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§1. Introduction.

On a sYlnplectic Inanifolcl (1);[20, w) there is an abnost COll1 plex stl'ucture Jw COlll patible

to w (i .e. w( Jwx, JwY) = w( x, y) anel w(x, .Jwx) > 0). It is wcll-known that the homotopy

dass [Jw ] is 30 synlplectic invariant of (NI 2n, w). The questions we are concerned in this

note are

S: Given a hOlnotopy dass [J] of an almost cOll1plex stl"lIcture on a. conlpact 4-lnanifold

M'4 is there a sYl11plectic strllctllre w which is cOTnpatible with [J]?
K: An analogous question for the existcnce of a cOlnpatible l\ä,hlel' structure.

Relnark. \Ve would like to t11ention sonle results rc1atcel to thc qucstions S anel K.

1.) Arecent rcslllt of Taubes [Tl] states tllat, a neCCSS('l.ry condition for the existencc of

such a compatible [J] is that thc Seiberg-VliLten-Taubes (S'tVT) invariant of the canonical

spinC-structure associated Lo J n1l1st bc ±l (see the next section for 1110re details).
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2) Using Yang-1'Iills Instanton theOl'y Donalelson showed that there is a homotopy dass

of alnl0st c0I11plex structures on /(3 surfaces which c10cs not contain any cOlnp]cx structure

[D 1].

3) I-lirzebruch conjecturecl that cOlnplex structUl'es on 8 2 x 8 2 anel C p2#C p2 are

unkluc up to c1iffcomorphislns. This conjecture wa.s recently pl'oved by Friedmann alld

Qin [F-Q]. Thus thc existcncc of an altnost COlllplcx strllctllrc which is not compa,tible

with Kähler structure on Hirzebruch 's surfaces follows straightfol'ward frOln their rcsult

cOlnbined with an arglllnent in [D 1]. A si111ilar c1assification theorem of symplectic

structures on tninimal rational ancl rlllcd surfaces was very rccently proved by Taubes

(fol' CP2) [1'2] anel Lalonde and McDlIff [L-~d] (see also [L-L], [0-0]).

In [D2] Donaldson showed that there is a free involution p on the set of h0I110tOpy

c1asses of ahnost complex structures on a c0111pact orientcel c10sed 111anifolcl M 4 . Using

this we shall prove the following theol'elns

TheorelTI 1. Let M'I be a closcd oriented rl/,mufold wilh. b~ = 1.. S1lppose t.hat. a

h01notopy dass (J] on llr1 is compa/.ib/e with fl. !(iihle.,. slr1lcl:IlTe. Then the homotopy

dass p[J] l:S nol cO'lnpatible lo any J(ähler struet:urc.

Theoren1 2. Let lv!,1 bc an oriented ',ninimal Talional 0'1' 'rulcd s1l.rface. Suppose thal a

h01notopy class [J] l:S compatible with sy'mplectic slruchl.re. TheH the h01notopy class p[J]

is not compatible 1vith any sY'lnplectic stnlct1l.re.

As an iIn111ediate corollary we see that for a lllanifolei 1\1'1 considered in Theoreln 1 thc

action of thc orientation preserving eliffeo1110rphisill group of At!" on the set of h01110tOpy

classes of alnl0st complex stl'ucturcs is not transitive.

A proof of our theorenlS will be given in sectioll 3. In scction 2 SOl11e fa.cts on ahnost

c0111plex structures on 4-Inanifolds anel thc Sei bcrg-"\littcn cquation (which is the 111ain

tool of our proof) will be collected.

Acknowledgen1ent. Thc authors are grateful to A. Stipsicz who brought the author's

attention to the cited Donalelson work [DI]. Thc first two authors thank the lvlax-Planck

Insitut for tbc hospitality eluring their stay thcrc anel thcy thank .J. l\10rgan for his in

trod uctory lecture in the Sei berg-WiLLen theory i11 MPI anel sti Illulating and enlightcn ing

d iscllssions.

§2. Prelilninaries.

2.1. Homotopy classes of al1110st complex structurcs on an oriented c10sed 4-lnanifold.
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a) It is a classical result due to Ehreslnann- \Nu that two cohomology classes Cl E

/17. (M\ Z) anel c7. E f[4( M 4 , Z) are the first and second ehern dasses of an alrnost

cOlnplex structllre .1 cOlnpatible with the given orientation on 1"1 4 if and only if Cl and C2

satisfy the following conel itions

c~ = 3T ( k!) + 2e(1\1 ),

(1)

(2)

(3)

where e denotes the Euler dass, 1lJ2 the second "Vhitney dass, and T thc signature of 1\14
.

b) To answer the question: how many hOlnotopy c1asses of alnl0st cOll1plex structures

on A14 exist with a given "aclrnissible" Cl cIass, we can llse thc obstruction theory (see

e.g. [K)). In [D 1], Donaldson detected difrerenec of hOlnotopy c1asses of abnost e0I11plex

structures in terms of a eoholnologieal orientation. Na1ne]y, hc eonsielered thc elliptic

operator

J := cl'" EB d+ : n1 --+ (n° ffi n~).

Using Hodge theory onc ean show that the kernel (anel eokerncl) of J eqllals /{l(M'l, R)

(eorr. HO(Jlt[4,R) EB [[~(J\t[4,R)). An oricntation of det HI(k/\R) 0 det(HO(M4,R) EB

[l~ (Ai, R)) of an orientcd 4-1nanifold NI is eaJlcd a COholl1010gica.I oricntation. Given

an almost eon1plex structurc J on M,j wc' ean deforlll operator 0 to an cOlllplex linear

operator oy7. = ~(J - JJ.1). Thus Jy7. givcs a eanonical way to definc a eohomologieal

oricntation of A14 prefcrred by [.l].

Fact 2.1.c [D1, D2]. Givell an ad1nissl:blc Cl E H2 (kl", Z) f,ltcre are cxactly two hom,o

topy classcs [.1] and p([J)) such thal the cohonwlogical orient.ahons pre/e1l'ed by [J] artd

p([J]) are opposite. !j 1\1{4 l:S !{iihlc1', Ir l (Nt1
, R) ha.s the caHon/cal O1'l:cntation dcfincd

by the con~plex st1'ueture and Ihe choice 0/ cohomolog/cal o'rientat.ion ]Jrejerred by [J] is

dele1'mined by [w], because JJ'i (1\'[) is iso"morphic 10 IP,1 (1'I)n EB JJO,2( A1) as real veet.or

spaces and lI0,2(1\1) is a cOl1~plc:f, veetor space.

Ifw is an closed 2-fonn on 1\1 4 then it incltlces a 2-form Qw on thc linear space H I (A14
, R)

as follows

Qw(a,ß) = - Ja /\ ß /\ w. (4)
M

If w is a. Kähler fornl then Qw is the Hodge-Rielnann bilinear fOrIn (see e.g. [VV]). Thus

a Kähler fonn w clefines a synlplcctic fornl on JJl(iVt1
, R) anel thcrefore inc!tlces a natural

oricntation on it. vVc get easily the following observation
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Reluark 2.I.d. Let (Atf\ J, w) be a !(ähler mmufold. Then /.he orientations on

H 1(M, R) defined by J ([nd w concide.

2.2. Seiberg-vVitten equation for sYlllplectic 4-luanifolels. (see [H], [K-M], [Tl, T2]).

Let us recall that thc Sei berg-Witten equation for a .spinC-structure on a Riemannian

4-Inanifolel 1\1[4 is the pair of the following equations for A anel a positive half spinol' cj;.

DA(<p) = 0

F1 = q(rjJ),

(S~Vl)

(SH!2)

where A is a connection on the associated line bundle of thc sp'i71.c-structure and q a

quadratic fonTI with valuc in in~( 1\14
). "Ve can also pcrturb the Sciberg-Witten (SW)

equation by adding a tenn Jl E in~(A14) in the second equation SvV 2. Ir bt(A14
) 2:: 2 the

"number"(or cobordislll type of moduli space) of thc soltltions to (SW 1-2) (actually to

any its perturbed equation) clocs not elepencl on luetl'ic 9 allel therefore defines, roughly

speaking, the Sei bCl'g- \iVitten invariant of thc 8jJ'i'11,c-stl'tlctu1'e on Atl. If b~ (k/4
) = :1 for

each spinC-structure therc are exactly two chalnbers in the spa.ce of pairs (g, It) of a Inetric

anel aperturbation slIch that the "nlunber" of thc solutiolls of S'IIV-cquation with rcspect

to the metrie 9 anel perturbation lL depends only on the challlbel' to which the pair (9, ft)

belongs. 1'he wall divielillg these two ehalubers is elefinccl by tlIc equa,tion

j(c1(L) - ;~)Wg = 0

where wg is the un ique (up to sealar) self dual harmonie for111 on 111'1 ancl L is the asso

eiated Ene bundle of the 8p'inC-structure. 1f b1(J\t!) = 0 then Olle has a (relatively silnple)

wall-erossing fornlltla whieh relates the eli fferencc of the Sei berg- "'Vi ttcn invariant in two

chalnbers [l\-~1]. ]n short it says that the elifference is ±l. A general formula in the ease

b1 =I- 0 is wcll-knowll ta speeialists anel can be faund, fol' instance, in [0-0].
For a sY111pleetie Inanifolel (A1\ w) (or 010re generally, for an al1110st cOlllplex manifold

M 2n) we always have a ehoice of the canoniea,1 spinC-structure Scan beeause there is a

natural inclusion Un --+ Sp'in~n' Taubes proveel [T 1] that the Seiberg-vVitten invariant

of thc eanonical spinC-stl'ueture with l'espeet to the perturbation J-1 = irw, when l' is big

enough anel w is a symplectic fonTI, (we will caJI it S\VT-invariant), is always ±l. It is

easy to see that allee we fix a. spinC-structure S on (}\trI, w) the pairs (g, rw) anel (g', rw)

are a.lways in thc same ehalnber if r is big enough allel 9 anel 9' are Inctrics compatible

to w. Thus the SWT invariant is well-clefineel for a,ny sp-inC-structuJ'c on a symplcctic

manifold (})t/,i, w).

§3 Proof of the Theoren1s.
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Lenlnla 3.1. Let. J bc an alrnosl. co'mplea: st1'1l.cI:llre on 1\14 . Tlten the canonical

spinc -slruct1Lres defined by [J] and p[J] aTe equivalcnt.

Proof. vVithout lost of generality we can assUl1le tha,L two allnost cOlllplex structures

J and p( J) coincide Oll tsiele a ball BI of a point allel insielc B] the cOlllplex structurc J

is standard. Then we have a natural ielcntification of two spinC-structurcs outside of the

ball. Let a complex line bundle L be the difference of these twa sJ}'inC-structures. Take

a bit bigger apen ball B anel make a reduction aJong the bannelary aB. So we get a.

complex projective plane CP2(B) which is a cOlllpactification of the open ball B. elearly

J and p(J) descend to two alnlost complex structurcs on Cp2 (13), which coincide lIear

the complcx Hne Cpl obtained by thc reduction of thc boundary a13. In the same way

the cOInplex line bundle L descends to a cOl1lplex linc bundle L' which represents the

difference of the two spinC-strllctures on CP2(B). By thc construction L' has a section

near CPl. Since the sccolld cohomology of thc cOlnplex projective plane is detected by

the cOIllplex line, we have that L' is trivial. This il11plics the triviality of L. So the two

spinC-strllctures on 1'14 are equivalent. 0

Lenln1a 3.2. Let ~14 be a sY'mpleetic 1nanifold with b~ = 1. Let Wl und W2 be synl,plcclic

forms on Ivft such lhal CI(Jw ,) = Cl(JW2 ). SU]J]JO.9C lIwJ vl(M") = O. Then Wt and W2

are in the same connec/.cd co"mponclll of the pO.9itivc cone in f[2(1\"; R). In parlicula'l'

Sl'VT(S,wd = ±SHIT(S,W2) for all s]Jinc -slT1lchl're S on 1't{4.

Proo! Let lvIei be thc space af lnetriccs on /11 anel E be thc line bunelle on it whose fibre

7f-
1 (g) cansists af self-dual hannonic forms. Since IItl cl is contractible tiIere are exactly

two section s± of E with Is±(g) Ig = y'2, hcre 1.1,11 denotes the nonn natlll'ally induced frolll

g. If 9 is a llletric cOlnpatible with w then s±(g) equals W up ta sign. V\Te clailll that W

and w' (up to a positive scalar) are in thc same ilnage s+(i\!fet) 01' s-(!vfel). Supposc thc

contrary. By lemma 3.1 the two canonical spinC-structlll'cs defined by WI and W2 coincielc

and we denote it by Scan' The wall crossing fonnula [1\-[\1] tells llS that SWT(Scan, wd
anel SH!T(Scan, W2) have different parity. On the other hand Taubes theorem says that

SH1T(S'can,w) = ±l. l'hus we get a contradiction. Bellce follows the first claim of Lel111l1a

3.2. The second Olle follows froln thc fact that (Wl' 1'Wl) allel (W2, l'W2), if l' is big enough,

are in thc salne chambcr for all spinC-strllcture 5'. 0

Proof 0/ Theore1n 1. By Noether's theorem if 1H'1 is a. Ininilnal stH"fa.ce of general type

with pg = 0 then q(A1) = O. Hence if A1 4 is Kähler wit.h bt(1'14
) = 1, b1 =I- 0 then }\t[4

must be an irrational ruleel surface or an clliptic surfacc. Thus by the Enriques-Kodaira

classification of complex surfaces (see e.g. [ßPV, p. 18S]) it suffices to prove Theorcl11 1
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in the following eases.

CASE A: b1 = O.

CASE B. /\tf'1 is a.n irrational ruled surfaces.

GASE G. i\4 4 is a hyperelliptie sUl'face.

CASE A. In this ease Theorem 1 follows elirectly from Lemnla 3.2 allel the fact that the

ehoice of the preferrecl COh0111010gica.l orientation of a I\ä.hlcr manifold with b~ = 1 is the

ehoice of the conneetcel conlponent of I/i containing w (sec Fact 2.l.c).

CASE B. Ir we ilnitate the argunlent in ease A here then there are two probleIlls al'ising

from the condi tiOD 61(1114
) =I=- O. As for the wall-crossing fOl'lllula, wc note that the ruled

surfaccs admits a positive sea.lar eurvature Inetrie 90 therefore the two chaillbers for the

canonical sp'inc-structure on Iv! have represcntatives (ga,ll = 0) [or one ehamber allel a

pair of a metric cOlllpatible to w allel Taubes perturbation Jl = 1'W for the other. Thus

w anel w' sholJid be in thc StUlle connectecl cOlllponent of the positive eone. The second

problelll is related to the prefcrred orientation of H 1(iH, R).

Lenlma 3.3. Sup]JO.'je tha!- vi (M) = 1 and wund w' U'l'e I.wo [(li/der 101'111,'; in the sa1ne

conneeted co"mponenl 01 the positive cone. Thel? !-he {)rien/.a/.ions dcfined by wand w' on

H 1(!vf4
, R) are the san~e.

P'roof. Dur argument is silllilar ta that in [0). Note that for 0:, ß E H1(/vl;R), O'Aß

lies in the null-cone of 112 (A1, R). Consieler a. path {wt} in the positive cone from w to w'.

Then we have a one-pararnetel' fanlily of bilinear fonns QWI' Ir these bilinear fonns are

a11 non-degencrate, then the orientations detennillecl by QWl are constant. Thus Lelnma

3.2 is a consequcnee of the following fact.

Suppose that A and B are in thc closure of a. connectcel eOlnponent of positive eone.

Then A . B 2:: O. Mereover if A2 > 0 then the equa.lity A.13 = 0 holds if anel only if

B = O. ~his fact ean be easily provcel by considel'ing an orthogonal deeomposition of A

and B as fellows: A = (taXa +Li~l aixi, B = boxo +Lj~l bj;r;i. Bere :7:0 is a lInit vector in

H~(Alf,R) anel {Xi, I-i 2:: I} is an orthonornlal basis in rt:(iVI, R). The desireel fact follows

by applying thc Gauchy incqllality to the RHS of thc follawing incquality:

aoba 2:: VLi>O arV'Li>o b;. D

Clearly Letnma 3.3 anel the fact that w anel w' are in thc saille eonnccteel eornponcnt of

H~ (Art) eontradict to the Donaldson theorclll on thc preferrecl coholl1010gical orientation

for Kähler 4-nlanifolcls (see llcmark 2.l.e). l'hus easc B is done.

CASE C. A1't is a hyperelliptic surface. In this caSe"Vt(i\t{4) = 2. vVe eonsidcl' two
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subcases.

1) Suppose that wand w' are in the same conncctcd cOlnponent of thc positive cone.

The samc argtllllent as before teIls us that tbc cohornological orientations dcfined by J

and p[J] are the same, which contradicts to a thCOl'CIl1 of Donaidson.

2) Suppose that wand w' are in different conncctcd cornponents of the positive cone.

Since b1 (1\1 4
) = 2, Lemlna 3.3 tclls us that the orientations on H 1 (1114 ,R) induced by w

anel w' are opposite. Thus thc coholll010gical oricntations defined by J anel ]J[J] are the

salne, which is a contradiction. This completes thc proof.

D

'1'0 prove Theoreln 2 wc neeel a classification of symplcctic structufe up to deforma

tion equivalence on rational anel ruleel surfaces ([L-L], [0-0], [T2]). In fact, Cl.. stronger

statelnent is known, which is due to Lalonele anel McDuff.

Classification Theorenl. Suppose that kl is rllffcrnnorphic lo a ntini-rnal rational 01'

nt/ed surface. Then any syntplectic form 011 kl is diJJcornorphic to a J{ählc1' Jonn.

PFOO! oJ Theorem, 2. ThcorCl11 2 follows froln Classification Theorem and Theorenl1 but

we would like to present hel'e alternative argulncnt, which is independent fr0l11 Theorem

1. 'vVe consider two cases depencling on the first I3ctti Ilulllber of iH 4
•

Case 1: b1 (A1 4
) = O. Suppose that J is an abnost cOlllplex structure which is COffi

patible with a synlplectic structure w anel p([J]) contains an ahnost cOlnplex structure

which is cOlnpatible with a, synlplectic structurc w'. l3y the classification theorenl, there

is diffeomorphismg E DifJ(k/4) such that [/"([.1]) = p([.1]). Note that J anel p(J) eleter

Inines the same orientation on Al. (Orientation hcre is not a coho11101ogical orientation.)

So 9 is an orientation preserving diffeomorphislll of At!. l3y Donaldson '8 theOre1l1, [J] anel

p[J] gives different COholllologica,l orientation. Hence 9 rnust reserve thc cohOlnological

ol'ientation. Since 9 acts triviallyon HO( Mj R) anel 1I 1(iltJ"j R) = 0 by assunlption of Case

1,g induces an orientation rcversing autolllorphisl11 of I{i. But Cl (k[) #- 0 anel 9 preserves

Cl by the assumption, which ilnplies that 9 must preservc the orientation of I-t;(A1). \Ve

arrive at a contraelictioll.

Case 2: bl (j\;f4) =I- 0, in this case M4 is an irrational rulcd surface. By thc c1assification

theoreln it suffices to show there is no eliffeolllol'phislll .rJ such that g( [J]) = p[J]. To

ilnitate the argulllent in case 1 it sullices to show tlIeü thcrc is an natural oricntation er

on !P (A1, R) such that if 9 preserves CI := Cl (.J) = Cl (p[.1]) then 9 also prcsel'VCS the

ol'ientation er. Considcl' the skew-symmetric bilinear fonn QC1' defineel in (4) rcplacing
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w by Cl. It is easy to sec that QCI is actually a, sym plectic fonll on the vector spacc

H 1(M4 ,R) with the desireel property. Thus we choose a thc oricntation induced by Qq.

o

"Ve end up this note with following question.

Question. Suppose that J\tf4 has b] = 0 anc! bt = ]. 18 therc a. hon10topy dass [.1] such

that both the two homotopy classes [J] anel ]1[.1] are compatiblc with syn1plectic structure.
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