Cycles on algebraic models of smooth manifolds

W. Kucharz*

1 Introduction

Let X be a compact nonsingular real algebraic set (in \mathbb{R}^{n} for some n). A cohomology class in $H^{k}(X, \mathbb{Z} / 2)$ is said to be algebraic if the homology class Poincaré dual to it can be represented by an algebraic subset of X. The set $H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2)$ of all algebraic cohomology classes in $H^{k}(X, \mathbb{Z} / 2)$ is a subgroup, while the direct sum $H_{\text {alg }}^{*}(X, \mathbb{Z} / 2)$ of the $H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2)$, for $k \geq 0$, forms a subring of the cohomology ring $H^{*}(X, \mathbb{Z} / 2)$. Early papers dealing with algebraic cohomology (or homology) classes provided examples of X with $H_{\text {alg }}^{*}(X, \mathbb{Z} / 2) \neq H^{*}(X, \mathbb{Z} / 2)$, cf. $[1,5,6,14,19,20]$. The reader can find a survey of properties and applications of $H_{\mathrm{alg}}^{*}(-, \mathbb{Z} / 2)$ in [11].

Every compact smooth (of class \mathcal{C}^{∞}) manifold M is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of M, cf. [23] (see also [7, Theorem 14.1.10] and, for a weaker but influential result, [18]). The following question is a challenging problem: How the ring $H_{\text {alg }}^{*}(X, \mathbb{Z} / 2)$ varies as X runs through the class of algebraic models of M ? This paper provides partial answers. Due to technical difficulties it is easier to describe how the group $H_{\text {alg }}^{k}(X, \mathbb{Z} / 2)$ varies for a fixed k. Results of this type are in [8] for $k=1$, in [10] for $k=2$, and in [16] for $k \geq 3$. If $k \geq 2$ and especially if $k \geq 3$ they are far from complete.

We say that a subring A of $H^{*}(M, \mathbb{Z} / 2)$ is algebraically realizable if there exist an algebraic model X of M and a smooth diffeomorphism $\varphi: X \rightarrow M$ with $\varphi^{*}(A) \subseteq H_{\text {alg }}^{*}(X, \mathbb{Z} / 2)$.

[^0]The original goal of several researchers was to show that the whole ring $H^{*}(M, \mathbb{Z} / 2)$ is algebraically realizable, that is, M has an algebraic model X with $H_{\text {alg }}^{*}(X, \mathbb{Z} / 2)=H^{*}(X, \mathbb{Z} / 2)$ (such a conjecture, motivated by far-reaching potential applications, was explicitly stated in [1]). However, since the publication of [3] it has been known that for some manifolds M this is impossible. An important algebraically realizable subring of $H^{*}(M, \mathbb{Z} / 2)$ is identified in [4, Theorem 4, Remark 8]. It is the subring $A(M)$ generated by the Stiefel-Whitney classes of all real vector bundles on M together with the cohomology classes Poincaré dual to the homology classes represented by all smooth submanifolds of M. A conjecture proposed in [3], and still open at the present time, suggests that every algebraically realizable subring of $H^{*}(M, \mathbb{Z} / 2)$ is contained in $A(M)$. For us certain subrings of $A(M)$ will play a crucial role. We say that a subring A of $H^{*}(M, \mathbb{Z} / 2)$ is admissible if it is generated by the Stiefel-Whitney classes of some real vector bundles on M and the cohomology classes Poincaré dual to the homology classes represented by some smooth submanifolds of M. Thus $A(M)$ is the largest admissible subring of $H^{*}(M, \mathbb{Z} / 2)$. However, in general, not every subring of $A(M)$ is admissible. Given any subring A of $H^{*}(M, \mathbb{Z} / 2)$, we set $A^{k}=A \cap H^{k}(M, \mathbb{Z} / 2)$. As usual, we denote by $w_{i}(M)$ the i th Stiefel-Whitney class of M. Recall that M is called a spin manifold if $w_{1}(M)=0$ and $w_{2}(M)=0$.

Theorem 1.1 Let M be a compact connected spin manifold. Assume that $\operatorname{dim} M \geq 7$ and the group $H_{i}(M, \mathbb{Z})$ has no 2-torsion for $i=1,2$. Then for any admissible subring A of $H^{*}(M, \mathbb{Z} / 2)$, there exist an algebraic model X of M and a smooth diffeomorphism $\varphi: X \rightarrow M$ satisfying

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(A^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { for } k=0,1,2,3 .
$$

Of course, of main interest here is the last assertion in Theorem 1.1. This result is particularly nice in dimension 7,8 or 9 .

Corollary 1.2 Let M be a compact connected spin manifold of dimension m, where $m=$ 7,8 , or 9 . Assume that the group $H_{i}(M, \mathbb{Z})$ has no 2 -torsion for $i=1, \ldots, m-5$. Then for any subring A of $H^{*}(M, \mathbb{Z} / 2)$, there exist an algebraic model X of M and a smooth diffeomorphism $\varphi: X \rightarrow M$ satisfying

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(A^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { for } k=0,1,2,3 .
$$

It suffices to prove that under the assumptions of Corollary 1.2, every subring of $H^{*}(M, \mathbb{Z} / 2)$ is admissible. The latter fact easily follows from known results, see the next section. One can also drop the assumption about the dimension of M in Corollary 1.2, provided that the topology of M is not too complicated, cf. Example 2.6.

For manifolds which are not necessarily spin, we have the following result.

Theorem 1.3 Let M be a compact connected smooth manifold. Assume that $\operatorname{dim} M=$ $m \geq 5$ and the group $H_{m-2}(M, \mathbb{Z})$ has no 2 -torsion. Then for any admissible subring A of $H^{*}(M, \mathbb{Z} / 2)$, the following conditions are equivalent:
(a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi: X \rightarrow M$ satisfying

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(A^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { for } k=0,1,2
$$

(b) $w_{i}(M)$ is in A^{i} for $i=1,2$.

If $\operatorname{dim} M=5$, then every homology class in $H_{d}(M, \mathbb{Z} / 2), d \geq 0$, can be represented by a smooth submanifold [22, Théorème II.26], and hence every subring of $H^{*}(M, \mathbb{Z} / 2)$ is admissible.

In order to compare the assumptions in Theorems 1.1 and 1.3, let us note that for any orientable compact smooth manifold M of dimension m, the groups $H_{1}(M, \mathbb{Z})$ and $H_{m-2}(M, \mathbb{Z})$ have isomorphic torsion subgroups. Indeed, this follows from the Poincaré duality and the universal coefficient theorem for cohomology.

Theorems 1.1, 1.3 and Corollary 1.2 are proved in Section 2.

2 Proofs and further results

We will need some constructions from real algebraic geometry. Throughout this paper the term real algebraic variety designates a locally ringed space isomorphic to an algebraic subset of \mathbb{R}^{n}, for some n, endowed with the Zariski topology and the sheaf of \mathbb{R}-valued regular functions. Morphisms between real algebraic varieties will be called regular maps. Background material on real algebraic varieties and regular maps can be found in [7]. Every real algebraic variety carries also the Euclidean topology, which is determined by the usual metric topology on \mathbb{R}. Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to the Euclidean topology.

The Grassmannian $\mathbb{G}_{n, r}$ of r-dimensional vector subspaces of \mathbb{R}^{n} is endowed with a canonical structure sheaf which makes it into a real algebraic variety in the sense of this paper [7, Theorem 3.4.4] (an affine real algebraic variety according to the terminology used in [7]). Moreover, $\mathbb{G}_{n, r}$ is nonsingular and

$$
H_{\mathrm{alg}}^{*}\left(\mathbb{G}_{n, r}, \mathbb{Z} / 2\right)=H^{*}\left(\mathbb{G}_{n, r}, \mathbb{Z} / 2\right)
$$

cf. [7, Proposition 3.4.3, Proposition 11.3.3]. The universal vector bundle $\gamma_{n, r}$ on $\mathbb{G}_{n, r}$ is algebraic. If ξ is an algebraic vector bundle of rank r on a real algebraic variety X and if n is a sufficiently large integer, then there is a regular map $f: X \rightarrow \mathbb{G}_{n, r}$ with $f^{*} \gamma_{n, r}$ algebraically isomorphic to ξ, cf. [7, Theorem 12.1.7]. Here referring to algebraic vector bundles we follow [7], while in $[4,5,6,8,9,10]$ such bundles are called strongly algebraic.

Given a compact nonsingular real algebraic variety X, we define

$$
\operatorname{Alg}^{k}(X)
$$

to be the set of all elements u of $H^{k}(X, \mathbb{Z} / 2)$ for which there exist a compact nonsingular irreducible real algebraic variety T (depending on u), two points t_{0} and t_{1} in T and a cohomology class z in $H_{\text {alg }}^{k}(X \times T, \mathbb{Z} / 2)$ such that

$$
u=i_{t_{1}}^{*}(z)-i_{t_{0}}^{*}(z)
$$

where for any t in T, we let $i_{t}: X \rightarrow X \times T$ denote the map $i_{t}(x)=(x, t)$ for all x in X. An equivalent description of $\operatorname{Alg}^{k}(X)$, which immediately implies that $\operatorname{Alg}^{k}(X)$ is a subgroup of $H_{\text {alg }}^{k}(X, \mathbb{Z} / 2)$, is given in $[15,16]$. The groups $H_{\text {alg }}^{k}(-, \mathbb{Z} / 2)$ and $\operatorname{Alg}^{k}(-)$ have the expected functorial properties. If $f: X \rightarrow Y$ is a regular map between compact nonsingular real algebraic varieties, then the induced homomorphism $f^{*}: H^{*}(Y, \mathbb{Z} / 2) \rightarrow H^{*}(X, \mathbb{Z} / 2)$ satisfies

$$
f^{*}\left(H_{\mathrm{alg}}^{k}(Y, \mathbb{Z} / 2)\right) \subseteq H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { and } f^{*}\left(\operatorname{Alg}^{k}(Y)\right) \subseteq \operatorname{Alg}^{k}(X)
$$

cf. [12, Section 5] or [6] for the former inclusion and [16] for the latter one.
The following fact will be very useful.

Theorem 2.1 Let X be a compact nonsingular real algebraic variety. Then $\langle u \cup v,[X]\rangle=0$ for all u in $\operatorname{Alg}^{k}(X)$ and v in $H_{\text {alg }}^{\ell}(X, \mathbb{Z} / 2)$, where $k+\ell=\operatorname{dim} X$.

Reference for the proof. [15, Theorem 2.1].

As usual \cup and \langle,$\rangle denote the cup product and scalar (Kronecker) product, while [X]$ stands for the fundamental class of X in $H_{d}(X, \mathbb{Z} / 2), d=\operatorname{dim} X$.

We will also need some properties of $\mathrm{Alg}^{k}(-)$ for very specific real algebraic varieties. Let B^{n} be a nonsingular irreducible real algebraic variety with precisely two connected components B_{0}^{n} and B_{1}^{n}, each diffeomorphic to the unit n-sphere, $n \geq 1$. For example, one can take

$$
B^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid x_{0}^{4}-4 x_{0}^{2}+1+x_{1}^{2}+\cdots+x_{n}^{2}=0\right\}
$$

Let $B^{n}(d)=B^{n} \times \cdots \times B^{n}$ and $B_{0}^{n}(d)=B_{0}^{n} \times \cdots \times B_{0}^{n}$ be the d-fold products, and let $\delta: B_{0}^{n}(d) \hookrightarrow B^{n}(d)$ be the inclusion map. Then according to [16, Example 4.5],

$$
\begin{equation*}
H^{q}\left(B_{0}^{n}(d), \mathbb{Z} / 2\right)=\delta^{*}\left(H^{q}\left(B^{n}(d), \mathbb{Z} / 2\right)\right)=\delta^{*}\left(\operatorname{Alg}^{q}\left(B^{n}(d)\right)\right) \tag{2.2}
\end{equation*}
$$

for all $q \geq 0$.
We now recall an important result from differential topology. All manifolds that appear here are without boundary.

Theorem 2.3 Let P be a smooth manifold. Two smooth maps $f: M \rightarrow P$ and $g: N \rightarrow P$, where M and N are compact smooth manifolds of dimension m, represent the same bordism class in the unoriented bordims group $\mathcal{N}_{*}(P)$ if and only if for every nonnegative integer q and every cohomology class v in $H^{q}(P, \mathbb{Z} / 2)$, one has

$$
\left\langle w_{i_{1}}(M) \cup \ldots \cup w_{i_{r}}(M) \cup f^{*}(v),[M]\right\rangle=\left\langle w_{i_{1}}(N) \cup \ldots \cup w_{i_{r}}(N) \cup g^{*}(v),[N]\right\rangle
$$

for all nonnegative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=m-q$.

Reference for the proof. [13, (17.3)].

Let M be a compact smooth manifold. For any positive integer k, we define

$$
G^{k}(M)
$$

to be the subgroup of $H^{k}(M, \mathbb{Z} / 2)$ consisting of the cohomology classes u satisfying

$$
\left\langle w_{i_{1}}(M) \cup \ldots \cup w_{i_{r}}(M) \cup u,[M]\right\rangle=0
$$

for all nonnegative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=m-k$.
A cohomology class v in $H^{k}(M, \mathbb{Z} / 2), k \geq 1$, is said to be spherical, provided $v=f^{*}(c)$, where $f: M \rightarrow S^{k}$ is a continuous (or equivalently smooth) map from M into the unit k-sphere S^{k} and c is the unique generator of the group $H^{k}\left(S^{k}, \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2$. It is well known that v is spherical if and only if the homology class Poincaré dual to v can be represented
by a smooth submanifold of M with trivial normal vector bundle, cf. [22, Théorème II.2]. Denote by

$$
S^{k}(M)
$$

the set of all spherical cohomology classes in $H^{k}(M, \mathbb{Z} / 2)$. It readily follows from the characterization of spherical cohomology classes recalled above that $S^{k}(M)$ is a subgroup of $H^{k}(M, \mathbb{Z} / 2)$ if $2 k \geq M+1$.

For any smooth submanifold N of M of codimension k, we denote by $[N]^{M}$ the cohomology class in $H^{k}(M, \mathbb{Z} / 2)$ Poincaré dual to the homology class represented by N. As usual, if ξ is a real vector bundle on M, then $w(\xi)$ and $w_{k}(\xi)$ will stand for, respectively, its total and k th Stiefel-Whitney class. The total Stiefel-Whitney class of M will be denoted by $w(M)$.

Given a collection \mathcal{F} of real vector bundles on M and a collection \mathcal{G} of smooth submanifolds of M, we denote by

$$
A(\mathcal{F}, \mathcal{G})
$$

the subring of $H^{*}(M, \mathbb{Z} / 2)$ generated by $w_{k}(\xi)$ and $[N]^{M}$ for all ξ in $\mathcal{F}, k \geq 0$, and N in \mathcal{G}. Since $H^{*}(M, \mathbb{Z} / 2)$ is a finite set, we may assume without loss of generality that the collections \mathcal{F} and \mathcal{G} are finite. By definition, any admissible subring of $H^{*}(M, \mathbb{Z} / 2)$ is of the form $A(\mathcal{F}, \mathcal{G})$.

Theorem 2.4 Let M be a compact connected smooth manifold of dimension m. Let \mathcal{F} be a collection of real vector bundles on M and let \mathcal{G} be a collection of smooth submanifolds of M. Assume that there is an integer $k_{0} \geq 2$ such that $2 k_{0}+1 \leq m$ and $\operatorname{codim}_{M} N \geq k_{0}$ for all N in \mathcal{G}. Then for the subring $A=A(\mathcal{F}, \mathcal{G})$ of $H^{*}(M, \mathbb{Z} / 2)$, the following conditions are equivalent:
(a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi: X \rightarrow M$ satisfying

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(A^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2)
$$

for all k with $k \leq k_{0}$ and $G^{m-k}(M) \subseteq S^{m-k}(M)$.
(b) $w(M)$ is in A.

Proof. If Y is a compact nonsingular real algebraic variety, then $w(Y)$ is in $H_{\text {alg }}^{*}(Y, \mathbb{Z} / 2)$, cf. $[6,11,12]$, and hence (a) implies (b).

Assume that (b) holds. Let $\mathcal{F}=\left\{\xi_{1}, \ldots, \xi_{a}\right\}$ and $\mathcal{G}=\left\{N_{1}, \ldots, N_{b}\right\}$. For the use in a latter part of the proof, we modify each submanifold N_{j}, without affecting the cohomology class $\left[N_{j}\right]^{M}$, so that we obtain a new N_{j} connected and nonorientable. This is possible since M is connected and $\operatorname{codim}_{M} N_{j} \geq 2$. Indeed, the last inequality implies that if U is an open subset of M diffeomorphic to \mathbb{R}^{m}, then there is a smooth connected nonorientable submanifold P_{j} of M contained in U and with $\operatorname{dim} P_{j}=\operatorname{dim} N_{j}$. Joining P_{j} and the connected components of N_{j} with tubes, we get the required modification of N_{j}.

By transversality, the submanifolds N_{1}, \ldots, N_{b} can be chosen in general position. Hence in view of $[4$, Theorem 4, Remark 8], we may assume that M is a nonsingular real algebraic variety, N_{1}, \ldots, N_{b} are nonsingular Zariski closed subvarieties of M, and every topological real vector bundle on M is isomorphic to an algebraic vector bundle. In particular, we may assume that ξ_{1}, \ldots, ξ_{a} are algebraic vector bundles. Setting $r_{i}=\operatorname{rank} \xi_{i}$ and choosing a sufficiently large integer n, we can find a regular map $f_{i}: M \rightarrow \mathbb{G}_{n, r_{i}}$ such that ξ_{i} is isomorphic to $f_{i}^{*} \gamma_{n, r_{i}}$, and hence $w\left(\xi_{i}\right)=f_{i}^{*}\left(w\left(\gamma_{n, r_{i}}\right)\right)$. Therefore

$$
\begin{equation*}
A \text { is generated by } f_{i}^{*}\left(w_{k}\left(\gamma_{n, r_{i}}\right)\right) \text { and }\left[N_{j}\right]^{M}, 1 \leq i \leq a, 1 \leq j \leq b, k \geq 0 \tag{1}
\end{equation*}
$$

Setting

$$
G=\mathbb{G}_{n, r_{1}} \times \cdots \times \mathbb{G}_{n, r_{a}} \text { and } f=\left(f_{1}, \ldots, f_{a}\right): M \rightarrow G
$$

and making use of Künneth's theorem, we obtain

$$
\begin{equation*}
f^{*}\left(H^{*}(G, \mathbb{Z} / 2)\right) \subseteq A \tag{2}
\end{equation*}
$$

Let k_{1}, \ldots, k_{s} be all the integers such that $k_{0} \geq k_{1}>k_{2}>\cdots>k_{s} \geq 1$ and $G^{m-k_{\ell}}(M) \subseteq$ $S^{m-k_{\ell}}(M)$ for $\ell=1, \ldots, s$. Clearly,

$$
\begin{equation*}
\Gamma_{\ell}:=\left\{v \in H^{m-k_{\ell}}(M, \mathbb{Z} / 2) \mid\langle u \cup v,[M]\rangle=0 \text { for all } u \in A^{k_{\ell}}\right\} \tag{3}
\end{equation*}
$$

is a subgroup of $G^{m-k_{\ell}}(M)$. Choose an integer d with $\operatorname{dim}_{\mathbb{Z} / 2} \Gamma_{\ell} \leq d$ for $\ell=1, \ldots, s$. Let

$$
B^{m-k_{\ell}}(d)=B^{m-k_{\ell}} \times \cdots \times B^{m-k_{\ell}} \text { and } B_{0}^{m-k_{\ell}}=B_{0}^{m-k_{\ell}} \times \cdots \times B_{0}^{m-k_{\ell}}
$$

be as in (2.2) (with $n=m-k_{\ell}$). Since every cohomology class in Γ_{ℓ} is spherical, there exists a smooth map

$$
g_{\ell}=\left(g_{\ell 1}, \ldots, g_{\ell d}\right): M \rightarrow B^{m-k_{\ell}}(d)
$$

satisfying

$$
\begin{equation*}
g_{\ell}(M) \subseteq B_{0}^{m-k_{\ell}}(d) \text { and } \Gamma_{\ell}=g_{\ell}^{*}\left(H^{m-k_{\ell}}\left(B^{m-k_{\ell}}(d), \mathbb{Z} / 2\right)\right) \tag{4}
\end{equation*}
$$

Set

$$
\begin{gathered}
B=B^{m-k_{1}}(d) \times \cdots \times B^{m-k_{s}}(d), B_{0}=B_{0}^{m-k_{1}}(d) \times \cdots \times B_{0}^{m-k_{s}}(d), \\
g=\left(g_{1}, \ldots, g_{s}\right): M \rightarrow B
\end{gathered}
$$

Making use of Künneth's theorem and the inequalities $2\left(m-k_{\ell}\right) \geq 2\left(m-k_{0}\right) \geq m+1$ for $\ell=1, \ldots, s$, we get

$$
\begin{equation*}
H^{q}(B, \mathbb{Z} / 2)=0 \text { for } 0<q \leq m, q \notin\left\{m-k_{1}, \ldots, m-k_{s}\right\} . \tag{5}
\end{equation*}
$$

Künneth's theorem also implies

$$
\begin{equation*}
\Gamma_{\ell}=g^{*}\left(H^{m-k_{\ell}}(B, \mathbb{Z} / 2)\right) \text { for } 1 \leq \ell \leq s \tag{6}
\end{equation*}
$$

Assertion 1. The restriction map $g \mid N: N \rightarrow B$, where $N:=N_{1} \cup \ldots \cup N_{b}$, is null homotopic.

Clearly, it suffices to prove that for each pair of integers (ℓ, e), with $1 \leq \ell \leq s$ and $1 \leq e \leq d$, the map $h_{\ell e} \mid N: N \rightarrow B_{0}^{m-k_{\ell}}$ is null homotopic, where $h_{\ell e}: M \rightarrow B^{m-k_{\ell}}$ is defined by $h_{\ell e}(x)=g_{\ell e}(x)$ for all x in M. Recall that $B_{0}^{m-k_{\ell}}$ is diffeomorphic to $S^{m-k_{\ell}}$. Let σ be a generator of $H^{m-k_{\ell}}\left(B_{0}^{m-k_{\ell}}, \mathbb{Z}\right) \cong \mathbb{Z}$. Since $\operatorname{dim} N_{j} \leq m-k_{\ell}$ for $j=1, \ldots, b$, it follows from Hopf's classification theorem that $h_{\ell e} \mid N$ is null homotopic if and only if $\left(h_{\ell e} \mid N\right)^{*}(\sigma)=0$ in $H^{m-k_{\ell}}(N, \mathbb{Z})$. By the Mayer-Vietoris exact sequence, the last condition is equivalent to $\left(h_{\ell e} \mid N_{j}\right)^{*}(\sigma)=0$ in $H^{m-k_{\ell}}\left(N_{j}, \mathbb{Z}\right)$ for all $j=1, \ldots, b$.

If $\operatorname{dim} N_{j}<m-k_{\ell}$, then trivially $\left(h_{\ell e} \mid N_{j}\right)^{*}(\sigma)=0$.
Suppose that $\operatorname{dim} N_{j}=m-k_{\ell}$. In that case necessarily $\ell=1$ and $k_{1}=k_{0}$. In order to ease notation, set $h=h_{1 e}$. Since N_{j} is connected and nonorientable, $\left(h \mid N_{j}\right)^{*}(\sigma)=0$ in $H^{m-k_{1}}\left(N_{j}, \mathbb{Z}\right)$ if and only if $\left(h \mid N_{j}\right)^{*}(\bar{\sigma})=0$ in $H^{m-k_{1}}\left(N_{j}, \mathbb{Z} / 2\right)$ where $\bar{\sigma}$ in $H^{m-k_{1}}\left(B_{0}^{m-k_{1}}, \mathbb{Z} / 2\right)$ is the reduction modulo 2 of σ. It follows from (4) that $h^{*}(\bar{\sigma})$ is in Γ_{1}, and hence (3) implies

$$
\left\langle h^{*}(\bar{\sigma}) \cup\left[N_{j}\right]^{M},[M]\right\rangle=0,
$$

Therefore denoting by $\epsilon: N_{j} \hookrightarrow M$ the inclusion map, we have

$$
\begin{aligned}
\left\langle\left(h \mid N_{j}\right)^{*}(\bar{\sigma}),\left[N_{j}\right]\right\rangle & =\left\langle\epsilon^{*}\left(h^{*}(\bar{\sigma})\right),\left[N_{j}\right]\right\rangle \\
& =\left\langle h^{*}(\bar{\sigma}), \epsilon_{*}\left(\left[N_{j}\right]\right)\right\rangle \\
& =\left\langle h^{*}(\bar{\sigma}),\left[N_{j}\right]^{M} \cap[M]\right\rangle \\
& =\left\langle h^{*}(\bar{\sigma}) \cup\left[N_{j}\right]^{M},[M]\right\rangle \\
& =0 .
\end{aligned}
$$

Since N_{j} is connected, we get $\left(h \mid N_{j}\right)^{*}(\bar{\sigma})=0$, as required. Assertion 1 is proved.
Choose a compact subset K of M such that N is contained in the interior of K and N is a deformation retract of K, while (M, K) is a polyhedral pair. Then $g \mid K: K \rightarrow B$ is null homotopic and, by the homotopy extension theorem [21, p. 118, Corollary 5], there exists a continuous map $g^{\prime}: M \rightarrow B$ which is homotopic to g and $g^{\prime} \mid K$ is a constant map. Thus there is a smooth map $g^{\prime \prime}: M \rightarrow B$ homotopic to g^{\prime} and equal to g^{\prime} on N. Replacing, if necessary, g by $g^{\prime \prime}$, we may assume that

$$
\begin{equation*}
g: M \rightarrow B \text { is constant on } N=N_{1} \cup \ldots \cup N_{b} \tag{7}
\end{equation*}
$$

while (4) and (6) still hold.
Let $c: M \rightarrow B$ be a constant map sending M to a point in B_{0}.

Assertion 2. The maps $(f, g): M \rightarrow G \times B$ and $(f, c): M \rightarrow G \times B$ represent the same bordism class in the unoriented bordism group $\mathcal{N}_{*}(G \times B)$.

In view of Theorem 2.3 and Künneth's theorem, it suffices to prove that for every
pair (p, q) of nonnegative integers and all cohomology classes α in $H^{p}(G, \mathbb{Z} / 2)$ and β in $H^{q}(B, \mathbb{Z} / 2)$, we have

$$
\begin{align*}
\left\langle w_{i_{1}}(M) \cup \ldots\right. & \left.\cup w_{i_{r}}(M) \cup(f, g)^{*}(\alpha \times \beta),[M]\right\rangle \tag{8}\\
& =\left\langle w_{i_{1}}(M) \cup \ldots \cup w_{i_{r}}(M) \cup(f, c)^{*}(\alpha \times \beta),[M]\right\rangle
\end{align*}
$$

for all nonnegative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=m-(p+q)$. Note that $(f, g)^{*}(\alpha \times \beta)=$ $f^{*}(\alpha) \cup g^{*}(\beta)$ and $(f, c)^{*}(\alpha \times \beta)=f^{*}(\alpha) \cup c^{*}(\beta)$.

If $q=0$, then $g^{*}(\beta)=c^{*}(\beta)$, and hence (8) holds.
Suppose now $0<q \leq m$. Then $c^{*}(\beta)=0$ and (8) is equivalent to

$$
\begin{equation*}
\left\langle w_{i_{1}}(M) \cup \ldots \cup w_{i_{r}}(M) \cup f^{*}(\alpha) \cup g^{*}(\beta),[M]\right\rangle=0 . \tag{9}
\end{equation*}
$$

If $q \notin\left\{m-k_{1}, \ldots, m-k_{s}\right\}$, then $\beta=0$ according to (4), and hence (9) holds. If $q=$ $m-k_{\ell}$ for some ℓ, then $g^{*}(\beta)$ is in Γ_{ℓ} in view of (5). Since (b) is satisfied, (2) implies that $w_{i_{1}}(M) \cup \ldots \cup w_{i_{r}}(M) \cup f^{*}(\alpha)$ is in $A^{k_{\ell}}$. Thus (9) holds in view of (3). Assertion 2 is proved.

The proof can be completed as follows. We may assume that M is a Zariski closed nonsingular subvariety of \mathbb{R}^{μ} for some μ. Then N, being a union of finitely many Zariski closed nonsingular subvarieties of \mathbb{R}^{μ}, is a nice set, equivalently, a quasi-regular subvariety in the terminology used in [2] and [24], respectively, cf. [24, p. 75]. Since (f, c) is a regular map, and by (7), the restriction $(f, g) \mid N$ is also regular, it follows from Assertion 2 that [2, Theorem 2.8.4] is applicable. Hence there exist a nonnegative integer ν, a Zariski closed nonsingular subvariety X of $\mathbb{R}^{\mu+\nu}$, a smooth diffeomorphism $\varphi: X \rightarrow M$, and a regular map $(\bar{f}, \bar{g}): X \rightarrow G \times B$ such that identifying \mathbb{R}^{μ} with $\mathbb{R}^{\mu} \times\{0\} \subseteq \mathbb{R}^{\mu+\nu}$, we have $N \subseteq X, \varphi(x)=x$ for all x in N, and (\bar{f}, \bar{g}) is homotopic to $(f, g) \circ \varphi=(f \circ \varphi, g \circ \varphi)$. In particular, setting

$$
\begin{gathered}
\bar{f}=\left(\bar{f}_{1}, \ldots, \bar{f}_{a}\right): X \rightarrow G=\mathbb{G}_{n, r_{1}} \times \cdots \times \mathbb{G}_{n, r_{a}}, \\
\bar{g}=\left(\bar{g}_{1}, \ldots, \bar{g}_{s}\right): X \rightarrow B=B^{m-k_{1}}(d) \times \cdots \times B^{m-k_{s}}(d),
\end{gathered}
$$

we obtain $\bar{f}_{i}^{*}=\varphi^{*} \circ f_{i}^{*}$ and $\bar{g}_{\ell}^{*}=\varphi^{*} \circ g_{\ell}^{*}$ in cohomology for $1 \leq i \leq a$ and $1 \leq \ell \leq s$.
The cohomology class

$$
\varphi^{*}\left(f_{i}^{*}\left(w\left(\gamma_{n, r_{i}}\right)\right)\right)=\bar{f}_{i}^{*}\left(w\left(\gamma_{n, r_{i}}\right)\right)
$$

is in $H_{\text {alg }}^{*}(X, \mathbb{Z} / 2)$, the map \bar{f}_{i} being regular. Clearly,

$$
\varphi^{*}\left(\left[N_{j}\right]^{M}\right)=\left[N_{j}\right]^{X}
$$

is also in $H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)$. Hence (1) implies

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

In particular,

$$
\begin{equation*}
\varphi^{*}\left(A^{k_{\ell}}\right) \subseteq H_{\mathrm{alg}}^{k_{\ell}}(X, \mathbb{Z} / 2) \text { for } \ell=1, \ldots, s \tag{10}
\end{equation*}
$$

It remains to prove that the inclusion in (10) is actually an equality. By (2.2) and (4),

$$
\Gamma_{\ell}=g_{\ell}^{*}\left(\operatorname{Alg}^{m-k_{\ell}}\left(B^{m-k_{\ell}}(d)\right)\right)
$$

and hence

$$
\varphi\left(\Gamma_{\ell}\right)=\varphi^{*}\left(g_{\ell}^{*}\left(\operatorname{Alg}^{m-k_{\ell}}\left(B^{m-k_{\ell}}(d)\right)\right)\right)=\bar{g}_{\ell}^{*}\left(\operatorname{Alg}^{m-k_{\ell}}\left(B^{m-k_{\ell}}(d)\right)\right)
$$

Consequently,

$$
\begin{equation*}
\varphi^{*}\left(\Gamma_{\ell}\right) \subseteq \operatorname{Alg}^{m-k_{\ell}}(X) \tag{11}
\end{equation*}
$$

the map $\bar{g}_{\ell}: X \rightarrow B^{m-k_{\ell}}(d)$ being regular. By the Poincaré duality,

$$
H^{k_{\ell}}(M, \mathbb{Z} / 2) \times H^{m-k_{\ell}}(M, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2, \quad(u, v) \mapsto\langle u \cup v,[M]\rangle
$$

is a dual pairing, and therefore (3), (10), (11) and Theorem 2.1 taken together imply

$$
\varphi^{*}\left(A^{k_{\ell}}\right)=H_{\mathrm{alg}}^{k_{\ell}}(X, \mathbb{Z} / 2) \text { for } \ell=1, \ldots, s
$$

as required. The proof is complete.

We will need the following, purely technical, observation.

Lemma 2.5 Let M be a compact connect smooth manifold of dimension m. Then:
(i) $G^{m-1}(M) \subseteq S^{m-1}(M)$, provided $m \geq 2$.
(ii) $G^{m-2}(M) \subseteq S^{m-2}(M)$, provided $m \geq 5$ and $H_{m-2}(M, \mathbb{Z})$ has no 2-torsion.
(iii) $G^{m-2}(M) \subseteq S^{m-2}(M)$, provided $m \geq 5, M$ is orientable, and $H_{1}(M, \mathbb{Z})$ has no 2torsion.
(iv) $H^{m-3}(M, \mathbb{Z} / 2)=S^{m-3}(M)$, provided $m \geq 7, M$ is a spin manifold, and $H_{2}(M, \mathbb{Z})$ has no 2-torsion.

Proof. Given a smooth manifold P, we denote by τ_{P} its tangent bundle. The normal bundle of a smooth submanifold N of M will be denoted by ν_{N}. Recall that ν_{N} is a trivial vector bundle if and only if $[N]^{M}$ is in $S^{k}(M), k=\operatorname{codim}_{M} N$.
(i) Let u be in $G^{m-1}(M)$, that is, $\left\langle w_{1}(M) \cup u,[M]\right\rangle=0$. Since M is connected, we have

$$
w_{1}(M) \cup u=0 .
$$

Choose a smooth connected curve C in M with $u=[C]^{M}$. It suffices to prove that the normal bundle ν_{C} is trivial or, equivalently, $w_{1}\left(\nu_{C}\right)=0$. Since $\tau_{C} \oplus \nu_{C}=\tau_{M} \mid C$ and τ_{C} is trivial, we have

$$
w_{1}\left(\nu_{C}\right)=w_{1}\left(\tau_{M} \mid C\right)=e^{*}\left(w_{1}(M)\right),
$$

where $e: C \hookrightarrow M$ is the inclusion map. A simple computation yields

$$
\begin{aligned}
e_{*}\left(e^{*}\left(w_{1}(M)\right) \cap[C]\right) & =w_{1}(M) \cap e_{*}([C]) \\
& =w_{1}(M) \cap\left([C]^{M} \cap[M]\right) \\
& =\left(w_{1}(M) \cup[C]^{M}\right) \cap[M] \\
& =\left(w_{1}(M) \cup u\right) \cap[M] \\
& =0 .
\end{aligned}
$$

Since C is connected, we get $e^{*}\left(w_{1}(M)\right) \cap[C]=0$, and hence $e^{*}\left(w_{1}(M)\right)=0$. Thus $w_{1}\left(\nu_{C}\right)=$ 0 , as required.
(ii) By the universal coefficient theorem, the torsion subgroups of $H_{m-2}(M, \mathbb{Z})$ and $H^{m-1}(M, \mathbb{Z})$ are isomorphic, and hence $H^{m-1}(M, \mathbb{Z})$ has no 2-torsion. It follows from another version of the universal coefficient theorem that the reduction modulo 2 homomorphism $\rho: H^{m-2}(M, \mathbb{Z}) \rightarrow H^{m-2}(M, \mathbb{Z} / 2)$ is surjective.

By Wu's theorem [17, Theorem 11.14], the second Wu class of M is equal to $w_{1}(M) \cup$ $w_{1}(M)+w_{2}(M)$, and consequently the Steenrod square

$$
\mathrm{Sq}^{2}: H^{m-2}(M, \mathbb{Z} / 2) \rightarrow H^{m}(M, \mathbb{Z} / 2)
$$

is given by $\operatorname{Sq}^{2}(u)=\left(w_{1}(M) \cup w_{1}(M)+w_{2}(M)\right) \cup u$. Therefore for u in $G^{m-2}(M)$, we have $\left\langle\mathrm{Sq}^{2}(u),[M]\right\rangle=0$, which implies $\mathrm{Sq}^{2}(u)=0$, the manifold M being connected. Since ρ is surjective, Steenrod's classification theorem [21, p. 460, Theorem 15] implies that the cohomology class u is spherical. Thus u is in $S^{m-2}(M)$, and the proof of (ii) is complete.
(iii) By the universal coefficient theorem, the torsion subgroups of $H^{2}(M, \mathbb{Z})$ and $H_{1}(M, \mathbb{Z})$ are isomorphic. The Poincaré duality implies $H^{2}(M, \mathbb{Z}) \cong H_{m-2}(M, \mathbb{Z})$, and hence (iii) follows from (ii).
(iv) Since $H_{2}(M, \mathbb{Z})$ has no 2-torsion, the reduction modulo 2 homomorphism $H_{3}(M, \mathbb{Z}) \rightarrow$ $H_{3}(M, \mathbb{Z} / 2)$ is surjective. Hence by Thom's theorem [22, Théorème II.27] each homology class in $H_{3}(M, \mathbb{Z} / 2)$ can be represented by an orientable smooth submanifold of M. It remains to prove that if N is an orientable smooth submanifold of M of dimension 3 , then the normal bundle ν_{N} is trivial. The orientability of N implies $w_{i}(N)=0$ for $i=1,2$. Since $\tau_{N} \oplus \nu_{N}=\tau_{M} \mid N$ and M is a spin manifold, we get $w_{i}\left(\nu_{N}\right)=0$ for $i=1,2$. It follows from the last equality that ν_{N} is stably trivial (cf. for example [9, Lemma 1.2]). Finally, ν_{N} is trivial, since rank $\nu_{N} \geq 4>3=\operatorname{dim} N$.

We are now ready to prove the results announced in Section 1.

Proof of Theorem 1.1. Every element of $H^{1}(M, \mathbb{Z} / 2)$ is of the form $w_{1}(\lambda)$ for some real line bundle λ on M. Clearly

$$
\begin{equation*}
w(\lambda)=1+w_{1}(\lambda) \tag{*}
\end{equation*}
$$

We claim that every element of $H^{2}(M, \mathbb{Z} / 2)$ is of the form $w_{2}(\xi)$ for some rank 2 real vector bundle ξ on M with $w_{1}(\xi)=0$. Indeed, by the universal coefficient theorem, the torsion subgroups of $H_{2}(M, \mathbb{Z})$ and $H^{3}(M, \mathbb{Z})$ are isomorphic. Hence $H^{3}(M, \mathbb{Z})$ has no 2-torsion, which implies that the reduction modulo 2 homomorphism $\rho: H^{2}(M, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z} / 2)$ is
surjective. Every element of $H^{2}(M, \mathbb{Z})$ is the first Chern class $c_{1}(\xi)$ of some complex line bundle ξ on M. Regarding ξ as a rank 2 real vector bundle, we get $w_{2}(\xi)=\rho\left(c_{1}(\xi)\right)$ and $w_{1}(\xi)=0$, which proves the claim. Note that

$$
\begin{equation*}
w(\xi)=1+w_{2}(\xi) \tag{**}
\end{equation*}
$$

Since M is a spin manifold, we have $w_{i}(M)=0$ for $i=1,2,3$, cf. [17, Problem 8-B]. Let B be the subring of $H^{*}(M, \mathbb{Z} / 2)$ generated by A and $w_{j}(M)$ for $j \geq 0$. Then B is an admissible subring with

$$
A \subseteq B \text { and } A^{k}=B^{k} \text { for } k=0,1,2,3
$$

In view of $(*)$ and $(* *)$, one can find a collection \mathcal{F} of real vector bundles on M and a collection \mathcal{G} of smooth submanifolds of M such that $B=A(\mathcal{F}, \mathcal{G})$ and $\operatorname{codim}_{M} N \geq 3$ for all N in \mathcal{G}. By Theorem 2.4 and Lemma 2.5 (i), (iii), (iv), there exist an algebraic model X of M and a smooth diffeomorphism $\varphi: X \rightarrow M$ satisfying

$$
\varphi^{*}(B) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(B^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { for } k=0,1,2,3
$$

The proof is complete.

Proof of Corollary 1.2. We first recall some results due to Thom [22]. Let N be a compact n-dimensional manifold. By [22, Théorème II.26], every homology class in $H_{k}(N, \mathbb{Z} / 2)$ can be represented by a smooth submanifold, provided $2 k \leq n$ or $k=n-1$ or $(n, k)=(7,4)$. If N is orientable and $n \leq 9$, then according to [22, Corollaire II.28], every homology class in $H_{\ell}(N, \mathbb{Z}), \ell \geq 0$, can be represented by an oriented smooth submanifold.

We can now easily complete the proof. By the Poincaré duality and the universal coefficient theorem, the reduction modulo 2 homomorphism $H_{p}(M, \mathbb{Z}) \rightarrow H_{p}(M, \mathbb{Z} / 2)$ is surjective in either of the following two cases:
(i) $m=7$ and $p=5$,
(ii) $m=8$ or 9 and $m / 2<p \leq m-2$.

Hence Thom's results recalled above imply that every homology class in $H_{k}(M, \mathbb{Z} / 2), k \geq 0$, can be represented by a smooth submanifold. In particular, every subring of $H^{*}(M, \mathbb{Z} / 2)$ is admissible. The proof is complete in view of Theorem 1.1.

Proof of Theorem 1.3. We already recalled in the proof of Theorem 2.4 that $w(Y)$ is in $H^{*}(Y, \mathbb{Z} / 2)$ for every compact nonsingular real algebraic variety Y. Hence (a) implies (b).

Assume that (b) holds. By Lemma 2.5, $G^{m-k}(M) \subseteq S^{m-k}(M)$ for $k=1,2$. Since every element of $H^{1}(M, \mathbb{Z} / 2)$ is of the form $w_{1}(\lambda)$ for some real line bundle λ on M and since $w(\lambda)=1+w_{1}(\lambda)$, we have $A=A(\mathcal{F}, \mathcal{G})$, where \mathcal{F} is a collection of real vector bundles on M and \mathcal{G} is a collection of smooth submanifolds of M with $\operatorname{codim}_{M} N \geq 2$ for all N in \mathcal{G}. It follows from Theorem 2.4 that (a) is satisfied.

We conclude this paper by examining consequences of Theorems 1.1 and 2.4 for the n-fold product $T^{n}=S^{1} \times \cdots \times S^{1}$. The interested reader will notice that there are other examples of a similar type.

Example 2.6. Every homology class in $H_{p}\left(T^{n}, \mathbb{Z} / 2\right), p \geq 0$, can be represented by a smooth submanifold, and hence every subring A of $H^{*}\left(T^{n}, \mathbb{Z} / 2\right)$ is admissible. By Theorem 1.1, if $n \geq 7$, then there exist an algebraic model X of T^{n} and a smooth diffeomorphism $\varphi: X \rightarrow T^{n}$ satisfying

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(A^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { for } k=0,1,2,3
$$

Furthermore, for any $n \geq 1$, if A is generated by 1 and some cohomology classes in $H^{i}\left(T^{n}, \mathbb{Z} / 2\right), i=1,2$, then X and φ can be chosen in such a way that

$$
\varphi^{*}(A) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)
$$

and

$$
\varphi^{*}\left(A^{k}\right)=H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2) \text { for } 2 k+1 \leq n
$$

Indeed, one readily checks that $A=A(\mathcal{F})$, where \mathcal{F} is a collection of real vector bundles on T^{n}. Since $H^{m-k}\left(T^{n}, \mathbb{Z} / 2\right)=S^{m-k}\left(T^{n}\right)$ for all k with $2 k+1 \leq n$, the existence of X and φ satisfying the required properties is guaranteed by Theorem 2.4.

References

[1] S. Akbulut and H. King, The topology of real algebraic sets, Enseign. Math. 29(1983), 221-261.
[2] S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Research Institute Publ. 25, Springer, 1992.
[3] R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53(1984), 143-151.
[4] R. Benedetti and A. Tognoli, Approximation theorems in real algebraic geometry, Boll. Unione Mat. Ital., Suppl. 2(1980), 198-211.
[5] R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104(1980), 89-112.
[6] R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles. Géométrie algébrique réelle et formes quadratiques. Lecture Notes in Math. 959, 198-211, Springer, 1982.
[7] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergebnisse der Math. und ihrer Grenzgeb. Folge 3, Vol. 36, Berlin Heidelberg New York, Springer, 1998.
[8] J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97(1989), 585-611.
[9] J. Bochnak and W. Kucharz, K-theory of real algebraic surfaces and threefolds, Math. Proc. Cambridge Phil. Soc. 106(1989), 471-480.
[10] J. Bochnak and W. Kucharz, Algebraic cycles and approximation theorems in real algebraic geometry, Trans. Amer. Math. Soc. 337(1993), 463-472.
[11] J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications Vol. 44, 21-35, Warsaw, 1998.
[12] A. Borel et A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89(1961), 461-513.
[13] P. E. Conner, Differentiable Periodic Maps, 2nd Edition, Lecture Notes in Math. 738, Springer, 1979.
[14] W. Kucharz, On homology of real algebraic sets, Invent. Math. 82(1985), 19-26.
[15] W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180(1996), 135-140.
[16] W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geometry 11(2002), 101-127.
[17] J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Studies 76, Princeton Univ. Press, Princeton, New Jersey, 1974.
[18] J. Nash, Real algebraic manifolds, Ann. of Math. 56(1952), 405-421.
[19] J.-J. Risler, Sur l'homologie des surfaces algébriques réeles. Géométrie algébrique réelle et formes quadratiques. Lecture Notes in Math. 959, 381-385, Springer, 1982.
[20] R. Silhol, A bound on the order of $H_{n-1}^{(a)}(X, \mathbb{Z} / 2)$ on a real algebraic variety. Géometrie algébrique réelle et formes quadratiques. Lecture Notes in Math. 959, 443-450, Springer, 1982.
[21] E. Spanier, Algebraic Topology, New York Berlin Heidelberg, Springer.
[22] R. Thom, Quelques propriétés globales de variétés différentiables, Comment. Math. Helvetici 28(1954), 17-86.
[23] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (3) 27 (1973), 167-185.
[24] A. Tognoli, Algebraic approximation of manifolds and spaces. Séminaire Bourbaki 32e année, 1979/1980, no. 548, Lecture Notes in Math. 842, 73-94, Springer, 1981.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
and

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141, U.S.A.

E-mail address: kucharz@math.unm.edu

[^0]: *The paper was completed at the Max-Planck-Institut für Mathematik in Bonn, whose support and hospitality are gratefully acknowledged.

