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Cyclotomic analogues of

finite multiple zeta values

Henrik Bachmann∗, Yoshihiro Takeyama†, Koji Tasaka‡

Abstract

We introduce the notion of finite multiple harmonic q-series at a primitive

root of unity and show that these specialize to the finite multiple zeta value

(FMZV) and the symmetrized multiple zeta value (SMZV) through an algebraic

and analytic operation, respectively. Further, we obtain families of linear rela-

tions among these series which induce linear relations among FMZVs and SMZVs

of the same form. This gives evidence towards a conjecture of Kaneko and Zagier

relating FMZVs and SMZVs. Motivated by the above results, we define cyclo-

tomic analogues of FMZVs, which conjecturally generate a vector space of the

same dimension as that spanned by the finite multiple harmonic q-series at a

primitive root of unity of sufficiently large degree.

1 Introduction

The purpose of this paper is to describe a connection between finite and symmetrized

multiple zeta values. We explicate this connection in terms of a class of q-series eval-

uated at primitive roots of unity. This construction provides new evidence and a

re-interpretation of a conjecture due to Kaneko and Zagier, thus relating finite and

symmetrized multiple zeta values in an explicit and surprising way.

For an index k = (k1, . . . , kr) ∈ (Z≥1)r with k1 ≥ 2 the multiple zeta value (MZV)

is defined by

ζ(k) = ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

.

∗email : henrik.bachmann@math.nagoya-u.ac.jp, Nagoya University
†email : takeyama@math.tsukuba.ac.jp, University of Tsukuba
‡email : tasaka@ist.aichi-pu.ac.jp, Aichi Prefectural University
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We call the number wt(k) =
∑r

j=1 kj the weight of k, r the depth of k and by Z we

denote the Q-vector space spanned by all such MZVs; this is a subalgebra of R over

Q. It is known that MZVs of the same weight satisfy numerous Q-linear relations. The

simplest example is ζ(2, 1) = ζ(3) in weight three.

In [9], Kaneko and Zagier introduced the finite multiple zeta value (FMZV) ζA(k),

defined by collecting the values∑
p>m1>···>mr>0

1

mk1
1 · · ·mkr

r

mod p (1.1)

for all primes p, as an element of the Q-algebra A = (
∏

p Fp)
/

(
⊕

p Fp). Let ZA be the

Q-vector space spanned by all FMZVs, which is also a subalgebra of A over Q. The

FMZVs of the same weight also satisfy numerous Q-linear relations, for example

2ζA(4, 1) + ζA(3, 2) = 0, (1.2)

which was first obtained by Hoffman [6, Theorem 7.1].

The FMZVs have a conjectural correspondence with certain real numbers ζS(k)

lying in the ring Z, which are called the symmetrized multiple zeta values (SMZVs). In

the work [9] Kaneko and Zagier conjecture that there exists a Q-algebra homomorphism

ϕKZ : ZA → Z/ζ(2)Z such that ζA(k) is mapped to ζS(k) modulo ζ(2)Z. It is shown

by Yasuda [19] that the SMZVs span the space Z. This conjecture would imply that the

FMZVs satisfy the same Q-linear relation as the SMZVs modulo ζ(2)Z and vice versa.

Although it still seems hard to prove this conjecture, a few families of relations which

are satisfied by the FMZVs and the SMZVs simultaneously are obtained by Murahara,

Saito and Wakabayashi in [11, 15].

In the present paper, we give several linear relations satisfied both by the FMZVs

and the SMZVs. This is achieved by examining the value of the finite multiple harmonic

q-series

zn(k; q) = zn(k1, . . . , kr; q) =
∑

n>m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q . . . [mr]krq

(k1, . . . , kr ≥ 1)

at a n-th primitive root of unity ζn, where [m]q = (1−qm)/(1−q) is the usual q-integer.

We also consider the star version z?n(k; q) which is defined by allowing equality among

the mi’s in the above sum. One of the main results of this paper is that the values

zn(k; ζn) and z?n(k; ζn) have a natural connection with both the FMZVs and the SMZVs

as follows.

The FMZVs are naturally obtained by collecting the values zp(k; ζp) for all prime

p. Note that the values zp(k; ζp) and z?p(k; ζp), for p prime, belong to the integer ring
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Z[ζp] of the cyclotomic field Q(ζp) because the q-integer [m]q at q = ζp is a cyclotomic

unit for p > m > 0. Let pp = (1− ζp) be the prime ideal of Z[ζp] generated by 1− ζp.
Note that Z[ζp]/pp = Fp.

Theorem 1.1. For any index k ∈ (Z≥1)r, we have

(zp(k; ζp) mod pp)p = ζA(k), (z?p(k; ζp) mod pp)p = ζ?A(k),

with ζ?A(k) being the finite multiple zeta star value defined by (1.1) where the condition

p > m1 > · · · > mr > 0 is replaced with p > m1 ≥ · · · ≥ mr > 0.

The SMZVs come into play by considering the case ζn = e2πi/n and taking the limit

of zn(k; ζn) as n → ∞. We shall later show that this limit always exists and that its

real part determines an SMZV.

Theorem 1.2. For any index k ∈ (Z≥1)r, the limits

ξ(k) = lim
n→∞

zn(k; e2πi/n), ξ?(k) = lim
n→∞

z?n(k; e2πi/n)

exist and it holds that

Re ξ(k) ≡ ζS(k), Re ξ?(k) ≡ ζ?S(k)

modulo ζ(2)Z where ζ?S(k) is the symmetrized multiple zeta star value as defined in

Definition 2.4 below.

Thanks to Theorem 1.1 and Theorem 1.2, the Q-linear relations amongst the zn(k; ζn)

and the z?n(k; ζn) give Q-linear relations for the FMZVs and the SMZVs. Let us illus-

trate one example. One should start from a relation for zn(k; ζn) which does not depend

on the choice of the n-th root of unity ζn. It can be shown that the identity

2z?n(4, 1; ζn) + z?n(3, 2; ζn) =
(n4 − 1)(n+ 5)

1440
(1− ζn)5 +

n+ 2

3
(1− ζn)2z?p(2, 1; ζn)

(1.3)

holds for any n ≥ 1 and any n-th primitive root of unity ζn. From (1.3) and Theorem

1.1, one obtains the relation (1.2). On the other hand, using 1−e2πi/n = −2πi/n+o(1/n)

as n→ +∞ together with Theorem 1.2, we find

2ζ?S(4, 1) + ζ?S(3, 2) ≡ 0 mod ζ(2)Z .

Thus we obtain a linear relation between the FMZVs and the SMZVs of the same form

from the identity (1.3).
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We will describe one of such relations, which is a generalization of Hoffman’s iden-

tities (see [6, Theorems 4.5 and 4.6]) given by

ζ?A(k) = −ζ?A(k∨) and ζ?A(k) = (−1)wt(k)ζ?A(k), (1.4)

where k∨ is the Hoffman dual of k (see Section 2.4.1 for definition) and k = (kr, . . . , k1)

is the reversal of k = (k1, . . . , kr). We will refer to the first identity as the Hoffman

duality and to the second equation as the reversal relation. Although both relations

(1.4) do not hold separately for our object z?n(k; ζn), their combination holds:

Theorem 1.3. For any index k and any n-th primitive root of unity ζn, we have

z?n(k; ζn) = (−1)wt(k)+1z?n(k∨; ζn).

Combining Theorem 1.3 and the relation

zn(k; e2πi/n) = (−e2πi/n)wt(k) zn(k; e2πi/n),

where the bar on the right-hand side denotes complex conjugation, we obtain the cor-

responding relation to (1.4) for the SMZVs.

Theorem 1.4. For any index k, we have

ζ?S(k) ≡ −ζ?S(k∨) and ζ?S(k) ≡ (−1)wt(k)ζ?S(k) mod ζ(2)Z.

Apart from the Kaneko–Zagier conjecture, the value zn(k; ζn) itself might be worth

enlighting. One reason is that the product in the Q-vector space spanned by all

zn(k; ζn)’s preserves the weight; that is, the product zn(k; ζn)zn(k′; ζn) can be rep-

resented as a Q-linear combination of zn(k′′; ζn)’s with wt(k′′) = wt(k) + wt(k′). This

is not true for generic q, because the coefficients in the expansion of zn(k; q)zn(k′; q) by

the q-stuffle product are in Q[1− q] (see [1, §2]). However in the case q being a root of

unity, we have 1− ζn = 2zn(1; ζn)/(n−1) (see (2.4) below), and the multiplication with

1− ζn gives a linear operator which increases the weight of zn(k; ζn). Thus we deduce

the homogeneity with respect to weight.

Furthermore, by numerical computations, one can check that the number of linearly

independent relations over Q among zp(k; ζp)’s of weight k is stable for sufficiently large

prime p. In order to deal with these properties, we introduce a new object, which we

call a cyclotomic analogue of finite multiple zeta value. For this we define the cyclotomic

4



analogue Acyc of the ring A by

Acyc =

( ∏
p:prime

Z[ζp]/(p)

)/( ⊕
p:prime

Z[ζp]/(p)

)
,

which carries a Q-algebra structure (see [14, Definition 3.1]). Note that the ring Acyc

does not depend on the choice of the p-th primitive root of unity ζp. Then we define

the cyclotomic analogue of FMZV and its star version by

Z(k) = (zp(k; ζp) mod (p))p and Z?(k) = (z?p(k; ζp) mod (p))p

as an element of Acyc.

One can prove that the Q-linear subspace of Acyc spanned by Z(k)’s is equal to

that spanned by the star version Z?(k)’s. We denote this subspace by Zcyc. Because

of the correspondence given in Theorem 1.1 and the equality (pp)
p−1 = (p), we have

the natural algebraic projection ϕA : Zcyc → ZA sending Z(k) to ζA(k). We therefore

hope that the cyclotomic analogue may give a new perspective of and become a tool

for analyzing the Kaneko–Zagier conjecture. In this paper, we describe the algebraic

structure of Zcyc and give some numerical experiments, which support the expectation

that all linear relations among Z(k)’s are obtained from the duality formula and a

variant of the double shuffle relations (see Theorems 3.8 and 3.9 and Remark 3.10).

The contents of this paper are as follows. In Section 2, after developing basic facts

on zn(k; ζn), we first give the connections to FMZV and prove Theorem 1.1. After this

we discuss the limit n → ∞ and the connection to SMZV together with Theorem 1.2.

Then we prove the duality Theorems 1.3 and 1.4 in Section 2.4. In the last section we

introduce the cyclotomic analogue of FMZV and describe their algebraic structure.
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16H07115 and 26400106. Finally the first and the last author would like to thank the
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2 Finite multiple harmonic q-series at a root of unity

2.1 Definitions

In this subsection, we define the finite multiple harmonic q-series and give some exam-

ples of the value of depth one at a primitive root of unity.

We call a tuple of positive integers k = (k1, . . . , kr) an index. An index k =

(k1, . . . , kr) is said to be admissible if k1 ≥ 2 or if it is the empty set ∅.
For shorter notation we will write a subsequence k, k, . . . , k of length a in an index

as {k}a. When a = 0 we ignore it. For example, ({2}3) = (2, 2, 2), ({1}2, 3, {1}1) =

(1, 1, 3, 1) and ({1}0, 3, {1}2, 2, {1}0, 4) = (3, 1, 1, 2, 4).

We define the weight wt(k) and the depth dep(k) of an index k = (k1, . . . , kr) by

wt(k) = k1 + · · ·+ kr, dep(k) = r.

With this notation we can define the following q-series which will be one of the main

objects in this work.

Definition 2.1. Let n ≥ 1 be a natural number and q a complex number satisfying

qm 6= 1 for n > m > 0 (to ensure the well-definedness). For an index k = (k1, . . . , kr)

we define

zn(k; q) = zn(k1, . . . , kr; q) =
∑

n>m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q . . . [mr]krq

and

z?n(k; q) = z?n(k1, . . . , kr; q) =
∑

n>m1≥···≥mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q . . . [mr]krq

,

where [m]q is the q-integer

[m]q =
1− qm

1− q

By agreement we set zn(k; q) = 0 if dep(k) ≥ n and zn(∅; q) = z?n(∅; q) = 1.

The above q-series zn(k; q) was also studied by Bradley [2, Definition 4] (see also

[22]). When k is admissible, the limit lim
n→∞

zn(k; q) converges for |q| < 1 and it is called

a q-analogue of multiple zeta values. It can be shown that lim
q→1

lim
n→∞

zn(k; q) = ζ(k).

Their algebraic structure as well as the Q-linear relation were studied by many authors

[1, 7, 12, 13, 16, 17, 18, 21].
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Using the standard decomposition

q(k1−1)m

[m]k1q

q(k2−1)m

[m]k2q
=
q(k1+k2−1)m

[m]k1+k2q

+ (1− q)q
(k1+k2−2)m

[m]k1+k2−1q

(m, k1, k2 ≥ 1),

we see that zn(k; q) and z?n(k; q) are related to each other in the following way:

z?n(k; q) =
∑
a

zn(a; q) +
∑
k′

wt(k′)<wt(k)

ck,k′(1− q)wt(k)−wt(k′)zn(k′; q), (2.1)

zn(k; q) =
∑
a

(−1)dep(k)−dep(a)z?n(a; q) +
∑
k′

wt(k′)<wt(k)

c̃k,k′(1− q)wt(k)−wt(k′)z?n(k′; q),

(2.2)

where the sum
∑

a is over all indices of the form (k1�k2� · · ·�kr) in which each � is

‘+’ (plus) or ‘,’ (comma) and ck,k′ and c̃k,k′ are integers independent on n (an algebraic

setup of this translation formula was given in [7, Definition 1]). For example, it holds

that

z?n(3, 2, 1; q) = zn(3, 2, 1; q) + zn(5, 1; q) + zn(3, 3; q) + zn(6; q)

+ (1− q) (zn(4, 1; q) + zn(3, 2; q) + 2zn(5; q)) + (1− q)2zn(4; q).

As mentioned in the introduction, we will be interested in the values zn(k; q) and

z?n(k; q) where q is equal to a primitive n-th root of unity ζn. Then they are well-

defined as an element of the cyclotomic field Q(ζn). The generating function of the

value zn(k; ζn) of depth one is given by

∑
k>0

zn(k; ζn)

(
x

1− ζn

)k
=

nx

1− (1 + x)n
+ 1, (2.3)

which can be shown by using the basic properties of the n-th root of unity ζn. In

particular this shows that zn(k; ζn) ∈ (1− ζn)k ·Q and for example we have

zn(1; ζn) =
n− 1

2
(1− ζn) , zn(2; ζn) = −n

2 − 1

12
(1− ζn)2 ,

zn(3; ζn) =
n2 − 1

24
(1− ζn)3 , zn(4; ζn) =

(n2 − 1)(n2 − 19)

720
(1− ζn)4.

(2.4)
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Remark 2.2. i) The formula (2.3) implies that for k ≥ 1

zn(k; ζn)

(1− ζn)k
= −βk(n

−1)

k!
nk , (2.5)

where βk(x) ∈ Q[x] is the degenerate Bernoulli number defined by Carlitz in

[3]. Since the limit of βk(n
−1) as n → ∞ is equal to the k-th Bernoulli num-

ber Bk, formula (2.5) can be viewed as a finite analogue of Euler’s formula given

by ζ(k)/(−2πi)k = −Bk/2k! for even k.

ii) Since the q-stuffle product of the zn(k, q) is an example of a quasi-shuffle product

(see [5]) it follows that for all k, r ≥ 1 the zn({k}r; q) can be written as a polynomial

in (1 − q)kr−mzn(m; q) with 1 ≤ m ≤ kr (see [5], eq. (32)). By (2.3) this implies

zn({k}r; ζn) ∈ (1− ζn)kr ·Q for any k, r ≥ 1. Moreover, one can prove

zn({1}r; ζn) =
1

n

(
n

r + 1

)
(1− ζn)r , zn({2}r; ζn) =

(−1)r

n(r + 1)

(
n+ r

2r + 1

)
(1− ζn)2r ,

zn({3}r; ζn) =
1

n2(r + 1)

((
n+ 2r + 1

3r + 2

)
+ (−1)r

(
n+ r

3r + 2

))
(1− ζn)3r.

by calculating the generating function
∑

n>r≥0 zn({k}r; ζn)nk−1XrY n. However,

it might be difficult to get a simple formula of zn({k}r; ζn) for k ≥ 4 with this

technique. This will be discussed in more detail in a upcoming work of the authors.

2.2 Connection with finite multiple zeta values

2.2.1 Definition of finite multiple zeta values

The finite multiple zeta values will be elements in the ring

A =

( ∏
p:prime

Fp

)/( ⊕
p:prime

Fp

)
.

Its elements are of the form (ap)p, where p runs over all primes and ap ∈ Fp. Two

elements (ap)p and (bp)p are identified if and only if ap = bp for all but finitely many

primes p. The ring A, which was introduced by Kontsevich [10, §2.2], carries a Q-

algebra structure by sending a ∈ Q to (a mod p)p ∈ A diagonally except for finitely

many primes which divide the denominator of a.
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Definition 2.3. For an index k = (k1, . . . , kr), we define the finite multiple zeta value

ζA(k) = ζA(k1, . . . , kr) =

( ∑
p>m1>···>mr>0

1

mk1
1 · · ·mkr

r

mod p

)
p

∈ A

and its star version

ζ?A(k) = ζ?A(k1, . . . , kr) =

( ∑
p>m1≥···≥mr>0

1

mk1
1 · · ·mkr

r

mod p

)
p

∈ A.

2.2.2 Proof of Theorem 1.1

Now we prove Theorem 1.1, which is immediate from the standard facts on the algebraic

number theory (see, e.g., [20]).

Proof of Theorem 1.1. For p prime and any p-th primitive root of unity ζp, the ring

Z[ζp] is the ring of algebraic integers in the cyclotomic field Q(ζp). Since the value

[m]ζp = (1− ζmp )/(1− ζp) is a cyclotomic unit, zn(k; ζp) and z?n(k; ζp) belong to Z[ζp].

Let pp = (1 − ζp) be the prime ideal of Z[ζp] generated by 1 − ζp. Since the norm

of pp is equal to p, we have Z[ζp]/pp = Fp. Now Theorem 1.1 follows from [m]ζp ≡ m

mod pp for p > m > 0.

2.3 Connection with symmetrized multiple zeta values

2.3.1 Definition of symmetrized multiple zeta values

To define the symmetrized multiple zeta values, we recall Hoffman’s algebraic setup [4]

with a slightly different convention.

Let H = Q〈e0, e1〉 be the noncommutative polynomial algebra of indeterminates e0
and e1 over Q. Define its subalgebra H1 = Q + He1. We put ek = ek−10 e1 (k ≥ 1) and

set for an index k = (k1, . . . , kr)

ek := ek1 · · · ekr .

For the empty index ∅ we set e∅ = 1. The monomials {ek} associated to all indices k

form a basis of H1 over Q.

The stuffle product is the Q-bilinear map ∗ : H1 × H1 → H1 characterized by the

following properties:

1 ∗ w = w ∗ 1 = w (w ∈ H1),

ekw ∗ ek′w′ = ek(w ∗ ek′w′) + ek′(ekw ∗ w′) + ek+k′(w ∗ w′) (k, k′ ≥ 1, w, w′ ∈ H1).

9



We denote by H1
∗ the commutative Q-algebra H1 equipped with the multiplication ∗.

As stated in [8, Proposition 1], there exists a unique Q-algebra homomorphism

R : H1
∗ → R[T ] satisfying R(1) = 1, R(e1) = T and R(ek) = ζ(k) for any admissible

index k 1. For an index k we define the stuffle regularized multiple zeta values Rk(T )

by

Rk(T ) := R(ek) ∈ R[T ].

Note that R∅(T ) = 1 and Rk(T ) = ζ(k) if k is admissible.

Definition 2.4. For an index k = (k1, . . . , kr) ∈ (Z≥1)r we define the symmetrized

multiple zeta value

ζS(k) = ζS(k1, . . . , kr) =
r∑

a=0

(−1)k1+···+kaRka,,ka−1,...,k1(T )Rka+1,ka+2,...,kr(T ).

and its star version

ζ?S(k) = ζ?S(k1, . . . , kr) =
∑

� is either a comma ‘,’
or a plus ‘+’

ζS(k1� · · ·�kr).

Kaneko and Zagier [9] showed that the symmetrized multiple zeta value does not

depend on T , i.e. we have

ζS(k1, . . . , kr) =
r∑

a=0

(−1)k1+···+kaRka,...,k1(0)Rka+1,...,kr(0) ∈ R. (2.6)

In general, one can prove the following lemma, which will be used in computing the

limit of zn(k; e2πi/n) as n→∞.

Lemma 2.5. For any index k = (k1, . . . , kr), the polynomial

r∑
a=0

(−1)k1+···+kaRka,ka−1,...,k1(T +X)Rka+1,ka+2,...,kr(T −X) (2.7)

does not depend on T . Hence it is equal to

r∑
a=0

(−1)k1+···+kaRka,ka−1,...,k1(X)Rka+1,ka+2,...,kr(−X).

1The map R is denoted by Z∗ in [8].
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Proof. From the definition, we see that the polynomial (2.7) is a sum of polynomials of

the form

±
s∑

a=0

(−1)aR{1}a,k(T +X)R{1}s−a,k′(T −X) (2.8)

with some admissible indices k and k′.

For any index k = (k1, . . . , kr) and s ≥ 0, it holds that

e1 ∗ (es1ek) = (s+ 1)es+1
1 ek +

r∑
a=1

(es1ek′(a) + es1ek′′(a)) +
s∑
b=1

eb−11 e2e
s−b
1 ek, (2.9)

where

k′(a) = (k1, . . . , ka + 1, . . . , kr), k′′(a) = (k1, . . . , ka, 1, ka+1, . . . , kr) . (2.10)

Using this one can show by induction on s that

R{1}s,k(T ) =
s∑
j=0

R{1}s−j ,k(0)
T j

j!
. (2.11)

From this formula we see that the sum (2.8) without sign is equal to

s∑
a=0

a∑
j=0

s−a∑
l=0

(−1)aR{1}a−j ,k(0)R{1}s−a−l,k′(0)
(T +X)j

j!

(T −X)l

l!

=
∑
j,l≥0
j+l≤s

s−l∑
a=j

(−1)aR{1}a−j ,k(0)R{1}s−a−l,k′(0)
(T +X)j

j!

(T −X)l

l!

=
s∑

m=0

s−m∑
a=0

(−1)aR{1}a,k(0)R{1}s−a,k′(0)
∑
j+l=m
j,l≥0

(−1)j
(T +X)j

j!

(T −X)l

l!

=
s∑

m=0

(−2X)m
s−m∑
a=0

(−1)aR{1}a,k(0)R{1}s−a,k′(0),

which shows that the polynomial (2.8) does not depend on T , neither does (2.7).
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2.3.2 Evaluation of the limit

Theorem 2.6. For any non-empty index k = (k1, . . . , kr) it holds that

lim
n→∞

zn(k; e
2πi
n ) =

r∑
a=0

(−1)k1+···+kaRka,ka−1,...,k1

(πi
2

)
Rka+1,ka+2,...,kr

(
− πi

2

)
.

To prove Theorem 2.6, we rewrite the value zn(k; e2πi/n). Let n be a positive integer.

When q = e2πi/n we see that

1− q
1− qm

= e−
πi
n
(m−1) sin π

n

sin mπ
n

(n > m ≥ 0).

Therefore it holds that

zn(k; e
2πi
n ) =

(
e
πi
n
n

π
sin

π

n

)wt(k) ∑
n>m1>···>mr>0

r∏
j=1

e
πi
n
(kj−2)mj(

n
π

sin
mjπ

n

)kj
for any non-empty index k = (k1, . . . , kr). Decompose the set {(m1, . . . ,mr) ∈ Zr |n >
m1 > · · · > mr > 0} into the disjoint union

r⊔
a=0

{(m1, . . . ,mr) ∈ Zr |n > m1 > · · · > ma >
n

2
≥ ma+1 > · · · > mr > 0}

and change the summation variables mj to nj = n − ma+1−j (1 ≤ j ≤ a) and lj =

ma+j (1 ≤ j ≤ r − a). Then we find that

zn(k; e
2πi
n ) =

(
e
πi
n
n

π
sin

π

n

)wt(k)

×
r∑

a=0

(−1)
∑a
j=1 kj

∑
n/2>n1>···>na>0

a∏
j=1

e−
πi
n
(ka+1−j−2)nj(

n
π

sin
njπ

n

)ka+1−j

∑
n/2≥l1>···>lr−a>0

r−a∏
j=1

e
πi
n
(ka+j−2)lj(

n
π

sin
ljπ

n

)ka+j .
Motivated by the above expression we introduce the following numbers. For an

index k = (k1, . . . , kr) and a positive integer n, we define

A−n (k) =
∑

n/2>m1>···>mr>0

r∏
j=1

e−
πi
n
(kj−2)mj(

n
π

sin
mjπ

n

)kj ,
A+
n (k) =

∑
n/2≥m1>···>mr>0

r∏
j=1

e
πi
n
(kj−2)mj(

n
π

sin
mjπ

n

)kj .

12



Then we see that

zn(k; e
2πi
n ) =

(
e
πi
n
n

π
sin

π

n

)wt(k)

×
r∑

a=0

(−1)
∑a
j=1 kjA−n (ka, ka−1, . . . , k1)A

+
n (ka+1, ka+2, . . . , kr).

Now Theorem 2.6 follows from Lemma 2.5 and Proposition 2.7 below.

Proposition 2.7. For any index k it holds that

A±n (k) = Rk

(
log
(n
π

)
+ γ ∓ πi

2

)
+O

(
(log n)J(k)

n

)
(n→ +∞), (2.12)

where γ is Euler’s constant and J(k) is a positive integer which depends on k.

Note that it suffices to prove (2.12) for A+
n (k) since

A−n (k1, . . . , kr) =

 A+
n (k1, . . . , kr) (n: odd),

A+
n (k1, . . . , kr) + (−πi

n
)k1 A+

n (k2, . . . , kr) (n: even),

where the bar on the right-hand side denotes complex conjugation. For this we will

first consider the cases where the index k is admissible.

Lemma 2.8. Let k be an admissible index. Then it holds that

A+
n (k) = ζ(k) +O

(
(log n)J1(k)

n

)
(n→ +∞),

where J1(k) is a positive integer which depends on k.

Proof. Set k = (k1, . . . , kr) and define for k ≥ 1 the function

gk(x) = e(k−2)ix
( x

sinx

)k
.

Then it holds that |A+
n (k)− ζ(k)| ≤ I1 + I2, where

I1 =
∑

n/2≥m1>···>mr>0

r∏
j=1

1

m
kj
j

∣∣∣∣∣
r∏
j=1

gkj

(mjπ

n

)
− 1

∣∣∣∣∣ ,
I2 =

∑
m>n/2

1

mk1

( ∑
m>m2>···>mr>0

r∏
j=2

1

m
kj
j

)
.

13



Since gk(x) = 1+(k−2)ix+o(x) (x→ +0), there exists a positive constant C depending

on k such that |gk(mπ/n)−1| ≤ Cm/n for all integers m and n satisfying n/2 ≥ m > 0.

Using the identity (
r∏
j=1

xj

)
− 1 =

r∑
a=1

(
a−1∏
j=1

xj) (xa − 1)

and the inequality 0 < (sinx)−1 ≤ π/2x on the interval (0, π
2
], we see that

I1 ≤
C1

n

r∑
a=1

∑
n/2≥m1>···>mr>0

1

mk1
1 · · ·mka−1

a · · ·mkr
r

≤ C1

n

r∑
a=1

∑
n/2≥m1>···>mr>0

1

mk1−1
1 mk2

2 · · ·mkr
r

=
C1r

n

∑
n/2≥m>0

1

mk1−1

( ∑
m>m2>···>mr>0

r∏
j=2

1

m
kj
j

)

for some positive constant C1 which depends on k. Using the estimation

∑
m>m2>···>mr>0

r∏
j=2

1

m
kj
j

≤

(
m−1∑
s=1

1

s

)r−1

≤ (2 logm)r−1,

we get

I1 + I2 ≤ C2

 1

n

∑
n/2>m>0

(logm)r−1

mk1−1
+
∑
m>n/2

(logm)r−1

mk1


for some positive constant C2 which depends on k. Since k1 ≥ 2 it holds that

∑
n/2>m>0

(logm)r−1

mk1−1
= O((log n)r),

∑
m>n/2

(logm)r−1

mk1
= O

(
(log n)r−1

n

)

as n→ +∞. This completes the proof.

Proof of Proposition 2.7. Lemma 2.8 implies that the equality (2.12) for A+
n (k) holds

if k is admissible. Let us prove that it holds also for the index ({1}s,k) with any s ≥ 0

and any admissible index k.
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Using the equality

e−
πi
n
m

n
π

sin mπ
n

e
πi
n
(k−2)m(

n
π

sin mπ
n

)k =
e
πi
n
(k−1)m(

n
π

sin mπ
n

)k+1
− 2πi

n

e
πi
n
(k−2)m(

n
π

sin mπ
n

)k ,
for k ≥ 1 and n/2 ≥ m > 0, we see that

A+
n (1)A+

n ({1}s,k) = (s+ 1)A+
n ({1}s+1,k)

+
s∑
b=1

(
A+
n ({1}b−1, 2, {1}s−b,k)− 2πi

n
A+
n ({1}s,k)

)
+

r∑
a=1

(
A+
n ({1}s,k′(a)) + A+

n ({1}s,k′′(a))− 2πi

n
A+
n ({1}s,k)

)
,

where k′(a) and k′′(a) are the indices defined by (2.10). Therefore we obtain the desired

equality (2.12) by induction on s from (2.9) and

A+
n (1) = log

(n
π

)
+ γ − πi

2
+O

(
1

n

)
(n→ +∞). (2.13)

Let us prove (2.13). From the definition of A+
n (1) we see that

A+
n (1) =

π

n

∑
n/2≥m>0

(
cos mπ

n

sin mπ
n

− i
)

=
π

n

∑
n/2≥m>0

cos mπ
n

sin mπ
n

− πi

2
+O

(
1

n

)

as n→ +∞. Hence it suffices to show that

π

n

∑
n/2≥m>0

cos mπ
n

sin mπ
n

= log
n

π
+ γ +O

(
1

n

)
(n→ +∞). (2.14)

Since the function f(x) = x−1 − (tanx)−1 is positive and increasing on the interval

(0, π), we see that∫ n−1
2

0

f
(πx
n

)
dx ≤

∑
n/2≥m>0

(
n

π

1

m
−

cos mπ
n

sin mπ
n

)
≤
∫ n

2
+1

1

f
(πx
n

)
dx.

Set g(x) = log (1 + x)− log (cos πx
2

). By direct calculation we have

∫ n−1
2

0

f
(πx
n

)
dx =

n

π

(
g
(
− 1

n

)
+ log

π

2

)
,
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∫ n
2
+1

1

f
(πx
n

)
dx =

n

π

(
g
( 2

n

)
+ log

(n
π

sin
π

n

)
+ log

π

2

)
.

Since g(x) = x+ o(x) (x→ 0) and log (x−1 sinx) = o(x) (x→ +0), there exist positive

constants c1 and c2 such that∫ n−1
2

0

f
(πx
n

)
dx ≥ −c1 +

n

π
log

π

2
,

∫ n
2
+1

1

f
(πx
n

)
dx ≤ c2 +

n

π
log

π

2

for n� 0. Therefore we find that

π

n

∑
n/2≥m>0

cos mπ
n

sin mπ
n

=
∑

n/2≥m>0

1

m
− log

π

2
+O

( 1

n

)
(n→ +∞).

Using the asymptotic expansion∑
n/2≥m>0

1

m
= log

n

2
+ γ +O

( 1

n

)
(n→ +∞),

we get the formula (2.14).

2.3.3 Proof of Theorem 1.2

For the later purpose we introduce the following complex numbers.

Definition 2.9. For a non-empty index k we define

ξ(k) = lim
n→∞

zn(k; e
2πi
n ) and ξ?(k) = lim

n→∞
z?n(k; e

2πi
n )

and set ξ(∅) = ξ?(∅) = 1.

Theorem 2.6 implies that

ξ(k1, . . . , kr) =
r∑

a=0

(−1)k1+···+kaRka,ka−1,...,k1

(πi
2

)
Rka+1,ka+2,...,kr

(
− πi

2

)
, (2.15)

and

ξ?(k1, . . . , kr) =
∑

� is either a comma ‘,’
or a plus ‘+’

ξ(k1� · · ·�kr), (2.16)

which follows from (2.1) and (1 − e2πi/n)kzn(k; e2πi/n) → 0 (n → +∞) for k > 0. If
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k = (k1, . . . , kr) is an index with kj ≥ 2 for all 1 ≤ j ≤ r, we have the equalities

ξ(k) = ζS(k) and ξ?(k) = ζ?S(k) from Definition 2.4, and hence ξ(k), ξ?(k) ∈ R.

Example 2.10. Using (2.15) one can write down the value ξ(k) of depth one:

ξ(k) =


−πi (k = 1)

2ζ(k) (k ≥ 2, k is even)

0 (k ≥ 3, k is odd)

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The convergence is already proved. From (2.11) we see that the

coefficient of T a in the polynomial Rk(T ) lies in Z for any a ≥ 0. Hence the formulas

(2.6) and (2.15) imply that Re(ξ(k)) − ζS(k) is a polynomial of π2 whose coefficients

belong to Z. Therefore Re(ξ(k)) ≡ ζS(k) modulo ζ(2)Z. The star version is then

immediate from (2.16).

2.4 Duality formula

2.4.1 Notation

For an index k = (k1, . . . , kr) we define its reverse k by

k = (kr, kr−1, . . . , k1).

Let τ : H→ H be the monoid homomorphism defined by τ(e1) = e0 and τ(e0) = e1.

Every word w ∈ H1 can be written as w = w′e1 with w′ ∈ H. Then we set w∨ =

τ(w′)e1 ∈ H1 and call it the Hoffman dual of w. We also define the Hoffman dual k∨

of an index k by

ek∨ = (ek)∨.

For example, the Hoffman dual of the word e3e2 is given by

(e3e2)
∨ = (e0e0e1e0e1)

∨ = τ(e0e0e1e0)e1 = e1e1e0e1e1 = e1e1e2e1 .

Hence (3, 2)∨ = (1, 1, 2, 1). Note that wt(k∨) = wt(k) for any index k.

2.4.2 Proof of Theorem 1.3

We will use the following fact.

Lemma 2.11. Suppose that n ≥ 1 and ζn is a primitive n-th root of unity. Then it

holds that (−1)nζ
n(n+1)/2
n = −1.
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Proof of Theorem 1.3. Note that any index is uniquely written in the form

({1}a1−1, b1 + 1, . . . , {1}ar−1−1, br−1 + 1, {1}ar−1, br), (2.17)

where r and ai, bi (1 ≤ i ≤ r) are positive integers 2. Denote it by [a1, . . . , ar; b1, . . . , br].

Then we see that

[a1, . . . , ar; b1, . . . , br]∨ = [br, . . . , b1; ar, . . . , a1].

Now we fix a positive integer r and introduce the generating function

K(x1, . . . , xr; y1, . . . , yr) =
∑ z?n([a1, . . . , ar; b1, . . . , br]; ζn)

(1− ζn)a1+···+ar+b1+···+br−1

r∏
i=1

(xai−1i ybi−1i ),

where the sum is taken over all positive integers ai, bi (1 ≤ i ≤ r). Then Theorem 1.3

follows from the equality

K(x1, . . . , xr; y1, . . . , yr) = K(−yr, . . . ,−y1;−xr, . . . ,−x1). (2.18)

Let us prove (2.18). It holds that

1 +
∞∑
a=2

∑
B≥m1≥···≥ma−1≥A

xa−1∏a−1
i=1 (1− ζmin )

=
B∏
i=A

1− ζ in
1− x− ζ in

for n > B ≥ A > 0, and that

∞∑
b=1

ζbmn
(1− ζmn )b+1

yb−1 =
1

1− ζmn
ζmn

1− ζmn (1 + y)

for n > m > 0. Using the above formulas we have

K(x1, . . . , xr; y1, . . . , yr) =
∑

n>l1≥···≥lr>0

n−1∏
i=lr

(1− ζ in)

×
r−1∏
j=1

 ζ
lj
n

1− ζ ljn (1 + yj)

lj−1∏
i=lj

1

1− xj − ζ in

 1

1− ζ lrn (1 + yr)

lr−1∏
i=lr

1

1− xr − ζ in
,

where l0 = n − 1. Rewrite the right-hand side above by using the partial fraction

2If r = 1, (2.17) should read as ({1}a1−1, b1).
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expansion

B∏
i=A

1

X − ζ in
=

B∑
i=A

1

X − ζ in

i−1∏
j=A

1

ζ in − ζ
j
n

B∏
j=i+1

1

ζ in − ζ
j
n

=
B∑
t=A

1

X − ζtn
(−1)B−tζ

−(B+1
2 )+At−(t2)

n∏t−A
i=1 (1− ζ−in )

∏B−t
i=1 (1− ζ−in )

for n > B ≥ A > 0. Then we find that

K(x1, . . . , xr; y1, . . . , yr)

=
∑

n>t1≥l1≥···≥tr≥lr>0

n−1∏
i=lr

(1− ζ in)(−1)
∑r
j=1(lj−1−tj)ζ

∑r
j=1(−(lj−1+1

2 )+ljtj−(tj2 ))
n

×
r∏
j=1

tj−lj∏
i=1

1

1− ζ−in

lj−1−tj∏
i=1

1

1− ζ−in


×

r−1∏
j=1

(
ζ
lj
n

1− ζ ljn (1 + yj)

1

1− xj − ζ
tj
n

)
1

1− ζ lrn (1 + yr)

1

1− xr − ζtrn
.

Now change the summation variable tj and lj to n− lr+1−j and n− tr+1−j, respectively

(1 ≤ j ≤ r). As a result we get the desired equality (2.18) using Lemma 2.11.

2.4.3 Proof of Theorem 1.4

Theorem 1.4 follows from Theorem 1.2 and Theorem 2.12 below, which describes the

reversal relation and the Hoffman duality for ξ?(k).

Theorem 2.12. For any index k, the following relations hold.

i) ξ(k) = (−1)wt(k) ξ(k), ξ?(k) = (−1)wt(k) ξ?(k)

ii) ξ?(k∨) = − ξ?(k)

Here the bar on the right-hand sides denotes complex conjugation.

Proof. i) Changing the summation variable mj to n−mr+1−j (1 ≤ j ≤ r), we see that

zn(k; e2πi/n) = (−e2πi/n)wt(k) zn(k; e2πi/n).

Taking the limit as n → +∞, we obtain ξ(k) = (−1)wt(k) ξ(k). The same calculation

works also for z?n(k; e2πi/n).
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ii) From Theorem 1.3 we see that ξ?(k) = (−1)wt(k)+1ξ?(k∨). Combining it with the

equality proved in i), we get the desired equality.

3 Cyclotomic analogue of finite multiple zeta values

3.1 Definition and examples

As an cyclotomic analogue of the ring A we define

Acyc =

( ∏
p:prime

Z[ζp]/(p)

)/( ⊕
p:prime

Z[ζp]/(p)

)
.

Similar to A (see Section 2.2) the ring Acyc is a Q-algebra.

Definition 3.1. For an index k we define the cyclotomic analogue of finite multiple

zeta value Z(k) by

Z(k) = (zp(k; ζp) mod (p))p ∈ Acyc,

and its star version by

Z?(k) = (z?p(k; ζp) mod (p))p ∈ Acyc.

Recall that pp = (1− ζp) is a prime ideal in Z[ζp] and that (p) = pp−1p . This gives a

surjective map

Z[ζp]/(p)→ Z[ζp]/pp ' Fp

for all prime p. Let ϕ be the induced Q-algebra homomorphism

ϕ : Acyc −→ A,
(ap mod (p))p 7−→ (ap mod pp)p .

(3.1)

The map ϕ satisfies ϕ(Z(k)) = ζA(k) and ϕ(Z?(k)) = ζ?A(k).

Let us write down the formula for Z(k) of depth one. As a kind of analogue of π in

R, let

$ = (1− ζp)p ∈ Acyc. (3.2)
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We introduce the numbers Gk (k ≥ 0) defined by∑
k≥0

Gkz
k =

z

log(1 + z)
,

which are called Gregory coefficients. It is known that Gk 6= 0 for any k ≥ 0 (see [23]).

Proposition 3.2. For any k ≥ 1, we have Z(k) = −Gk$
k ∈ $kQ×.

Proof. Let

hj(x) =
1

(j + 1)!

j∏
a=1

(x− a) (j ≥ 1).

Then the generating function (2.3) can be written as

∞∑
k=1

zn(k; ζn)

(
x

1− ζn

)k
= −

∞∑
l=1

(
−
∞∑
j=1

hj(n)xj

)l

. (3.3)

Hence, for each k ≥ 1, there exists a unique polynomial Dk(x) ∈ Q[x] of degree at most

k such that zn(k; ζn) = Dk(n)(1− ζn)k for all n ≥ 1. Then

zp(k; ζp) ≡ Dk(0)(1− ζp)k mod (p)

for sufficiently large prime p. Therefore Z(k) = Dk(0)$k for k ≥ 1.

On the other hand, from (3.3) we see that

∞∑
k=1

Dk(0)zk = −
∞∑
l=1

(
−
∞∑
j=1

hj(0)xj

)l

= 1− z

log (1 + z)
.

Hence Dk(0) = −Gk for k ≥ 1, which complete the proof.

Example 3.3. We have

Z(1) = −1

2
$, Z(2) =

1

12
$2, Z(3) = − 1

24
$3, Z(4) =

19

720
$4.

3.2 Algebraic structure

In this subsection, we examine an algebraic structure of Z(k)’s and Z?(k)’s.
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Recall that the stuffle product ∗ is defined on H1. We also use another stuffle product

? characterized by

1 ? w = w ? 1 = w (w ∈ H1),

ekw ? ek′w
′ = ek(w ? ek′w

′) + ek′(ekw ? w
′)− ek+k′(w ? w′) (k, k′ ≥ 1, w, w′ ∈ H1).

In addition we need an extension of H1. Let C = Q[~] be the polynomial ring of one

variable ~. We set Ĥ1 = C ⊗Q H1 which is viewed as a C-module. Then the C-bilinear

maps ∗q, ?q : Ĥ1 × Ĥ1 → Ĥ1 are defined by

1 ∗q w = w ∗q 1 = w, 1 ?q w = w ?q 1 = w,

ek1v ∗q ek2w = ek1(v ∗q ek2w) + ek2(ek1v ∗q w) + (ek1+k2 + ~ ek1+k2−1)(v ∗q w),

ek1v ?q ek2w = ek1(v ?q ek2w) + ek2(ek1v ?q w)− (ek1+k2 + ~ ek1+k2−1)(v ?q w)

for v, w ∈ Ĥ1 and k1, k2 ≥ 1.

For simplicity, we introduce the following notation. Let γ be a function defined on

the set of indices taking values in a Q-module M . Then, by abuse of notation, we denote

by the same letter γ the Q-linear map H1 →M which sends ek to γ(k). Similarly, for a

function Γ taking values in a C-module M̂ , we denote the induced C-linear map Ĥ1 → M̂

by the same letter Γ. For example, Γ(e2 ∗q e1) = Γ(2, 1) + Γ(1, 2) + Γ(3) + ~Γ(2).

We define the Q-linear action of C on Acyc by ~z = $z (z ∈ Acyc), where $ is given

by (3.2). Then the C-linear maps Z, Z? : Ĥ1 → Acyc are defined by the properties

Z(ek) = Z(k) and Z?(ek) = Z?(k) for any index k. They satisfy

Z(v ∗q w) = Z(v)Z(w), Z?(v ?q w) = Z?(v)Z?(w) (3.4)

for any v, w ∈ Ĥ1 (see [1, §2]).

Lemma 3.4. For any index k, we have

$Z(k) = − 2

2 dep(k) + 1
Z(e1 ∗ ek),

$ Z?(k) =
2

2 dep(k)− 1
Z?(e1 ? ek).

Proof. It holds that

e1 ∗q ek = e1 ∗ ek + ~ dep(k)ek, e1 ?q ek = e1 ? ek − ~ dep(k)ek

for any index k. Now the desired formula follows from (3.4) and Z(1) = −$/2.
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Motivated by Lemma 3.4 we define the Q-linear maps L,L? : H1 → H1 by

L(ek) = − 2

2 dep(k) + 1
e1 ∗ ek, L?(ek) =

2

2 dep(k)− 1
e1 ? ek

for any index k. Note that if wt(k) = k then L(ek) and L?(ek) are written as a Q-linear

combination of monomials of weight k+ 1. Using these maps we introduce the Q-linear

maps ρ, ρ? : Ĥ1 → H1 defined by

ρ(~kw) = Lk(w), ρ?(~kw) = (L?)k(w) (k ≥ 0, w ∈ H1) ,

with L0(w) = (L?)0(w) = w. Note that ρ(v) = v for v ∈ H1 and by Lemma 3.4 we get

Z(ρ(w)) = Z(w), Z?(ρ?(w)) = Z?(w) (w ∈ Ĥ1). (3.5)

Now define the Q-bilinear maps ∗̃, ?̃ : H1 × H1 → H1 by

v ∗̃w = ρ(v ∗q w), v ?̃ w = ρ?(v ?q w) (v, w ∈ H1)

and define for d ≥ 0 the space

H1
d =

⊕
k

wt(k)=d

Q ek ,

which is a Q-linear subspace of H1.

Proposition 3.5. (i) It holds that H1
d1
∗̃H1

d2
⊂ H1

d1+d2
and H1

d1
?̃H1

d2
⊂ H1

d1+d2
for

d1, d2 ≥ 0.

(ii) For v, w ∈ H1, it holds that Z(v ∗̃w) = Z(v)Z(w) and Z?(v ?̃ w) = Z?(v)Z?(w).

Proof. (i) Note that, if we define the weight of ~ to be one, then the C-bilinear maps

∗q and ?q preserve the total weight. Hence the statement follows from the property

L(H1
d) ⊂ H1

d+1 and L?(H1
d) ⊂ H1

d+1.

(ii) This follows from (3.4) and (3.5).

Corollary 3.6. For positive integers k, k′, let k and k′ be indices of weight k and k′.

Then the product Z(k)Z(k′) (resp. Z?(k)Z?(k′)) can be written as Q-linear combina-

tions of Z(a)’s (resp. Z?(a)’s) of weight k + k′.

3.3 Linear relations

In this subsection we discuss the dimension of the Q-vector space spanned by Z(k)’s

and Z?(k)’s. First we note the following fact.
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Proposition 3.7. For any k ≥ 0, it holds that Z(H1
k) = Z?(H1

k) as a Q-linear subspace

of Acyc.

Proof. From (2.1) we see that Z?(k) is represented as

Z?(k) =
∑
k′

wt(k′)≤wt(k)

ck,k′$
wt(k)−wt(k′)Z(k′),

where ck,k′ ∈ Q. Lemma 3.4 implies that $wt(k)−wt(k′)Z(k′) = Z(Lwt(k)−wt(k′)(ek′)), and

the weight of Lwt(k)−wt(k′)(ek′) is equal to wt(k). Hence Z?(k) ∈ Z(H1
k) for any index k

of weight k. In the same way we see that Z(k) ∈ Z?(H1
k) if wt(k) = k from (2.2) and

therefore Z(H1
k) = Z?(H1

k).

For k ≥ 0 we define the Q-linear subspace Zcyc
k of Acyc by

Zcyc
k = Z?(H1

k) = Z(H1
k).

There are two families of linear relations in Zcyc
k . First we have the duality below as a

consequence of Theorem 1.3:

Theorem 3.8. For any index k, it holds that

Z?(k) = (−1)wt(k)+1Z?(k∨).

Combining this with Proposition 3.5 (ii), we obtain a variant of the double shuffle

relation [8] among Z?(k)’s. To describe it, we denote by δ the Q-linear map δ : H1 → H1

sending ek to (−1)wt(k)+1ek∨ for any index k. Note that the map δ is an involution on

H1 and with this Theorem 3.8 can be stated as Z?(ek) = Z?(δ(ek)).

Theorem 3.9. For any indices k and k′, we have

Z?(ek ?̃ ek′ − δ(δ(ek) ?̃ δ(ek′))) = 0.

Proof. This follows from Proposition 3.5 (ii) and Theorem 3.8 because

Z?(δ(δ(ek) ?̃ δ(ek′))) = Z?(δ(ek) ?̃ δ(ek′)) = Z?(δ(ek))Z?(δ(ek′)) = Z?(ek)Z?(ek′),

which is equal to Z?(ek ?̃ ek′).

Remark 3.10. Using Theorem 3.8 and Theorem 3.9, we have the following upper bounds

for the dimension of Zcyc
k :
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k 0 1 2 3 4 5 6 7 8 9 10 11 12

dimQZcyc
k ≤ 1 1 1 2 2 4 5 8 12 17 27 38 57

For prime p ≥ 2 and k ≥ 0, we denote by Z(p)
k the Q-vector space spanned by zp(k; e2πi/p)

with wt(k) = k. Notice that dimQZ(p)
k ≤ p−1 = [Q(ζp) : Q]. Denote by dk the numbers

in the second column of the above table. By numerical experiments, we observed that

for 1 ≤ k ≤ 12 we have dimQZ(p)
k ≥ dk for primes p > dk up to p = 113. We expect

that Theorem 3.8 and Theorem 3.9 give all Q-linear relations among the Z?(k)’s.

3.4 Kaneko–Zagier conjecture revisited

In this subsection we will give a new interpretation of the Kaneko–Zagier conjecture in

terms of the cyclotomic analogue of finite multiple zeta values Z(k). Let us first recall

the statement of their conjecture.

Conjecture 3.11. (Kaneko–Zagier [9]) There exists a Q-algebra isomorphism

ϕKZ : ZA −→ Z/ζ(2)Z,
ζA(k) 7−→ ζS(k) mod ζ(2)Z.

To give a new interpretation of this conjecture, we consider the Q-vector space

spanned by all Z(k)

Zcyc = Z?(H1) = Z(H1).

By Corollary 3.6 this is a Q-subalgebra ofAcyc. The restriction of the map ϕ : Acyc → A
defined in (3.1) to Zcyc gives the surjective Q-algebra homomorphism to the Q-algebra

ZA of finite multiple zeta values denoted by

ϕA : Zcyc −→ ZA .

For any index k it is ϕA(Z(k)) = ζA(k). On the other hand the relationship of the

Z(k) to the symmetrized multiple zeta values is not understood yet, but we expect the

following.

Conjecture 3.12. i) There exists a Q-algebra homomorphism

ϕS : Zcyc −→ Z/ζ(2)Z ,
Z(k) 7−→ ζS(k) mod ζ(2)Z .
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ii) The equality kerϕS = kerϕA holds.

This conjecture is a re-interpretation of the conjecture by Kaneko and Zagier.

Theorem 3.13. Conjecture 3.12 implies Conjecture 3.11.

We end this paper by giving some observation on the elements of the ideal kerϕA
in Zcyc. As an easy consequence of the definition of ϕA we obtain the following.

Proposition 3.14. We have kerϕA = Zcyc ∩$Acyc, where $Acyc denotes the ideal of

Acyc generated by $.

Proof. This is immediate from kerϕ = $Acyc.

We now examine a class of elements in the ideal kerϕA. Lemma 3.4 implies that

$Zcyc ⊂ Zcyc. Hence $Zcyc ⊂ kerϕA. However we expect $Zcyc 6= kerϕA. For

example, by [6, Theorem 7.1] we have

ζA(4, 1)− 2 ζA(3, 1, 1) = 0. (3.6)

Therefore Z(4, 1) − 2Z(3, 1, 1) ∈ kerϕA. If ϕA = $Zcyc, this would imply that there

exists a relation of the form

a4(p)zp(4, 1; ζp) + a3,1,1(p)zp(3, 1, 1; ζp) =
∑
k

wt(k)≤4

ak(p)(1− ζp)5−wt(k)zp(k; ζp) (3.7)

for large prime p, with ak(p) ∈ Z[p]. On the other hand we observed for prime 5 < p ≤
113 by numerical computations that (1 − ζp)4zp(1; ζp), (1 − ζp)2zp(2, 1; ζp), zp(4, 1; ζp)

and zp(3, 1, 1; ζp) seem to form a basis of the Q-vector space spanned by all zp(k; ζp) of

weight 5. We therefore do not believe that a relation of the form (3.7) exists and expect

that Z(4, 1)− 2Z(3, 1, 1) is an element in kerϕA but not in $Zcyc.

So far it is not known how to describe the elements in (kerϕA)\$Zcyc in general.

For example, because of (3.6), we should have

zp(4, 1; ζp)− 2zp(3, 1, 1; ζp)
?
∈ pZ[ζp]

for all large prime p, which seems to be difficult to prove.
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