag{7}
\end{equation*}
$$

for all $x, y \in \mathcal{G}$. Then, the conditions on the connection ∇ for being flat and torsion-free are now equivalent to the conditions (5) and (6), respectively.

Conversely, suppose that G is a simply connected Lie group with Lie algebra \mathcal{G}, and suppose that \mathcal{G} is endowed with a left-symmetric product • which is compatible with the Lie bracket of \mathcal{G}. We define an operator ∇ on \mathcal{G} according to identity (7), and then we extend it by left-translations to the whole Lie group G. This clearly defines a left-invariant flat affine structure on G. In summary, for a given simply connected Lie group G with Lie algebra \mathcal{G}, the left-invariant flat affine structures on G are in one-to-one correspondence with the left-symmetric structures on \mathcal{G} compatible with the Lie structure.

Let A be a left-symmetric algebra, and let the left and right multiplications L_{x} and R_{x} by the element x be defined by $L_{x} y=x \cdot y$ and $R_{x} y=y \cdot x$. We say that A is complete if R_{x} is a nilpotent operator, for all $x \in A$. It turns out that, for a given simply connected Lie group G with Lie algebra \mathcal{G}, the complete left-invariant flat affine structures on G are in one-to-one correspondence with the complete left-symmetric structures on \mathcal{G} compatible with the Lie structure (see for example [13]). It is also known that an n-dimensional simply connected Lie group admits a complete left-invariant flat affine structure if and only if it acts simply transitively on \mathbb{R}^{n} by affine transformations (see [13]). A simply connected Lie group which is acting simply transitively on \mathbb{R}^{n} by affine transformations must be solvable according to [1], but it is worth noticeable that there exist solvable (even nilpotent) Lie groups which do not admit affine structures (see [3]).

We close this section by fixing some notations which we will use in what follows. For a left-symmetric algebra A, we can easily check that the subset

$$
\begin{equation*}
T(A)=\left\{x \in A: L_{x}=0\right\} \tag{8}
\end{equation*}
$$

is a two-sided ideal in A. Geometrically, if G is a Lie group which acts simply transitively on \mathbb{R}^{n} by affine transformations then $T(\mathcal{G})$ corresponds to the set of translational elements in G, where \mathcal{G} is endowed with the complete left-symmetric product corresponding to the action of G on \mathbb{R}^{n}. It has been conjectured in [1] that every nilpotent Lie group G which acts simply transitively on \mathbb{R}^{n} by affine transformations contains a translation which lies in the center of G, but this conjecture turned out to be false (see [9]).

We discussed in the last section the problem of extension of a Lie algebra by another Lie algebra. Similarly, we shall briefly discuss in this section the problem of extension of a left-symmetric algebra by another left-symmetric algebra. To our knowledge, the notion of extensions of left-symmetric algebras has been considered for the first time in [13], to which we refer for more details.

Suppose we are given a vector space A as an extension of a left-symmetric algebra K by another left-symmetric algebra E. We want to define a leftsymmetric structure on A in terms of the left-symmetric structures given on K and E. In other words, we want to define a left-symmetric product on A for which E becomes a two-sided ideal in A such that $A / E \cong K$; or equivalently,

$$
0 \rightarrow E \rightarrow A \rightarrow K \rightarrow 0
$$

becomes a short exact sequence of left-symmetric algebras.
Theorem 3 ([13]) There exists a left-symmetric structure on A extending a left-symmetric algebra K by a left-symmetric algebra E if and only if there exist two linear maps $\lambda, \rho: K \rightarrow E n d(E)$ and a bilinear map $g: K \times K \rightarrow E$ such that, for all $x, y, z \in K$ and $a, b \in E$, the following conditions are satisfied.
(i) $\lambda_{x}(a \cdot b)=\lambda_{x}(a) \cdot b+a \cdot \lambda_{x}(b)-\rho_{x}(a) \cdot b$,
(ii) $\rho_{x}([a, b])=a \cdot \rho_{x}(b)-b \cdot \rho_{x}(a)$,
(iii) $\left[\lambda_{x}, \lambda_{y}\right]=\lambda_{[x, y]}+L_{g(x, y)-g(y, x)}$, where $L_{g(x, y)-g(y, x)}$ denotes the left multiplication in E by $g(x, y)-g(y, x)$.
(iv) $\left[\lambda_{x}, \rho_{y}\right]=\rho_{x \cdot y}-\rho_{y} \circ \rho_{x}+R_{g(x, y)}$, where $R_{g(x, y)}$ denotes the right multiplication in E by $g(x, y)$.
(v) $g(x, y \cdot z)-g(y, x \cdot z)+\lambda_{x}(g(y, z))-\lambda_{y}(g(x, z))-g([x, y], z)$
$-\rho_{z}(g(x, y)-g(y, x))=0$.
If the conditions of Theorem 3 are fulfilled, then the extended left-symmetric product on $A \cong K \times E$ is given by

$$
\begin{equation*}
(x, a) \cdot(y, b)=\left(x \cdot y, a \cdot b+\lambda_{x}(b)+\rho_{y}(a)+g(x, y)\right) . \tag{9}
\end{equation*}
$$

It is remarkable that if the left-symmetric product of E is trivial, then the conditions of Theorem 3 simplify to the following three conditions:
(i) $\left[\lambda_{x}, \lambda_{y}\right]=\lambda_{[x, y]}$, i.e. λ is a representation of Lie algebras,
(ii) $\left[\lambda_{x}, \rho_{y}\right]=\rho_{x \cdot y}-\rho_{y} \circ \rho_{x}$.
(iii) $g(x, y \cdot z)-g(y, x \cdot z)+\lambda_{x}(g(y, z))-\lambda_{y}(g(x, z))-g([x, y], z)$
$-\rho_{z}(g(x, y)-g(y, x))=0$.
In this case, E becomes a K-bimodule and the extended product given by (9) simplifies too.

Recall that if K is a left-symmetric algebra and V is a vector space, then we say tha V is a K-bimodule if there exist two linear maps $\lambda, \rho: K \rightarrow$ $\operatorname{End}(V)$ which satisfy the conditions (i) and (ii) stated above.

Let K be a left-symmetric algebra, and let V be a K-bimodule. Let $L^{p}(K, V)$ be the space of all p-linear maps from K to V, and define two coboundary operators $\delta_{1}: L^{1}(K, V) \rightarrow L^{2}(K, V)$ and $\delta_{2}: L^{2}(K, V) \rightarrow$ $L^{3}(K, V)$ as follows : For a linear map $h \in L^{1}(K, V)$ we set

$$
\begin{equation*}
\delta_{1} h(x, y)=\rho_{y}(h(x))+\lambda_{x}(h(y))-h(x \cdot y), \tag{10}
\end{equation*}
$$

and for a bilinear map $g \in L^{2}(K, V)$ we set

$$
\begin{align*}
\delta_{2} g(x, y, z)= & g(x, y \cdot z)-g(y, x \cdot z)+\lambda_{x}(g(y, z))-\lambda_{y}(g(x, z)) \tag{11}\\
& -g([x, y], z)-\rho_{z}(g(x, y)-g(y, x)) .
\end{align*}
$$

It is straightforward to check that $\delta_{2} \circ \delta_{1}=0$. Therefore, if we set $Z_{\lambda, \rho}^{2}(K, V)=\operatorname{ker} \delta_{2}$ and $B_{\lambda, \rho}^{2}(K, V)=\operatorname{Im} \delta_{1}$, we can define a notion of second cohomology for the actions λ and ρ by simply setting $H_{\lambda, \rho}^{2}(K, V)=$ $Z_{\lambda, \rho}^{2}(K, V) / B_{\lambda, \rho}^{2}(K, V)$.

As in the case of extensions of Lie algebras, we can prove that for given linear maps $\lambda, \rho: K \rightarrow \operatorname{End}(V)$, the equivalent classes of extensions $0 \rightarrow$ $V \rightarrow A \rightarrow K \rightarrow 0$ of K by V are in one-to-one correspondence with the elements of the second cohomology group $H_{\lambda, \rho}^{2}(K, V)$.

3.1 Central extensions of left-symmetric algebras

The notion of central extensions known for Lie algebras may analogously be defined for left-symmetric algebras. Let A be a left-symmetric extension of a left-symmetric algebra K by another left-symmetric algebra E, and let \mathcal{G} be the Lie algebra associated to A. Define the center $C(A)$ of A to be

$$
\begin{equation*}
C(A)=T(A) \cap Z(\mathcal{G})=\{x \in A: x \cdot y=y \cdot x=0, \quad \text { for all } y \in A\} \tag{12}
\end{equation*}
$$

where $Z(\mathcal{G})$ is the center of the Lie algebra \mathcal{G} and $T(A)$ is the two-sided ideal of A defined by (8).

Definition 4 The extension $0 \rightarrow E \xrightarrow{i} A \xrightarrow{\pi} K \rightarrow 0$ of left-symmetric algebras is said to be central (resp. exact) if $i(E) \subseteq C(A)$ (resp. $i(E)=$ $C(A))$.

Remark 5 It is not difficult to show that if the extension $0 \rightarrow E \xrightarrow{i} A \xrightarrow{\pi}$ $K \rightarrow 0$ is central, then both the left-symmetric product and the K-bimodule on E are trivial (i.e., $a \cdot b=0$ for all $a, b \in E$, and $\lambda=\rho=0$). In this case, the left-symmetric given by (9) simplifies to $(x, a) \cdot(y, b)=(x \cdot y, g(x, y))$.

We will require the following lemma, whose proof is immediate from the above remark.

Lemma 6 Let $0 \rightarrow E \xrightarrow{i} A \xrightarrow{\pi} K \rightarrow 0$ be a central extension of leftsymmetric algebras. Then, A is complete if and only if E and K are complete.

Remark 7 We should notice here that an announcement of Lemma 6 in the case of an arbitrary extension appeared in [6].

Let now $[g$] denote the cohomology class associated to the extension $0 \rightarrow$ $E \xrightarrow{i} A \xrightarrow{\pi} K \rightarrow 0$, and let
$I_{[g]}=\{x \in K: x \cdot y=y \cdot x=0$ and $g(x, y)=g(y, x)=0$, for all $y \in K\}$.
The set $I_{[g]}$ is well defined because any other element in $[g]$ takes the form $g+\delta_{1} h$, with $\delta_{1} h(x, y)=-h(x \cdot y)$. The following lemma can be easily proved (see [13]).

Lemma 8 The extension $0 \rightarrow E \xrightarrow{i} A \xrightarrow{\pi} K \rightarrow 0$ is exact if and only if $I_{[g]}=0$.

Let now K be a left-symmetric algebra, and E a trivial K-bimodule. Denote by $(A,[g])$ the central extension $0 \rightarrow E \rightarrow A \rightarrow K \rightarrow 0$ corresponding to the cohomology class $[g] \in H^{2}(K, E)$. Let $(A,[g])$ and $\left(A^{\prime},\left[g^{\prime}\right]\right)$ be two central extensions of K by E, and let $\mu \in \operatorname{Aut}(E)=G L(E)$ and $\eta \in A u t(K)$, where $A u t(E)$ and $A u t(K)$ are the groups of left-symmetric automorphisms of E and K, respectively. It is clear that, if $h \in L^{1}(K, E)$, then the linear mapping $\psi: A \rightarrow A^{\prime}$ defined by

$$
\psi(x, a)=(\eta(x), \mu(a)+h(x))
$$

is an isomorphism provided $g^{\prime}(\eta(x), \eta(y))=\mu(g(x, y))-\delta_{1} h(x, y)$ for all $(x, y) \in K \times K$, i.e. $\eta^{*}\left[g^{\prime}\right]=\mu_{*}[g]$.

This allows us to define an action of the group $G=A u t(E) \times \operatorname{Aut}(K)$ on $H^{2}(K, E)$ by setting

$$
\begin{equation*}
(\mu, \eta) \cdot[g]=\mu_{*} \eta^{*}[g], \tag{13}
\end{equation*}
$$

or equivalently, $(\mu, \eta) \cdot g(x, y)=\mu(g(\eta(x), \eta(y)))$ for all $x, y \in K$.
Denoting the set of all exact central extensions of K by E by

$$
H_{e x}^{2}(K, E)=\left\{[g] \in H^{2}(K, E): I_{[g]}=0\right\}
$$

and the orbit of $[g]$ by $G_{[g]}$, it turns out that the following result is valid (see [13]).

Proposition 9 Let $[g]$ and $\left[g^{\prime}\right]$ be two classes in $H_{e x}^{2}(K, E)$. Then, the central extensions $(A,[g])$ and $\left(A^{\prime},\left[g^{\prime}\right]\right)$ are isomorphic if and only if $G_{[g]}=G_{\left[g^{\prime}\right]}$. In other words, the classification of the exact central extensions of K by E is, up to left-symmetric isomorphism, the orbit space of $H_{e x}^{2}(K, E)$ under the natural action of $G=\operatorname{Aut}(E) \times \operatorname{Aut}(K)$.

4 Non-simple real left-symmetric structures on the oscillator algebra

Recall that the Heisenberg group H_{3} is the 3 -dimensional Lie group diffeomorphic to $\mathbb{R} \times \mathbb{C}$ with the group law

$$
\left(v_{1}, z_{1}\right) \cdot\left(v_{2}, z_{2}\right)=\left(v_{1}+v_{2}+\frac{1}{2} \operatorname{Im}\left(\overline{z_{1}} z_{2}\right), z_{1}+z_{2}\right)
$$

for all $v_{1}, v_{2} \in \mathbb{R}$ and $z_{1}, z_{2} \in \mathbb{C}$.
Let $\lambda>0$, and let $G=\mathbb{R} \ltimes H_{3}$ be equipped with the group law

$$
\left(t_{1}, v_{1}, z_{1}\right) \cdot\left(t_{2}, v_{2}, z_{2}\right)=\left(t_{1}+t_{2}, v_{1}+v_{2}+\frac{1}{2} \operatorname{Im}\left(\overline{z_{1}} z_{2} e^{i \lambda t_{1}}\right), z_{1}+z_{2} e^{i \lambda t_{1}}\right)
$$

for all $t_{1}, t_{2} \in \mathbb{R}$ and $\left(v_{1}, z_{1}\right),\left(v_{2}, z_{2}\right) \in H_{3}$. This is a 4-dimensional Lie group with Lie algebra \mathcal{G} having a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that

$$
\left[e_{1}, e_{2}\right]=e_{3},\left[e_{4}, e_{1}\right]=\lambda e_{2},\left[e_{4}, e_{2}\right]=-\lambda e_{1},
$$

and all the other brackets are zero.
It follows that the derived series is given by

$$
\mathcal{D}^{1} \mathcal{G}=[\mathcal{G}, \mathcal{G}]=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{D}^{2} \mathcal{G}=\operatorname{span}\left\{e_{3}\right\}, \mathcal{D}^{3} \mathcal{G}=\{0\}
$$

and therefore \mathcal{G} is a (non-nilpotent) 3 -step solvable Lie algebra.
When $\lambda=1, G$ is known as the oscillator group. We shall denote it by O_{4}, and we shall denote its Lie algebra by \mathcal{O}_{4} and call it the oscillator algebra.

Let A_{4} be a complete non-simple real left-symmetric algebra whose associated Lie algebra is \mathcal{O}_{4}. To continue, we first need to state the following straightforward lemmas.

Lemma 10 Let A be a left-symmetric algebra with Lie algebra \mathcal{G}, and R a two-sided ideal in A. Then, the Lie algebra \mathcal{R} associated to R is an ideal in \mathcal{G}.

Lemma 11 The oscillator algebra \mathcal{O}_{4} contains only two proper ideals which are $Z\left(\mathcal{O}_{4}\right) \cong \mathbb{R}$ and $\left[\mathcal{O}_{4}, \mathcal{O}_{4}\right] \cong \mathcal{H}_{3}$.

Since A_{4} is not simple, let I be a proper two-sided ideal in A_{4}. It follows that we have a short exact sequence of left-symmetric algebras

$$
\begin{equation*}
0 \rightarrow I \xrightarrow{i} A_{4} \xrightarrow{\pi} J \rightarrow 0 . \tag{14}
\end{equation*}
$$

If \mathcal{I} is the Lie subalgebra associated to I then, by Lemma $10, \mathcal{I}$ is an ideal in \mathcal{O}_{4}. From Lemma 11, it follows that there are two cases to consider according to whether \mathcal{I} is isomorphic to \mathcal{H}_{3} or \mathbb{R}.

Next, we shall focus on the case where \mathcal{I} is isomorphic to $\mathcal{H}_{3} \cong\left[\mathcal{O}_{4}, \mathcal{O}_{4}\right]$. In this case, the short exact sequence (14) becomes

$$
\begin{equation*}
0 \rightarrow I_{3} \xrightarrow{i} A_{4} \xrightarrow{\pi} \mathbb{R} \rightarrow 0, \tag{15}
\end{equation*}
$$

where I_{3} is a complete 3-dimensional left-symmetric algebra whose underlying Lie algebra is \mathcal{H}_{3}, and \mathbb{R} is the trivial 1-dimensional left-symmetric algebra (i.e., \mathbb{R} with the zero product). It is not hard to prove the following proposition (compare [10], Theorem 3.5).

Proposition 12 Up to left-symmetric isomorphism, the complete left-symmetric structures on the Heisenberg algebra \mathcal{H}_{3} are classified as follows: There is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathcal{H}_{3} relative to which the left-symmetric product is given by one of the following classes:
$e_{1} \cdot e_{1}=p e_{3}, e_{2} \cdot e_{2}=q e_{3}, e_{1} \cdot e_{2}=\frac{1}{2} e_{3}, e_{2} \cdot e_{1}=-\frac{1}{2} e_{3}$, where $p, q \in \mathbb{R}$.
(ii) $e_{1} \cdot e_{2}=m e_{3}, e_{2} \cdot e_{1}=(m-1) e_{3}, e_{2} \cdot e_{2}=e_{1}$, where $m \in \mathbb{R}$.

Remark 13 It is noticeable that the left-symmetric products on \mathcal{H}_{3} belonging to class (i) in Proposition 12 are obtained by central extensions (in the sense fixed in Subsection 3.1) of \mathbb{R}^{2} endowed with some complete left-symmetric structure by \mathbb{R} endowed with the trivial left-symmetric product. However, the left-symmetric products on A_{3} belonging to class (ii) are obtained by central extensions of the nonabelian two-dimensional Lie algebra \mathcal{G}_{2} endowed with its unique complete left-symmetric structure by \mathbb{R} endowed with the trivial left-symmetric structure.

Now we can return to the short exact sequence (15). First, let $\sigma: \mathbb{R} \rightarrow$ A_{4} be a section, and set $\sigma(1)=x_{0} \in A_{4}$, and define two linear maps λ, $\rho \in \operatorname{End}\left(I_{3}\right)$ by putting $\lambda(y)=x_{0} \cdot y$ and $\rho(y)=y \cdot x_{0}$, and put $\mathbf{e}=x_{0} \cdot x_{0}$ (clearly $\mathbf{e} \in I_{3}$).

Let $g: \mathbb{R} \times \mathbb{R} \rightarrow I_{3}$ be the bilinear map defined by $g(a, b)=\sigma(a) \cdot \sigma(b)-$ $\sigma(a \cdot b)$. It is clear that $g(a, b)=a b \mathbf{e}$, or equivalently $g(1,1)=\mathbf{e}$, and it is obvious too (using the notation of Section 3) to verify that $\delta_{2} g=0$, i.e. $g \in Z_{\lambda, \rho}^{2}\left(\mathbb{R}, I_{3}\right)$.

The extended left-symmetric product on $I_{3} \oplus \mathbb{R}$ given by (9) turns out to take the simplified form

$$
\begin{equation*}
(x, a) \cdot(y, b)=(x \cdot y+a \lambda(y)+b \rho(x)+a b \mathbf{e}, 0), \tag{16}
\end{equation*}
$$

for all $x, y \in I_{3}$ and $a, b \in \mathbb{R}$.
The conditions in Theorem 3 can be simplified to the following conditions:

$$
\begin{align*}
\lambda(x \cdot y) & =\lambda(x) \cdot y+x \cdot \lambda(y)-\rho(x) \cdot y \tag{17}\\
\rho([x, y]) & =x \cdot \rho(y)-y \cdot \rho(x) \tag{18}\\
{[\lambda, \rho]+\rho^{2} } & =R_{\mathbf{e}} \tag{19}
\end{align*}
$$

Let $\phi: \mathbb{R} \rightarrow \operatorname{End}\left(\mathcal{H}_{3}\right)$ be the linear map defined by formula (3). As we mentioned in Remark 1, \mathbb{R} acts on \mathcal{H}_{3} by derivations, that is, $\phi: \mathbb{R} \rightarrow$ $\operatorname{Der}\left(\mathcal{H}_{3}\right)$. In particular, we deduce in view of (4) that $\lambda=D+\rho$ for some derivation D of \mathcal{H}_{3}. The derivations of \mathcal{H}_{3} are given by the following lemma, whose proof is straightforward and is therefore omitted.

Lemma 14 In a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathcal{H}_{3} satisfying $\left[e_{1}, e_{2}\right]=e_{3}$, a derivation D of \mathcal{H}_{3} takes the form

$$
D=\left(\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
a_{2} & b_{2} & 0 \\
a_{3} & b_{3} & a_{1}+b_{2}
\end{array}\right)
$$

On the other hand, observe that $(x, a) \in T\left(A_{4}\right)$ if and only if (x, a). $(y, b)=(0,0)$ for all $(y, b) \in I_{3} \oplus \mathbb{R}$, or equivalently, $x \cdot y+a \lambda(y)+b \rho(x)+a b \mathbf{e}=$ 0 for all $(y, b) \in I_{3} \oplus \mathbb{R}$. Since y and b are arbitrary, we conclude that this is also equivalent to say that $\left(L_{x}\right)_{\left.\right|_{I_{3}}}=-a \lambda$ and $\rho(x)=-a \mathbf{e}$. In particular, an element $x \in I_{3}$ belongs to $T\left(A_{4}\right)$ if and only if $\left(L_{x}\right)_{\left.\right|_{I_{3}}}=0$ and $\rho(x)=0$, or equivalently,

$$
\begin{equation*}
I_{3} \cap T\left(A_{4}\right)=T\left(I_{3}\right) \cap \operatorname{ker} \rho . \tag{20}
\end{equation*}
$$

The following lemma will be crucial for the classification of complete leftsymmetric structures on \mathcal{O}_{4}.

Lemma 15 The center $C\left(A_{4}\right)=T\left(A_{4}\right) \cap Z\left(\mathcal{O}_{4}\right)$ is nontrivial.
Proof. In view of Proposition 12, we have to consider two cases.
Case 1. Assume that there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathcal{H}_{3} relative to which the left-symmetric product of I_{3} is given by : $e_{1} \cdot e_{1}=p e_{3}, e_{2} \cdot e_{2}=q e_{3}$, $e_{1} \cdot e_{2}=\frac{1}{2} e_{3}, e_{2} \cdot e_{1}=-\frac{1}{2} e_{3}$, where $p, q \in \mathbb{R}$.

Substituting $x=e_{1}$ and $y=e_{2}$ into (18), we find that the operator ρ takes the form

$$
\rho=\left(\begin{array}{ccc}
\alpha_{1} & \beta_{1} & 0 \\
\alpha_{2} & \beta_{2} & 0 \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right)
$$

with $\gamma_{3}=p \beta_{1}-q \alpha_{2}+\frac{1}{2}\left(\alpha_{1}+\beta_{2}\right)$. Since $\lambda=D+\rho$ for some $D \in \mathcal{H}_{3}$, we use Lemma 14 to deduce that

$$
\lambda=\left(\begin{array}{ccc}
\alpha_{1}+a_{1} & \beta_{1}+b_{1} & 0 \\
\alpha_{2}+a_{2} & \beta_{2}+b_{2} & 0 \\
\alpha_{3}+a_{3} & \beta_{3}+b_{3} & \gamma_{3}+a_{1}+b_{2}
\end{array}\right) .
$$

Since $\left(L_{e_{3}}\right)_{\left.\right|_{I_{3}}}=0$ and $\mathbf{e} \in I_{3}$, then (19) when applied to e_{3} gives

$$
\gamma_{3}^{2} e_{3}=e_{3} \cdot \mathbf{e}=0
$$

from which we get $\gamma_{3}=0$, i.e. $\rho\left(e_{3}\right)=0$. It follows from (20) that $e_{3} \in$ $T\left(A_{4}\right)$. Since $Z\left(\mathcal{O}_{4}\right)=\mathbb{R} e_{3}$, we deduce that $C\left(A_{4}\right)=T\left(A_{4}\right) \cap Z\left(\mathcal{O}_{4}\right) \neq 0$, as required.

Case 2. Assume now that there is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathcal{H}_{3} relative to which the left-symmetric product of I_{3} is given by : $e_{1} \cdot e_{2}=m e_{3}, e_{2} \cdot e_{1}=$ $(m-1) e_{3}, e_{2} \cdot e_{2}=e_{1}$, where m is a real number.

Substituting successively $x=e_{1}, y=e_{2}$ and $x=e_{2}, y=e_{3}$ into equation (18), we find that the operator ρ takes the form

$$
\rho=\left(\begin{array}{ccc}
\alpha_{1} & \beta_{1} & -\alpha_{2} \tag{21}\\
\alpha_{2} & \beta_{2} & 0 \\
\alpha_{3} & \beta_{3} & m \beta_{2}-(m-1) \alpha_{1}
\end{array}\right)
$$

with $(m-1) \alpha_{2}=0$.
We claim that $\alpha_{2}=0$. To prove this, let us assume to the contrary that $\alpha_{2} \neq 0$. It follows that $m=1$, and therefore

$$
\begin{aligned}
\rho\left(e_{3}\right) & =-\alpha_{2} e_{1}+\beta_{2} e_{3} \\
\rho^{2}\left(e_{3}\right) & =-\alpha_{2}\left(\alpha_{1}+\beta_{2}\right) e_{1}-\alpha_{2}^{2} e_{2}+\left(\beta_{2}^{2}-\alpha_{2} \alpha_{3}\right) e_{3}
\end{aligned}
$$

Since $\alpha_{2} \neq 0$, we deduce that $e_{3}, \rho\left(e_{3}\right), \rho^{2}\left(e_{3}\right)$ form a basis of I_{3}. Since ρ is nilpotent (by completeness of the left-symmetric structure), it follows that $\rho^{3}\left(e_{3}\right)=0$. In other words, ρ has the form

$$
\rho=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with respect to the basis $e_{1}^{\prime}=-\rho\left(e_{3}\right), e_{2}^{\prime}=\rho^{2}\left(e_{3}\right), e_{3}^{\prime}=-e_{3}$.
Using the fact that $\alpha_{1}+2 \beta_{2}=0$ which follows from the identity $\rho^{3}\left(e_{3}\right)=$ 0 , we see that $e_{1}^{\prime} \cdot e_{2}^{\prime}=\alpha_{2}^{3} e_{3}^{\prime}, e_{2}^{\prime} \cdot e_{2}^{\prime}=\alpha_{2}^{3} e_{1}^{\prime}$, and all other products are zero.

For simplicity, assume without loss of generality that $\alpha_{2}=1$. Since $\lambda=$ $D+\rho$ for some $D \in \mathcal{H}_{3}$, Lemma 14 tells us that, with respect to the basis $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$, the operator λ takes the form

$$
\lambda=\left(\begin{array}{ccc}
a_{1} & b_{1} & 1 \\
a_{2}-1 & b_{2} & 0 \\
a_{3} & b_{3} & a_{1}+b_{2}
\end{array}\right)
$$

Applying formula (19) to e_{3}^{\prime} and recalling that $e_{3}^{\prime} \cdot \mathbf{e}=0$ since $\mathbf{e} \in I_{3}$, we deduce that $a_{2}=1$ and $b_{2}=a_{3}=0$. Then, substituting $x=y=e_{2}^{\prime}$ into equation (17), we get $a_{1}=b_{1}=0$. Thus, the form of λ reduces to

$$
\lambda=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & b_{3} & 0
\end{array}\right)
$$

Now, by setting $\mathbf{e}=a e_{1}+b e_{2}+c e_{3}$ and applying (19) to e_{1}, we get that $b_{3}=-b$. By using (16), we deduce that the nonzero left-symmetric products are

$$
\begin{aligned}
& e_{1}^{\prime} \cdot e_{2}^{\prime}=e_{3}^{\prime}, \quad e_{2}^{\prime} \cdot e_{2}^{\prime}=e_{1}^{\prime} \\
& e_{1}^{\prime} \cdot e_{4}^{\prime}=-e_{2}^{\prime}, \quad e_{4}^{\prime} \cdot e_{2}^{\prime}=-b e_{3}^{\prime} \\
& e_{3}^{\prime} \cdot e_{4}^{\prime}=e_{4}^{\prime} \cdot e_{3}^{\prime}=e_{1}^{\prime}, \quad e_{4}^{\prime} \cdot e_{4}^{\prime}=\mathbf{e} .
\end{aligned}
$$

This implies, in particular, that $\operatorname{dim}\left[\mathcal{O}_{4}, \mathcal{O}_{4}\right]=\operatorname{dim}\left[A_{4}, A_{4}\right]=2$, a contradiction. It follows that $\alpha_{2}=0$, as desired.

We now return to (21). Since $\alpha_{2}=0$, we have

$$
\rho=\left(\begin{array}{ccc}
\alpha_{1} & \beta_{1} & 0 \\
0 & \beta_{2} & 0 \\
\alpha_{3} & \beta_{3} & m \beta_{2}-(m-1) \alpha_{1}
\end{array}\right)
$$

and since $\lambda=D+\rho$ for some $D \in \mathcal{H}_{3}$ then, in view of Lemma 14, the operator λ takes the form

$$
\lambda=\left(\begin{array}{ccc}
\alpha_{1}+a_{1} & \beta_{1}+b_{1} & 0 \\
a_{2} & \beta_{2}+b_{2} & 0 \\
\alpha_{3}+a_{3} & \beta_{3}+b_{3} & a_{1}+b_{2}+m \beta_{2}-(m-1) \alpha_{1}
\end{array}\right)
$$

Once again, by applying (19) to e_{3} and recalling that $e_{3} \cdot \mathbf{e}=0$ since $\mathbf{e} \in I_{3}$, we deduce that $\left(m \beta_{2}-(m-1) \alpha_{1}\right)^{2}=0$, thereby showing that $\rho\left(e_{3}\right)=0$. Now, in view of (20) we get $e_{3} \in T\left(A_{4}\right)$, and since $Z\left(\mathcal{O}_{4}\right)=\mathbb{R} e_{3}$ we deduce that $C\left(A_{4}\right)=T\left(A_{4}\right) \cap Z\left(\mathcal{O}_{4}\right) \neq 0$, as desired.

5 Classification

We know from Section 4 that A_{4} has a proper two-sided ideal I which is isomorphic to either the trivial left-symmetric algebra \mathbb{R} or a 3-dimensional complete left-symmetric algebra I_{3}, as described in Proposition 12, whose associated Lie algebra is the Heisenberg algebra \mathcal{H}_{3}. Thus, and according to Lemma 6, the classification of all complete non-simple left-symmetric structures on \mathcal{O}_{4} can be obtained by considering central extensions of complete left-symmetric algebras.

In case where $I \cong I_{3}$, we know by Lemma 15 that $C\left(A_{4}\right) \neq\{0\}$. Since, in our situation, $\operatorname{dim} Z\left(\mathcal{O}_{4}\right)=1$, it follows that $C\left(A_{4}\right) \cong \mathbb{R}$, so that we have a central short exact sequence of complete left-symmetric algebras of the form

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \rightarrow A_{4} \rightarrow A_{3} \rightarrow 0 \tag{22}
\end{equation*}
$$

In general, one has that the center of a left-symmetric algebra is a part of the center of the associated Lie algebra, and therefore the following lemma is proved.

Lemma 16 The Lie algebra associated to A_{3} is isomorphic to the Lie algebra $\mathcal{E}(2)$ of the group of Euclidean motions of the plane.

Recall that $\mathcal{E}(2)$ is solvable non-nilpotent and has a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ which satisfies $\left[e_{1}, e_{2}\right]=e_{3}$ and $\left[e_{1}, e_{3}\right]=-e_{2}$.

In the case where $I \cong \mathbb{R}$, we know by Lemma 10 that the Lie algebra $\mathcal{I} \cong \mathbb{R}$ associated to $I \cong \mathbb{R}$ is an ideal in \mathcal{O}_{4}. Since, by Lemma $11, \mathcal{O}_{4}$ has
only two proper ideals which are $Z\left(\mathcal{O}_{4}\right) \cong \mathbb{R}$ and $\left[\mathcal{O}_{4}, \mathcal{O}_{4}\right] \cong \mathcal{H}_{3}$, it follows that $\mathcal{I} \cong \mathbb{R}$ coincides with the center $Z\left(\mathcal{O}_{4}\right)$. We deduce from this that, if \mathcal{J} denotes the Lie algebra of the left-symmetric algebra J in the short exact sequence (14), then \mathcal{J} is isomorphic to $\mathcal{E}(2)$. Therefore, we have a short sequence of left-symmetric algebras which looks like (22) except that it would not necessarily be central. But, as we will see a little later, this is necessarily a central extension (i.e., $I \cong C\left(A_{4}\right) \cong \mathbb{R}$).

To summarize, each complete non-simple left-symmetric structure on \mathcal{O}_{4} may be obtained by extension of a complete 3 -dimensional left-symmetric algebra A_{3} whose associated Lie algebra is $\mathcal{E}(2)$ by the trivial left-symmetric algebra \mathbb{R}.

Next, we shall determine all the complete left-symmetric structures on $\mathcal{E}(2)$. These are described by the following lemma that we state without proof (see [10], Theorem 4.1).

Lemma 17 Up to left-symmetric isomorphism, any complete left-symmetric structure on $\mathcal{E}(2)$ is isomorphic to the following one which is given in a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $\mathcal{E}(2)$ by the relations

$$
e_{1} \cdot e_{2}=e_{3}, e_{1} \cdot e_{3}=-e_{2}, e_{2} \cdot e_{2}=e_{3} \cdot e_{3}=\varepsilon e_{1} .
$$

There are exactly two nonisomorphic conjugacy classes according to whether $\varepsilon=0$ or $\varepsilon \neq 0$.

From now on, A_{3} will denote the vector space $\mathcal{E}(2)$ endowed with one of the complete left-symmetric structures described in Lemma 17. The extended Lie bracket on $\mathcal{E}(2) \oplus \mathbb{R}$ is given by

$$
\begin{equation*}
[(x, a),(y, b)]=([x, y], \omega(x, y)) \tag{23}
\end{equation*}
$$

with $\omega \in Z^{2}(\mathcal{E}(2), \mathbb{R})$. The extended left-symmetric product on $A_{3} \oplus \mathbb{R}$ is given by

$$
\begin{equation*}
(x, a) \cdot(y, b)=\left(x \cdot y, b \lambda_{x}+a \rho_{y}+g(x, y)\right), \tag{24}
\end{equation*}
$$

with $\lambda, \rho: A_{3} \rightarrow \operatorname{End}(\mathbb{R}) \cong \mathbb{R}$ and $g \in Z_{\lambda, \rho}^{2}\left(A_{3}, \mathbb{R}\right)$. Note here that we have identified the value of λ (resp. ρ) at an element $x \in A_{3}$ with the corresponding real number $\lambda_{x}\left(\right.$ resp. $\left.\rho_{x}\right)$ via the isomorphism $\operatorname{End}(\mathbb{R}) \cong \mathbb{R}$.

As we have noticed in Section $3, \mathbb{R}$ is an A_{3}-bimodule, or equivalently, the conditions in Theorem 3 simplify to the following conditions:
(i) $\lambda_{[x, y]}=0$.
(ii) $\rho_{x \cdot y}=\rho_{y} \circ \rho_{x}$.
(iii) $g(x, y \cdot z)-g(y, x \cdot z)+\lambda_{x}(g(y, z))-\lambda_{y}(g(x, z))-g([x, y], z)$ $-\rho_{z}(g(x, y)-g(y, x))=0$.

By using (23) and (24), we deduce from

$$
[(x, a),(y, b)]=(x, a) \cdot(y, b)-(y, b) \cdot(x, a),
$$

that

$$
\begin{equation*}
\omega(x, y)=g(x, y)-g(y, x) \quad \text { and } \lambda=\rho . \tag{25}
\end{equation*}
$$

By applying identity (ii) above to $e_{i} \cdot e_{i}, 1 \leq i \leq 3$, we deduce that $\rho=0$, and a fortiori $\lambda=0$. In other words, the extension A_{4} is always central, i.e., $I \cong C\left(A_{4}\right)$ even in the case where $\mathcal{I} \cong \mathbb{R}$. It follows, according to Lemma that A_{4} is complete.

In fact, we have
Claim 18 The extension $0 \rightarrow \mathbb{R} \rightarrow A_{4} \rightarrow A_{3} \rightarrow 0$ is exact.
Proof. We recall from Subsection 3.1 that the extension given by the short sequence (22) is exact, i.e. $i(\mathbb{R})=C\left(A_{4}\right)$, if and only if $I_{[g]}=0$, where
$I_{[g]}=\left\{x \in A_{3}: x \cdot y=y \cdot x=0\right.$ and $g(x, y)=g(y, x)=0$, for all $\left.y \in A_{3}\right\}$.
To show that $I_{[g]}=0$, let x be an arbitrary element in $I_{[g]}$, and put $x=$ $a e_{1}+b e_{2}+c e_{3} \in I_{[g]}$. Now, by computing all the products $x \cdot e_{i}=e_{i} \cdot x=0$, $1 \leq i \leq 3$, we easily deduce that $x=0$.

Our aim is to classify the complete non-simple left-symmetric structures on $\mathcal{O}(4)$, up to left-symmetric isomorphisms. By Proposition 9, the classification of the exact central extensions of A_{3} by \mathbb{R} is, up to left-symmetric isomorphism, the orbit space of $H_{e x}^{2}\left(A_{3}, \mathbb{R}\right)$ under the natural action of $G=A u t(\mathbb{R}) \times \operatorname{Aut}\left(A_{3}\right)$. Accordingly, we must compute $H_{e x}^{2}\left(A_{3}, \mathbb{R}\right)$. Since \mathbb{R} is a trivial A_{3}-bimodule, we see first from formulae (10) and (11) in Section 3 that the coboundary operator δ simplifies as follows:

$$
\begin{aligned}
\delta_{1} h(x, y) & =-h(x \cdot y) \\
\delta_{2} g(x, y, z) & =g(x, y \cdot z)-g(y, x \cdot z)-g([x, y], z)
\end{aligned}
$$

where $h \in L^{1}\left(A_{3}, \mathbb{R}\right)$ and $g \in L^{2}\left(A_{3}, \mathbb{R}\right)$.
In view of Lemma 17, there are two cases to be considered.

Case 1. $A_{3}=\left\langle e_{1}, e_{2}, e_{3}: e_{1} \cdot e_{2}=e_{3}, e_{1} \cdot e_{3}=-e_{2}\right\rangle$.
In this case, using the first formula above for δ_{1}, we get

$$
\delta_{1} h=\left(\begin{array}{ccc}
0 & h_{12} & h_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where $h_{12}=-h\left(e_{3}\right)$ and $h_{13}=h\left(e_{2}\right)$. Similarly, using the second formula above for δ_{2}, we verify easily that if g is a cocycle (i.e. $\delta_{2} g=0$) and $g_{i j}=$ $g\left(e_{i}, e_{j}\right)$, then

$$
g=\left(\begin{array}{ccc}
g_{11} & g_{12} & g_{13} \\
0 & g_{22} & g_{23} \\
0 & -g_{23} & g_{22}
\end{array}\right)
$$

that is, $g_{21}=g_{31}=0, g_{32}=-g_{23}$, and $g_{33}=g_{22}$. We deduce that, in the basis above, the class $[g] \in H^{2}\left(A_{3}, \mathbb{R}\right)$ of a cocycle g may be represented by a matrix of the simplified form

$$
g=\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & \gamma \\
0 & -\gamma & \beta
\end{array}\right)
$$

We can now determine the extended left-symmetric structure on A_{4}. By setting $\widetilde{e}_{i}=\left(e_{i}, 0\right), 1 \leq i \leq 3$, and $\widetilde{e}_{4}=(0,1)$, and using formula (24) which (since $\lambda=\rho=0$) reduces to

$$
\begin{equation*}
(x, a) \cdot(y, b)=(x \cdot y, g(x, y)), \tag{26}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \widetilde{e}_{1} \cdot \widetilde{e}_{1}=\alpha \widetilde{e}_{4}, \widetilde{e}_{2} \cdot \widetilde{e}_{2}=\widetilde{e}_{3} \cdot \widetilde{e}_{3}=\beta \widetilde{e}_{4} \\
& \widetilde{e}_{1} \cdot \widetilde{e}_{2}=\widetilde{e}_{3}, \widetilde{e}_{1} \cdot \widetilde{e}_{3}=-\widetilde{e}_{2}, \tag{27}\\
& \widetilde{e}_{2} \cdot \widetilde{e}_{3}=\gamma \widetilde{e}_{4}, \quad \widetilde{e}_{3} \cdot \widetilde{e}_{2}=-\gamma \widetilde{e}_{4},
\end{align*}
$$

and all the other products are zero. We observe here that we should have $\gamma \neq$ 0 , given that the underlying Lie algebra is $\mathcal{O}(4)$. We denote by $A_{4}(\alpha, \beta, \gamma)$
the Lie algebra \mathcal{O} (4) endowed with the above complete left-symmetric product.

Let now $A_{4}(\alpha, \beta, \gamma)$ and $A_{4}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ be two arbitrary left-symmetric structures on $\mathcal{O}(4)$ given as above, and let $[g]$ and $\left[g^{\prime}\right]$ be the corresponding classes in $H_{e x}^{2}\left(A_{3}, \mathbb{R}\right)$. By Proposition 9 , we know that $A_{4}(\alpha, \beta, \gamma)$ is isomorphic to $A_{4}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ if and only if the exists $(\mu, \eta) \in \operatorname{Aut}(\mathbb{R}) \times \operatorname{Aut}\left(A_{3}\right)$ such that for all $x, y \in A_{3}$, we have

$$
\begin{equation*}
g^{\prime}(x, y)=\mu(g(\eta(x), \eta(y))) . \tag{28}
\end{equation*}
$$

We shall first determine $\operatorname{Aut}(\mathbb{R}) \times \operatorname{Aut}\left(A_{3}\right)$. We have $\operatorname{Aut}(\mathbb{R})=\mathbb{R}^{*}$, and it is easy too to determine Aut $\left(A_{3}\right)$. Indeed, recall that the unique leftsymmetric structure of A_{3} is given by $e_{1} \cdot e_{2}=e_{3}, \quad e_{1} \cdot e_{3}=-e_{2}$, and let $\eta \in \operatorname{Aut}\left(A_{3}\right)$ be given, in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, by

$$
\eta=\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right)
$$

From the identity $\eta\left(e_{3}\right)=\eta\left(e_{1} \cdot e_{2}\right)=\eta\left(e_{1}\right) \cdot \eta\left(e_{2}\right)$, we get that $c_{1}=0$, $c_{2}=-a_{1} b_{3}$, and $c_{3}=a_{1} b_{2}$. From the identity $-\eta\left(e_{2}\right)=\eta\left(e_{1} \cdot e_{3}\right)=\eta\left(e_{1}\right)$. $\eta\left(e_{3}\right)$ we get that $b_{1}=0, b_{2}=a_{1} c_{3}$, and $b_{3}=-a_{1} c_{2}$. Since $\operatorname{det} \eta \neq 0$, we deduce that $a_{1}= \pm 1$. It follows, by setting $\varepsilon= \pm 1$, that $b_{3}=-\varepsilon c_{2}$ and $c_{3}=\varepsilon b_{2}$. From the identity $\eta\left(e_{1}\right) \cdot \eta\left(e_{1}\right)=\eta\left(e_{1} \cdot e_{1}\right)=0$, we obtain that $a_{2}=a_{3}=0$. Therefore, η takes the form

$$
\eta=\left(\begin{array}{ccc}
\varepsilon & 0 & 0 \\
0 & b_{2} & c_{2} \\
0 & -\varepsilon c_{2} & \varepsilon b_{2}
\end{array}\right)
$$

with $b_{2}^{2}+c_{2}^{2} \neq 0$.
We shall now apply formula (28). For this we recall first that, in the basis above, the classes $[g]$ and $\left[g^{\prime}\right]$ corresponding, respectively, to $A_{4}(\alpha, \beta, \gamma)$ and $A_{4}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ have, respectively, the forms

$$
g=\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & \gamma \\
0 & -\gamma & \beta
\end{array}\right) \quad \text { and } \quad g^{\prime}=\left(\begin{array}{ccc}
\alpha^{\prime} & 0 & 0 \\
0 & \beta^{\prime} & \gamma^{\prime} \\
0 & -\gamma^{\prime} & \beta^{\prime}
\end{array}\right)
$$

From $g^{\prime}\left(e_{1}, e_{1}\right)=\mu g\left(\eta\left(e_{1}\right), \eta\left(e_{1}\right)\right)$, we get

$$
\begin{equation*}
\alpha^{\prime}=\mu \alpha \tag{29}
\end{equation*}
$$

and from $g^{\prime}\left(e_{2}, e_{2}\right)=\mu g\left(\eta\left(e_{2}\right), \eta\left(e_{2}\right)\right)$, we get

$$
\begin{equation*}
\beta^{\prime}=\mu\left(b_{2}^{2}+c_{2}^{2}\right) \beta . \tag{30}
\end{equation*}
$$

Similarly, from $g^{\prime}\left(e_{2}, e_{3}\right)=\mu g\left(\eta\left(e_{2}\right), \eta\left(e_{3}\right)\right)$ we get

$$
\begin{equation*}
\gamma^{\prime}=\mu \varepsilon\left(b_{2}^{2}+c_{2}^{2}\right) \gamma . \tag{31}
\end{equation*}
$$

Recall here that $\mu \neq 0, \gamma \neq 0$, and $b_{2}^{2}+c_{2}^{2} \neq 0$.

Claim 19 Each $A_{4}(\alpha, \beta, \gamma)$ is isomorphic to some $A_{4}\left(\alpha^{\prime}, \beta^{\prime}, 1\right)$. Precisely, $A_{4}(\alpha, \beta, \gamma)$ is isomorphic to $A_{4}\left(\varepsilon \frac{\alpha}{\gamma}, \varepsilon \frac{\beta}{\gamma}, 1\right)$.

Proof. By (29), (30), and (31), $A_{4}(\alpha, \beta, \gamma)$ is isomorphic to $A_{4}\left(\alpha^{\prime}, \beta^{\prime}, 1\right)$ if and only if there exists $\mu \in \mathbb{R}^{*}$ and $b, c \in \mathbb{R}$, with $b^{2}+c^{2} \neq 0$, such that

$$
\begin{aligned}
\alpha^{\prime} & =\mu \alpha \\
\beta^{\prime} & =\mu\left(b^{2}+c^{2}\right) \beta \\
1 & =\mu \varepsilon\left(b^{2}+c^{2}\right) \gamma .
\end{aligned}
$$

Now, by taking $b^{2}+c^{2}=1$ (for instance, $b=\cos \theta_{0}$ and $c=\sin \theta_{0}$ for some θ_{0}), the third equation yields $\mu=\frac{\varepsilon}{\gamma}$. Substituting the value of μ in the two first equations, we deduce that $\alpha^{\prime}=\varepsilon \frac{\alpha}{\gamma}$ and $\beta^{\prime}=\varepsilon \frac{\beta}{\gamma}$. Consequently, each $A_{4}(\alpha, \beta, \gamma)$ is isomorphic to $A_{4}\left(\varepsilon \frac{\alpha}{\gamma}, \varepsilon \frac{\beta}{\gamma}, 1\right)$.

Case 2. $A_{3}=\left\langle e_{1}, e_{2}, e_{3}: e_{1} \cdot e_{2}=e_{3}, e_{1} \cdot e_{3}=-e_{2}, e_{2} \cdot e_{2}=e_{3} \cdot e_{3}=e_{1}\right\rangle$.
Similarly to the first case, we get

$$
\delta_{1} h=\left(\begin{array}{ccc}
0 & h_{12} & h_{13} \\
0 & h_{22} & 0 \\
0 & 0 & h_{22}
\end{array}\right), \quad \text { and } g=\left(\begin{array}{ccc}
0 & g_{12} & g_{13} \\
0 & g_{22} & g_{23} \\
0 & -g_{23} & g_{22}
\end{array}\right)
$$

where $h_{12}=-h\left(e_{3}\right), h_{13}=h\left(e_{2}\right), h_{22}=-h\left(e_{1}\right)$, and $g_{i j}=g\left(e_{i}, e_{j}\right)$. It follows that, in this case, the class $[g] \in H^{2}\left(A_{3}, \mathbb{R}\right)$ of a cocycle g takes the reduced form

$$
g=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \gamma \\
0 & -\gamma & 0
\end{array}\right), \quad \gamma \neq 0
$$

By setting $\widetilde{e}_{i}=\left(e_{i}, 0\right), 1 \leq i \leq 3$, and $\widetilde{e}_{4}=(0,1)$, and using formula (26) we find that the nonzero relations are

$$
\begin{align*}
& \widetilde{e}_{1} \cdot \widetilde{e}_{2}=\widetilde{e}_{3}, \widetilde{e}_{1} \cdot \widetilde{e}_{3}=-\widetilde{e}_{2}, \widetilde{e}_{2} \cdot \widetilde{e}_{2}=\widetilde{e}_{3} \cdot \widetilde{e}_{3}=\widetilde{e}_{1} \tag{32}\\
& \widetilde{e}_{2} \cdot \widetilde{e}_{3}=\gamma \widetilde{e}_{4}, \widetilde{e}_{3} \cdot \widetilde{e}_{2}=-\gamma \widetilde{e}_{4}
\end{align*}
$$

with $\gamma \neq 0$.
We can now state the main result of this paper.
Theorem 20 Let A_{4} be a complete non-simple real left-symmetric algebra whose associated Lie algebra is $\mathcal{O}(4)$. Then A_{4} is isomorphic to one of the following left-symmetric algebras:
(i) $A_{4}(s, t)$: There exist real numbers s, t, and a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of $\mathcal{O}(4)$ relative to which the nonzero left-symmetric relations are

$$
\begin{aligned}
& e_{1} \cdot e_{1}=s e_{4}, \quad e_{2} \cdot e_{2}=e_{3} \cdot e_{3}=t e_{4} \\
& e_{1} \cdot e_{2}=e_{3}, \quad e_{1} \cdot e_{3}=-e_{2}, \\
& e_{2} \cdot e_{3}=\frac{1}{2} e_{4}, \quad e_{3} \cdot e_{2}=-\frac{1}{2} e_{4} .
\end{aligned}
$$

The conjugacy class of $A_{4}(s, t)$ is given as follows: $A_{4}\left(s^{\prime}, t^{\prime}\right)$ is isomorphic to $A_{4}(s, t)$ if and only if $\left(s^{\prime}, t^{\prime}\right)=(\alpha s, \pm t)$ for some $\alpha \in \mathbb{R}^{*}$.
(ii) B_{4} : There is a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of $\mathcal{O}(4)$ relative to which the nonzero left-symmetric relations are

$$
\begin{aligned}
e_{1} \cdot e_{2} & =e_{3}, \quad e_{1} \cdot e_{3}=-e_{2}, \quad e_{2} \cdot e_{2}=e_{3} \cdot e_{3}=e_{1} \\
e_{2} \cdot e_{3} & =\frac{1}{2} e_{4}, \quad e_{3} \cdot e_{2}=-\frac{1}{2} e_{4} .
\end{aligned}
$$

Proof. According to the discussion above, there are two cases to be considered.

Case 1. $A_{3}=\left\langle e_{1}, e_{2}, e_{3}: e_{1} \cdot e_{2}=e_{3}, e_{1} \cdot e_{3}=-e_{2}\right\rangle$.
In this case, Claim 19 asserts that A_{4} is isomorphic to some $A_{4}(\alpha, \beta, 1)$; and according to equations (27), we know that there is a basis $\left\{\widetilde{e}_{1}, \widetilde{e}_{2}, \widetilde{e}_{3}, \widetilde{e}_{4}\right\}$ of $\mathcal{O}(4)$ relative to which the nonzero relations for $A_{4}(\alpha, \beta, 1)$ are:

$$
\begin{aligned}
& \widetilde{e}_{1} \cdot \widetilde{e}_{1}=\alpha \widetilde{e}_{4}, \widetilde{e}_{2} \cdot \widetilde{e}_{2}=\widetilde{e}_{3} \cdot \widetilde{e}_{3}=\beta \widetilde{e}_{4} \\
& \widetilde{e}_{1} \cdot \widetilde{e}_{2}=\widetilde{e}_{3}, \widetilde{e}_{1} \cdot \widetilde{e}_{3}=-\widetilde{e}_{2}, \\
& \widetilde{e}_{2} \cdot \widetilde{e}_{3}=\widetilde{e}_{4}, \widetilde{e}_{3} \cdot \widetilde{e}_{2}=-\widetilde{e}_{4} .
\end{aligned}
$$

Now, it is clear that by setting $s=\frac{\alpha}{2}, t=\frac{\beta}{2}, e_{i}=\widetilde{e}_{i}$ for $1 \leq i \leq 3$, and $e_{4}=2 \widetilde{e}_{4}$, we get the desired two-parameter family $A_{4}(s, t)$.

On the other hand, we see from equations (29), (30), and (31) that $A_{4}\left(s^{\prime}, t^{\prime}\right)$ is isomorphic to $A_{4}(s, t)$ if and only if exists $\alpha \in \mathbb{R}^{*}$ and $b, c \in \mathbb{R}$, with $b^{2}+c^{2} \neq 0$, such that

$$
\begin{aligned}
s^{\prime} & =\alpha s \\
t^{\prime} & =\alpha\left(b^{2}+c^{2}\right) t \\
1 & =\alpha \varepsilon\left(b^{2}+c^{2}\right)
\end{aligned}
$$

From the third equation, we get $b^{2}+c^{2}=\frac{\varepsilon}{\alpha}$; and by substituting the value of $b^{2}+c^{2}$ in the second equation, we get $t^{\prime}=\varepsilon t$. In other words, we have shown that $A_{4}\left(s^{\prime}, t^{\prime}\right)$ is isomorphic to $A_{4}(s, t)$ if and only if exists $\alpha \in \mathbb{R}^{*}$ such that $s^{\prime}=\alpha s$ and $t^{\prime}= \pm t$.

Case 2. $A_{3}=\left\langle e_{1}, e_{2}, e_{3}: e_{1} \cdot e_{2}=e_{3}, e_{1} \cdot e_{3}=-e_{2}, e_{2} \cdot e_{2}=e_{3} \cdot e_{3}=e_{1}\right\rangle$.
In this case, by (32), there is a basis $\left\{\widetilde{e}_{1}, \widetilde{e}_{2}, \widetilde{e}_{3}, \widetilde{e}_{4}\right\}$ of $\mathcal{O}(4)$ relative to which the nonzero relations in A_{4} are:

$$
\begin{aligned}
& \tilde{e}_{1} \cdot \widetilde{e}_{2}=\widetilde{e}_{3}, \widetilde{e}_{1} \cdot \widetilde{e}_{3}=-\widetilde{e}_{2}, \widetilde{e}_{2} \cdot \widetilde{e}_{2}=\widetilde{e}_{3} \cdot \widetilde{e}_{3}=\widetilde{e}_{1} \\
& \widetilde{e}_{2} \cdot \widetilde{e}_{3}=\gamma \widetilde{e}_{4}, \widetilde{e}_{3} \cdot \widetilde{e}_{2}=-\gamma \widetilde{e}_{4},
\end{aligned}
$$

with $\gamma \neq 0$.
By setting $e_{i}=\widetilde{e}_{i}$ for $1 \leq i \leq 3$, and $e_{4}=2 \gamma \widetilde{e}_{4}$, we see that A_{4} is isomorphic to B_{4}. This finishes the proof of the main theorem.

Remark 21 Recall that a left-symmetric algebra A is called Novikov if it satisfies the condition

$$
(x \cdot y) \cdot z=(x \cdot z) \cdot y
$$

for all $x, y, z \in A$. Novikov left-symmetric algebras were introduced in [2] (see also [22] for some important results concerning this). We note here that $A_{4}(s, 0)$ is Novikov and that B_{4} is not.

We note that the mapping $X \mapsto\left(L_{X}, X\right)$ is a Lie algebra representation of \mathcal{O}_{4} in $\mathfrak{a f f}\left(\mathbb{R}^{4}\right)=\operatorname{End}\left(\mathbb{R}^{4}\right) \oplus \mathbb{R}^{4}$. By using the (Lie group) exponential maps, Theorem 20 can now be stated, in terms of simply transitive actions of subgroups of the affine group $\operatorname{Aff}\left(\mathbb{R}^{4}\right)=G L\left(\mathbb{R}^{4}\right) \ltimes \mathbb{R}^{4}$, as follows.

To state it, define the continuous functions f, g, h, and k by

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin x}{x}, & x \neq 0 \\
1, & x=0
\end{array}, \quad g(x)=\left\{\begin{array}{cc}
\frac{1-\cos x}{x}, & x \neq 0 \\
0, & x=0
\end{array}\right.\right.
$$

and

$$
h(x)=\left\{\begin{array}{cc}
\frac{x-\sin x}{x^{2}}, & x \neq 0 \\
0, & x=0
\end{array}, \quad k(x)=\left\{\begin{array}{cc}
\frac{1-\cos x}{x^{2}}, & x \neq 0 \\
0, & x=0
\end{array},\right.\right.
$$

and set

$$
\begin{aligned}
& \Phi_{t}(x)=\left(\frac{y}{2}+t z\right) g(x)-\left(\frac{z}{2}-t y\right) f(x), \\
& \Psi_{t}(x)=\left(\frac{y}{2}+t z\right) f(x)+\left(\frac{z}{2}-t y\right) g(x)
\end{aligned}
$$

Theorem 22 Suppose that the oscillator group O_{4} acts simply transitively by affine transformations on \mathbb{R}^{4}, and assume in addition that the center of O_{4} acts by translations. Then, as a subgroup of $\operatorname{Aff}\left(\mathbb{R}^{4}\right)=G L\left(\mathbb{R}^{4}\right) \ltimes \mathbb{R}^{4}$, O_{4} is conjugate to one of the following subgroups:
(i)

$$
G_{4}(s, t)=\left\{\begin{array}{c}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos x & -\sin x & 0 \\
0 & \sin x & \cos x & 0 \\
s x & \Phi_{t}(x) & \Psi_{t}(x) & 1
\end{array}\right] \times} \\
x \\
y f(x)-z g(x) \\
z f(x)+y g(x) \\
\left.\left[\begin{array}{c}
\\
w+\frac{s}{2} x^{2}+\left(y^{2}+z^{2}\right)\left(\frac{h(x)}{2}+t k(x)\right)
\end{array}\right]: x, y, z, w \in \mathbb{R}\right\}, ~
\end{array}\right\}
$$

where $s, t \in \mathbb{R}$. The only pairs of conjugate subgroups in $\operatorname{Aff}\left(\mathbb{R}^{4}\right)$ are $G_{4}(s, t)$ and $G_{4}(\alpha s, \pm t)$ where $\alpha \in \mathbb{R}^{*}$.
(ii)

$$
G_{4}=\left\{\begin{array}{c}
{\left[\begin{array}{cccc}
1 & y f(x)+z g(x) & z f(x)-y g(x) & 0 \\
0 & \cos x & -\sin x & 0 \\
0 & \sin x & \cos x & 0 \\
0 & \Phi_{0}(x) & \Psi_{0}(x) & 1
\end{array}\right]} \\
\\
\times\left[\begin{array}{c}
x+\left(y^{2}+z^{2}\right) k(x) \\
y f(x)-z g(x) \\
z f(x)+y g(x) \\
w+\frac{\left(y^{2}+z^{2}\right)}{2} h(x)
\end{array}\right]: x, y, z, w \in \mathbb{R}
\end{array}\right\},
$$

References

[1] L. Auslander, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977) 809-826.
[2] A.A. Balinskii, S.P. Novikov, Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Soviet Math. Dokl. 32 (1985), 228231.
[3] Y. Benoist, Une nilvariété non affine, J. Differential Geometry 41 (1995), 21-52.
[4] M. Bordemann, Generalized Lax pairs, the modified classical YangBaxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135 (1990), 201-216.
[5] D. Burde, Simple left-symmetric algebras with solvable Lie algebra, Manuscripta Math. 95 (1998), 397-411.
[6] K. Chang, H. Kim, and H. Lee, Radicals of left-symmetric algebras on a nilpotent Lie group, Bull. Korean Math. Soc. 41 (2004), 359-369.
[7] C. Chevalley, S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
[8] J. A. De Azcarraga, J. M. Izquierdo, Lie groups, Lie algebras, cohomology and applications in physics, Cambridge University Press 1995.
[9] D. Fried, Distality, completeness, and affine structures, J. Differential Geometry 24 (1986), 265-273.
[10] D. Fried, W. Goldman, Three dimensional affine crystallographic groups, Advances in Math. 47 (1983), 1-49.
[11] I. Z. Golubschik, V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODE's and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), 184-197.
[12] N. Jacobson, Lie algebras, Dover Publications, Inc. New York 1979.
[13] H. Kim, Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geometry 24 (1986), 373-394.
[14] J. L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc.Math. France 89 (1961), 515-533.
[15] N. Kuiper, Sur les surfaces localement affines, Colloq. Géom. Différentielle (1953), 79-87.
[16] B. A. Kupershmidt, Left-symmetric algebras in hydrodynamics, Lett. Math. Phys. 76 (2006), 1-18.
[17] J. Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), 178-187.
[18] M. Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc. Japan 5 (1953), 171-183.
[19] K. H. Neeb, Non-abelian extensions of topological Lie algebras, Comm. in Algebra 34 (2006), 991-1041.
[20] D. Segal, The structure of complete left-symmetric algebras, Math. Ann. 293 (1992), 569-578.
[21] E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-403.
[22] E. Zelmanov, On a class of local translation invariant Lie algebras, Soviet Math. Dokl. 35 (1987), 216-218.

Department of Mathematics, College of Science,
King Saud University,
P.O.Box 2455, Riyadh 11451

Saudi Arabia
E-mail: mguediri@ksu.edu.sa

