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Moduli Spaces of Harmonic and Holomorphic Mappings
and Diophantine Geometry

*
Toshiki Miyano and Junjiro Noguchi )

Introduction. In this paper we first show some new results on the structure of the moduli
space of harmonic (resp. holomorphic) mappings into a Riemannian (resp. Kdhler) manifold with
non—positive sectional curvature, and then, applying these results, give a survey on recent
developments in the theory of Diophantine geometry. Let N be a compact analytic Riemannian
manifold with non—positive sectional curvatures and M a compact Riemannian manifold. We
denote by Harm (M, N) the space of all harmonic mappings of M into N endowed with
compact—open topology, which is called the moduli space of harmonic mappings
of M into N.Let f: M—— N be a smooth mapping and put

Harm(M, N; f) = {g ¢ Harm(M, N), g~ f(homotopic)} .

’i‘hen Schoen—Yau [SY] proved that Harm(M, N, f) carries a structure of a compact
- Riemannian manifold such that the evaluation mapping

-t

AN
T

<I’1p:geHa.rm(M, N, f)—ig(p)e N

with an arbitrarily fixed point pe M is an isometric immersion onto a totally geodesic
submanifold of N (see also [S,] for the case of locally symmetric N). We put
X = Harm(M, N; f) and consider X as a domain and M as a parameter space. That is, we put

Y= Ham(X, N; &) ),

byi(pye XxY—yfz) e N.

These Y and <I>2(z, - ) have properties similar to X and ¢1p . Naturally, we have a smooth
mapping pe M — ‘I'Ip € Y and the following commutative diagram:

*

) The second author stayed at Max—Planck—Institut fiir Mathematik, Bonn during the
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institute.



(z, p)e Xx M ——— @lp(z)e N

1 |

(2 & e X x Y 7 Pl By

Qur first theorem is

Theorem (1.14). Assume that the groups of isometries of X and Y are finite (in particular, the
Ricci curvature of N is negative, dim X> 2, and dim Y > 2) . Then the second evaluation

Mapping
Py:(my)e XxY—y(x)e N

19 an immersion onto a totally geodesic submanifold of N and the pull-backed metric by ®, i

1isometric to the product metricon X x Y.

In the complex category, we deal with the case where N is not necessarily compact, but a
compiete Kahler manifold such that the (Riemannian) sectional curvatures are non—positive and
the holomorphic sectional curvatures are bounded from above by a negative constant. Moreover,

we assume that N is a Zariski open subset of a complex projective variety N such that N is
hyperbolically imbedded into N . Let M be a Zariski open subset of a compact Kihler manifold

M . We denote by Hol(M, N) the moduli space of all holomorphic mappings of M into N
endowed with compact—open topology. By [N3] Hol(M, N) has a structure of a Zariski open
subset of a compact complex space, and non—singular. Let X C Hol(M, N) be a connected
component and put

B :(z,p)e XxM—z(p)eN.
Let Y C Hol(X, N) be the connected component containing &,( -, p)(p € M) . Then we have

Theorem (2.15). The second evaluation mapping

®,:(z,y)e Xx Y—¢{2) e N

2

i3 a proper holomorphic immersion onto a complez totally geodesic submanifold of N , and the
pull-backed metric by @2 13 tsometric to the product metricon X x Y.



It is the most important and interesting case when N is a quotient T \ D of a bounded
" symmetric domain D by an arithmetic discrete subgroup I' of the holomorphic automorphism
group Aut(D) .

In the course of the proof of the above theorem we show

Theorem (2.4). Let S be a complete hyperbolic manifold such that S is a Zariski open subset of a

compact complez space S and S s hyperbolically imbedded into 5 . Then Aut(S) is a finite
group. '

The first and the second sections are devoted to the proof of the above results, and to the
preparations for the latter sections.

In § 3 we discuss the higher dimensional Mordell’s conjecture over function fields and related
topics. In § 4 we deal with the Parshin—Arakelov—type theorems for curves, Abelian varieties and

K3—surfaces . We will give a new proof to the Parshin—Arakelov theorem for curves, based on our
results.

Table of Contents

Introduction
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§ 1. Moduli space of harmonic mappings

*
Let M and N be Riemannian manifolds and TM (resp. T M) denote the tangent (resp.

cotangent) bundle over M. Let f: M—— N bea C®—mapping . The energy functional E(f) is
defined by

Bf) = jM< if, 4f > dV,,.



We call f a harmonic mapping if for any smooth family ft: M—s N, —1<t<1, of

C ®—mappings such that fO =fon M and f= ft , —1<t<1, outside a compact subset
KCM,

d -
ai_ﬂjK<dQ¢Q>d@M_o.
It is known that f is harmonic if and only if

* -1
(1.1) trace L M®F "TNyg 4 ¢,

*
where L M®f ~hTN V is the Riemannian connection of T*M ® f 17N induced from those on
TM and TN.
If f: M—— N is an immersion and if fo c¢: [a,b] — N are geodesic for all geodesic
curves c¢: [a,b] — M with [a, 0] CR, then f is called a totelly geodesic immersion; an

immersion f is totally geodesic if and only if

*x
-1
(1.2) TM®f "TNg yr— 9.
Hence a totally geodesic immersion is harmonmic. We recall the following theorem due to
Schoen—Yau [SY, p. 371], which will play a key role.

(1.3) Theorem. Assume the following conditions:

a) M 1is complete and has a finite volume;

b) N 1is complete and has non—positive sectional curvature.
Let f g: M—— N be harmonic mappings with finite energies which are mutually homotopic by
H:[0,1] x M— N with HO, )=f and H(l, + ) =g . Then there ezists a 1—parameter
family F(t, p) = f(p), te [0,1] of harmonic mappings f,: M— N with f, =f and f =g
such that

i) the homotopy F(t, - ) is equivalent to H(t, - ),

ii) for any pe M, the curve {ft(p); te [0,1]} s a geodesic with constant speed

independent of pe M,

iii)  the section pe M — F*((B/at)(t p)) € ft_lTN 19 parallel

Moreover, we obtain the following Lemma from the proof of the above theorem ([SY, p.
370]).

(1.4) Lemma. Let the notation be as in Theorem (1.3). Then f, (v) is parallel along the geodesic
{ft(p);te [0,11} forall pe M and ve TpM.



(1.5) Corollary. Let f g: M—— N be as in Theorem (1.3). Then f is an immersion (resp.
isometric immersion) if so is g.

The proof is clear.

(1.6) Proposition. Let M be a compact Riemannian manifold, N o compact analytic Riemannian
manifold with non—positive sectional curvatures, and f: M —— N a totally geodesic immersion.
Then every harmonic mapping from M to N which is homotopic to f i3 a totally geodesic

immersion.

Proof. Put X =Harm(M, N;f) andlet ®,:(g p)e Xx M— g(p) e N be the evaluation
mapping. We endow with X the pull-backed Riemannian metric by @1(' , p) . We show that
the image of any geodesicin M by any ge X isageodesicin N.Let c:te [0,e] — t) €
M(e > 0) be a geodesicin M. Ther foc¢: [0,6] — N is a geodesic in N . We may assume
that |[(fo ¢)«(8/8%)|| =1 and e < Inj(N)/2, where Inj(N) is the injective radius of N . Note
that &,(-, ¢(0)) and &,(-, ce)) are isometric immersions from X onto totally geodesic
submanifolds of N . Therefore they are harmonic and &,(- , c(t)) gives a homotopy between
them. Deforming @,(- , ¢(t)) , we have by Theorem (1.3) a 1—parameter family

Qs N JY-——' N, 0 S L] S 1
of harmonic mappings with @, = ®,(+,¢(0)) and Q =&(-, d¢)) . Moreover, for any
ge X, the curve {93( 9); se [0,1]} isa geodesic with constant speed, independent of g¢. Since

{Q ) se (0,1]} is a geodesic which coincides with {Ql(f, o(t)); te [0,e]} , we change the
parameter § of Qs so that

Qt(f) = ‘I’l(f: e(t)),0 <t <e,

(1.8)
0=(}1(° :C(O))s QE =¢'1(.1C(5))'

By Lemma (1.4) we see that {® (g, c(t)); 0 < t<e} is a curve with arclength parametrization.
Therefore we have

(1.9) d\(®,(9, 1), 2{9)) < 26 < Tnj(N) .
Using Theorem (1.3) again, we see that dp(®,(h, (1)), 2,(h)) is a constant (< 2) in he X.
Since @,(f, o(t)) = 2(f) by (L8),

¢ (g, (8)) = 2[9)

forall ¢.Hence {®,(g ¢(f));0< < e} isageodesic. Q.E.D.



Let f: M—— N be as in Proposition (1.6), X = Harm(M, N; f) and

P, :(gp)e Xx M— gp)e N.

1

We endow X with the pull-backed Riemannian metric by <I'1( *, p) . Then we have the natural
mapping pe M— &,(-, p) e Harm(X, N) . Put

Y = Harm(X, N; ®,(- , 7)),
(g y)e XxY—yg)eN.
We endow Y with the pull-backed Riemannian metric by ®,(g, *) .
(1.10) Corollary. Forany ye Y
(-, y) - 9e X— gl e N
13 a totally geodesic isometric immersion.

This immediately follows from Corollary (1.5) and Proposition (1.6). By the construction we
see also that

(1.11) for any v, € TgX (resp. v, € TyY) the section ze ¥Y—— d®y(g, z)(vg) €

D,(g, -)_1 TN (resp. z€ X— dd,(z, y)(vy) e & (-, y)_1 TN) is parallel.
We denote by Is(X) the group of all isometries of X .
(1.12) Lemma. Let ®,: X x Y— N be as above.
(i)  If Is(X) or Is(Y) is finite, then &, is an immersion.
(i)  If Is(X) and Is(Y) are finite, then the pull-backed metric on X x Y by &, is the

product metric of those on X and Y.

Proof. (i) Note that ®,(-,y) and @2(::, -) are totally geodesic isometric immersions for
ye Y and ze X . Suppose that @2 is not an immersion. Then there are non—zero vectors

v € TgX and v, € TyY such that d®.(g, y)(vg + 'uy) = 0, so that

(1.13) dBy(g, () = = B9, 9)(1) #0..

Now, consider the vector field {d<I>2(z, y)(v,); ze X} in & (-, y)_l TN . 1t follows from (1.11)
and (1.13) that d®.(z, y)(vy) is paralled and tangent to the image ®,(X, y) . Therefore we have



a non—zero parallel vector field on X, which generates a 1—parameter subgroup of Is(X) . In the
same way, we have a l—parameter subgroup of Is(Y) . Hence, if one of Is(X) and Is(Y) is
finite, @2 is an immersion.

(i) ~ Take an arbitrary v e T_ X . Then by (1.11), ye ¥— d®,(z, y)(v) is parallel.
Suppose that d<I>2(z, y)(vz) is not perpendicular to <I>2(:, Y) at some Y€ Y . Then
d®4(z, y)(v,) are not perpendicular to ®,(z, ¥) atall ye Y. Let uy denote the orthogonal
projection of d®o(z, y)(vz) to TtI>2(z, Y) in TN . We get a parallel vector field on Y, which
generates a 1—parameter subgroup of Is(Y) . Therefore we obtain our assertion. Q.E.D.

(1.14) Theorem. Let ®,:Xx Y—— N be as above. Assume that Is(X) and Is(Y) are finite
(especially, the Ricci curvature of N is negative, dim X> 2, and dim Y > 2) . Then <I>2 8 a
totally geodesic tsometric immersion into N .

Proof. It remains to show that
E _

* -
where £=T (Xx Y)® @21TN with the naturally induced metric and connection By . pui

r=dimX, s=dim Y, n=dim V.

Take an arbitrary point (g, y)e X x Y . Let (zl, ., T) (resp. (yl, .., ¥)) be a local
coordinate system around z (resp. y) . Since ®, is an immersion, we can take a local coordinate

system (wl, .., W) around ®,(z, y) such that

We use indices as follows.

i,j,k=1,...,7‘,
Ly, T=1,..,8,

a)ﬁy7=1$ ey T

Put <p=tI>2(z, -): Y— N. Then ¢ is a totally geodesic immersion, so that

* -1
TY®p "Th Vdp = 0 ; in terms of local coordinates,

LE ) B0 N () 2 0T

P W gy T Py oyt ay’

)



where YI‘;V (resp. N I‘%,y) are Christoffel symbols of Y (resp. N) and Einstein’s summation

' convention is used. Note that

a°
ay,u T+u
Thus we have
N,
Fc:'-l-,u r¥2) =0, 1<asr,
Y, N,
= TL@+ T, @) =0, r<asgs.
Since &, is isometric, we have
Xx Yp k Npk _
ﬂ”(x’ y) = r+p. r+u(y(z)) 0,
(1.15)
Xx Ypr Npr+ Y,
(:z:,y) Pr+; r+u(y(z)) r’ ('!/) .

In the same way, we obtain

X x erj(z, ) = Nrifj(y(z)) )
(1.16)

(5 9) = T () =

The section z’ € X — d<I>2(z’, y)(8]84) € ®o(+, y)—l TN is parallel by (1.11), and hence

o(" ,y)"lTNV—a [ﬁ. G y)[#]] .
:

dz

&

It follows that

On the other hand



Therefore
TN, d _
v, [ 5 } =0
o z)
We get
N,
(1.17) I (M2 =0,
and so
XxY
X r?ﬂ(z) = 1 z r+“(y(z)) ]
(1.18)

AT (2 = P (w@) =0

By the choices of local coordinate systems, we have
a a
0% 2 9% 2

(1.19) _=é¢?’_=60 .
gzt ! 3y‘"’ r+u

By making use of (1.15) — (1.19), we compute EVd<I>2 at (z,y) . The iz ® dr ® @51(0/0111&)

component of EthI>2 at (z,y) is as follows:

a2¢»‘2' nyk( )a@g XXYT( )3@% Na(y( ))aqsg 0]
- 5y) —% — I(zy) —= + TI% (A7) — —=
dz'dy’ dz H ay” By 9zt 9z’
a a I} v
5%2 X, 9% N 635 93]

— =0.

gzt 8z

= W F,-J(I);E + I“E,r(y(z))

Here one reminds that ®,(-,y) is totally geodesic. In the same way as above, we see that
df* ® dy’' ® @51(6/ dw®)  component of EVd<I>2 at (z,y) vanishes. The cross—term,
i ® d;/‘ ® tI>'2'1(¢9/ du™) component of Ey d®, at (z, y) is computed as follows:

& XxYk( )acpg XxY g )aq»a N o 22 aqsﬁ aqﬂ'
5y E P 5y + F
azt oyt W ay" By 1

zaz



(22) Remark. Let $ be a compactification of M such that M= M- M isa hypersurface
with only normal crossings. Then Hol(M, N) is imbedded into Hol(?v'{, N) by holomorphic

extension so that the closure Hol(M, N) in Hol(#, ) is a compact complex space and
Hol(M, N) is a Zariski open subset of Hol(M, N) . The above evaluation mapping @, extends to
a holomorphic mapping from Hol{M, N) x # into N.

For fe Hol(M, N) we set

rank f= sup{dim M —dim Froype My,
Hol(k; M, N) = {fe Hol(M, N); rank f= k} .

The notion, rank f, is similarly defined for holomorphic mappings between complex spaces. We
give some general fact:

(2.3) Proposition. Let Yl and Y2 be compact compler spaces with reduced structure. Then
Hol(k, Y,,Yy) are open and closed in Hol(Y,,Y,) forall k.

The proof is quite elementary (see [N,, Lemma (2.17)]).

(2.4) Theorem. Let N be as in Theorem (2.1). Assume that N is non—singular. Then the group
Aut(N) of holomorphic automorphisms of N is finite.

Remark. In the case where N is compact, this was obtained by Kobayashi ([Kl’ p- 70]).

Proof. Let N be a compactification of N such that ¥ — N is a hypersurface with only normal
crossings. Put n=dim ¥ . By Remark (2.2) we see that Hol(n; N, N) is imbedded into

Hol(n; X, M) and the closure Hol(m;, N, §) in Hol(¥, W) is a compact complex space. We first
claim that Hol(n; N, N) is compact in Hol(¥, F) . Let f,e Hol(n; N, N}, v=1,2,..., beany
sequence. Since Hol(N, N) is relatively compact in Hol(N, ¥) , we may assume that the
extended mapping Tu ¢ Hol(X, N) converges to fe Hol(¥, N) . Since rank f,=n, rank f=n
by Proposition (2.3). Thus the image T(M contains a non—empty open subset. Take a point

py € N such that ]'(po) = ¢y ¢ N. For an arbitrary point pe N we have

1) = 1) — T(8) (),
dN(fy(pL f,,(po)) < dN(Ps Po) .



_Since fy(Po) — ¢, and N is complete hyperbolic, f u(p) stay in a compact subset of N .

Therefore we have that f(p) € N. The restriction f= f|N belongs to Hol(n; N, N} and is the
limit of f,v=1,2,.. .Put

X={fe Hol(n; N, N); F(N-N) CF-N}.

Then X is an analytic subset of Hol(n; N, N) . Since N is measure~hyperbolic (cf. [Kl’
Chapter IX]) and its total measure is positive and finite, we easily see that deg f=1 for all

fe Hol(m; N, N) . Let fe X . Then the inverse }'-1 :N— N of J: N— ¥ is meromorphic
and satisfies :

g=}’_1|N:N——bN.

Since N is complete hyperbolic, ¢ must be holomorphic (see [Kl, p. 90]), so that g= f_l )
Therefore X = Aut(N) and it follows that Aut(N) is a compact complex Lie group. Since N is
hyperbolic, there is no 1—parameter subgroup of Aut(N) . Thus Aut(N) is finite.

Q.E.D.
In the rest of this section we assume the following conditions for N:
(2.5) (i) N is a complete Kihler manifold with non—positive (Riemannian) sectional
curvatures and with negative holomorphic sectional curvatures bounded away

from 0,

(i) N is quasi—projective algebraic and carries a projective compactification N

such that N is hyperbolically imbedded into N .

(2.6) Remark. It follows from (2.5), (i) that N is complete hyperbolic; moreover, there is a
constant C > 0 such that '

Av, 1) < C'FN(v), ve TN,

where ~ denotes Kahler metric on N and FN the infinitesimal Kobayashi metric. Therefore we

have

Vol (N) = JN iV, <o.



Now, let M be a compact Kihler manifold and M a Zariski open subset of 3.

(2.7) Lemma. Let M be as above. Then there is a complete Kahler metric g on M with finite

volume such that

Fyr< O,

where Cl >0 18 a consiant.

Proof. Take a modification 3/ — ¥ with center contained in M — M so that A is Kihler

and M —M is a hypersurface with only simple normal crossings. Then as in the proof of
Proposition (6.2) of [GK], one can construct such a metric g¢. Q.E.D.

By Theorem (2.1) we see that Hol(M, N) carries a structure of a Zariski open subset of a
compact complex space, so that

(2.8) Hol(M, N) is locally arcwise connected.

We endow M with a Kihler metric in Lemma (2.7). The choices of the metricson M and N,

x
and the decreasing principle f Fy < F M for fe Hol(M, N) imply that

(2.9) BE(f)<o forall fe Hol(M, N).

Since M and N are Kihler,
(2.10) all fe Hol(M, N) are harmonic.
By making use of Theorem (1.3), we have the following lemma (cf. [Ng, p. 29]):

(2.11) Lemma. Let f: M—— N be a harmonic mapping, homotopic to a holomorphic mapping
from M into N. Then f is holomorphic, too.

Remark. In the case where M is compact, this lemma holds without the assumption of
non—positive curvatures on N, and is called the Lichnerowicz theorem. In the present case, we
have to use that curvature assumption to get some estimate on the boundary behavior of the
homotopy between f and the holomorphic mapping.

‘Even though the global injectivity radius of N is zero, by making use of (2.8), (2.9) and
Lemma (2.11), we can apply the arguments of Schoen—Yau [SY, p. 372] to infer that the
evaluation mapping &, : Hol(M, N) x M — N has the following properties:



(2.12) Theorem. i) For an arbitrary point pe M , the holomorphic mapping @ 1(- ,p):
fe Hol(M, N} — f(p) € N is a proper immersion onto a complez totally geodesic submanifold of
N.

ii) The pull backed metric @1(' ) p)*h is independent of 9.

Thus, Hol{(M, N) is non—singular. We take a connected component X of Hol(M, N) . We

may assume that M = M — M is a hypersurface with only normal corssings. Then we have the
natural imbédding

fe Hol(M, N) —= fe Hol(M, N)

which is an into—homeomorphism (cf. [N,, Theorem (1.19)]). Let X denote the closure of X in
Hol(M, N) . By Remark (2.2) &(- , p)(p € M) naturally extends to a holomorphic mapping

(- ,p): X—N.

(2.13) Lemma. i) X is complete hyperbolic and hyperbolically imbedded into X .

i) X is quasi—projective.

Proof. i) It is easy to show that X is complete hyperbolic. Take distinct F; , F, e X-X.

Take any sequences {flu}?;:l’ {,1’2”};';=1 in X such that }h}—-——r F, and TQU—-»Fz in

Hol(M, N) . Since F # F., , there is a point p € M such that F,(p) # Fy(p) and F, (p) e N,
i=1,2. Then
£ (8) — F(p) e N,

fgy(p) — F2(p) eN.

Therefore we have

dylfip ) > dpl 0D fy (8) > 5 dp(FL(D), Folp) > 0

for all large v . This shows that X =<— X is a hyperbolic imbedding.

ii)  This follows from the fact that & (- ,p): X— & (X, p{C N) with pe M is



finite and (X, p)(C N) is projective. Q.E.D.
(2.14) Corollary. Aut(X) is finite.
This follows from Lemma (2.13) and Theorem (2.4).

As in § 1, we now consider X as a domain space and M as a parameter space. Note that
by Lemma (2.13) X satisfies the conditions put on M . Let Y C Hol(X, N) be the connected
component containing <I>1( -, p)(p € M) . Then we have the evalutation mapping

G, XxY— N,

2
By Corollary (2.14), Aut(Y) is finite, too. To obtain a complex analytic version of Theorem
(1.14), we first note that the topology of X (resp. Y) is defined by the compact—open topology
on the mapping space from M (resp. X) into N, and that X and Y are locally arcwise
connected. These makes us possible to carry out the same arguments as in the proof of Theorem
(1.14) in compact subsets of N , where, of course, their injectivity radii remain positive. We

* *
endow X (resp. Y) with the puil-backed Kahler metric <I>1(- , ) h (resp. (I)z(x, ) k) with
pe M (resp. ze X),and X x Y with the product metric.

(2.15) Theorem. Let Py XX Y——> N be as above. Then @2 i5 a proper, holomorphic, totally

geodesic and isometric immersion.
Remark. X is a connected component of Hol(Y, ) which contains @4(z, -)(z e X) . For the

composition of the holomorphic mapping pe M — @1( »,p)e Y and any ge Hoi(Y, N) isa
holomorphic mapping from A into N which is homotopic to tI’l(z, ‘)i M—N.

§ 3. Higher dimensional Mordell’s conjecture over function fields and related topics

By making use of the results obtained in § 2, we discuss the Diophantus geometry in the
present and the next sections. We start with the following theorem due to Manin [M] and
Grauert [G].

(3.1) Theorem (Mordell’s conjecture over function fields). Let K be a function field over an
algebraically closed field k with char k=0 . Let C be a smooth curve defined over K, of which
genus 18 not less than 2 . Then either the set (\K) of K-—rational points of C is finite, or C is
K—isomorphic to a curve G defined over k and Cy(K) ~ Cy(k) is finite.



Remark. The original conjecture over number fields was solved by G. Faltings [Fz] .

In geometric terms, the above Theorem (3.1) is equivalent to the following.

(3;2) Theorem. Let X —— R be o smooth fiber space over k such that the genus of the fibers
X (te R) is not less than 2 . Then the set L of rational sections 0 : R — X (7w oo =id) is

finite, or X is isomorphic to the product R x X ; and there are only finitely many non—constant
0

rational sections (non—constant mappings from R to X ; ).
0

Related to this theorem, S. Lang {L,] gave two conjectures.

(3.3) Conjecture. Let X — R be an algebraic fiber space over € with hyperbolic fibers X - If
the set T of rational sections of X —— R 13 infinite, then X —— R contains a splitting fiber

subspace.

(3.4) Conjecture. Let N be a complex projective manifold such that N is hyperbolic. Let M be
another complez projective manifold. Then there are only finitely many surjective holomorphic

mappings from M onto N.

For a moment we discuss the latter conjecture. Instead of the hyperbolicity assumption on
N, Kobayashi—Ochiai [KO2] assumed that N is of general type, and showed a finiteness
theorem:

(3.5) Theorem ([KO2] ). Let N be a complez manifold of general type. Then there are only
finitely many surjective meromorphic mappings from M onto N.

It is natural to expect (cf. [Kq])
(3.6) Conjecture. A complez projective algebraic hyperbolic manifold is of general type.

This is true for curves, and for surfaces by Mori—-Mukai [MM]; in fact, they proved that a
complex projective algebraic surface is of general type if and only if it is measure—hyperbolic.

Let N be a complex projective manifold. According to the theory of Mori [Mo], if there is
a curve CC N such that the intersection number C- K N of C and the canonical bundle X N of
N is negative, then C is deformed to a sum of curves, which contains a rational curve. Thus, if
N is hyperbolic, then C-K,,> 0 for all curves C C N. Making use of this fact, Horst [Hl, H2]

N
solved Conjecture (3.4):

(3.7) Theorem ([H,, H,]). Let N be a hyperbolic Kihler manifold and M a complez manifold.
Then there are only finitely many surjective holomorphic mappings from M onto N.



Remark. Assuming additionally that X N carries a metric with non—positive curvature form,

'Noguchi [N2] proved the above finiteness theorem.

There are many finiteness theorems of various types. Cf. [S;], [So], [I], [NS], [BN]
and [KSW].
As for Conjecture (3.3), Noguchi first proved the following by employing the idea of Grauert

[G]:

(3.8) Theorem ([N;]). Let X—— R be an algebraic smooth fiber space such that the
holomorphic tangent bundle T(Xto) is negative (T*(X tO) is ample) for some point the R .
As.?ume that E(to) = {a(to);a e L} i3 Zariski dense in X"D . Then there i3 a Zariski open
neighborhood R’ C R of ty such that X| R'2R xX ! and there are only finitely many

non—constant rational sections.

If T(X ; )} is negative, then X ¢ 1s hyperbolic ([KQ]); but the converse is not true. For
0 0

instance, if Cz. , 1=1,2, are smooth algebraic curves with genus > 2 , then C1 x C2 is
hyperbolic, but T( C) x C,) is not negative.

In general, let 7: X —— R be a proper fiber space, of which general fibers are irreducible.
We call (X, m, R) a hyperbolic fiber space if X ; are hyperbolic complex spaces for all e R.

Assume that (X, m, R) has a compactification (X, 7, K) ; that is, 7: X — R is a compact

fiber space such that R is a Zariski open subset of R, X=X|R and 7|X= 7. Now we
consider the relative version of the notion of hyperbolic imbedding.

(3.9) Deﬁpition. Let (X, m, R) be a hyperbolic fiber space and (X, m, K) its compactification.
We say that (X, 7, R) is hyperbolically imbedded into (X, 7, B) along dR = R— R if for any
point te JR there are small neigborhoods U and V of ¢ in R such that VCU, V is
relatively compactin U and X|(V — dR) is hyperbolically imbedded into X|U.

(3.10) Theorem. Let (X, w, R) be a hyperbolic fiber space with a compactification (X, 7, R)

such that (X, m, R) is hyperbolically imbedded into (X, m, R) along AR . Assume that R is
smooth and that there is a point ty € R such that 5(t;) is Zariski dense in X - Then

i) there i3 a finite Galois covering B — R such that R *p X B x Xt ;
0



if) if X, isa Kéhler manifold, then X3 Rx X, (ie, R=R).
0 0

The assertion i) was proved by [N,]. Combining the argument of the proof of i) with
Theorem (3.7), we have i) (see [N,, § 3]).

(3.11) Theorem. Let (X, 7, R) be a smooth fiber space of curves with genus ¢>2 and
dim R =1 . Then there is a compactification (X, 7, R) of (X, 7, R) such that (X, m, R) is
hyperbolically imbedded into (X, 7, K) . ‘

Combining Theorem (3.11) with Theorem (3.10), we have Theorem (3.2) in the case of
dim R =1 ; this is an essential case. For the proof of Theorem (3.11), see [N2, § 5]. It has been
informed to the authors that there is some incomplete part in the proof of Theorem (3.11). We

here make the point clear. Since the construction of (X, 7, K) is local around points of JR , we
assume that K =4A (the unit discin ¢) and R= A*(z A —{0}) . It was first showed that
there is a finite Galois covering S§— A* with covering group G such that (X, % S) is
hyperbolically imbedded into some compactification ('XS ,7,9) along S-S , where
Xg= S xA* X and 7: XS——-v S is the projection. The group G acts holomorphically on XS
and the action extends meromorphically on XS . The point is that this extended action is not

*
necessarily holomorphic. But we proceed as follows. Consider the following imbedding )

arze Xg— (..., (2), - )geGeTTXSC 1T Xg.

#G #G
Note that '|—['XS is hyperbolically imbedded into TFXS along 5—S. The action of G on
#G #G
XS is transformed to the exchanges of variables of || X, which extend holomorphically on
#G
TT Xg. Put Y=a(X) . Then the closure Y in '[TXS is an analytic subspace which is
#G #G

invariant by the action of G . Identify X IS with Y through a . Then the quotient G\'Y
-provides the desired compactification.

Now we assume that X —— R is a proper smooth fiber space. Brody [B] proved that if a

fiber X, is hyperbolic, then there is a neighborhood U of t (with respect to the differential
0

*) This trick was suggested by C.T.C. Wall.



topology) such that X| U is hyperbolic, and so X ; are hyperbolic for all ¢{e U. In connection
. with Theorem (3.10), it is interesting to ask

(3.12) Question (Lang). Let X —Z, R be an algebraic fiber space. Then does the set {te R; X ;
i3 hyperbolic} form a Zariski open subset of R ?

Lang has asked also

(3.13) Question. If (X, m R) i3 a hyperbolic aigebraic fiber space, then does there erist o
compactification (X, =, RB) of (X, R) such that (X, =, R) is hyperbolically imbedded into
(X, 7, R) along dR?

It is also interesting to point out that Parshin [P2] gave a proof of the following theorem
due to Raynaud [R] which is based on the Kobayashi distance.

(3.14) Theorem ([R, P,]). Let XC A be o subvariety of an Abelian variety A , defined over o
function field K =C(R) ofa curve R .If X does not contain any translation of a non—trivial
Abelian subvariety, then the set X(K) of K-rational points on X is finite modulo the (K/C -)
irace AO .

Here it is known that there exists a unique maximal Abelian subvariety AO of A defined
over €,and Aj is called the (K/C —) trace (see [Lz]).

On the hyperbolicity of a subvariety of an Abelian variety or of a complex torus we know

([Gr])

(3.15) Proposition. Let T be a compler torus and X an analytic subspace of T . Then X 1s
hyperbolic if and only if X does not contain any translation of o positive dimensional subtorus of
T.

Lately, Faltings [F3] proved a very surprising result:
(3.16) Theorem. Let A be an Abelian variety over a number field and X C A a subvariety. If X
does not contain any translation of a positive dimensional Abelian subvariety, then X contains
ondy finitely many k-rational points.

Now it is interesting to recall the following conjecture of Lang:

(3.17) Conjecture. Let X be a projective algebraic variety defined over a number field k. Assume
that for some imbedding kC € , X is hyperbolic as a complez manifold. Then the number of



k—rational points of X 13 finite.
It is also interesting to ask (cf. [La])

(3.18) Question. Let X be a projective algebraic variely defined over a number field k. Assume
that for some imbedding kC €, X 1s hyperbolic. Then 13 X hyperbolic for any other imbedding

kCC?

§ 4. Parshin—Arakelov—type theorems

Let B be a smooth compact Riemann surface, SC H a finite set of points of R and put

R=FH-5.Let ¢g>0 beaninteger and M(R, S, g) denote the set of all fiber spaces X —— &
of compact Riemann surfaces such that

i) 7: X— R are smooth, where X=X|R and r=7|X,
ii) the genus of X, (te R) are g,
ili) 7x:X—— R are not locally trivial.

In the case of §=¢ Parshin [P ], and in general Arakelov [A] proved the following theorem
which had been conjectured by Shafarevich.

(4.1) Theorem. If g > 1, then M(R, S, g) is finite.

The case of g=1 is not difficult and was somehow already known. The case of ¢> 2 isof

our interest. Parshin [Pl] proved that the finiteness of M(R, S, 9) (¢ > 2) implies Mordell’s
conjecture over function fields (Theorem (3.1)), and observed that if the same holds over the ring
of integers of an algebraic number field, Mordell’s conjecture follows. Falting’s solution of
Mordell’s conjecture was carried out along this line. '

Imayoshi and Shiga [IS] lately proved Theorem (4.1) by a purely function theoretic
method. The proof of such a finiteness theorem is, in general, divided into two parts, boundedness

and rigidity. They first proved the compactness of M(R, S, g) , of which proof is rather hard.
Combining our elementary result, Theorem (3.1) with their easier part of rigidity, we here give a
proof of Theorem (4.1).

Let T be the Teichmiiller space of compact Riemann surfaces with genus ¢>1,and II
the Teichmiiller modular group. Royden [Ro] proved that the Teichmiiller distance on Tg
coincides with Kobayashi distance, so that



(4.2) Tg is complete hyperbolic.

It is known that I g contains a normal subgroup I ; of finite index which freely acts on Tg . By

' making use of the Torelli mappings, we have (see [N,])

(4.3) Lemma. The guotient H;\Tg has @ projective compactification H;\Tg such that H;\Tg

is hyperbolically imbedded into n’g\Tg .

Every element a = (X, 7, B) e M(R, S, g) naturally defines a monodromy representation

Xo my(R) — 11,

which induces
. 7

y /
Put m(R)" =Ker[x,] and let R[X 1 R be a finite Galois covering with group
a

y(R)/ 7 (R) /. Then a naturally defines a non—constant holomorphic mapping

/

fo i B —-—»H;\Tg.

X, )

Since 1r1(R) is finitley generated, Hom(arl(R), IIg\]I; ) is finite. Note that for distinct a
Be M(R, S, g) with [xa] = [Xﬁ] A # fﬁ‘ Therefore the proof of Theorem (4.1) is reduced to

(4.4) Theorem. The space Hol’(R, II ;\T g) of all non—constant holomorphic mappings from R
into H;\Tg is finite for g2> 1.

Proof. It follows from Theorem (2.1), (4.2) and Lemma (4.3) that Hol’(R, H;\Tg) is a Zariski
open subset of a compact complex space. Therefore there are oniy finitely many homotopy types
of fe Hol’(R, II’\’II‘ ). Let A be the unit discin €, A — R the universal covering and
I =m(R).Let f, ge Hol’ (R, H;\Tg) belong to the same connected component. Then f and
¢ are mutually homotopic. We claim

(4.5) f=q.

There is a homomorphism y € Hom(T, II ;) such that



~

foy=x(1)of

Jor=x(7)o79

forall yeT, where f:4—T_ (resp. 'E:A——-»Tg) is a suitable lifting of f (resp. g). By
Ber’s imbedding, Tg is realized as a bounded domain of €393 . Then f and 7 are

represented by (3g—3) bounded holomorphic functions on A . By Fatou’s theorem, f and 7§
have non—-tangential boundary values at almost ail points of JA . Assume that there is a subset

EC 8A with positive measure such that f (z) # 9(z) for ze E. By the idea of the rigidity part
of [IS] we see that for all most all ze £, there are T, €T, n=12, .., and 7€ A such
that

1,{%) — #, non—tangentially

tj‘[‘g(f~(7n(zo))» ;(77‘(20)) — + o. ~

Since the Kobayashi hyperbolic distance dT is invariant by holomorphic automorphisms,
g

~N

dTg(f~('rn(zg)). ) = (300 o (i) 100 © )

- d-[y(IN(zo), T <.

This is a contradiction. Q.E.D.

In [F1] Faltings dealt with Parshin—Arakelov—type theorem for principally polarized
Abelian varieties. Let B, S and ¢ be as above and A(R, S, g) denote the set of all fiber spaces

A—— R such that A(=4A|R)—— R are smooth, locally—nontrivial fiber spaces of
g—dimensional Abelian varieties A t(te R) with principal polarizations. Faltings proved that

A(R, S, g) forms a scheme of finite type over € . Applying Theorem (2.12), we have the following
theorem.

(4.6) Theorem ([N, p. 32]). A(R, S, g) is quasi—projective and every connected component Z of

A(R, S, g) is a quotient of a symmetric bounded domain such that there is a proper, holomorphic,
totally geodesic, isometric immersion ¢ : Z— Sp(2g, ZI)\H 9 where Hg i3 the Siegel upper—half



space of rank g .

From now on we call such ¢ a Kuga—Satake immersion. Faltings [Fl] gave also a criterion

of the rigidity of an element of A(R, S, g) . The both, rigid and non—rigid cases can happen. This
contrasts to the arithmetic case where the rigidity always holds ([F,]). His criterion was
described in terms of Hodge structure, and was generalized by Peters [Pe] to more general Hodge
structures (see also Saitoh—Zucker [SZ] for K3—surfaces) .

In general, let D be a symmetric bounded domain and T C AutO(ID) an arithmetic discrete

subgroup of the identity component Auty(D) of Aut(D) . Let ‘M be a compact Kahler manifold

and M a Zariski open subset of M.
Let HOllift(M’ I‘\[D) be the space of all "liftable" holomorphic mapping f: M — I‘\D :

~

that is, there are holomorphic mapping f from the universal covering space M of M into D
and a homomorphism y : wl(M) — T such that

fea=x(a)of , aem(M)
and f induces f.If T is torsion free, then
Holy. (M, T\D) = Hol(M, T'\D) .

For simplicity, we assume in the sequel that [ is torsion free, but remark that the same results
hold with a slight modification even in the case where I' contains a torsion element. We recall

the following facts:

(4.7) i) The Bergman metric on T'\D is complete, of finite volume and has

non—positive sectional curvature.
ii)  T\D is complete hyperbolic and hyperbolically imbedded into the Satake

compactification I‘\ID which is projective.
For ii), cf. Kobayashi—Ochiai [KO,]. Hence we can apply the results in § 2 to Hol(M, '\D) . Let
X be a connected component of Hol(M, I‘\!)) . Then X is a non—singular quasi—projective
manifold and represented by I‘l\ﬂ)l , where D, is a symmetric bounded domain. Let
&, :(0;\D;) x M—T\D

be the evalution mapping. Then for any pe M

&.(+,9): 1‘1\1)1 —T\D



is a Kuga—Satake immersion. Let £(D) (resp. £(T')) denote the maximum dimension of proper
(resp. I'-rational) boundary components of D . Note that rank f is constant in fe X (cf.
Proposition (2.3)). '

(4.8) Theorem ([N3, §8 3 and 4] ). Let the notation be as above.
i) If rank f> (T) for fe X, X is compact.
ii) If rank f> £(D) for fe X, then dim X =0.

iii) If MY CT\D for one(and all) fe X, then dim X < &(T), where M) denote the

closure of M) in F\B
iv)  dim Hol(M, I'\D) < £(D).

. Now, suppose that dim X >0 . Let Y be the connected component of Hol(X, I'\D)
containing &,(-,p), pe M. Then Y=To\D, asin the case of X . We have the evaluation

mapping
&, : (0\Dy) x (Ty\Dy) — T\D .
(4.9) Theorem. Let the notation be as above. Then @, is a Kuga—Satake immersion.

While this is just a special case of Theorem (2.15), it would be worth to state it separately,
as it is one of our goals in this directions. It is interesting to note that starting from any M, we
come to a Kuga—Satake immersion, provided that the moduli has a positive dimension.

Now we consider the Parshin—Arakelov—type theorem for polarized algebraic K3—surfaces .
It is known that the moduli space of polarized algebraic K3-—surfaces is represented by the
quotient I‘\HJIV of a symmetric bounded domain D, of type IV (cf,, e.g. [SZ]):

Dy = 50(2,19)/50(2) x SO(19) ,

(4.10) dim¢Dpy = 19,

edpy) = &) = 1.

Let X—"— M be a smooth fiber space of locally non~trivial polarized algebraic K3—surfaces ,
and fe HOllift(M’ T\D) the corresponding holomorphic mapping. Since Holm-t(M, r'\D) isa
finite sum of quasi—projective varieties,

(4.11) there are only finitely many rigid (X, =, M) .

Moreover,

(4.12) if rank f> 2, then (X, 7, M) is rigid.



Assume that rank f=1 and (X, x, M) is not rigid (there is such an example). Then by
' Theorems (4.8), (4.9) and (4.10) the problem is reduced to investigate a Kuga—Satake immersion

@ : (T, \B) x (T)\H) — '\Dy,

where H is the upper—half plane of C . Saitoh—Zucker [SZ] classified all possible such @ .

References

[A] S.Ju. Arakelov, Families of algebraic curves with fixed degeneracies, Izv.
Akad. Nauk SSSR Ser. Mat. 35 (1971), 1277-1302.

[B] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math.. Soc.
235 (1978), 213-219.

[BN] A. Borel and R. Narasimhan, Uniqueness conditions for certain holomorphic
mappings, Invent. Math. 2(1967) 247-255.

[Flj G. Faltings, Arakelov’s theorem for Abelian varieties, Invent. Math. 73
(1983), 337—347.

[Fz] G. Faltings, Endlichkeitssitze fiir abelsche Varietiten iiber Zahlkérpern,
Invent. Math. 73 (1983), 349—366.

F G. Faltings, Diophantine approximation on Abelian varieties, preprint.

3

[G] H. Grauvert, Mordells Vermutun% iiber rationale Punkte auf Algebraischen
Kurven und Funktionenkorper, Publ. Math. IHES 25 (1965), 131—149.

[GK] P. Griffiths and J. King, Nevanlinna theory and holomorphic mappings
between algebraic varieties, Acta Math. 130 (1973), 145—220.

[Gr] M. Green, Holomorphic maps to compliex tori, Amer. J. Math. 100 (1978),
615—620.

[Hl] C. Horst, Compact varieties of surjective holomorphic mappings, Math. Z.
196 (1987), 259—269.

[H2] C. Horst, A finiteness criterion for compact varieties of surjective holomor-
phic mappings, preprint.

n Y. Imayoshi, Generalizations of de Franchis theorem, Duke Math. J. 50
(1983), 393—408. |

[1S] Y. Imayoshi and H. Shiga, A finiteness theorem for holomorphic families of

Riemann surfaces. Holomorphic Functions and Moduli II, pp. 207-219,
Springer—Verlag, New York—Berlin, 1988.

[KI] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel
Dekker, New York 1970.



[K,]
[K,]
[KO,]
[KO,]
[KSW]
[L,]
[L,]
[L,]

[M]
[Mo]

[MM]

]
N,
IN,)

[NO]

[NS]

[P,]

S. Kobayashi, Negative vector bundles and complex Finsler structures,
Nagoya Math. J. 57 (1975), 153—166.

S. Kobayashi, Intrinsic distances, measures, and geometric function theory,
Bull. Amer. Math. Soc. 82 (1976), 357—416.

S. Kobayashi and T. Ochiai, Satake compactification and the great Picard
theorem, J. Math. Soc. Japan 23 (1971), 340—350.

S. Kobayashi and T. Ochiai, Meromorphic mappings onto compact complex
spaces of general type, Invent. Math. 31 (1975), 7—16.

M. Kalka, B. Schiffman and B. Wang, Finiteness and rigidity theorems for
holomorphic mappings, Michigan Math. J. 28 (1981), 289—295.

S. Lang, Higher dimensional Diophantine problems, Bull. Amer. Math. Soc.
80 (1974), 779—787.

S. Lang, Fundamentals of Diophantine Geometry, Springer—Verlag, Berlin,
1983.

S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc., 14
(1986), 159—205.

Ju. Manin, Rational points of algebraic curves over function fields, Izv. Akad.
Nauk. SSSR. Ser. Mat. 27 (1963), 1395—1440.

S. Mori, Threefolds whose canonical bundles are not numerically effective,
Ann. Math. 116 (1982), 133-176.

S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus
11, Algebraic Geometry, Proc. Japan—France Conf. Tokyo and Kyoto 1982,
Lecture Notes in Math. 10186, Springer—Verlag, Berlin—Heidelberg—New York,
1983.

J. Noguchi, A higher dimensional analogue of Mordell’s conjecture over

function fields, Math. Ann. 258 (1981), 207-212.

J. Noguchi, Hyperbolic fibre spaces and Mordell’s conjecture over function
fields, Publ. RIMS, Kyto University 21 (1985), 27—46.

J. Noguchi, Moduli spaces of holomorphic mappings into hyperbolically
imbedded complex spaces and locally symmetric spaces, Invent. Math. 93
(1988), 15-34.

J. Noguchi and T. Ochiai, Geometric Function Theory in Several Complex
Variables, to appear from A.M.S. Monograph Series (the Japanese edition,
Iwanami Shoten, Tokyo, 1984).

J. Noguchi and T. Sunada, Finiteness of the family of rational and
meromorphic mappings into algebraic varieties, Amer. J. Math. 104 (1982),
887-900.

A.N. Parshin, Algebraic curves over function fields, I, Izv. Akad. Nauk SSSR

Ser. Mat., 32 (1968), 1145—1170.



[P,]

[Pe]
[R]

(Ro]

(SZ]
(SY]

S,

(S5]

A.N. Parshin, Finiteness theorems and hyperbolic manifolds, preprint.

C. Peters, Rigidity for variations of Hodge structure and Arakelov—type
finiteness theorems, Compositio Math.

M. Raynoud, Around the Mordell conjecture for function fields and a
conjecture of Serge Lang, Lecture Notes in Math., vol. 1016, pp. 1-19,
Springer—Verlag, Berlin—~New York, 1983.

H.L. Royden, Automorphisms and isometries of Teichmiiller spaces, Advances
in the Theory of Riemann Surfaces, pp. 369—383, Ann. of Math. Studies 66,
Princeton Univ. Press, Princeton, New Jersey, 1971.

M.-H. Saito and S. Zucker, Classification of non—rigid families of K3
surfaces and a finiteness theorem of Arakelov type, preprint.

R. Schoen and S.—T. Yau, Compact group actions and the topology of
manifolds with non—positive curvature, Topology 18 (1979), 361—-380.

T. Sunada, Holomorphic mappings into a compact quotient of symmetric
bounded domain, Nagoya Math. J. 64 (1976), 159—175.

T. Sunada, Rigidity of certain harmonic mappings, Invent. Math. 51 (1979),
297-307.

Department of Mathematics
Tokyo Institute of Technology
O’okayama, Meguro

Tokyo 152

JAPAN

Max—Planck—Institut

fiir Mathematik
Gottfried—Claren—Str. 26
5300 Bonn 3

Federal Republic of Germany



