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1 Introduction

Let X be a compact nonsingular real algebraic set (in Rn for some n). A cohomol-

ogy class in Hk(X, Z/2) is said to be algebraic if the homology class Poincaré dual to it

can be represented by an algebraic subset of X. The set Hk
alg(X, Z/2) of all algebraic co-

homology classes in Hk(X, Z/2) is a subgroup, while the direct sum H∗

alg(X, Z/2) of the

Hk
alg(X, Z/2), for k ≥ 0, forms a subring of the cohomology ring H∗(X, Z/2). Early pa-

pers dealing with algebraic cohomology (or homology) classes provided examples of X with

H∗

alg(X, Z/2) 6= H∗(X, Z/2), cf. [1, 5, 6, 14, 19, 20]. The reader can find a survey of properties

and applications of H∗

alg(−, Z/2) in [11].

Every compact smooth (of class C∞) manifold M is diffeomorphic to a nonsingular real

algebraic set, called an algebraic model of M , cf. [23] (see also [7, Theorem 14.1.10] and, for

a weaker but influential result, [18]). The following question is a challenging problem: How

the ring H∗

alg(X, Z/2) varies as X runs through the class of algebraic models of M? This

paper provides partial answers. Due to technical difficulties it is easier to describe how the

group Hk
alg(X, Z/2) varies for a fixed k. Results of this type are in [8] for k = 1, in [10] for

k = 2, and in [16] for k ≥ 3. If k ≥ 2 and especially if k ≥ 3 they are far from complete.

We say that a subring A of H∗(M, Z/2) is algebraically realizable if there exist an alge-

braic model X of M and a smooth diffeomorphism ϕ : X → M with ϕ∗(A) ⊆ H∗

alg(X, Z/2).

∗The paper was completed at the Max-Planck-Institut für Mathematik in Bonn, whose support and

hospitality are gratefully acknowledged.
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The original goal of several researchers was to show that the whole ring H ∗(M, Z/2) is alge-

braically realizable, that is, M has an algebraic model X with H∗

alg(X, Z/2) = H∗(X, Z/2)

(such a conjecture, motivated by far-reaching potential applications, was explicitly stated in

[1]). However, since the publication of [3] it has been known that for some manifolds M this

is impossible. An important algebraically realizable subring of H∗(M, Z/2) is identified in

[4, Theorem 4, Remark 8]. It is the subring A(M) generated by the Stiefel-Whitney classes

of all real vector bundles on M together with the cohomology classes Poincaré dual to the

homology classes represented by all smooth submanifolds of M . A conjecture proposed in

[3], and still open at the present time, suggests that every algebraically realizable subring of

H∗(M, Z/2) is contained in A(M). For us certain subrings of A(M) will play a crucial role.

We say that a subring A of H∗(M, Z/2) is admissible if it is generated by the Stiefel-Whitney

classes of some real vector bundles on M and the cohomology classes Poincaré dual to the

homology classes represented by some smooth submanifolds of M . Thus A(M) is the largest

admissible subring of H∗(M, Z/2). However, in general, not every subring of A(M) is ad-

missible. Given any subring A of H∗(M, Z/2), we set Ak = A ∩ Hk(M, Z/2). As usual, we

denote by wi(M) the ith Stiefel-Whitney class of M . Recall that M is called a spin manifold

if w1(M) = 0 and w2(M) = 0.

Theorem 1.1 Let M be a compact connected spin manifold. Assume that dim M ≥ 7

and the group Hi(M, Z) has no 2-torsion for i = 1, 2. Then for any admissible subring

A of H∗(M, Z/2), there exist an algebraic model X of M and a smooth diffeomorphism

ϕ : X → M satisfying

ϕ∗(A) ⊆ H∗

alg(X, Z/2)

and

ϕ∗(Ak) = Hk
alg(X, Z/2) for k = 0, 1, 2, 3.

Of course, of main interest here is the last assertion in Theorem 1.1. This result is

particularly nice in dimension 7, 8 or 9.
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Corollary 1.2 Let M be a compact connected spin manifold of dimension m, where m =

7, 8, or 9. Assume that the group Hi(M, Z) has no 2-torsion for i = 1, . . . , m − 5. Then

for any subring A of H∗(M, Z/2), there exist an algebraic model X of M and a smooth

diffeomorphism ϕ : X → M satisfying

ϕ∗(A) ⊆ H∗

alg(X, Z/2)

and

ϕ∗(Ak) = Hk
alg(X, Z/2) for k = 0, 1, 2, 3.

It suffices to prove that under the assumptions of Corollary 1.2, every subring of H ∗(M, Z/2)

is admissible. The latter fact easily follows from known results, see the next section. One

can also drop the assumption about the dimension of M in Corollary 1.2, provided that the

topology of M is not too complicated, cf. Example 2.6.

For manifolds which are not necessarily spin, we have the following result.

Theorem 1.3 Let M be a compact connected smooth manifold. Assume that dimM =

m ≥ 5 and the group Hm−2(M, Z) has no 2-torsion. Then for any admissible subring A of

H∗(M, Z/2), the following conditions are equivalent:

(a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : X → M

satisfying

ϕ∗(A) ⊆ H∗

alg(X, Z/2)

and

ϕ∗(Ak) = Hk
alg(X, Z/2) for k = 0, 1, 2.

(b) wi(M) is in Ai for i = 1, 2.

If dim M = 5, then every homology class in Hd(M, Z/2), d ≥ 0, can be represented

by a smooth submanifold [22, Théorème II.26], and hence every subring of H ∗(M, Z/2) is

admissible.
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In order to compare the assumptions in Theorems 1.1 and 1.3, let us note that for

any orientable compact smooth manifold M of dimension m, the groups H1(M, Z) and

Hm−2(M, Z) have isomorphic torsion subgroups. Indeed, this follows from the Poincaré

duality and the universal coefficient theorem for cohomology.

Theorems 1.1, 1.3 and Corollary 1.2 are proved in Section 2.

2 Proofs and further results

We will need some constructions from real algebraic geometry. Throughout this paper

the term real algebraic variety designates a locally ringed space isomorphic to an algebraic

subset of Rn, for some n, endowed with the Zariski topology and the sheaf of R-valued

regular functions. Morphisms between real algebraic varieties will be called regular maps.

Background material on real algebraic varieties and regular maps can be found in [7]. Every

real algebraic variety carries also the Euclidean topology, which is determined by the usual

metric topology on R. Unless explicitly stated otherwise, all topological notions related to

real algebraic varieties will refer to the Euclidean topology.

The Grassmannian Gn,r of r-dimensional vector subspaces of Rn is endowed with a canon-

ical structure sheaf which makes it into a real algebraic variety in the sense of this paper

[7, Theorem 3.4.4] (an affine real algebraic variety according to the terminology used in [7]).

Moreover, Gn,r is nonsingular and

H∗

alg(Gn,r, Z/2) = H∗(Gn,r, Z/2),

cf. [7, Proposition 3.4.3, Proposition 11.3.3]. The universal vector bundle γn,r on Gn,r is

algebraic. If ξ is an algebraic vector bundle of rank r on a real algebraic variety X and if n is

a sufficiently large integer, then there is a regular map f : X → Gn,r with f ∗γn,r algebraically

isomorphic to ξ, cf. [7, Theorem 12.1.7]. Here referring to algebraic vector bundles we follow

[7], while in [4, 5, 6, 8, 9, 10] such bundles are called strongly algebraic.
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Given a compact nonsingular real algebraic variety X, we define

Algk(X)

to be the set of all elements u of Hk(X, Z/2) for which there exist a compact nonsingular

irreducible real algebraic variety T (depending on u), two points t0 and t1 in T and a

cohomology class z in Hk
alg(X × T, Z/2) such that

u = i∗t1(z) − i∗t0(z),

where for any t in T , we let it : X → X × T denote the map it(x) = (x, t) for all x in X. An

equivalent description of Algk(X), which immediately implies that Algk(X) is a subgroup of

Hk
alg(X, Z/2), is given in [15, 16]. The groups Hk

alg(−, Z/2) and Algk(−) have the expected

functorial properties. If f : X → Y is a regular map between compact nonsingular real

algebraic varieties, then the induced homomorphism f ∗ : H∗(Y, Z/2) → H∗(X, Z/2) satisfies

f ∗(Hk
alg(Y, Z/2)) ⊆ Hk

alg(X, Z/2) and f ∗(Algk(Y )) ⊆ Algk(X),

cf. [12, Section 5] or [6] for the former inclusion and [16] for the latter one.

The following fact will be very useful.

Theorem 2.1 Let X be a compact nonsingular real algebraic variety. Then 〈u∪ v, [X]〉 = 0

for all u in Algk(X) and v in H`
alg(X, Z/2), where k + ` = dim X.

Reference for the proof. [15, Theorem 2.1]. 2

As usual ∪ and 〈 , 〉 denote the cup product and scalar (Kronecker) product, while [X]

stands for the fundamental class of X in Hd(X, Z/2), d = dim X.

We will also need some properties of Algk(−) for very specific real algebraic varieties.

Let Bn be a nonsingular irreducible real algebraic variety with precisely two connected

components Bn
0 and Bn

1 , each diffeomorphic to the unit n-sphere, n ≥ 1. For example, one

can take

Bn = {(x0, . . . , xn) ∈ R
n+1 | x4

0 − 4x2
0 + 1 + x2

1 + · · ·+ x2
n = 0}.
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Let Bn(d) = Bn × · · · × Bn and Bn
0 (d) = Bn

0 × · · · × Bn
0 be the d-fold products, and let

δ : Bn
0 (d) ↪→ Bn(d) be the inclusion map. Then according to [16, Example 4.5],

(2.2) Hq(Bn
0 (d), Z/2) = δ∗(Hq(Bn(d), Z/2)) = δ∗(Algq(Bn(d)))

for all q ≥ 0.

We now recall an important result from differential topology. All manifolds that appear

here are without boundary.

Theorem 2.3 Let P be a smooth manifold. Two smooth maps f : M → P and g : N → P ,

where M and N are compact smooth manifolds of dimension m, represent the same bordism

class in the unoriented bordims group N∗(P ) if and only if for every nonnegative integer q

and every cohomology class v in H q(P, Z/2), one has

〈wi1(M) ∪ . . . ∪ wir(M) ∪ f ∗(v), [M ]〉 = 〈wi1(N) ∪ . . . ∪ wir(N) ∪ g∗(v), [N ]〉

for all nonnegative integers i1, . . . , ir with i1 + · · ·+ ir = m − q.

Reference for the proof. [13, (17.3)]. 2

Let M be a compact smooth manifold. For any positive integer k, we define

Gk(M)

to be the subgroup of Hk(M, Z/2) consisting of the cohomology classes u satisfying

〈wi1(M) ∪ . . . ∪ wir(M) ∪ u, [M ]〉 = 0

for all nonnegative integers i1, . . . , ir with i1 + · · · + ir = m − k.

A cohomology class v in Hk(M, Z/2), k ≥ 1, is said to be spherical, provided v = f ∗(c),

where f : M → Sk is a continuous (or equivalently smooth) map from M into the unit

k-sphere Sk and c is the unique generator of the group Hk(Sk, Z/2) ∼= Z/2. It is well known

that v is spherical if and only if the homology class Poincaré dual to v can be represented
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by a smooth submanifold of M with trivial normal vector bundle, cf. [22, Théorème II.2].

Denote by

Sk(M)

the set of all spherical cohomology classes in Hk(M, Z/2). It readily follows from the char-

acterization of spherical cohomology classes recalled above that Sk(M) is a subgroup of

Hk(M, Z/2) if 2k ≥ M + 1.

For any smooth submanifold N of M of codimension k, we denote by [N ]M the cohomol-

ogy class in Hk(M, Z/2) Poincaré dual to the homology class represented by N . As usual, if

ξ is a real vector bundle on M , then w(ξ) and wk(ξ) will stand for, respectively, its total and

kth Stiefel-Whitney class. The total Stiefel-Whitney class of M will be denoted by w(M).

Given a collection F of real vector bundles on M and a collection G of smooth subman-

ifolds of M , we denote by

A(F ,G)

the subring of H∗(M, Z/2) generated by wk(ξ) and [N ]M for all ξ in F , k ≥ 0, and N in

G. Since H∗(M, Z/2) is a finite set, we may assume without loss of generality that the

collections F and G are finite. By definition, any admissible subring of H∗(M, Z/2) is of the

form A(F ,G).

Theorem 2.4 Let M be a compact connected smooth manifold of dimension m. Let F be

a collection of real vector bundles on M and let G be a collection of smooth submanifolds of

M . Assume that there is an integer k0 ≥ 2 such that 2k0 + 1 ≤ m and codimMN ≥ k0 for

all N in G. Then for the subring A = A(F ,G) of H∗(M, Z/2), the following conditions are

equivalent:

(a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : X → M

satisfying

ϕ∗(A) ⊆ H∗

alg(X, Z/2)

and

ϕ∗(Ak) = Hk
alg(X, Z/2)
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for all k with k ≤ k0 and Gm−k(M) ⊆ Sm−k(M).

(b) w(M) is in A.

Proof. If Y is a compact nonsingular real algebraic variety, then w(Y ) is in H ∗

alg(Y, Z/2),

cf. [6, 11, 12], and hence (a) implies (b).

Assume that (b) holds. Let F = {ξ1, . . . , ξa} and G = {N1, . . . , Nb}. For the use in a latter

part of the proof, we modify each submanifold Nj, without affecting the cohomology class

[Nj]
M , so that we obtain a new Nj connected and nonorientable. This is possible since M is

connected and codimMNj ≥ 2. Indeed, the last inequality implies that if U is an open subset

of M diffeomorphic to Rm, then there is a smooth connected nonorientable submanifold Pj

of M contained in U and with dim Pj = dim Nj. Joining Pj and the connected components

of Nj with tubes, we get the required modification of Nj.

By transversality, the submanifolds N1, . . . , Nb can be chosen in general position. Hence

in view of [4, Theorem 4, Remark 8], we may assume that M is a nonsingular real algebraic

variety, N1, . . . , Nb are nonsingular Zariski closed subvarieties of M , and every topological

real vector bundle on M is isomorphic to an algebraic vector bundle. In particular, we

may assume that ξ1, . . . , ξa are algebraic vector bundles. Setting ri = rankξi and choosing

a sufficiently large integer n, we can find a regular map fi : M → Gn,ri
such that ξi is

isomorphic to f ∗

i γn,ri
, and hence w(ξi) = f ∗

i (w(γn,ri
)). Therefore

A is generated by f ∗

i (wk(γn,ri
)) and [Nj]

M , 1 ≤ i ≤ a, 1 ≤ j ≤ b, k ≥ 0.(1)

Setting

G = Gn,r1
× · · · × Gn,ra

and f = (f1, . . . , fa) : M → G,

and making use of Künneth’s theorem, we obtain

f ∗(H∗(G, Z/2)) ⊆ A.(2)

Let k1, . . . , ks be all the integers such that k0 ≥ k1 > k2 > · · · > ks ≥ 1 and Gm−k`(M) ⊆

Sm−k`(M) for ` = 1, . . . , s. Clearly,

Γ` := {v ∈ Hm−k`(M, Z/2) | 〈u ∪ v, [M ]〉 = 0 for all u ∈ Ak`}(3)
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is a subgroup of Gm−k`(M). Choose an integer d with dimZ/2 Γ` ≤ d for ` = 1, . . . , s. Let

Bm−k`(d) = Bm−k` × · · · × Bm−k` and Bm−k`

0 = Bm−k`

0 × · · · × Bm−k`

0

be as in (2.2) (with n = m−k`). Since every cohomology class in Γ` is spherical, there exists

a smooth map

g` = (g`1, . . . , g`d) : M → Bm−k`(d)

satisfying

g`(M) ⊆ Bm−k`

0 (d) and Γ` = g∗

` (H
m−k`(Bm−k`(d), Z/2)).(4)

Set

B = Bm−k1(d) × · · · × Bm−ks(d), B0 = Bm−k1

0 (d) × · · · × Bm−ks

0 (d),

g = (g1, . . . , gs) : M → B.

Making use of Künneth’s theorem and the inequalities 2(m − k`) ≥ 2(m − k0) ≥ m + 1 for

` = 1, . . . , s, we get

Hq(B, Z/2) = 0 for 0 < q ≤ m, q 6∈ {m − k1, . . . , m − ks}.(5)

Künneth’s theorem also implies

Γ` = g∗(Hm−k`(B, Z/2)) for 1 ≤ ` ≤ s.(6)

Assertion 1. The restriction map g|N : N → B, where N := N1∪. . .∪Nb, is null homotopic.

Clearly, it suffices to prove that for each pair of integers (`, e), with 1 ≤ ` ≤ s and

1 ≤ e ≤ d, the map h`e|N : N → Bm−k`

0 is null homotopic, where h`e : M → Bm−k` is

defined by h`e(x) = g`e(x) for all x in M . Recall that Bm−k`

0 is diffeomorphic to Sm−k`. Let

σ be a generator of Hm−k`(Bm−k`

0 , Z) ∼= Z. Since dim Nj ≤ m− k` for j = 1, . . . , b, it follows

from Hopf’s classification theorem that h`e|N is null homotopic if and only if (h`e|N)∗(σ) = 0

in Hm−k`(N, Z). By the Mayer-Vietoris exact sequence, the last condition is equivalent to

(h`e|Nj)
∗(σ) = 0 in Hm−k`(Nj, Z) for all j = 1, . . . , b.
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If dim Nj < m − k`, then trivially (h`e|Nj)
∗(σ) = 0.

Suppose that dim Nj = m − k`. In that case necessarily ` = 1 and k1 = k0. In order

to ease notation, set h = h1e. Since Nj is connected and nonorientable, (h|Nj)
∗(σ) = 0 in

Hm−k1(Nj, Z) if and only if (h|Nj)
∗(σ̄) = 0 in Hm−k1(Nj, Z/2) where σ̄ in Hm−k1(Bm−k1

0 , Z/2)

is the reduction modulo 2 of σ. It follows from (4) that h∗(σ̄) is in Γ1, and hence (3) implies

〈h∗(σ̄) ∪ [Nj]
M , [M ]〉 = 0,

Therefore denoting by ε : Nj ↪→ M the inclusion map, we have

〈(h|Nj)
∗(σ̄), [Nj]〉 = 〈ε∗(h∗(σ̄)), [Nj]〉

= 〈h∗(σ̄), ε∗([Nj])〉

= 〈h∗(σ̄), [Nj]
M ∩ [M ]〉

= 〈h∗(σ̄) ∪ [Nj]
M , [M ]〉

= 0.

Since Nj is connected, we get (h|Nj)
∗(σ̄) = 0, as required. Assertion 1 is proved.

Choose a compact subset K of M such that N is contained in the interior of K and N

is a deformation retract of K, while (M, K) is a polyhedral pair. Then g|K : K → B is null

homotopic and, by the homotopy extension theorem [21, p. 118, Corollary 5], there exists

a continuous map g′ : M → B which is homotopic to g and g′|K is a constant map. Thus

there is a smooth map g′′ : M → B homotopic to g′ and equal to g′ on N . Replacing, if

necessary, g by g′′, we may assume that

g : M → B is constant on N = N1 ∪ . . . ∪ Nb,(7)

while (4) and (6) still hold.

Let c : M → B be a constant map sending M to a point in B0.

Assertion 2. The maps (f, g) : M → G × B and (f, c) : M → G × B represent the same

bordism class in the unoriented bordism group N∗(G × B).

In view of Theorem 2.3 and Künneth’s theorem, it suffices to prove that for every
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pair (p, q) of nonnegative integers and all cohomology classes α in Hp(G, Z/2) and β in

Hq(B, Z/2), we have

〈wi1(M) ∪ . . . ∪ wir(M) ∪ (f, g)∗(α × β), [M ]〉(8)

= 〈wi1(M) ∪ . . . ∪ wir(M) ∪ (f, c)∗(α × β), [M ]〉

for all nonnegative integers i1, . . . , ir with i1+· · ·+ir = m−(p+q). Note that (f, g)∗(α×β) =

f ∗(α) ∪ g∗(β) and (f, c)∗(α × β) = f ∗(α) ∪ c∗(β).

If q = 0, then g∗(β) = c∗(β), and hence (8) holds.

Suppose now 0 < q ≤ m. Then c∗(β) = 0 and (8) is equivalent to

〈wi1(M) ∪ . . . ∪ wir(M) ∪ f ∗(α) ∪ g∗(β), [M ]〉 = 0.(9)

If q 6∈ {m − k1, . . . , m − ks}, then β = 0 according to (4), and hence (9) holds. If q =

m − k` for some `, then g∗(β) is in Γ` in view of (5). Since (b) is satisfied, (2) implies that

wi1(M)∪ . . .∪wir(M)∪f ∗(α) is in Ak`. Thus (9) holds in view of (3). Assertion 2 is proved.

The proof can be completed as follows. We may assume that M is a Zariski closed

nonsingular subvariety of Rµ for some µ. Then N , being a union of finitely many Zariski

closed nonsingular subvarieties of Rµ, is a nice set, equivalently, a quasi-regular subvariety

in the terminology used in [2] and [24], respectively, cf. [24, p. 75]. Since (f, c) is a regular

map, and by (7), the restriction (f, g)|N is also regular, it follows from Assertion 2 that [2,

Theorem 2.8.4] is applicable. Hence there exist a nonnegative integer ν, a Zariski closed

nonsingular subvariety X of Rµ+ν , a smooth diffeomorphism ϕ : X → M , and a regular map

(f̄ , ḡ) : X → G×B such that identifying R
µ with R

µ×{0} ⊆ R
µ+ν , we have N ⊆ X, ϕ(x) = x

for all x in N , and (f̄ , ḡ) is homotopic to (f, g) ◦ ϕ = (f ◦ ϕ, g ◦ ϕ). In particular, setting

f̄ = (f̄1, . . . , f̄a) : X → G = Gn,r1
× · · · × Gn,ra

,

ḡ = (ḡ1, . . . , ḡs) : X → B = Bm−k1(d) × · · · × Bm−ks(d),

we obtain f̄ ∗

i = ϕ∗ ◦ f ∗

i and ḡ∗

` = ϕ∗ ◦ g∗

` in cohomology for 1 ≤ i ≤ a and 1 ≤ ` ≤ s.

The cohomology class

ϕ∗(f ∗

i (w(γn,ri
))) = f̄ ∗

i (w(γn,ri
))
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is in H∗

alg(X, Z/2), the map f̄i being regular. Clearly,

ϕ∗([Nj]
M) = [Nj]

X

is also in H∗

alg(X, Z/2). Hence (1) implies

ϕ∗(A) ⊆ H∗

alg(X, Z/2).

In particular,

ϕ∗(Ak`) ⊆ Hk`

alg(X, Z/2) for ` = 1, . . . , s.(10)

It remains to prove that the inclusion in (10) is actually an equality. By (2.2) and (4),

Γ` = g∗

` (Algm−k`(Bm−k`(d))),

and hence

ϕ(Γ`) = ϕ∗(g∗

` (Algm−k`(Bm−k`(d)))) = ḡ∗

` (Algm−k`(Bm−k`(d))).

Consequently,

ϕ∗(Γ`) ⊆ Algm−k`(X),(11)

the map ḡ` : X → Bm−k`(d) being regular. By the Poincaré duality,

Hk`(M, Z/2) × Hm−k`(M, Z/2) → Z/2, (u, v) 7→ 〈u ∪ v, [M ]〉

is a dual pairing, and therefore (3), (10), (11) and Theorem 2.1 taken together imply

ϕ∗(Ak`) = Hk`

alg(X, Z/2) for ` = 1, . . . , s,

as required. The proof is complete. 2

We will need the following, purely technical, observation.

Lemma 2.5 Let M be a compact connect smooth manifold of dimension m. Then:

(i) Gm−1(M) ⊆ Sm−1(M), provided m ≥ 2.
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(ii) Gm−2(M) ⊆ Sm−2(M), provided m ≥ 5 and Hm−2(M, Z) has no 2-torsion.

(iii) Gm−2(M) ⊆ Sm−2(M), provided m ≥ 5, M is orientable, and H1(M, Z) has no 2-

torsion.

(iv) Hm−3(M, Z/2) = Sm−3(M), provided m ≥ 7, M is a spin manifold, and H2(M, Z) has

no 2-torsion.

Proof. Given a smooth manifold P , we denote by τP its tangent bundle. The normal bundle

of a smooth submanifold N of M will be denoted by νN . Recall that νN is a trivial vector

bundle if and only if [N ]M is in Sk(M), k = codimMN .

(i) Let u be in Gm−1(M), that is, 〈w1(M) ∪ u, [M ]〉 = 0. Since M is connected, we have

w1(M) ∪ u = 0.

Choose a smooth connected curve C in M with u = [C]M . It suffices to prove that the

normal bundle νC is trivial or, equivalently, w1(νC) = 0. Since τC ⊕ νC = τM |C and τC is

trivial, we have

w1(νC) = w1(τM |C) = e∗(w1(M)),

where e : C ↪→ M is the inclusion map. A simple computation yields

e∗(e
∗(w1(M)) ∩ [C]) = w1(M) ∩ e∗([C])

= w1(M) ∩ ([C]M ∩ [M ])

= (w1(M) ∪ [C]M) ∩ [M ]

= (w1(M) ∪ u) ∩ [M ]

= 0.

Since C is connected, we get e∗(w1(M))∩ [C] = 0, and hence e∗(w1(M)) = 0. Thus w1(νC) =

0, as required.

(ii) By the universal coefficient theorem, the torsion subgroups of Hm−2(M, Z) and

Hm−1(M, Z) are isomorphic, and hence Hm−1(M, Z) has no 2-torsion. It follows from an-

other version of the universal coefficient theorem that the reduction modulo 2 homomorphism

ρ : Hm−2(M, Z) → Hm−2(M, Z/2) is surjective.
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By Wu’s theorem [17, Theorem 11.14], the second Wu class of M is equal to w1(M) ∪

w1(M) + w2(M), and consequently the Steenrod square

Sq2 : Hm−2(M, Z/2) → Hm(M, Z/2)

is given by Sq2(u) = (w1(M) ∪ w1(M) + w2(M)) ∪ u. Therefore for u in Gm−2(M), we

have 〈Sq2(u), [M ]〉 = 0, which implies Sq2(u) = 0, the manifold M being connected. Since

ρ is surjective, Steenrod’s classification theorem [21, p. 460, Theorem 15] implies that the

cohomology class u is spherical. Thus u is in Sm−2(M), and the proof of (ii) is complete.

(iii) By the universal coefficient theorem, the torsion subgroups of H2(M, Z) and H1(M, Z)

are isomorphic. The Poincaré duality implies H2(M, Z) ∼= Hm−2(M, Z), and hence (iii) fol-

lows from (ii).

(iv) Since H2(M, Z) has no 2-torsion, the reduction modulo 2 homomorphism H3(M, Z) →

H3(M, Z/2) is surjective. Hence by Thom’s theorem [22, Théorème II.27] each homology

class in H3(M, Z/2) can be represented by an orientable smooth submanifold of M . It re-

mains to prove that if N is an orientable smooth submanifold of M of dimension 3, then the

normal bundle νN is trivial. The orientability of N implies wi(N) = 0 for i = 1, 2. Since

τN ⊕ νN = τM |N and M is a spin manifold, we get wi(νN) = 0 for i = 1, 2. It follows from

the last equality that νN is stably trivial (cf. for example [9, Lemma 1.2]). Finally, νN is

trivial, since rank νN ≥ 4 > 3 = dim N .

We are now ready to prove the results announced in Section 1.

Proof of Theorem 1.1. Every element of H1(M, Z/2) is of the form w1(λ) for some real line

bundle λ on M . Clearly

w(λ) = 1 + w1(λ).(∗)

We claim that every element of H2(M, Z/2) is of the form w2(ξ) for some rank 2 real vector

bundle ξ on M with w1(ξ) = 0. Indeed, by the universal coefficient theorem, the torsion

subgroups of H2(M, Z) and H3(M, Z) are isomorphic. Hence H3(M, Z) has no 2-torsion,

which implies that the reduction modulo 2 homomorphism ρ : H2(M, Z) → H2(M, Z/2) is

14



surjective. Every element of H2(M, Z) is the first Chern class c1(ξ) of some complex line

bundle ξ on M . Regarding ξ as a rank 2 real vector bundle, we get w2(ξ) = ρ(c1(ξ)) and

w1(ξ) = 0, which proves the claim. Note that

w(ξ) = 1 + w2(ξ).(∗∗)

Since M is a spin manifold, we have wi(M) = 0 for i = 1, 2, 3, cf. [17, Problem 8-B].

Let B be the subring of H∗(M, Z/2) generated by A and wj(M) for j ≥ 0. Then B is an

admissible subring with

A ⊆ B and Ak = Bk for k = 0, 1, 2, 3.

In view of (∗) and (∗∗), one can find a collection F of real vector bundles on M and a

collection G of smooth submanifolds of M such that B = A(F ,G) and codimMN ≥ 3 for all

N in G. By Theorem 2.4 and Lemma 2.5 (i), (iii), (iv), there exist an algebraic model X of

M and a smooth diffeomorphism ϕ : X → M satisfying

ϕ∗(B) ⊆ H∗

alg(X, Z/2)

and

ϕ∗(Bk) = Hk
alg(X, Z/2) for k = 0, 1, 2, 3.

The proof is complete. 2

Proof of Corollary 1.2. We first recall some results due to Thom [22]. Let N be a compact

n-dimensional manifold. By [22, Théorème II.26], every homology class in Hk(N, Z/2) can

be represented by a smooth submanifold, provided 2k ≤ n or k = n− 1 or (n, k) = (7, 4). If

N is orientable and n ≤ 9, then according to [22, Corollaire II.28], every homology class in

H`(N, Z), ` ≥ 0, can be represented by an oriented smooth submanifold.

We can now easily complete the proof. By the Poincaré duality and the universal coeffi-

cient theorem, the reduction modulo 2 homomorphism Hp(M, Z) → Hp(M, Z/2) is surjective

in either of the following two cases:

(i) m = 7 and p = 5,
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(ii) m = 8 or 9 and m/2 < p ≤ m − 2.

Hence Thom’s results recalled above imply that every homology class in Hk(M, Z/2), k ≥ 0,

can be represented by a smooth submanifold. In particular, every subring of H∗(M, Z/2) is

admissible. The proof is complete in view of Theorem 1.1. 2

Proof of Theorem 1.3. We already recalled in the proof of Theorem 2.4 that w(Y ) is in

H∗(Y, Z/2) for every compact nonsingular real algebraic variety Y . Hence (a) implies (b).

Assume that (b) holds. By Lemma 2.5, Gm−k(M) ⊆ Sm−k(M) for k = 1, 2. Since every

element of H1(M, Z/2) is of the form w1(λ) for some real line bundle λ on M and since

w(λ) = 1 + w1(λ), we have A = A(F ,G), where F is a collection of real vector bundles on

M and G is a collection of smooth submanifolds of M with codimMN ≥ 2 for all N in G. It

follows from Theorem 2.4 that (a) is satisfied. 2

We conclude this paper by examining consequences of Theorems 1.1 and 2.4 for the n-fold

product T n = S1 × · · ·× S1. The interested reader will notice that there are other examples

of a similar type.

Example 2.6. Every homology class in Hp(T
n, Z/2), p ≥ 0, can be represented by a

smooth submanifold, and hence every subring A of H∗(T n, Z/2) is admissible. By Theorem

1.1, if n ≥ 7, then there exist an algebraic model X of T n and a smooth diffeomorphism

ϕ : X → T n satisfying

ϕ∗(A) ⊆ H∗

alg(X, Z/2)

and

ϕ∗(Ak) = Hk
alg(X, Z/2) for k = 0, 1, 2, 3.

Furthermore, for any n ≥ 1, if A is generated by 1 and some cohomology classes in

H i(T n, Z/2), i = 1, 2, then X and ϕ can be chosen in such a way that

ϕ∗(A) ⊆ H∗

alg(X, Z/2)
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and

ϕ∗(Ak) = Hk
alg(X, Z/2) for 2k + 1 ≤ n.

Indeed, one readily checks that A = A(F), where F is a collection of real vector bundles on

T n. Since Hm−k(T n, Z/2) = Sm−k(T n) for all k with 2k + 1 ≤ n, the existence of X and ϕ

satisfying the required properties is guaranteed by Theorem 2.4.
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vetici 28(1954), 17-86.

[23] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (3)
27 (1973), 167-185.

[24] A. Tognoli, Algebraic approximation of manifolds and spaces. Séminaire Bourbaki 32e
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