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§1. Introduction.

On a symplectic manifold (M?",w) there is an almost complex structure J,, compatible
to w (i.e. w(Jyz,Juy) = w(z,y) and w(z,J,z) > 0). It is well-known that the homotopy
class [J,] is a symplectic invariant of (M?",w). The questions we are concerned in this
note are

S: Given a homotopy class [J] of an almost complex structure on a compact 4-manifold
M* is there a symplectic structure w which is compatible with [J]?

K: An analogous question for the existence of a compatible IKahler structure.

Remark. We would like to mention some results related to the questions S and K.
1) A recent result of Taubes [T1] states that, a necessary condition for the existence of
such a compatible [/] is that the Seiberg-Witten-Taubes (SWT) invariant of the canonical

spin®-structure associated to J must be 1 (see the next section for more details).
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2) Using Yang-Mills Instanton theory Donaldson showed that there is a homotopy class
of almost complex structures on K3 surfaces which does not contain any complex structure
D 1].

3) Hirzebruch conjectured that complex structures on S? x S? and CP?#CP? are
unique up to diffeomorphisms. This conjecture was recently proved by Friedmann and
Qin [F-Q]. Thus the existence of an almost complex structure which is not compatible
with Kahler structure on Hirzebruch’s surfaces follows straightforward from their result
combined with an argument in [D 1]. A similar classification theorem of symplectic

structures on minimal rational and ruled surfaces was very recently proved by Taubes
(for CP?) [12] and Lalonde and McDufl [L-M] (see also [L-L}, [0-0]).

In [D2] Donaldson showed that there is a free involution p on the set of homotopy
classes of almost complex structures on a compact oriented closed manifold M4, Using

this we shall prove the following theorems

Theorem 1. Let M"' be a closed oriented manifold with b3 = 1. Suppose thal a
homotopy class [J] on M* is compatible with a Kdhler struclure. Then the homotopy

class p[J] is not compatible to any Kdhler structure.

Theorem 2. Let M* be an oriented minimal rational or ruled surface. Suppose thal a
homotopy class [J] is compatible with symplectic structure. Then the homotopy class p[J]

is not compatible with any symplectic structure.

As an immediate corollary we see that for a manifold M* considered in Theorem 1 the
action of the orientation preserving diffeomorphism group of M* on the set of homotopy
classes of almost complex structures is not transitive.

A proof of our theorems will be given in section 3. Tn section 2 some facts on almost
complex structures on 4-manifolds and the Seiberg-Witten equation (which is the main

tool of our proof) will be collected.

Acknowledgement. The authors are grateful to A. Stipsicz who brought the authot’s
attention to the cited Donaldson work [D1]. The first two authors thank the Max-Planck-
Insitut for the hospitality during their stay there and they thank J. Morgan for his in-
troductory lecture in the Seiberg-Witten theory in MP[ and stimulating and enlightening

discussions.

§2. Preliminaries.

2.1. Homotopy classes of almost complex structures on an oriented closed 4-manifold.
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a) It is a classical result due to Ehresmann-Wu that two cohomology classes ¢, €
HA(M*Z) and ¢y € H*(M* Z) are the first and second Chern classes of an almost
complex structure J compatible with the given orientation on M* if and only if ¢; and ¢,

satisfy the following conditions

e = e(M*), (1)
¢1 = wo M) mod?2, (2)
¢t = 3r(M) + 2e(M), (3)

where e denotes the Euler class, w, the second Whitney class, and 7 the signature of M*.

b) To answer the question: how many homotopy classes of almost complex structures
on M* exist with a given “admissible” ¢; class, we can use the obstruction theory (see
e.g. [K]). In [D 1], Donaldson detected difference of homotopy classes of almost complex
structures in terms of a cohomological orientation. Namely, he considered the elliptic

operator

S=dadt Q' - (a0l
Using Hodge theory one can show that the kernel (and cokernel) of § equals H'(M*, R)
(corr. H(M*,R) @ H2(M* R)). An orientation of det H'(M*,R) ® det(H°(M*,R) @
H(M,R)) of an oriented 4-manifold M is called a cohomological orientation. Given
an almost complex structure J on M* we can deform operator & to an complex linear
operator (5;/2 = 1(6 — J8J). Thus 5},”2 gives a canonical way to define a cohomological

orientation of M* preferred by [J].

Fact 2.1.c [D1, D2]. Given an admissible ¢, € H*(M™*, Z) there are ezactly two homo-
topy classes [J] and p([J]) such that the cohomological orientations preferred by [J] and
p([J]) are opposite. If M* is Kihler, H'(M*,R) has the canonical orvientation defined
by the complezr structure and the choice of cohomological orientation preferred by [J] is
determined by [w], because H2(M) is isomorphic to H''(M)p & H**(M) as real vector

spaces and H°*(M) is a complex vector space.

Ifw is an closed 2-form on A* then it induces a 2-form @, on the linear space H'(M*, R)
as follows
Qulesf)=— [anfnrw. (4)
A
If w is a Kahler form then @, is the Hodge-Riemann bilinear {form (see e.g. [W]). Thus
a Kahler form w defines a symplectic form on H'(M*, R) and therefore induces a natural

orientation on it. We get easily the following observation
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Remark 2.1.d. Let (M*,J,w) be a Kdihler manifold. Then the orientations on
H'(M,R) defined by J and w concide.

2.2. Seiberg-Witten equation for symplectic 4-manifolds. (see [H], [K-M], [T1, T2]).

Let us recall that the Sciberg-Witten equation for a spin®-structure on a Riemannian

4-manifold M* is the pair of the following equations for A and a positive half spinor ¢.
Da(¢) =0 (SW1)
rt = q4), (SW2)

where A is a connection on the associated line bundle of the spin®-structure and ¢ a
quadratic form with value in iQ%(M?). We can also perturb the Seiberg-Witten (SW)
equation by adding a term g € 192 (M*) in the sccond equation SW 2. If bF (M*) > 2 the
“number”{or cobordism type of modult space) of the solutions to (SW 1-2) (actually to
any its perturbed equation) does not depend on metric g and therefore defines, roughly
speaking, the Seiberg-Witten invariant of the spn‘-structure on M. If b3 (M*) =1 for
each spin’-structure there are exactly two chambers in the space of pairs (g, s¢) of a metric
and a perturbation such that the “number ” of the solutions of SW-equation with respect
to the metric g and perturbation u depends only on the chamber to which the pair (g, 1)

T

belongs. The wall dividing these two chambers is defined by the equation

where w, is the unique (up to scalar) self dual harmonic form on M* and L is the asso-
ciated line bundle of the spinf-structure. If (M) = 0 then one has a (relatively simple)
wall-crossing formula which relates the difference of the Seiberg-Witten invariant in two
chambers [IK-M]. In short it says that the difference is 1. A general lormula in the case
by # 0 is well-known to specialists and can be found, for instance, in [O-O].

For a symplectic manifold {M*,w) {or more generally, for an almost complex manifold
M?) we always have a choice ol the canonical spin®-structure S, because there is a
natural inclusion U, — Spin . Taubes proved [T 1] that the Seiberg-Witten invariant
of the canonical spin‘-structure with respect to the perturbation g = irw, when r is big
enough and w is a symplectic form, (we will call it SWT-invariant), is always £1. It is
easy to see that once we fix a spin®structure S on (M*,w) the pairs (g,7w) and (¢', 7w)
are always in the same chamber if 7 is big enough and ¢ and ¢’ are metrics compatible
to w. Thus the SWT invariant is well-defined for any spin®-structure on a symplectic
manifold (M*,w).

§3 Proof of the Theorems.
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Lemma 3.1.  Let J be an almost complex structure on M*. Then the canonical
spin-structures defined by [J] and p[.J] are equivalent.

Proof. Without lost of generality we can assume that two almost complex structures
J and p(J) coincide outside a ball By of a point and inside By the complex structure J
is standard. Then we have a natural identification of two spin®-structures outside of the
ball. Let a complex line bundle L be the difference of these two spinc-structures. Take
a bit bigger open ball B and make a reduction along the boundary dB. So we get a
complex projective plane CP%(B) which is a compactification of the open ball B. Clearly
J and p(J) descend to two almost complex structures on CP?*(#3), which coincide near
the complex line CP! obtained by the reduction of the boundary 5. In the same way
the complex line bundle [ descends to a complex line bundle L’ which represents the
difference of the two spin®-structures on CP?(B). By the construction L’ has a section
near CP'. Since the second cohomology of the complex projective plane is detected by
the complex line, we have that L’ is trivial. This implies the triviality of L. So the two

spin®-structures on M* are equivalent. a

Lemma 3.2. Let M* be o symplectic manifold with b2 = 1. Lelw, and w, be symplectic
Jorms on M* such thal ¢(J,,) = ci(Ju,). Suppose that by(M*) = 0. Then w; and w,
are in the same connected component of the positive cone in H*(M;R). In pariicular
SWT(S,w) = £SWT(S,ws) for all spin®-structure S on M*.

Proof. Let Met be the space of metrices on M and £ be the line bundle on it whose fibre
7~ 1(g) consists of self-dual harmonic forms. Since Mel is contractible there are exactly
two section s¥ of E with |s¥(g)|, = V2, here |.|, denotes the norm naturally induced from
g. If g is a metric compatible with w then s*(g) equals w up to sign. We claim that w
and w' (up to a positive scalar) are in the same image s™(Met) or s™(Met). Suppose the
contrary. By lemma 3.1 the two canonical spin®-structures defined by w, and wy coincide
and we denote it by S.,. The wall crossing formula [K-M] tells us that SWT(Scun,w)
and SWT(S.un,ws2) have different parity. On the other hand Taubes theorem says that
SWT(Sean,w) = £1. Thus we get a contradiction. Hence follows the first claim of Lemma
3.2. The second one follows from the fact that (wi,rw;) and (we,rwy), il » is big enough,

are in the same chamber [or all spin®-structure 9. a

Proof of Theorem 1. By Noether’s theorem if M* is a minimal surface of general type
with p, = 0 then ¢(M) = 0. Hence if M* is Kéahler with 62(M*) = 1, b; # 0 then Af*
must be an irrational ruled surface or an elliptic surface. Thus by the Enriques-Kodaira

classification of complex surfaces (see e.g. [BPV, p. 188]) it suffices to prove Theorem 1
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in the following cases.

CASE A: b, = 0.

CASE B. M* is an irrational ruled surfaces.

CASE C. M* is a hyperelliptic surface.

CASE A. In this case Theorem 1 follows directly from Lemma 3.2 and the fact that the
choice of the preferred cohomological orientation of a K&hler manifold with b3 =1 is the

choice of the connected component of H2 containing w (see IFact 2.1.¢).

CASE B. If we imitate the argument in case A here then there are two problems arising
from the condition b,(M*) # 0. As for the wall-crossing formula, we note that the ruled
surfaces admits a positive scalar curvature metric go therefore the two chambers for the
canonical spin®-structure on M have representatives (g¢o, ¢ = 0) for one chamber and a
pair of a metric compatible to w and Taubes perturbation p¢ = rw for the other. Thus
w and w’ should be in the same connected component of the positive cone. The second

problem is related to the preferred orientation of H!(M,R).

Lemma 3.3. Suppose that bf (M) =1 and w and o' are lwo Kihler forms in the same

connected component of the positive cone. Then the orienlations defined by w and W' on
HY(M*,R) are the same.

Proof. Qur argument is similar to that in {O]. Note that for o, § € HY{(M;R), a A B
lies in the null-cone of H?(M,R). Consider a path {w;} in the positive cone from w to w'.
Then we have a one-parameter family of bilinear forms @,,. If these bilinear forms are
all non-degenerate, then the orientations determined by @, are constant. Thus Lemma
3.2 is a consequence of the following fact.

Suppose that A and B are in the closure of a connected component of positive cone.
Then A- B > 0. Moreover if A2 > 0 then the equality A./3 = 0 holds if and only if
B = 0. This fact can be easily proved by considering an orthogonal decomposition of A
and B as follows: A = agzo + Lin1 @iy, B = bomo + 2i1 biwi. Here @p is a unit vector in
H(M,R) and {=z;, |t > 1} is an orthonormal basis in /2 (M, R). The desired fact follows
by applying the Cauchy inequality to the RHS of the following inequality:
aobo > \/Z»o a} \/2»0 b}. O

Clearly Lemma 3.3 and the fact that w and ' are in the same connected component of
H2 (M) contradict to the Donaldson theorem on the preferred cohomological orientation

for IKahler 4-manifolds (see Remark 2.1.c). Thus case B is done.

CASE C. M" is a hyperelliptic surface. In this case b (M?) = 2. We consider two
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subcases.

1) Suppose that w and &’ are in the same connected component of the positive cone.
The same argument as before tells us that the cohomological orientations defined by J
and p[J] are the same, which contradicts to a thecorem of Donaldson.

2) Suppose that w and &’ are in different connected components of the positive cone.
Since by (M*) = 2, Lemma 3.3 tells us that the orientations on H!'(M* R) induced by w
and ' are opposite. Thus the cohomological orientations defined by J and p[J] are the
same, which is a contradiction. This completes the proof.

O

To prove Theorem 2 we need a classification of symplectic structure up to deforma-
tion equivalence on rational and ruled surfaces ([L-L], [0-O], [T2]). In [act, a stronger

statement is known, which is due to Lalonde and McDuff.

Classification Theorem. Suppose that M is diffeomorphic to a minimal rational or

ruled surface. Then any symplectic form on M is diffeomorphic to a Kahler form.

Proof of Theorem 2. Theorem 2 follows from Classification Theorem and Theorem 1 but
we would like to present here alternative argument, which is independent from Theorem
1. We consider two cases depending on the first Betti number of M*.

Case 1: b;(M") = 0. Suppose that J is an almost complex structure which is com-
patible with a symplectic structure w and p([.J]) contains an almost complex structure
which is compatible with a symplectic structure w’. By the classification theorem, there
is diffeomorphism ¢g € Dif f(M*) such that ¢-([J]) = p([/]). Note that J and p(J) deter-
mines the same orientation on M. (Orientation here is not a cohomological orientation.)
So g is an orientation preserving diffeomorphism of M. By Donaldson’s theorem, [J] and
pl/] gives different cohomological orientation. Hence ¢ must reserve the cohomological
orientation. Since g acts trivially on H°(M;R) and H'(M;R) = 0 by assumption of Case
1,9 induces an orientation reversing automorphism of Hi. But ¢, (M) # 0 and g preserves
¢, by the assumption, which implies that ¢ must preserve the orientation of H3 (). We
arrive at a contradiction.

Case 2: by{M?*) # 0, in this case M* is an irrational ruled surface. By the classification
theorem it suffices to show there is no diffeomorphism ¢ such that g([J]) = p[J]. To
imitate the argument in case 1 it suffices to show that there is an natural orientation o
on H'(M,R) such that il g preserves ¢; := ¢,(J) = ¢(p[/]) then g also preserves the

orientation o. Consider the skew-symmetric bilinear form @.,, defined in (4) replacing
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w by ¢;. It is easy to sce that Q. is actually a symplectic form on the vector space
H'(M* R) with the desired property. Thus we choose ¢ the orientation induced by Q..
0O

We end up this note with following question.
Question. Suppose that M* has b; = 0 and bf = 1. Is there a homotopy class [J] such

that both the two homotopy classes [J] and p[./] are compatible with symplectic structure.
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