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Linear vs. Piecewise-linear Embeddability of Simplicial Complexes

U.BREHM AND K.S.SARKARIA

§1. Introduction

(1.1) Definitions.
In order to state our results we will first fix the definitions of the
notions mentioned in the title.

SIMPLICIAL COMPLEX K: by this we mean a finite set whose
members, called its simplices, are themselves finite sets, and which is
closed under subsets. The members of the simplices of K are called K’s
vertices.

Its realization K: If K has N vertices, then by thinking of these as
the canonical basis vectors of RY, and of each simplex as the convex hull

of its vertices, one obtains a subspace of R, which too will be denoted
K.

LINEAR EMBEDDABILITY OF K IN R™: a one-one mape: K —
R™ (from this realization K') will be called a linear embedding if it is the
restriction of a linear map RY — R™,

Note that for m > 2(dimmK) + 1, any general position linear map
RN — R™ will restrict to such a linear embedding of K in R™. Thus
the cases of interest are dimK < m < 2(diml{).

PIECEWISE-LINEAR EMBEDDABILITY OF K IN R™: this means
that, for some r > 0, the rth derived K(7 of K embeds linearly in R™.

Here the rth derived is defined inductively by K©® = K and K(") =
(K(r=VY where L' denotes the simplicial complex whose simplices are
sets of nonempty simplices of L which are totally ordered under C.

By mapping each vertex of K' (a simplex of K) to its barycentre, one
gets the linear barycentric embedding of K’ onto K, and so, by iteration,
KO 3K,

Composing with the inverse of this barycentric subdivision map, each

linear embedding K{") — R™ determines a one-one piecewise-linear em-
bedding e : K — R™.



The notion of piecewise-linear embeddability has been much studied —
see e.g. Hudson [7] and Rourke-Sanderson (8] which will be our references
for all other piecewise-linear terminology — because it avoids the possible
wildness of topological embeddings, but is at the same time flexibile
enough to make it much easier to handle than linear (or ‘simplex-wise-
linear’ or ‘geometric’) embeddability.

(1.2) Statements of results.

As an easy consequence of a theorem of Steinitz [14], 1922, it follows
that a one-dimensional complex, i.e. a graph K, will embed piecewise-
linearly (or even topologically) in R%, only if it occurs as a subcomplex
of the boundary of a simplicial 3-polytope: so & fortiori such a K! must
also embed linearly in R%. See also Wagner [17], Fary [3], Stein [13] and
Stojakovié [15].

In 1969, Griinbaum (6, p.502] conjectured that, likewise, for all n > 2,
the piecewise-linear embeddability of a K™ in R?" will be sufficient to
guarantee its linear embeddability in R?". We show that this conjecture
is false in the following very strong sense.

Theorem A. For eachn > 2, r > 0, there is a simplicial n-complez L
which embeds piecewise-linearly in R®™, but whose rth derived L") does
not embed linearly in R,

By virtue of a theorem of van Kampen [16, p.152], 1932, it is known
that if K™ is a pseudomanifold, i.e. if each of its (n — 1)-simplices is
incident to at most two n-simplices, then it embeds piecewise-linearly in
R%". Though the K™’s of Theorem A are not pseudomanifolds, we do
have, for ambient dimension one less, the following result which exhibits
a similar phenomenon on the part of some ‘higher-dimensional Mébius
strips’.

Theorem B. For each n = 2% k > 1, there is a K™ homeomorphic
to M™, the piecewise-linear manifold-with-boundary obtained by delet-
ing an n-ball B™ from real projective space RP™, such that K™ embeds
piecewise-linearly, but not linearly, in R?"1,

The case n = 2 of Theorem B, viz. that of the ordinary Mdbius strip,
was dealt with by the first author in [2].

Method of proof. The constructions given below to establish Theorems
B and A are based on the notion of linking, and follow the basic strategy
already used in [2]:



First, we arrange that, under any arbitrary piecewise-linear embed-
ding, some two spherical subcomplexes will link each other with linking
number > 2.

Second, we take care to triangulate these two spheres by so few vertices
that, under a linear embedding, this would be impossible.

We now recall what we need about linking, for more see e.g. Rourke-
Sanderson (8], pp. 68-73, and Wu [19], pp. 175-181.

LINKING NUMBER: of any oriented p.l.sphere $¢~! C R™, with
a disjoint oriented closed p.l.manifold M™~¢ C R™, is the intersec-
tton number, i.e. counts the algebraical number of intersections, of
any bounding compatibly oriented general position p.l.disk D*, dD* =
S§e=1 with M™~“. This is done by assigning an orientation to R™, and
counting each of these intersections as 41 or —1 depending on whether
the local orientation of D followed by that of M agrees with that of R™
or not.

If this number is zero, i.e. if $2~! does not link M™%, then S%~ ! —
M™=¢ extends to a map f of D® into R™ such that f(D*)NM™~¢ = §.

Upto sign, the linking number of $*~1 C R™ with a sphere $™~% C
R™, is same as that of S™~® with S, and coincides with the degree of
an associated map — cf. proof of (3.1.1) — of the join §™ = §2~1.gm—e
into itself.

§2. Higher Mobius strips

(2.1) Proof of Theorem B.

As is well known the manifold-with-spherical boundary, M"* = RP" —
(intB™), OM" = 9B™ = S"7! can be considered as a twisted line
bundle over a core submanifold RP*~1 ¢ M™.

(2.1.1) M™ embeds piecewise-linearly in R>"1,

To see this we can e.g. first embed (some triangulation of) the core
RP™! piecewise-linearly in R?2®~2, and so a trivial line bundle over it
into R2"~!, The assertion now follows because we can locally twist the
trivial bundle, for each of the R®™! worth of directions along RP™7!, in
the corresponding direction from the R"~! worth of directions available
complementary to the embedded trivial bundle.

(2.1.2) The bounding sphere of M™ links its core under any piecewise-
linear embedding e : M™ — R?*"~1,



We give below, for all k¥ > 2, a geometric argument; another more
algebraical proof is sketched later in (2.2).

Assume, if possible, that e(S™~!) does not link e(RP"~!). So we can
extend the embedding e to a general position map f (of some triangu-
lation) of RP™ into R?"~!, such that f(RP*~!)N f(B"™) = 0.

We will now use some well-known constructions — cf. Zeeman [20] and
[9] — to modify f to a piecewise-linear embedding ¢ of RP™ in R?"~1;
this suffices to furnish the desired contradiction because a theorem of
Thom - see e.g. Steenrod [12], p. 34 — tells us that if n = 2*, then RP™
does not embed in R2"~1,

We begin by noting that the singularities sing(f) of f constitute an,
at most one-dimensional, subset of the open n-ball RP® — RP"~1. So
we can find a 2-dimensional conical subset A of this open n-ball such
that 4 D sing(f).

In case k > 3 one has 3 + n < 2n — 1, so in this case we can enlarge
the 2-dimensional subset f(4) of f(RP™) C R?"™! to a 3-dimensional
cone C C R?™*~! which meets f(RP™) only in f(A).

We now choose regular neighbourhoods N(A4) of A in RP™, and N(C)
of C in R?"~1 gsuch that the exterior, boundary, and the interior of
N(A) are mapped by f into the exterior, boundary, and the interior,
respectively, of N(C). Note that N(A) is an n-ball, while N(C) is a
(2n — 1)-ball, and that f is one-one outside int(N(A)). So, by con-
ing f(O(N(A))) over an interior point of the ball N(C), we obtain an
embedding g : RP" — RZ"™1,

In case k = 2 we can, in the first instance, only ensure that the cone
C meets f(RP™) in finitely many points besides f(A). But then, by
using a preliminary modification of f near some one-dimensional tree
containing this zero-dimensional singular set, we can replace f by an f’
such that C meets f'(RP™) only in f'(A) = f(A). After that we proceed
as above to modify f' to an embedding g.

(2.1.3) The tmage of the bounding sphere of M™ has a nonzero and

even self-linking number under any piecewise-linear embedding e : M™ —
R2n—l ,

Here, by self-linking number of dM"™ = S"~!, we mean its linking
number with a disjoint isotopic "~ C M™".

To see the above note that any general position n-disk D™ C RZ"~1,
with D" = e(S"~!), hits the core ¢(RP"~') transversely in finitely
many points. By (2.1.2) we know that the algebraical number ¢ of such
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intersections is nonzero.

Now push $™~1 uniformly, along the fibers of the line bundle M™ over
RP"~!, to obtain an isotopic sphere £"~! arbitrarily close to the core
RP"!. Then the n-disk D® C R?"*~! will intersect this double cover
e(Z™1) of e(RP™1) transversely in 2t points.

(2.1.4) CONSTRUCTION OF K": Triangulate the boundary S"~!
and the isotopic sphere 7! of (2.1.3) as boundaries ds™ and 8o™ of
n-simplices s" and ¢”. We choose any triangulation K" of M"™ which
extends — cf. Armstrong [1] — this triangulation 8s"Udc™ of S*~1UT"1,
For example one can choose the explicit K™’s of (2.2.5).

(2.1.5) K™ does not embed linearly in R?"~1.

Otherwise, there will be some general position linear map e : RV —
R?"~!, whose restriction to the realization K™ is one-one.

The e-images of the closed simplices s™ and o™ will either not intersect,
or intersect in a line segment. In the latter case, if both ends of the
line segment lie on the boundary of the same closed simplex, say on
e(8(s™)), then there is no linking, because e(s") N e(d0") = §. And,
if the two ends of the line segment lie on different boundaries, then we
have card(e(s®) N e(do™)) = 1.

So the linking number of S"~! and £"~!, under a linear embedding
e, would be 0 or £1, which contradicts (2.1.3). q.e.d.

(2.2) Deleted joins.
Embeddability questions - see e.g. [10] and its references — are inti-
mately related to the following notion.

DELETED JOIN K,: subcomplex of K -_E, the join of two disjoint
copies of K, consisting of all simplices o - § such that 0 N6 = §, and
equipped with the free Z,-action o -8 « 8- 7.

Remarks (2.2.1) - (2.2.3) below sketch an alternative proof of (2.1.2)
via deleted joins.

(2.2.1) If e(S™"!) were not linking ¢(RP"™!) under the embedding
e : M™ — R?™! then there would be a continuous Zy-map from the
deleted join T, of some triangulation of RP", into the antipodal (2n—1)-
sphere §2"~1,

This is not hard to check, cf. proof of (3.1.3). In fact there would also
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be such a Z;-map from the deleted product T, i.e. the ‘mid-section’ of
T. consisting of all cells & x 8 such that o N § = @, into the antipodal
sphere $%"~2 of one dimension less.

(2.2.2) WU LEMMA. The Z,-homotopy types of the deleted join and
the deleted product of a simplicial complex are topological tnvariants of
the space underlying the complez.

This is harder ~ cf. Wu [19, Ch.2] for products — but it will be shown in
[11] that, with some care, this important fact generalizes even to higher
deleted joins, i.e. analogues of K, for groups G other than Z,.

(2.2.3) So, using any convenient triangulation of RP™, n = 2% it
suffices to show by a calculation of the characteristic classes of the free

Z,-homotopy type (RP"),, that there is no continuous Z;-map from it
to 22,

This calculation, which will be included in [11], is reminiscent of, but
more general than, the proof of the

BORSUK-ULAM THEOREM. There is no continuous Z,-map from
SP to S for p > q.

However for £ = 1, the Borsuk-Ulam Theorem itself provides the
desired contradiction because of the following remarkable fact.

(2.2.4) The deleted join of the 6-vertex real projective plane RPGZ‘ i3
Z,-homeomorphic to the antipodal 4-sphere.

We recall that RP? is a Z;-quotient or, if one prefers, one of the two
parts of a yin-yang decomposition — cf. Grothendieck [5] — of the
regular 12-vertex 2-sphere, i.e. the ubiquitous icosahedron.

The above result is not hard to check. In fact the second author
hopes to include in [11] a complete classification of all K™’s for which
K. is a closed pseudomanifold. For example, if this pseudomanifold is
n-dimensional, then it has to be the octahedral n-sphere (o). and —
see [10] — if it is (2n + 1)-dimensional, then it has to be a join of some
Flores’ spheres (022 ,).. Here and below cr} denotes the j-skeleton of an
t-simplex.

(2.2.5) The omission of the n-simplez 0", from the simplicial join
across o”, of any triangulation of RP™ and the octahedral n-sphere
(on)«, results in @ K" which satisfies the requirements of (2.1.4).



This is straightforward. Here, by simplicial join RP"#(o). across
o™ we mean the operation of first omitting an open n-simplex from
the first factor and ¢™ from the second factor, and then glueing the
remaining complexes together by identifying the boundaries of these n-
simplices.

‘Note in particular that (RPZ#(02),) — o2 gives the 9-vertez Mbius
strip [2] which fails to embed linearly in R3.

(2.2.6) The characteristic class computations of (2.2.3) suggest that if
a(n) denotes the number of 1’s in the binary expansion of n, then the
simplicial Mébius n-strips K™, n > 2, of (2.1) embed piecewise-linearly,
but not linearly, in the space R#?—a(n)

§3. Griinbaum’s conjecture

(3.1) Proof of Theorem A.
We will first consider the case n = 2.

Let Mog denote the 6-vertez Mdbius sirip, i.e. RP? minus one of
its 2-simplices which will be called s>. We note that, with appropriate
orientations, Mdg’s boundary ds® is homologous to twice its core 802,

where 0? ¢ RPZ denotes the complementary 2-simplex vert(RPZ) — s2.

Besides Mag, we will also use a disjoint 6-simplex 78, one of whose 2-
faces will also be called s2, with the complementary 3-simplex vert(7%)—
5% denoted by 3.

(3.1.1) THE 2-COMPLEXES L. Each of these will contain a triangle
called ds?. For t = 0 we set

Lo =15 — 5%,

and having defined L;, t > 0, obtain L4, from L, by identifying its Os*
with the core da? of a disjoint copy of A dg. So, after this identification,
the boundary 8s% of Mdg becomes the 8s? of Lsy;.
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(3.1.2) The 2-complezes Ly embed piecewise-linearly in R%.

This is clear for ¢ = 0.

So, assume inductively that there is a piecewise-linear embedding e :
Ly — R4, for some t > 0. Since Mds embeds piecewise-linearly even
in R®, we can extend e to a general position piecewise-linear map f :
Liy1 — R%, with its finitely many double points (z,y) all such that
x € L¢and y € Mos. For each such y choose a disjoint arc of Mdg from y
to its boundary 9s?. Removing from L4; small regular neighbourhoods
of all these arcs we get a subspace X piecewise-linearly homeomorphic
to Lyy; on which the map f is one-one.

(3.1.3) The disjoint spheres 9p>® and 8s® of Ly must link under any
piecewise-linear embedding e : Ly — R%.

By a lemma of Flores [4] the deleted join (7). is an antipodal 5-
sphere. So Borsuk-Ulam tells us that there can not be a continuous
Z;-map from it to S*.

But, S4 has the same Z;-homotopy type as the join R* - R* minus its
diagonal, i1.e. all points of the type %:c + %E And, there is a continuous
Z;-map of (Lp). into this space, viz. the map e, defined by

Az + (1 = X)g — Ae(z) + (1 — Me(y).

The closure of (7§), — (L)« consists of the 5-ball 9y - 52 and its
conjugate. The restriction of e, to the boundary of this 5-ball has degree
zero iff the linking number of the spheres e(9¢?) and e(ds?) is zero. So,
if this were the case, e, would extend to yield a continuous Z;-map
(). — S*, which is not possible.

(3.1.4) The disjoint spheres 9> and 8s® of L, t > 0, must have
linking number at least 2* (in absolute value) under any piecewise-linear
embedding e : L, — R*.

We argue by induction starting from the above case t = 0. The
triangle ds® of complex Ly, t > 1, is homologous to twice the triangle
80? C Mog which was identified (3.1.1) to the triangle 8s% of L,_; to
form L;. So each transverse intersection under e of the latter, with a
general position 3-disk spanning e(9y?), gives rise to two intersections
of the former having the same intersection number.



(3.1.5) For any r > 0 we can choose t so big that the rth derived of
L = L, does not embed linearly in R,

The number of simplices, contained in the simplicial 2 and 1-spheres
occuring as the rth deriveds of dp® and 8s?, is bounded in terms of r.
From this it follows easily that, under any linear embedding of the union
of these spheres in R*, the absolute value of the linking number is also
bounded by a constant depending only on r. Choose any ¢ such that 2!
is bigger than this number and use (3.1.4).

This concludes the proof of Theorem A for n = 2.

(3.1.6) For n > 3 the above argument modifies as follows :

(a) Instead of Mg we use its (n — 3)-fold suspension S"~3(Mdg).
Note that in it the (n — 1)-sphere $7~3(8s?) is homologous to twice the
(n — 1)-sphere S*~3(d0?).

(b) The n-complexes Ly ¢, t > 0, are defined almost as before except
for one small change. Instead of the n-skeleton of a 72"*2, minus one
n-face u”, we start with

Lno=(r2"2 _y™)u A",

where A" is a simplicial ennulus S"~' x I having boundary JA™ =
Ou™ U S"3(ds?). So we have a S"~¥(8s?) in L, ¢ which is homologous
to Ou”. For any ¢ > 1, we now obtain L,; from L, ,;—; by identify-
ing this S*73(9s?) of L, (—;, with the S*73(80?) of a disjoint copy of
Sn=3(Més).

The rest of the argument is unchanged: the piecewise-linear embed-
dability of these n-complexes in R%" follows just as in (3.1.2), and the
same argument as in (3.1.3) shows that the disjoint spheres 8p"*! and
du™ of L, 5 link under any embedding in R?", from which it follows al-
most as before that the linking number of dp"*! and $"~3(8s%) is > 2!
for any embedding of L, in R2" ... q.ed.

(3.2) Concluding remarks.

We will now consider some variations of the above construction which
give in particular a generalization (3.2.3) of Theorem A and a corollary
(8.2.5) pertaining to linear immersions.

(3.2.1) Ezamples L, ¢ analogous to those of (§.1) can be made starting
from any Kuratowski n-complex [9]

n__ . 2m 2n3 2n; —
=7 Lyl by =041,
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instead of just T2"12,

For instance had we started off by setting Ly = 7 -7¢ —s' - s%, then the
analogue of (3.1.3) is that the 2-sphere 9¢? - 8¢, formed by the vertices
of Ly not in the omitted 2-simplex s! - s°, always links the boundary of
s! - s° under any embedding of Ly into R%.

(3.2.2) Analogous constructions also give some n-complezes Lymt
which embed piecewrse-linearly, but not linearly in R™, for some other
n’s and m’s such that n < m < 2n.

We now start with different 7"’s. For example, we can start with the
join of m—n disjoint copies of 7€ (i.e. three points) and 2n—m disjoint
copies of 7 (i.e. one point). Then the deleted join T, is an antipodal
(m+1)-sphere, so there is no Z;-map from it to S™. Omitting an n-face
from this T" and proceeding as in (3.1.6) gives such complexes.

Their piecewise-linear embeddability in R™ follows from arguments
analogous to those of (3.1.2) which remain valid at least under conditions
like m > 3n +1 ~ cf. [18] ~ and thus we obtain examples of the above
sort.

(3.2.3) For eachn 2 2, 7 > 1, n < m < 2n, there is a simplicial
n-complex which embeds piecewise-linearly tn R™, but whose rth derived
does not embed linearly in R™.

Furthermore, if n > 3, we can take n < m < 2n in the above.

These generalizations of Theorem A follow by using (3.2.2): e.g. one
takes disjoint union of an Lim),m, and a oy, etc.

We note that a finesse is required when dealing with the case n = 2,
m = 3 of (3.2.3) since, by attaching Mdg’s & la (3.1.1), one now loses
piecewise-linear embeddability. To overcome this, attach instead, at
each step, an RP? minus a 2-simplex s? having exactly one vertex on
the attaching triangle do2.

(3.2.4) By sterating the construction (3.1.1) indefinitely one obtains
an infinite 2-complex L, which embeds topologically, but not piecewise-
linearly, in RY.

This is clear. Here, by topologically embeddable, we mean simply that
there exists a continuous one-one map from L., into R%.

Construction of such finite complexes is much harder, but might be
implicit in the well-known work of R.D.Edwards and M.H.Freedman.
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(3.2.5) For each n > 3, r > 0, maz{n,4} < m < 2n, there is a
simplictal n-complez which embeds piecewise-linearly in R™, but whose
rth derived does not even immerse linearly in R™.

This follows either by considering cones over suitable examples from

(3.2.3) or formulating an analogue of (3.2.3) for embeddings in S™.

(8.2.6) Embeddability of K in R™. Thinking again, as in §1, of the
N vertices of K, as the canonical basis vectors of RV, one gets a bigger
(non-compact) space K, if with each simplex of K is associated the affine
hull of its vertices in RN instead of the convex hull of its vertices.

Note that K collapses to K, from which it follows that the topological
embeddability of K in R™ implies that of K. But it is very easy to see
- e.g. consider a segment and a disjoint point in R! — that the linear
embeddability of K in R™ is a strictly stronger notion than that of K.

There will be included in Chapter IV (on “Linear Embeddability”)
of [11) some interesting results involving this stronger notion, which
incidentally makes sense not only for an ordered field like R, but for any
field whatsoever.
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