Linear vs. Piecewise-Linear Embeddability of Simplicial Complexes

U. Brehm K. S. Sarkaria

U. Brehm Mathematisches Institut Technisches Universität Berlin

Germany

K. S. Sarkaria Department of Mathematics Panjab University Chandigarh 160014

India

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

.

Linear vs. Piecewise-linear Embeddability of Simplicial Complexes

U.BREHM AND K.S.SARKARIA

§1. Introduction

(1.1) Definitions.

In order to state our results we will first fix the definitions of the notions mentioned in the title.

SIMPLICIAL COMPLEX K: by this we mean a finite set whose members, called its *simplices*, are themselves finite sets, and which is closed under subsets. The members of the simplices of K are called K's *vertices*.

Its realization K: If K has N vertices, then by thinking of these as the canonical basis vectors of \mathbf{R}^N , and of each simplex as the convex hull of its vertices, one obtains a subspace of \mathbf{R}^N , which too will be denoted K.

LINEAR EMBEDDABILITY OF K IN \mathbb{R}^m : a one-one map $e: K \to \mathbb{R}^m$ (from this realization K) will be called a *linear embedding* if it is the restriction of a linear map $\mathbb{R}^N \to \mathbb{R}^m$.

Note that for $m \geq 2(dimK) + 1$, any general position linear map $\mathbf{R}^N \to \mathbf{R}^m$ will restrict to such a linear embedding of K in \mathbf{R}^m . Thus the cases of interest are $dimK \leq m \leq 2(dimK)$.

PIECEWISE-LINEAR EMBEDDABILITY OF K IN \mathbb{R}^m : this means that, for some $r \ge 0$, the rth derived $K^{(r)}$ of K embeds linearly in \mathbb{R}^m .

Here the *r*th derived is defined inductively by $K^{(0)} = K$ and $K^{(r)} = (K^{(r-1)})'$, where L' denotes the simplicial complex whose simplices are sets of nonempty simplices of L which are totally ordered under \subset .

By mapping each vertex of K' (a simplex of K) to its barycentre, one gets the linear *barycentric* embedding of K' onto K, and so, by iteration, $K^{(r)} \stackrel{\cong}{\to} K$.

Composing with the inverse of this barycentric subdivision map, each linear embedding $K^{(r)} \to \mathbb{R}^m$ determines a one-one piecewise-linear embedding $e: K \to \mathbb{R}^m$.

The notion of piecewise-linear embeddability has been much studied – see e.g. Hudson [7] and Rourke-Sanderson [8] which will be our references for all other piecewise-linear terminology – because it avoids the possible wildness of topological embeddings, but is at the same time flexibile enough to make it much easier to handle than linear (or 'simplex-wiselinear' or 'geometric') embeddability.

(1.2) Statements of results.

As an easy consequence of a theorem of Steinitz [14], 1922, it follows that a one-dimensional complex, i.e. a graph K^1 , will embed piecewiselinearly (or even topologically) in \mathbb{R}^2 , only if it occurs as a subcomplex of the boundary of a simplicial 3-polytope: so à fortiori such a K^1 must also embed linearly in \mathbb{R}^2 . See also Wagner [17], Fáry [3], Stein [13] and Stojaković [15].

In 1969, Grünbaum [6, p.502] conjectured that, likewise, for all $n \ge 2$, the piecewise-linear embeddability of a K^n in \mathbb{R}^{2n} will be sufficient to guarantee its linear embeddability in \mathbb{R}^{2n} . We show that this conjecture is false in the following very strong sense.

Theorem A. For each $n \geq 2$, $r \geq 0$, there is a simplicial n-complex L which embeds piecewise-linearly in \mathbb{R}^{2n} , but whose rth derived $L^{(r)}$ does not embed linearly in \mathbb{R}^{2n} .

By virtue of a theorem of van Kampen [16, p.152], 1932, it is known that if K^n is a *pseudomanifold*, i.e. if each of its (n-1)-simplices is incident to at most two *n*-simplices, then it embeds piecewise-linearly in \mathbb{R}^{2n} . Though the K^n 's of Theorem A are not pseudomanifolds, we do have, for ambient dimension one less, the following result which exhibits a similar phenomenon on the part of some 'higher-dimensional Möbius strips'.

Theorem B. For each $n = 2^k, k \ge 1$, there is a K^n homeomorphic to M^n , the piecewise-linear manifold-with-boundary obtained by deleting an n-ball B^n from real projective space $\mathbb{R}P^n$, such that K^n embeds piecewise-linearly, but not linearly, in \mathbb{R}^{2n-1} .

The case n = 2 of Theorem B, viz. that of the ordinary Möbius strip, was dealt with by the first author in [2].

Method of proof. The constructions given below to establish Theorems B and A are based on the notion of *linking*, and follow the basic strategy already used in [2]:

First, we arrange that, under any arbitrary piecewise-linear embedding, some two spherical subcomplexes will link each other with linking number ≥ 2 .

Second, we take care to triangulate these two spheres by so few vertices that, under a linear embedding, this would be impossible.

We now recall what we need about linking, for more see e.g. Rourke-Sanderson [8], pp. 68-73, and Wu [19], pp. 175-181.

LINKING NUMBER: of any oriented p.l. sphere $S^{a-1} \subset \mathbb{R}^m$, with a disjoint oriented closed p.l. manifold $M^{m-a} \subset \mathbb{R}^m$, is the *intersection number*, i.e. counts the algebraical number of intersections, of any bounding compatibly oriented general position p.l. disk D^a , $\partial D^a = S^{a-1}$, with M^{m-a} . This is done by assigning an orientation to \mathbb{R}^m , and counting each of these intersections as +1 or -1 depending on whether the local orientation of D followed by that of M agrees with that of \mathbb{R}^m or not.

If this number is zero, i.e. if S^{a-1} does not link M^{m-a} , then $S^{a-1} \hookrightarrow M^{m-a}$ extends to a map f of D^a into \mathbb{R}^m such that $f(D^a) \cap M^{m-a} = \emptyset$.

Upto sign, the linking number of $S^{a-1} \subset \mathbb{R}^m$ with a sphere $S^{m-a} \subset \mathbb{R}^m$, is same as that of S^{m-a} with S^{a-1} , and coincides with the *degree* of an associated map – cf. proof of (3.1.1) – of the join $S^m = S^{a-1} \cdot S^{m-a}$ into itself.

§2. Higher Möbius strips

(2.1) Proof of Theorem B.

As is well known the manifold-with-spherical boundary, $M^n = \mathbb{R}P^n - (intB^n)$, $\partial M^n = \partial B^n = S^{n-1}$, can be considered as a twisted line bundle over a *core* submanifold $\mathbb{R}P^{n-1} \subset M^n$.

(2.1.1) M^n embeds piecewise-linearly in \mathbb{R}^{2n-1} .

To see this we can e.g. first embed (some triangulation of) the core $\mathbb{R}P^{n-1}$ piecewise-linearly in \mathbb{R}^{2n-2} , and so a trivial line bundle over it into \mathbb{R}^{2n-1} . The assertion now follows because we can locally twist the trivial bundle, for each of the \mathbb{R}^{n-1} worth of directions along $\mathbb{R}P^{n-1}$, in the corresponding direction from the \mathbb{R}^{n-1} worth of directions available complementary to the embedded trivial bundle.

(2.1.2) The bounding sphere of M^n links its core under any piecewiselinear embedding $e: M^n \to \mathbb{R}^{2n-1}$. We give below, for all $k \ge 2$, a geometric argument; another more algebraical proof is sketched later in (2.2).

Assume, if possible, that $e(S^{n-1})$ does not link $e(\mathbb{R}P^{n-1})$. So we can extend the embedding e to a general position map f (of some triangulation) of $\mathbb{R}P^n$ into \mathbb{R}^{2n-1} , such that $f(\mathbb{R}P^{n-1}) \cap f(B^n) = \emptyset$.

We will now use some well-known constructions – cf. Zeeman [20] and [9] – to modify f to a piecewise-linear embedding g of $\mathbb{R}P^n$ in \mathbb{R}^{2n-1} : this suffices to furnish the desired contradiction because a theorem of Thom – see e.g. Steenrod [12], p. 34 – tells us that if $n = 2^k$, then $\mathbb{R}P^n$ does not embed in \mathbb{R}^{2n-1} .

We begin by noting that the singularities sing(f) of f constitute an, at most one-dimensional, subset of the open *n*-ball $\mathbb{R}P^n - \mathbb{R}P^{n-1}$. So we can find a 2-dimensional conical subset A of this open *n*-ball such that $A \supset sing(f)$.

In case $k \geq 3$ one has 3 + n < 2n - 1, so in this case we can enlarge the 2-dimensional subset f(A) of $f(\mathbb{R}P^n) \subset \mathbb{R}^{2n-1}$ to a 3-dimensional cone $C \subset \mathbb{R}^{2n-1}$ which meets $f(\mathbb{R}P^n)$ only in f(A).

We now choose regular neighbourhoods N(A) of A in $\mathbb{R}P^n$, and N(C) of C in \mathbb{R}^{2n-1} , such that the exterior, boundary, and the interior of N(A) are mapped by f into the exterior, boundary, and the interior, respectively, of N(C). Note that N(A) is an n-ball, while N(C) is a (2n-1)-ball, and that f is one-one outside int(N(A)). So, by coning $f(\partial(N(A)))$ over an interior point of the ball N(C), we obtain an embedding $g: \mathbb{R}P^n \to \mathbb{R}^{2n-1}$.

In case k = 2 we can, in the first instance, only ensure that the cone C meets $f(\mathbb{R}P^n)$ in finitely many points besides f(A). But then, by using a preliminary modification of f near some one-dimensional tree containing this zero-dimensional singular set, we can replace f by an f' such that C meets $f'(\mathbb{R}P^n)$ only in f'(A) = f(A). After that we proceed as above to modify f' to an embedding g.

(2.1.3) The image of the bounding sphere of M^n has a nonzero and even self-linking number under any piecewise-linear embedding $e: M^n \to \mathbb{R}^{2n-1}$.

Here, by self-linking number of $\partial M^n = S^{n-1}$, we mean its linking number with a disjoint isotopic $\Sigma^{n-1} \subset M^n$.

To see the above note that any general position *n*-disk $D^n \subset \mathbb{R}^{2n-1}$, with $\partial D^n = e(S^{n-1})$, hits the core $e(\mathbb{R}P^{n-1})$ transversely in finitely many points. By (2.1.2) we know that the algebraical number t of such intersections is nonzero.

Now push S^{n-1} uniformly, along the fibers of the line bundle M^n over $\mathbb{R}P^{n-1}$, to obtain an isotopic sphere Σ^{n-1} arbitrarily close to the core $\mathbb{R}P^{n-1}$. Then the *n*-disk $D^n \subset \mathbb{R}^{2n-1}$ will intersect this double cover $e(\Sigma^{n-1})$ of $e(\mathbb{R}P^{n-1})$ transversely in 2t points.

(2.1.4) CONSTRUCTION OF K^n : Triangulate the boundary S^{n-1} and the isotopic sphere Σ^{n-1} of (2.1.3) as boundaries ∂s^n and $\partial \sigma^n$ of *n*-simplices s^n and σ^n . We choose any triangulation K^n of M^n which extends – cf. Armstrong [1] – this triangulation $\partial s^n \cup \partial \sigma^n$ of $S^{n-1} \cup \Sigma^{n-1}$. For example one can choose the explicit K^n 's of (2.2.5).

(2.1.5) K^n does not embed linearly in \mathbb{R}^{2n-1} .

Otherwise, there will be some general position linear map $e: \mathbb{R}^N \to \mathbb{R}^{2n-1}$, whose restriction to the realization K^n is one-one.

The e-images of the closed simplices s^n and σ^n will either not intersect, or intersect in a line segment. In the latter case, if both ends of the line segment lie on the boundary of the same closed simplex, say on $e(\partial(s^n))$, then there is no linking, because $e(s^n) \cap e(\partial \sigma^n) = \emptyset$. And, if the two ends of the line segment lie on different boundaries, then we have $card(e(s^n) \cap e(\partial \sigma^n)) = 1$.

So the linking number of S^{n-1} and Σ^{n-1} , under a linear embedding e, would be 0 or ± 1 , which contradicts (2.1.3). q.e.d.

(2.2) Deleted joins.

Embeddability questions – see e.g. [10] and its references – are intimately related to the following notion.

DELETED JOIN K_* : subcomplex of $K \cdot \overline{K}$, the join of two disjoint copies of K, consisting of all simplices $\sigma \cdot \overline{\theta}$ such that $\sigma \cap \theta = \emptyset$, and equipped with the free \mathbb{Z}_2 -action $\sigma \cdot \overline{\theta} \leftrightarrow \theta \cdot \overline{\sigma}$.

Remarks (2.2.1) - (2.2.3) below sketch an alternative proof of (2.1.2) via deleted joins.

(2.2.1) If $e(S^{n-1})$ were not linking $e(\mathbb{R}P^{n-1})$ under the embedding $e: M^n \to \mathbb{R}^{2n-1}$, then there would be a continuous \mathbb{Z}_2 -map from the deleted join T_* , of some triangulation of $\mathbb{R}P^n$, into the antipodal (2n-1)-sphere S^{2n-1} .

This is not hard to check, cf. proof of (3.1.3). In fact there would also

be such a \mathbb{Z}_2 -map from the *deleted product* T_{\bullet} , i.e. the 'mid-section' of T_* consisting of all cells $\sigma \times \overline{\theta}$ such that $\sigma \cap \theta = \emptyset$, into the antipodal sphere S^{2n-2} of one dimension less.

(2.2.2) WU LEMMA. The Z_2 -homotopy types of the deleted join and the deleted product of a simplicial complex are topological invariants of the space underlying the complex.

This is harder – cf. Wu [19, Ch.2] for products – but it will be shown in [11] that, with some care, this important fact generalizes even to higher deleted joins, i.e. analogues of K_* for groups G other than \mathbb{Z}_2 .

(2.2.3) So, using any convenient triangulation of $\mathbb{R}P^n$, $n = 2^k$, it suffices to show by a calculation of the characteristic classes of the free \mathbb{Z}_2 -homotopy type $(\mathbb{R}P^n)_{\bullet}$, that there is no continuous \mathbb{Z}_2 -map from it to S^{2n-2} .

This calculation, which will be included in [11], is reminiscent of, but more general than, the proof of the

BORSUK-ULAM THEOREM. There is no continuous \mathbb{Z}_2 -map from S^p to S^q for p > q.

However for k = 1, the Borsuk-Ulam Theorem *itself* provides the desired contradiction because of the following remarkable fact.

(2.2.4) The deleted join of the 6-vertex real projective plane $\mathbb{R}P_6^2$ is \mathbb{Z}_2 -homeomorphic to the antipodal 4-sphere.

We recall that $\mathbb{R}P_6^2$ is a \mathbb{Z}_2 -quotient or, if one prefers, one of the two parts of a *yin-yang decomposition* — cf. Grothendieck [5] — of the regular 12-vertex 2-sphere, i.e. the ubiquitous *icosahedron*.

The above result is not hard to check. In fact the second author hopes to include in [11] a complete classification of all K^n 's for which K_* is a closed pseudomanifold. For example, if this pseudomanifold is *n*-dimensional, then it has to be the octahedral *n*-sphere $(\sigma_n^n)_*$ and – see [10] – if it is (2n + 1)-dimensional, then it has to be a join of some Flores' spheres $(\sigma_{s-1}^{2s})_*$. Here and below σ_j^i denotes the *j*-skeleton of an *i*-simplex.

(2.2.5) The omission of the n-simplex $\overline{\sigma^n}$, from the simplicial join across σ^n , of any triangulation of $\mathbb{R}P^n$ and the octahedral n-sphere $(\sigma_n^n)_*$, results in a K^n which satisfies the requirements of (2.1.4). This is straightforward. Here, by simplicial join $\mathbb{R}P^n \#(\sigma_n^n)_*$ across σ^n we mean the operation of first omitting an open *n*-simplex from the first factor and σ^n from the second factor, and then glueing the remaining complexes together by identifying the boundaries of these *n*-simplices.

Note in particular that $(\mathbb{R}P_6^2 \# (\sigma_2^2)_*) - \overline{\sigma^2}$ gives the 9-vertex Möbius strip [2] which fails to embed linearly in \mathbb{R}^3 .

(2.2.6) The characteristic class computations of (2.2.3) suggest that if $\alpha(n)$ denotes the number of 1's in the binary expansion of n, then the simplicial Möbius *n*-strips K^n , $n \ge 2$, of (2.1) embed piecewise-linearly, but not linearly, in the space $\mathbb{R}^{2n-\alpha(n)}$.

§3. Grünbaum's conjecture

(3.1) Proof of Theorem A. We will first consider the case n = 2.

Let $M\ddot{o}_6$ denote the 6-vertex $M\ddot{o}bius \ strip$, i.e. $\mathbb{R}P_6^2$ minus one of its 2-simplices which will be called s^2 . We note that, with appropriate orientations, $M\ddot{o}_6$'s boundary ∂s^2 is homologous to twice its core $\partial \sigma^2$, where $\sigma^2 \notin \mathbb{R}P_6^2$ denotes the complementary 2-simplex $vert(\mathbb{R}P_6^2) - s^2$.

Besides $M\ddot{o}_6$, we will also use a disjoint 6-simplex τ^6 , one of whose 2-faces will also be called s^2 , with the complementary 3-simplex $vert(\tau^6) - s^2$ denoted by φ^3 .

(3.1.1) THE 2-COMPLEXES L_t . Each of these will contain a triangle called ∂s^2 . For t = 0 we set

$$L_0=\tau_2^6-s^2,$$

and having defined $L_t, t \ge 0$, obtain L_{t+1} from L_t by identifying its ∂s^2 with the core $\partial \sigma^2$ of a disjoint copy of $M\ddot{o}_6$. So, after this identification, the boundary ∂s^2 of $M\ddot{o}_6$ becomes the ∂s^2 of L_{t+1} .

(3.1.2) The 2-complexes L_t embed piecewise-linearly in \mathbb{R}^4 .

This is clear for t = 0.

So, assume inductively that there is a piecewise-linear embedding $e: L_t \to \mathbb{R}^4$, for some $t \ge 0$. Since $M\ddot{o}_6$ embeds piecewise-linearly even in \mathbb{R}^3 , we can extend e to a general position piecewise-linear map $f: L_{t+1} \to \mathbb{R}^4$, with its finitely many double points (x, y) all such that $x \in L_t$ and $y \in M\ddot{o}_6$. For each such y choose a disjoint arc of $M\ddot{o}_6$ from yto its boundary ∂s^2 . Removing from L_{t+1} small regular neighbourhoods of all these arcs we get a subspace X piecewise-linearly homeomorphic to L_{t+1} on which the map f is one-one.

(3.1.3) The disjoint spheres $\partial \varphi^3$ and ∂s^2 of L_0 must link under any piecewise-linear embedding $e: L_0 \to \mathbb{R}^4$.

By a lemma of Flores [4] the deleted join $(\tau_2^6)_*$ is an antipodal 5-sphere. So Borsuk-Ulam tells us that there can not be a continuous \mathbb{Z}_2 -map from it to S^4 .

But, S^4 has the same \mathbb{Z}_2 -homotopy type as the join $\mathbb{R}^4 \cdot \overline{\mathbb{R}^4}$ minus its *diagonal*, i.e. all points of the type $\frac{1}{2}x + \frac{1}{2}\overline{x}$. And, there is a continuous \mathbb{Z}_2 -map of $(L_0)_*$ into this space, viz. the map e_* defined by

$$\lambda x + (1-\lambda)\overline{y} \mapsto \lambda e(x) + (1-\lambda)\overline{e(y)}.$$

The closure of $(\tau_2^6)_* - (L_0)_*$ consists of the 5-ball $\partial \varphi^3 \cdot \overline{s_2^2}$ and its conjugate. The restriction of e_* to the boundary of this 5-ball has *degree* zero iff the linking number of the spheres $e(\partial \varphi^3)$ and $e(\partial s^2)$ is zero. So, if this were the case, e_* would extend to yield a continuous \mathbb{Z}_2 -map $(\tau_2^6)_* \to S^4$, which is not possible.

(3.1.4) The disjoint spheres $\partial \varphi^3$ and ∂s^2 of L_t , $t \geq 0$, must have linking number at least 2^t (in absolute value) under any piecewise-linear embedding $e: L_t \to \mathbb{R}^4$.

We argue by induction starting from the above case t = 0. The triangle ∂s^2 of complex L_t , $t \ge 1$, is homologous to twice the triangle $\partial \sigma^2 \subset M\ddot{o}_6$ which was identified (3.1.1) to the triangle ∂s^2 of L_{t-1} to form L_t . So each transverse intersection under e of the latter, with a general position 3-disk spanning $e(\partial \varphi^3)$, gives rise to two intersections of the former having the same intersection number.

(3.1.5) For any $r \ge 0$ we can choose t so big that the rth derived of $L = L_t$ does not embed linearly in \mathbb{R}^4 .

The number of simplices, contained in the simplicial 2 and 1-spheres occuring as the *r*th deriveds of $\partial \varphi^3$ and ∂s^2 , is bounded in terms of *r*. From this it follows easily that, under any *linear* embedding of the union of these spheres in \mathbb{R}^4 , the absolute value of the linking number is also bounded by a constant depending only on *r*. Choose any *t* such that 2^t is bigger than this number and use (3.1.4).

This concludes the proof of Theorem A for n = 2.

(3.1.6) For $n \geq 3$ the above argument modifies as follows :

(a) Instead of $M\ddot{o}_6$ we use its (n-3)-fold suspension $S^{n-3}(M\ddot{o}_6)$. Note that in it the (n-1)-sphere $S^{n-3}(\partial s^2)$ is homologous to twice the (n-1)-sphere $S^{n-3}(\partial \sigma^2)$.

(b) The *n*-complexes $L_{n,t}$, $t \ge 0$, are defined almost as before except for one small change. Instead of the *n*-skeleton of a τ^{2n+2} , minus one *n*-face u^n , we start with

$$L_{n,0} = (\tau_n^{2n+2} - u^n) \cup A^n,$$

where A^n is a simplicial annulus $S^{n-1} \times I$ having boundary $\partial A^n = \partial u^n \cup S^{n-3}(\partial s^2)$. So we have a $S^{n-3}(\partial s^2)$ in $L_{n,0}$ which is homologous to ∂u^n . For any $t \geq 1$, we now obtain $L_{n,t}$ from $L_{n,t-1}$ by identifying this $S^{n-3}(\partial s^2)$ of $L_{n,t-1}$, with the $S^{n-3}(\partial \sigma^2)$ of a disjoint copy of $S^{n-3}(M\ddot{o}_6)$.

The rest of the argument is unchanged: the piecewise-linear embeddability of these *n*-complexes in \mathbb{R}^{2n} follows just as in (3.1.2), and the same argument as in (3.1.3) shows that the disjoint spheres $\partial \varphi^{n+1}$ and ∂u^n of $L_{n,0}$ link under any embedding in \mathbb{R}^{2n} , from which it follows almost as before that the linking number of $\partial \varphi^{n+1}$ and $S^{n-3}(\partial s^2)$ is $\geq 2^t$ for any embedding of $L_{n,t}$ in \mathbb{R}^{2n} ... q.e.d.

(3.2) Concluding remarks.

We will now consider some variations of the above construction which give in particular a generalization (3.2.3) of Theorem A and a corollary (3.2.5) pertaining to linear immersions.

(3.2.1) Examples $L_{n,t}$ analogous to those of (3.1) can be made starting from any Kuratowski n-complex [9]

$$T^{n} = \tau_{n_{1}-1}^{2n_{1}} \cdot \tau_{n_{2}-1}^{2n_{2}} \cdot \ldots \cdot \tau_{n_{k}-1}^{2n_{k}}, \ n_{1} + \cdots + n_{k} = n+1,$$

instead of just τ_n^{2n+2} .

For instance had we started off by setting $L_0 = \tau_1^4 \cdot \tau_0^2 - s^1 \cdot s^0$, then the analogue of (3.1.3) is that the 2-sphere $\partial \phi^2 \cdot \partial \phi^1$, formed by the vertices of L_0 not in the omitted 2-simplex $s^1 \cdot s^0$, always links the boundary of $s^1 \cdot s^0$ under any embedding of L_0 into \mathbb{R}^4 .

(3.2.2) Analogous constructions also give some n-complexes $L_{n,m,t}$ which embed piecewise-linearly, but not linearly in \mathbb{R}^m , for some other n's and m's such that n < m < 2n.

We now start with different T^n 's. For example, we can start with the join of m-n disjoint copies of τ_0^2 (i.e. three points) and 2n-m disjoint copies of τ_0^0 (i.e. one point). Then the deleted join T_* is an antipodal (m+1)-sphere, so there is no \mathbb{Z}_2 -map from it to S^m . Omitting an *n*-face from this T^n and proceeding as in (3.1.6) gives such complexes.

Their piecewise-linear embeddability in \mathbb{R}^m follows from arguments analogous to those of (3.1.2) which remain valid at least under conditions like $m \geq \frac{3}{2}n + 1 - cf$. [18] – and thus we obtain examples of the above sort.

(3.2.3) For each $n \ge 2$, $r \ge 1$, $n < m \le 2n$, there is a simplicial *n*-complex which embeds piecewise-linearly in \mathbb{R}^m , but whose rth derived does not embed linearly in \mathbb{R}^m .

Furthermore, if $n \ge 3$, we can take $n \le m \le 2n$ in the above.

These generalizations of Theorem A follow by using (3.2.2): e.g. one takes disjoint union of an $L_{\lceil \frac{m}{2} \rceil, m, t}$ and a σ_n^n , etc.

We note that a finesse is required when dealing with the case n = 2, m = 3 of (3.2.3) since, by attaching $M\ddot{o}_6$'s à la (3.1.1), one now loses piecewise-linear embeddability. To overcome this, attach instead, at each step, an $\mathbf{R}P_6^2$ minus a 2-simplex s^2 having exactly one vertex on the attaching triangle $\partial\sigma^2$.

(3.2.4) By iterating the construction (3.1.1) indefinitely one obtains an infinite 2-complex L_{∞} , which embeds topologically, but not piecewiselinearly, in \mathbb{R}^4 .

This is clear. Here, by topologically embeddable, we mean simply that there exists a continuous one-one map from L_{∞} into \mathbb{R}^4 .

Construction of such finite complexes is much harder, but might be implicit in the well-known work of R.D.Edwards and M.H.Freedman. (3.2.5) For each $n \ge 3$, $r \ge 0$, $max\{n,4\} \le m < 2n$, there is a simplicial n-complex which embeds piecewise-linearly in \mathbb{R}^m , but whose rth derived does not even immerse linearly in \mathbb{R}^m .

This follows either by considering cones over suitable examples from (3.2.3) or formulating an analogue of (3.2.3) for embeddings in S^m .

(3.2.6) Embeddability of \mathcal{K} in \mathbb{R}^m . Thinking again, as in §1, of the N vertices of K, as the canonical basis vectors of \mathbb{R}^N , one gets a bigger (non-compact) space \mathcal{K} , if with each simplex of K is associated the affine hull of its vertices in \mathbb{R}^N instead of the convex hull of its vertices.

Note that \mathcal{K} collapses to K, from which it follows that the topological embeddability of K in \mathbb{R}^m implies that of \mathcal{K} . But it is very easy to see – e.g. consider a segment and a disjoint point in \mathbb{R}^1 – that the linear embeddability of \mathcal{K} in \mathbb{R}^m is a strictly stronger notion than that of K.

There will be included in Chapter IV (on "Linear Embeddability") of [11] some interesting results involving this stronger notion, which incidentally makes sense not only for an ordered field like \mathbf{R} , but for any field whatsoever.

ACKNOWLEDGEMENTS

We would like to thank G.Schild for a question to the first author which led to the present stronger formulation of Theorem A in terms of the non-linear embeddability of a given derived of L, rather than of just L itself.

The second author would like to thank the Max-Planck-Institut für Mathematik, Bonn, and the Technisches Universität, Berlin, for making this collaboration possible.

REFERENCES

[1] M.A.ARMSTRONG, Extending triangulations, Proc. Am. Math. Soc. 18 (1967), 701-704.

[2] U.BREHM, A nonpolyhedral triangulated Möbius strip, Proc. Am. Math. Soc. 89 (1983), pp.519-522.

[3] I.FÁRY, On straight line representations of planar graphs, Acta. Sci. Math. Szeged 11 (1948), 229-233.

[4] A.FLORES, Über n-dimensionale Komplexe die im R_{2n+1} absolut selbstverschlungen sind, *Ergeb. Math. Kolloq.* 6 (1933/34), pp. 4-7.

[5] A.GROTHENDIECK, "Les Portes sur l'Univers", in, *Récoltes et Semailles*, pp. PU 116-122, Université de Montpellier (1985).

[6] B.GRÜNBAUM, Imbeddings of simplicial complexes, Comm. Math. Helv. 45 (1970), 502-513.

[7] J.F.P.HUDSON, *Piecewise Linear Topology*, Benjamin, New York (1969).

[8] C.P.ROURKE and B.J.SANDERSON, Introduction to Piecewise Linear Topology, Springer, Berlin (1972).

[9] K.S.SARKARIA, Embedding and unknotting of some polyhedra, Proc. Am. Math. Soc. 100 (1987), pp. 201-203.

[10] —, Kuratowski complexes, *Topology* 30 (1991), pp. 67-76.

[11] —, Van Kampen Obstructions, book under preparation.

[12] N.E.STEENROD (notes by D.B.A.EPSTEIN), Cohomology Operations, Annals Studies no. 50, Princeton (1962).

[13] S.K.STEIN, Convex maps, Proc. Amer. Math. Soc. 2 (1951), 464-466.

[14] E.STEINITZ, "Polyeder und Raumeinteilungen", in, Enzykl. math. Wiss, vol. 3, part 3AB12 (1922), 1-139.

[15] M.STOJAKOVIĆ, Über die Konstruktion der ebenen Graphen, Univ. Beograd. Godisnjak Filozof. Fak. Novom Sadu 4 (1959), 375-378.

[16] E.R.VAN KAMPEN, Komplexe in euklidischen Räumen, Abh. Math. Sem. 9 (1932), pp. 72-78, 152-153.

[17] K.WAGNER, Bemerkungen zum Vierfarbenproblem, Jber. Deut. Math.-Verein 46 (1936), 26-32.

[18] C.WEBER, Plongements de polyèdres dans le domaine métastable, Comm. Math. Helv. 42 (1967), pp. 1-27.

[19] W.-T.WU, A theory of imbedding, immersion, and isotopy of polytopes in a Euclidean space, Science Press, Peking (1965).

[20] E.C.ZEEMAN, "Polyhedral n-manifolds: II. Embeddings", in, Topology of 3-Manifolds and Related Topics (M.K.Fort ed.), Prentice-Hall, N.J. (1961), pp. 64-70.

U.Brehm, Mathematisches Institut, Technisches Universität, Berlin, GER-MANY.

K.S.Sarkaria, Department of Mathematics, Panjab University, Chandigarh 160014, INDIA.

Current Address: Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, 5300 Bonn 3, GERMANY.