INTERSECTION OF SUBGROUPS IN FREE GROUPS AND HOMOTOPY GROUPS

HANS-JOACHIM BAUES AND ROMAN MIKHAILOV

Abstract. Let K be a two-dimensional CW-complex with subcomplexes K_{1}, K_{2}, K_{3} such that $K=K_{1} \cup K_{2} \cup K_{3}$ and $K_{1} \cap K_{2} \cap K_{3}$ is the 1-skeleton K^{1} of K. We construct a natural homomorphism of $\pi_{1}(K)$-modules

$$
\pi_{3}(K) \rightarrow \frac{R_{1} \cap R_{2} \cap R_{3}}{\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]}
$$

where $R_{i}=\operatorname{ker}\left\{\pi_{1}\left(K^{1}\right) \rightarrow \pi_{1}\left(K_{i}\right)\right\}, i=1,2,3$ and the action of $\pi_{1}(K)=F / R_{1} R_{2} R_{3}$ on the right hand abelian group is defined via conjugation in F. In certain cases, the defined map is an isomorphism.

1. Introduction

Given a free group F and normal subgroups ($n \geq 2$)

$$
R_{1}, \ldots, R_{n} \subset F
$$

we consider the quotient group

$$
I_{n}\left(F, R_{1}, \ldots, R_{n}\right)=\frac{R_{1} \cap \cdots \cap R_{n}}{\prod_{I \cup J=\{1, \ldots, n\}}\left[\bigcap_{i \in I} R_{i}, \bigcap_{j \in J} R_{j}\right]} .
$$

Here \bigcap denotes the intersection of subgroups in the free group F and Π is the product of commutator subgroups as indicated. In fact, the abelian group I_{n} has the natural structure of an $F / R_{1} \ldots R_{n}$-module, with the group action defined via conjugation in F.

The computation of the abelian group I_{n} is highly non-trivial. In fact, Wu [6] showed for the special case $F=\left\langle x_{1}, \ldots, x_{n-1}\right\rangle, R_{i}=\left\langle x_{i}\right\rangle^{F}, i=1, \ldots, n-1, R_{n}=\left\langle x_{1} \ldots x_{n-1}\right\rangle^{F}$ that

$$
I_{n}\left(F, R_{1}, \ldots, R_{n}\right)=\pi_{n}\left(S^{2}\right)
$$

is the n-th homotopy group of the 2 -sphere.
It is one of the deep problems of algebraic topology to compute homotopy groups $\pi_{n}\left(S^{2}\right)$. In low degrees one has (see [5]):

$$
\begin{array}{c|cccccccc}
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \pi_{n}\left(S^{2}\right) & \mathbb{Z} & \mathbb{Z} & \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} & \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{3}
\end{array}
$$

On the other hand, for $n=2$, one has a general description of the group $I_{2}\left(F, R_{1}, R_{2}\right)$ in terms of homotopy groups of certain spaces. For this we consider a connected 2dimensional CW-complex K with subcomplexes

$$
K_{1}, \ldots, K_{n} \subset K
$$

[^0]for which $K_{1} \cup \cdots \cup K_{n}=K$ and $K_{1} \cap \cdots \cap K_{n}$ is the 1 -skeleton K^{1} of K, with $F=\pi_{1}\left(K^{1}\right)$ and
$$
R_{i}=\operatorname{ker}\left\{\pi_{1}\left(K^{1}\right) \rightarrow \pi_{1}\left(K_{i}\right)\right\}, \quad i=1, \ldots, n
$$

In fact, Gutierrez-Ratcliffe [3] show that for $n=2$ one has an exact sequence of $\pi_{1}(K)$ modules

$$
0 \rightarrow i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right) \rightarrow \pi_{2}(K) \rightarrow I_{2}\left(F, R_{1}, R_{2}\right) \rightarrow 0
$$

where i_{j} is the map induced by the inclusion $K_{j} \rightarrow K, j=1,2$. In this case,

$$
I_{2}\left(F, R_{1}, R_{2}\right)=\frac{R_{1} \cap R_{2}}{\left[R_{1}, R_{2}\right]}
$$

It is the purpose of this paper to combine the results of Wu and Gutierrez-Ratcliffe respectively and to study a corresponding generalization. We conjecture that each element $\alpha \in \pi_{n}\left(S^{2}\right)$ determines a natural function $(n \geq 2)$

$$
\alpha_{*}: \pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+\cdots+i_{n} \pi_{2}\left(K_{n}\right)\right) \rightarrow I_{n}\left(F, R_{1}, \ldots, R_{n}\right)
$$

For the example of Wu above K can be chosen to be the 2 -sphere S^{2} and α_{*} carries in this case the identity of S^{2} to α showing that α_{*} is non-trivial. In general, α_{*} is not a homomorphism of abelian groups.

Proposition. Let $n=2$. If α is a generator of $\pi_{2}\left(S^{2}\right)=\mathbb{Z}$, then α_{*} exists and is given by the map $\pi_{2}(K) \rightarrow I_{2}\left(F, R_{1}, R_{2}\right)$ of Gutierrez-Ratcliffe [3].

Moreover, as a main result of this paper we prove the following
Theorem. Let $n=3$. If $\alpha \in \pi_{3}\left(S^{2}\right)$ is a generator, then there is a well-defined function α_{*} which is a quadratic map inducing a natural homomorphism of $\pi_{1}(K)$-modules

$$
\alpha_{\#}: \pi_{3}(K) \rightarrow I_{3}\left(F, R_{1}, R_{2}, R_{3}\right)
$$

For the example of $W u$, one has $K=S^{2}$ and in this case $\alpha_{\#}$ is an isomorphism.

2. The example of Wu

Recall the description of homotopy groups of the 2-sphere due to Wu [6]. Let $F\left[S^{1}\right]$ be Milnor's F-construction applied to the simplicial circle S^{1}. This is the free simplicial group with $F\left[S^{1}\right]_{n}$ a free group of rank $n \geq 1$ with generators x_{0}, \ldots, x_{n-1}. Changing the basis of $F\left[S^{1}\right]_{n}$ in the following way: $y_{i}=x_{i} x_{i+1}^{-1}, y_{n-1}=x_{n-1}$, we get another basis $\left\{y_{0}, \ldots, y_{n-1}\right\}$ in which the simplicial maps can be written easier. A combinatorial grouptheoretical argument then shows that the functor I_{n+1} applied to the example of Wu in the introduction gives exactly the n-th homotopy group of the loop space $\Omega \Sigma S^{1}$, which is isomorphic to the homotopy group of $\pi_{n+1}\left(S^{2}\right)$ (see [6] for explicit computations). In fact, we have

$$
\pi_{n+1}\left(S^{2}\right) \cong \frac{\left\langle y_{-1}\right\rangle^{F} \cap\left\langle y_{0}\right\rangle^{F} \cap \cdots \cap\left\langle y_{n-1}\right\rangle^{F}}{\left[\left[y_{-1}, y_{0}, \ldots, y_{n-1}\right]\right]},
$$

where F is a free group with generators $y_{0}, \ldots, y_{n-1}, y_{-1}=\left(y_{0} \ldots y_{n-1}\right)^{-1}$, the group $\left[\left[y_{-1}, y_{0}, \ldots, y_{n-1}\right]\right]$ is the normal closure in F of the set of left-ordered commutators

$$
\begin{equation*}
\left[z_{1}^{\varepsilon_{1}}, \ldots, z_{t}^{\varepsilon_{t}}\right] \tag{1}
\end{equation*}
$$

with the properties that $\varepsilon_{i}= \pm 1, z_{i} \in\left\{y_{-1}, \ldots, y_{n-1}\right\}$ and all elements in $\left\{y_{-1}, \ldots, y_{n-1}\right\}$ appear at least ones in the sequence of elements z_{i} in (1). A standard commutator calculus argument, given essentially in Corollary 3.5 of [6] shows that

$$
\left[\left[y_{-1}, y_{0}, \ldots, y_{n-1}\right]\right]=\prod_{I \cup J=\{1, \ldots, n+1\}}\left[\bigcap_{i \in I} R_{i}, \bigcap_{j \in J} R_{j}\right]
$$

where $R_{i+1}=\left\langle y_{i}\right\rangle^{F}, i=0, \ldots, n-1, R_{n+1}=\left\langle y_{-1}\right\rangle^{F}$. Hence we have the following isomorphism

$$
\begin{equation*}
I_{n+1}\left(F, R_{1}, \ldots, R_{n+1}\right) \cong \pi_{n+1}\left(S^{2}\right) \tag{2}
\end{equation*}
$$

Consider first the most elementary case $n=2$. In this case we view the 2 -sphere S^{2} as a standard complex constructed from the group presentation

$$
\left\langle x_{1} \mid x_{1}, x_{1}^{-1}\right\rangle
$$

Clearly then

$$
I_{2}\left(\bar{S}^{2}\right)=\frac{\left\langle x_{1}\right\rangle \cap\left\langle x_{1}^{-1}\right\rangle}{\left[\left\langle x_{1}\right\rangle,\left\langle x_{1}^{-1}\right\rangle\right]} \simeq \mathbb{Z}
$$

with x_{1} a generator of this infinite cyclic group.

3. The category \mathcal{K}_{n}

For $n \geq 2$, denote by \mathcal{K}_{n} the category with objects $\bar{K}=\left(K, K_{1}, \ldots, K_{n}\right)$. Here K is a two-dimensional CW-complex, K_{i} is a subcomplex of $K, i=1, \ldots, n$, such that $K=K_{1} \cup \cdots \cup K_{n}$, and $K^{1}=K_{1} \cap \cdots \cap K_{n}$. A morphism in $\operatorname{Hom}_{\mathcal{K}_{n}}(\bar{K}, \bar{L})$ for $\bar{K}, \bar{L} \in \mathcal{K}_{n}$ is a map

$$
f: K^{1} \rightarrow L^{1}
$$

between 1 -skeletons of K and L, such that f can be extended to a map $\bar{f}: K \rightarrow L$, with the property $\bar{f}\left(K_{i}\right) \subseteq L_{i}, i=1, \ldots, n$.

Denote by $\mathcal{R}_{n}(n \geq 2)$ the category with objects $\left(F, R_{1}, \ldots, R_{n}\right)$, where F is a free group and R_{i} is a normal subgroup in F. A morphism in \mathcal{R}_{n} between two objects $\left(F, R_{1}, \ldots, R_{n}\right)$ and $\left(F^{\prime}, R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right)$ is a group homomorphism $g: F \rightarrow F^{\prime}$ such that $g\left(R_{i}\right) \subseteq R_{i}^{\prime}, i=$ $1, \ldots, n$. This category was also considered in [1].

There is a natural functor between these two categories,

$$
\mathcal{F}_{n}: \mathcal{K}_{n} \rightarrow \mathcal{R}_{n},
$$

defined by setting

$$
\mathcal{F}_{n}:\left(K, K_{1}, \ldots, K_{n}\right) \mapsto\left(\pi_{1}\left(K^{1}\right), R_{1}, \ldots, R_{n}\right)
$$

where $R_{i}=\operatorname{ker}\left\{\pi_{1}\left(K^{1}\right) \rightarrow \pi_{1}\left(K_{i}\right)\right\}$.
Proposition 1. The functor \mathcal{F}_{n} defines an equivalence of the categories \mathcal{K}_{n} and \mathcal{R}_{n}.

For $n \geq 2$, define the functor

$$
I_{n}: \mathcal{R}_{n} \rightarrow \mathcal{A} b
$$

where $\mathcal{A} b$ is the category of abelian groups, by setting

$$
I_{n}: \bar{R}=\left(F, R_{1}, \ldots, R_{n}\right) \mapsto I_{n}(\bar{R}):=\frac{R_{1} \cap \cdots \cap R_{n}}{\prod_{I \cup J=\{1, \ldots, n\}}\left\lfloor\bigcap_{i \in I} R_{i}, \bigcap_{j \in J} R_{j}\right]}
$$

Clearly, for any $\bar{R} \in \mathcal{R}_{n}$, the abelian group $I_{n}(\bar{R})$ has a natural structure of $F / R_{1} \ldots R_{n^{-}}$ module, where the group action viewed via conjugation in F.

4. The surjection q And the conjecture on α_{*}

In this section we show the following result.
Proposition 2. For an object \bar{S}_{n} in \mathcal{K}_{n} associated to W 's example in \mathcal{R}_{n} there is a surjection

$$
q: \operatorname{Hom}_{\mathcal{K}_{n}}\left(\bar{S}_{n}, \bar{K}\right) \rightarrow \pi_{2}(K) /\left(i_{1}\left(K_{1}\right)+\ldots i_{n}\left(K_{n}\right)\right)
$$

which is natural in $\bar{K} \in \mathcal{K}_{n}$.
For $\alpha \in \pi_{n}\left(S^{2}\right)=I_{n} \mathcal{F}_{n}\left(\bar{S}_{n}\right)$ we thus obtain the following diagram

where $\alpha^{*}(f)=f_{*}(\alpha)$.
Conjecture 1. For each $\alpha \in \pi_{n}\left(S^{2}\right)$ there exists a function α_{*} for which the diagram commutes. Hence α_{*} is well defined and natural provided $q(f)=q(g)$ implies $\alpha^{*}(f)=$ $\alpha^{*}(g)$.

Recall that for a given two-dimensional complex K, the free crossed module

$$
\partial: \pi_{2}\left(K, K^{1}\right) \rightarrow \pi_{1}\left(K^{1}\right)
$$

can be defined as follows. The group $\pi_{2}\left(K, K^{1}\right)$ is generated by the set

$$
\left\{e_{\alpha}^{w} \mid \alpha \text { is a 2-cell in } K, w \in \pi_{1}\left(K^{1}\right)\right\}
$$

with the set of relations

$$
\begin{equation*}
\left\{e_{\alpha}^{v} e_{\beta}^{w} e_{\alpha}^{-v} e_{\beta}^{-u}, u=v r_{\alpha} v^{-1} w\right\} \tag{3}
\end{equation*}
$$

where $r_{\alpha} \in \pi_{1}\left(K^{1}\right)$ is the attaching element representing e_{α} (see, for example, [2]). The homomorphism ∂ is defined by setting $\partial: e_{\alpha}^{w} \mapsto r_{\alpha}^{w}$. Hence every element from $\operatorname{ker}(\partial)=$ $\pi_{2}(K)$ can be represented by an element $e_{\alpha_{1}}^{ \pm w_{1}} \ldots e_{\alpha_{m}}^{ \pm w_{m}}$, such that $r_{\alpha_{1}}^{ \pm w_{1}} \ldots r_{\alpha_{m}}^{ \pm w_{m}}$ is trivial in $\pi_{1}\left(K^{1}\right)$.

Consider the two-dimensional sphere S^{2} as the standard two-complex constructed from the following presentation of the trivial group:

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{n-1} \mid x_{1}, \ldots, x_{n-1}, x_{n-1}^{-1} \cdots x_{1}^{-1}\right\rangle \tag{4}
\end{equation*}
$$

This presentation defines an element \bar{S}_{n} from \mathcal{K}_{n} :

$$
\begin{equation*}
\bar{S}_{n}=\left(S^{2}, L_{1}, \ldots, L_{n}\right), \tag{5}
\end{equation*}
$$

with $L_{i}=\vee_{i=1}^{n-1} S^{1} \cup e_{i}$, where e_{i} is the 2-cell corresponding to the relation word $x_{i}, i=$ $1, \ldots, n-1, e_{n}$ is the 2-cell corresponding to the relation word $x_{n-1}^{-1} \cdots x_{1}^{-1}$.

Let $f \in \operatorname{Hom}_{\mathcal{K}_{n}}\left(\bar{S}_{n}, \bar{K}\right)$. It means that there exists a homomorphism between two free groups $f: F_{n-1}:=F\left(x_{1}, \ldots, x_{n}\right) \rightarrow \pi_{1}\left(K^{1}\right)$ such that

$$
\begin{equation*}
f\left(x_{i}\right) \in \operatorname{ker}\left\{\pi_{1}\left(K^{1}\right) \rightarrow \pi_{i}\left(K_{i}\right)\right\}, \quad i=1, \ldots, n-1 \tag{6}
\end{equation*}
$$

and f can be extended to a homomorphism between two crossed modules:

For a given group homomorphism $f: F_{n-1} \rightarrow \pi_{1}\left(K^{1}\right)$ with the property (6), the necessary and sufficient condition of the existence of the extension (8) is the condition

$$
f\left(x_{1} \cdots x_{n}\right) \subseteq R_{n}:=\operatorname{ker}\left\{\pi_{1}\left(K^{1}\right) \rightarrow \pi_{1}(K)\right\}
$$

For $\bar{K}=\left(K, K_{1}, \ldots, K_{n}\right) \in \mathcal{K}_{n}$, we now define the canonical (forgetful) map

$$
q: \operatorname{Hom}_{\mathcal{K}_{n}}\left(\bar{S}_{n}, \bar{K}\right) \rightarrow \pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+\ldots i_{n} \pi_{2}\left(K_{n}\right)\right),
$$

which carries a morphism $\bar{S}^{2} \rightarrow \bar{K}$ to the underlying map $S^{2} \rightarrow K$. Here the natural maps $i_{j}: \pi_{2}\left(K_{j}\right) \rightarrow K$ are induced by inclusions $K_{j} \rightarrow K$. Using the language of crossed modules, we can describe the map q as follows. Denote by $\left\{s_{1}, \ldots, s_{n}\right\}$ the set of 2 cells in S^{2} viewed as the standard two-complex for the group presentation (4). Then the map f^{\prime} defines elements $f^{\prime}\left(s_{\alpha}\right) \in \pi_{2}\left(K, K^{1}\right)$. Observe that $\partial_{1}\left(s_{1} \ldots s_{n}\right)=1$ and the element $s_{1} \ldots s_{n}$ presents the generator of $\pi_{2}\left(S^{2}\right)$. Since the diagram (8) is commutative, $\partial_{2}\left(f^{\prime}\left(s_{1}\right) \ldots f^{\prime}\left(s_{n}\right)\right)=1$ and the element $f^{\prime}\left(s_{1}\right) \ldots f^{\prime}\left(s_{n}\right)$ represents certain element from $\operatorname{ker}\left(\partial_{2}\right)=\pi_{2}(K)$, which is exactly $q(f)$. Let us show that this map does not depend on an extension (8). Suppose we have another extension of the homomorphism f :

with $f^{\prime \prime}\left(s_{j}\right) \neq f^{\prime}\left(s_{j}\right)$ at least for one $j(1 \leq j \leq n)$. It follows that $\partial_{2}\left(f^{\prime}\left(s_{j}\right) f^{\prime \prime}\left(s_{j}\right)^{-1}\right)=1$, hence

$$
f^{\prime}\left(s_{j}\right) f^{\prime \prime}\left(s_{j}\right)^{-1} \in i m\left\{i_{j}: \pi_{2}\left(K_{j}\right) \rightarrow \pi_{2}(K)\right\}
$$

Therefore, the images of elements $f^{\prime}\left(s_{1} \ldots s_{n}\right)$ and $f^{\prime \prime}\left(s_{1} \ldots s_{n}\right)$ are equal in the quotient $\pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+\ldots i_{n} \pi_{2}\left(K_{n}\right)\right)$ and the map q is well-defined.

Lemma 1. The map q is surjective.

Proof. Consider the diagram (8). Now let $c=e_{\alpha_{1}}^{ \pm w_{1}} \ldots e_{\alpha_{m}}^{ \pm w_{m}}$ be an arbitrary element from $\operatorname{ker}\left(\partial_{2}\right)$. Lets enumerate all cells of K in the following order: $e_{1, \alpha}, \ldots, e_{n, \alpha}$ with $e_{i, \alpha} \in K_{i}, i=1, \ldots, m$. Clearly, the set of relations (3) in $\pi_{2}\left(K, K^{1}\right)$ gives a possibility to present the element c in the form

$$
c=\prod_{*} e_{1, *}^{ \pm w_{1, *}} \ldots \prod_{*} e_{n, *}^{ \pm w_{n, *}}
$$

with some $w_{i, *} \in \pi_{1}\left(K^{1}\right)$. Then we define the map $f: F_{n-1} \rightarrow \pi_{1}\left(K^{1}\right)$ by setting $f\left(x_{i}\right)=\prod_{*} r_{i, *}^{ \pm w_{n, *}}$. Then we can extend it to $f^{\prime}: \pi_{2}\left(S^{2}, \vee_{i=1}^{n-1} S^{1}\right) \rightarrow \pi_{2}\left(K, K^{1}\right)$ by $f^{\prime}\left(s_{i}\right)=$ $\prod_{*} r_{i, *}^{ \pm w_{n, *}}$. This is correct, since

$$
\partial_{1}\left(f^{\prime}\left(s_{n}\right)\right)=\partial_{2}\left(f^{\prime}\left(s_{1}\right) \ldots f^{\prime}\left(s_{n-1}\right)\right)^{-1}=f\left(\partial_{1}\left(s_{1} \ldots s_{n-1}\right)^{-1}\right)
$$

Then the homotopy class corresponding to the element $c \in \pi_{2}\left(K, K^{1}\right)$ coincides with $q(f)$ and the surjectivity of q is proved.

5. Proof of the conjecture for $n=2$ and $n=3$

We now describe the map q in the conjecture by use of identity sequences which represent elements in $\pi_{2}(K)$, see [4]. Let F be a free group with basis X and \mathcal{R} a certain set of words in F. Consider the group presentation

$$
\begin{equation*}
\mathcal{P}=\langle X \mid \mathcal{R}\rangle \tag{9}
\end{equation*}
$$

$c_{i}, i=1, \ldots, m$ are words in F, which are conjugates of elements from \mathcal{R}, i.e. $c_{i}=$ $t_{i}^{ \pm w_{i}}, t_{i} \in \mathcal{R}, w_{i} \in F$. Then the sequence

$$
\begin{equation*}
c=\left(c_{1}, \ldots, c_{m}\right) \tag{10}
\end{equation*}
$$

is called an identity sequence if the product $c_{1} \ldots c_{m}$ is the identity in F. For a given identity sequence (10), define its inverse:

$$
c^{-1}=\left(c_{m}^{-1}, \ldots, c_{1}\right)
$$

For a given element $w \in F$, the conjugate c^{w} is the sequence:

$$
c^{w}=\left(c_{1}^{w}, \ldots, c_{m}^{w}\right),
$$

which clearly is again an identity sequence. Define the following operation in the class of identity sequences, called Peiffer operations:
(i) replace each w_{i} by any word equal to it in F;
(ii) delete two consequative terms in the sequence if one is equal identically to the inverse of the other;
(iii) add two consequtive terms in the sequence if one is equal identically to the inverse of the other;
(iv) replace two consequtive terms c_{i}, c_{i+1} by terms $c_{i+1}, c_{i+1}^{-1} c_{i} c_{i+1}$;
(v) replace two consequitive terms c_{i}, c_{i+1} by terms $c_{i} c_{i+1} c_{i}^{-1}, c_{i}$.

Two identity sequences are called equivalent if one can be obtained from the other by a finite number of Peiffer operations. This defines an equivalence relation in the class of identity sequences. The set of equivelence classes of identity sequences for a given group presentation (9) denote by $E_{\mathcal{P}}$. Then $E_{\mathcal{P}}$ can be viewed as a group, with a binary
operation defined as a class of justaposition of two sequences: for identity sequences c_{1}, c_{2} and their equivalence classes $\left\langle c_{1}\right\rangle,\left\langle c_{2}\right\rangle \in E_{\mathcal{P}},\left\langle c_{1}\right\rangle+\left\langle c_{2}\right\rangle=\left\langle c_{1} c_{2}\right\rangle$. The inverse element of the class $\langle c\rangle$ is $\left\langle c^{-1}\right\rangle$ and the identity in $E_{\mathcal{P}}$ is the empty sequence. It is easy to see that $E_{\mathcal{P}}$ is Abelian. For two identity sequences $c=\left(c_{1}, \ldots, c_{m}\right)$ and $d=\left(d_{1}, \ldots, d_{k}\right)$, we have

$$
\langle c d\rangle=\left\langle\left(c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{k}\right)\right\rangle=\left\langle\left(d_{1}, \ldots, d_{k}, c_{1}^{d_{1} \ldots d_{m}}, \ldots, c_{m}^{d_{1} \ldots d_{m}}\right)\right\rangle
$$

by the relation (iv). Since $d_{1} \ldots d_{m}=1$ in F, we have

$$
\langle c d\rangle=\left\langle\left(d_{1}, \ldots, d_{k}, c_{1}, \ldots, c_{m}\right)\right\rangle=\langle d c\rangle
$$

Furthermore, $E_{\mathcal{P}}$ is a F-module, where the action is given by

$$
\langle c\rangle \circ f=\left\langle c^{f}\right\rangle, f \in F .
$$

It is easy to show that

$$
\langle c\rangle \circ r=\langle c\rangle, r \in R,
$$

i.e. the subgroup R acts trivially at $E_{\mathcal{P}}$. To see this, let $r=r_{1}^{ \pm v_{1}} \ldots r_{k}^{ \pm v_{k}}, r_{i} \in \mathcal{R}, v_{i} \in F$. Then for any identity sequence $c=\left(c_{1}, \ldots, c_{m}\right)$, by (ii), (iii), (iv),

$$
\begin{aligned}
& \left\langle\left(c_{1}, \ldots, c_{m}\right)\right\rangle=\left\langle\left(c_{1}, \ldots, c_{m}, r_{1}^{ \pm v_{1}}, \ldots, r_{k}^{ \pm v_{k}}, r_{k}^{\mp v_{k}}, \ldots, r_{1}^{\mp v_{1}}\right)\right\rangle= \\
& \\
& \left\langle\left(r_{1}^{ \pm v_{1}}, \ldots, r_{k}^{ \pm v_{k}}, c_{1}^{r}, \ldots, c_{m}^{r}, r_{k}^{\mp v_{k}}, \ldots, r_{1}^{\mp v_{1}}\right)\right\rangle=\left\langle\left(c_{1}^{r}, \ldots, c_{m}^{r}\right)\right\rangle .
\end{aligned}
$$

Thus $E_{\mathcal{P}}$ can be viewed as a G-module. It is not hard to show that for a given presentation \mathcal{P}, the second homotopy module $\pi_{2}\left(K_{\mathcal{P}}\right)$ is isomorphic to the identity sequence module $E_{\mathcal{P}}$ (see, for example, [4]).

For a given \bar{K} choose the elements $e_{i, \alpha} \in \pi_{2}\left(K, K^{1}\right), i=1, \ldots, n, \alpha \in A$ which represent the corresponding two-dimensional cells in $K_{i}, i=1, \ldots, n$ with the natural property

$$
\partial\left(e_{i, \alpha}\right) \in R_{i}
$$

where $R_{i}=\operatorname{ker}\left\{\pi_{1}\left(K^{1}\right) \rightarrow \pi_{1}\left(K_{i}\right)\right\}, i=1, \ldots n$, and the normal closure of the set $\left\{\partial\left(e_{i, \alpha}\right) \mid \alpha \in A\right\}$ in $\pi_{1}\left(K^{1}\right)$ is equal to R_{i}. Clearly, K is homotopically equivalent to a wedge

$$
K \simeq \bigvee_{j \in J} S^{2} \vee K_{\mathcal{P}}
$$

where $K_{\mathcal{P}}$ is the standard two-complex constructed from the group presentation

$$
\left\langle X \mid \partial\left(e_{i, \alpha}\right), i=1, \ldots, n, \alpha \in A\right\rangle
$$

with X being a basis of $\pi_{1}\left(K^{1}\right)$. Then we have the following natural isomorphism of $\pi_{1}(K)$-modules:

$$
\pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+\cdots+i_{n} \pi_{2}\left(K_{n}\right)\right) \simeq \pi_{2}\left(K_{\mathcal{P}}\right) /\left(i_{1} \pi_{2}\left(K_{\mathcal{P}_{1}}\right)+\cdots+i_{n} \pi_{2}\left(K_{\mathcal{P}_{n}}\right)\right)
$$

where \mathcal{P}_{i} is the following presentation of the group $\pi_{1}\left(K_{i}\right)$:

$$
\left\langle X \mid \partial\left(e_{i, \alpha}\right), \alpha \in A\right\rangle
$$

for $i=1, \ldots, n$.
Let $f, g \in \operatorname{Hom}_{\mathcal{K}_{n}}\left(\bar{S}_{n}, \bar{K}\right)$. Then we can present

$$
\begin{aligned}
& f\left(x_{i}\right)=r_{1}^{(i)^{ \pm w_{1, i}} \ldots r_{k_{i}}^{(i)^{ \pm w_{k_{i}, i}}}, i=1, \ldots, n-1,} \\
& f\left(x_{1} \cdots x_{n}\right)=r_{1}^{(n)^{ \pm w_{1, n}}} \ldots r_{k_{n}}^{(n) \pm w_{k_{n}, n}}
\end{aligned}
$$

for some $r_{j}^{(i)} \in\left\{\partial\left(e_{i, \alpha}\right), \alpha \in A\right\}$ and $w_{j, i} \in \pi_{1}\left(K^{1}\right)$. Analogically for $g \in \operatorname{Hom}_{\mathcal{K}_{n}}\left(\bar{S}_{n}, \bar{K}\right)$:

$$
\begin{aligned}
& g\left(x_{i}\right)=r_{1}^{\prime(i)^{ \pm w_{1, i}^{\prime}} \ldots r_{k_{i}^{\prime}}^{\prime(i) \pm w_{k_{i}^{\prime}, i}^{\prime}}, i=1, \ldots, n-1} \\
& g\left(x_{1} \cdots x_{n}\right)=r_{1}^{\prime(n)^{ \pm w_{1, n}^{\prime}} \ldots r_{k_{n}^{\prime}}^{\prime\left(n^{\prime}\right.} \pm w_{k_{n}^{\prime}, n}^{\prime}}
\end{aligned}
$$

The following Lemma follows directly from the definition of the map q and the above description of the second homotopy module for the standard complex in terms of identity sequences.

Lemma 2. Using the above notation, $q(f)=q(g)$ if and only if the identity sequence

$$
\left(r_{1}^{(1)^{ \pm w_{1,1}}}, \ldots, r_{k_{n}}^{(n)^{ \pm w_{k_{n}, n}}}, r_{k_{n}^{\prime}}^{\left(n^{\prime}\right) \mp w_{k_{n}^{\prime}, n}^{\prime}}, \ldots, \ldots, r_{1}^{\left.\prime(1)^{\mp w_{1,1}^{\prime}}\right)}\right.
$$

is equivalent to an identity sequence of the form

$$
\left(s_{1}^{(1)}, \ldots, s_{l_{1}}^{(1)}, \ldots, s_{1}^{(n)}, \ldots, s_{l_{n}}^{(n)}\right)
$$

with $s_{j}^{(i)} \in\left\{\partial\left(e_{i, \alpha}\right)^{ \pm w}, w \in \pi_{1}\left(K^{1}\right)\right\}$ such that $s_{1}^{(i)} \ldots s_{l_{i}}^{(i)}$ is trivial in $\pi_{1}\left(K^{1}\right)$ for every $i=1, \ldots, n$.

Let $\left(K, K_{1}, K_{2}\right) \in \mathcal{K}_{2}$. The $\pi_{1}(K)$-module $\pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right)\right)$ can be identified to the module of the identity sequences of the type

$$
\begin{equation*}
\left(c_{1}, \ldots, c_{m}\right), c_{j} \in\left\{\partial\left(c_{i, \alpha}\right)^{w}, w \in \pi_{1}\left(K^{1}\right), \alpha \in A, i=1,2\right\} \tag{11}
\end{equation*}
$$

modulo the sequences of the form $\left(c_{1}, \ldots, c_{m_{1}}, c_{m_{1}+1}, \ldots, c_{m}\right)$ with $c_{1}, \ldots, c_{m_{1}} \in\left\{\partial\left(c_{1, \alpha}\right)^{w}, w \in\right.$ $\left.\pi_{1}\left(K^{1}\right)\right\}, c_{m_{1}+1}, \ldots, c_{m} \in\left\{\partial\left(c_{2, \alpha}\right)^{w}, w \in \pi_{1}\left(K^{1}\right)\right\}$ with

$$
c_{1} \ldots c_{m_{1}}=c_{m_{1}+1} \ldots c_{m}=1
$$

in $\pi_{1}\left(K^{1}\right)$.
Every identity sequence (11) with the help of Peiffer operations of the type (iv) can be reduced to the sequence of the form $\left(c_{1}, \ldots, c_{m_{1}}, c_{m_{1}+1}, \ldots, c_{m}\right)$ with $c_{1}, \ldots, c_{m_{1}} \in$ $\left\{\partial\left(c_{1, \alpha}\right)^{w}, w \in \pi_{1}\left(K^{1}\right)\right\}, c_{m_{1}+1}, \ldots, c_{m} \in\left\{\partial\left(c_{2, \alpha}\right)^{w}, w \in \pi_{1}\left(K^{1}\right)\right\}$. Then for a generator $x \in \pi_{2}\left(S^{2}\right)$, the map

$$
\Lambda_{x}: \pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right)\right) \rightarrow \frac{R_{1} \cap R_{2}}{\left[R_{1}, R_{2}\right]}
$$

is given in the above notation by

$$
\Lambda_{x}:\left(c_{1}, \ldots, c_{m_{1}}, c_{m_{1}+1}, \ldots, c_{m}\right) \mapsto c_{1} \cdots c_{m_{1}} \cdot\left[R_{1}, R_{2}\right] .
$$

First observe that Λ_{x} is the homomorphism of $\pi_{1}(K)=\pi_{1}\left(K^{1}\right) / R_{1} R_{2}$-modules. Secondly, Λ_{x} clearly is an epimorphism. The fact that Λ_{x} is a monomorphism is not difficult (see Theorem 1.3 [4] for the complete proof). Hence we have the following exact sequence of $\pi_{1}(K)$-modules due to Gutierrez and Ratcliffe [3]:

$$
\begin{equation*}
0 \rightarrow i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right) \xrightarrow{\alpha} \pi_{2}(K) \rightarrow \frac{R_{1} \cap R_{2}}{\left[R_{1}, R_{2}\right]} \rightarrow 0 . \tag{12}
\end{equation*}
$$

Theorem 1. Conjecture 1 is true for $n=3$.

Proof. In this case we view S^{2} as the standard complex constructed for the group presentation

$$
\left\langle x_{1}, x_{2} \mid x_{1}, x_{2}, x_{2}^{-1} x_{1}^{-1}\right\rangle
$$

with

$$
I_{3}\left(\mathcal{F}_{3}\left(\bar{S}^{2}\right)\right)=I_{3}\left(F\left(x_{1}, x_{2}\right),\left\langle x_{1}\right\rangle^{F\left(x_{1}, x_{2}\right)},\left\langle x_{2}\right\rangle^{F\left(x_{1}, x_{2}\right)},\left\langle x_{2}^{-1} x_{1}^{-1}\right\rangle^{F\left(x_{1}, x_{2}\right)}\right) \simeq \mathbb{Z}
$$

with a generator given by the commutator $\left[x_{1}, x_{2}\right]$.
Let $\bar{K}=\left(K, K_{1}, K_{2}, K_{3}\right) \in \mathcal{K}_{3}$. Denote $F=\pi_{1}\left(K^{1}\right)$. Denote the sets of words in F : $\mathcal{R}_{i}=\left\{\partial\left(e_{i, \alpha}, \alpha \in A\right\}, i=1,2,3\right.$. By \mathcal{R}_{i}^{F} we mean the set $\left\{r^{w}, r \in \mathcal{R}_{i}, w \in F\right\}$. The $\pi_{1}(K)$-module $\pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right)+i_{3} \pi_{2}\left(K_{3}\right)\right)$ can be identified with the module of the identity sequences

$$
\begin{equation*}
c=\left(c_{1}, \ldots, c_{m}\right), c_{j} \in \mathcal{R}_{1}^{F} \cup \mathcal{R}_{2}^{F} \cup \mathcal{R}_{3}^{F} \tag{13}
\end{equation*}
$$

modulo the sequences of the type

$$
\begin{equation*}
\left(c_{1}, \ldots, c_{m_{1}}, c_{m_{1}+1}, \ldots, c_{m_{2}}, c_{m_{2}+1}, \ldots, c_{m}\right) \tag{14}
\end{equation*}
$$

with $c_{1}, \ldots, c_{m_{1}} \in \mathcal{R}_{1}^{F}, c_{m_{1}+1}, \ldots, c_{m} \in \mathcal{R}_{2}^{F}, c_{m_{2}+1}, \ldots, c_{m} \in \mathcal{R}_{3}^{F}$ and

$$
\begin{equation*}
c_{1} \ldots c_{m_{1}}=c_{m_{1}+1} \ldots c_{m_{2}}=c_{m_{2}+1} \ldots c_{m}=1 \tag{15}
\end{equation*}
$$

in F.
Divide the sequence (13) into the three ordered subsequences

$$
\begin{equation*}
\left(c_{r_{1}}, \ldots, c_{r_{l}}\right), \quad\left(c_{s_{1}}, \ldots, c_{s_{k}}\right), \quad\left(c_{t_{1}}, \ldots, c_{t_{n}}\right) \tag{16}
\end{equation*}
$$

where $c_{r_{i}} \in \mathcal{R}_{1}^{F}, i=1, \ldots, l, c_{s_{i}} \in \mathcal{R}_{2}^{F}, i=1, \ldots, k, c_{t_{i}} \in \mathcal{R}_{3}^{F}, i=1, \ldots, h$ and

$$
\begin{gathered}
r_{1}<r_{2}<\cdots<r_{l}, \quad s_{1}<s_{2}<\cdots<s_{k}, \quad t_{1}<t_{2}<\cdots<t_{h}, \\
\left\{r_{1}, \ldots, r_{l}\right\} \cup\left\{s_{1}, \ldots, s_{k}\right\} \cup\left\{t_{1}, \ldots, t_{h}\right\}=\{1, \ldots, m\} .
\end{gathered}
$$

Denote

$$
\begin{aligned}
& \bar{c}_{i}=c_{r_{i}}, i=1, \ldots, l, \\
& \bar{c}_{l+i}=c_{s_{i}} \prod_{r_{j}>s_{i}} c_{r_{j}} \\
& \bar{c}_{l+k+i}=c_{t_{1}}^{\left(\prod_{r_{z}>t_{i}} c_{r_{z}}\right) \prod_{s_{j}>t_{1}} c_{s_{j}}}, i, \ldots, k, \\
& \prod_{r_{z}>s_{j}} c_{r_{z}} \\
& , i=1, \ldots, h .
\end{aligned}
$$

Clearly,

$$
\bar{c}_{1}, \ldots, \bar{c}_{l} \in R_{1}, \bar{c}_{l+1}, \ldots, \bar{c}_{l+k} \in R_{2}, \bar{c}_{l+k+1}, \ldots, \bar{c}_{l+k+h} \in R_{3}
$$

and the sequence

$$
\begin{equation*}
\left(\bar{c}_{1}, \ldots, \bar{c}_{l+k+h}\right) \tag{17}
\end{equation*}
$$

is made of the sequence (13), applying the Peiffer operations of type (iv). At the first step we replace all terms $c_{r_{i}}$ to the left side of the sequence. At the second step we replace all terms $c_{s_{i}}$ between elements $c_{r_{i}}$-s and $c_{t_{i}}$-s and get the sequence (17). Denote

$$
\begin{aligned}
r_{c} & :=\bar{c}_{1} \ldots \bar{c}_{l} \in R_{1}, \\
s_{c} & :=\bar{c}_{l+1} \ldots \bar{c}_{l+k} \in R_{2}, \\
t_{c} & :=\bar{c}_{l+k+1} \ldots \bar{c}_{l+k+h} \in R_{3} .
\end{aligned}
$$

In these notations, for the generator $x:=\left[x_{1}, x_{2}\right]$ of $I_{3}\left(\mathcal{F}_{3}\left(\bar{S}^{2}\right)\right)$ construct the map
$\Lambda_{x}: \pi_{2}(K) /\left(i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right)+i_{3} \pi_{2}\left(K_{3}\right)\right) \rightarrow \frac{R_{1} \cap R_{2} \cap R_{3}}{\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]}$,
where $F=\pi_{1}\left(K^{1}\right), R_{i}=\operatorname{ker}\left\{F \rightarrow \pi_{1}\left(K_{i}\right)\right\}, i=1,2,3$, by setting

$$
\Lambda_{x}:\left(c_{1}, \ldots, c_{m}\right) \mapsto\left[r_{c}, s_{c}\right] \cdot\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]
$$

Since $r_{c} s_{c} t_{c}=1$ in F, we have $\left[r_{c}, s_{c}\right] \in R_{1} \cap R_{2} \cap R_{3}$.
Lets show that the above map Λ_{x} is well-defined. Let c^{\prime} be an identity sequence equivalent to the sequence c. Defining elements $r_{c^{\prime}}, s_{c^{\prime}}, t_{c^{\prime}}$ as above, we have to show that

$$
\begin{equation*}
\left[r_{c}, s_{c}\right] \equiv\left[r_{c^{\prime}}, s_{c^{\prime}}\right] \quad \bmod \left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right] \tag{19}
\end{equation*}
$$

Since we above defined map Λ_{x} is trivial for any sequence of the type (14) with conditions (15), the equivalence (19) is necessary and sufficient for the correctness of the map Λ_{x}.

First observe that if the sequences c and c^{\prime} differ by the Peiffer operations of the type (ii) or (iii), the equivalence 19 holds. The only nontrivial Peiffer operations needed to check are operations (iv) and (v). Since (v) is converse to (iv), it is enough to prove the equivalence (19) for the case c^{\prime} is obtained from c by the single Peiffer operation of the type (iv):

$$
c_{i}^{\prime}=c_{i+1}, \quad c_{i+1}^{\prime}=c_{i+1}^{-1} c_{i} c_{i+1}, \quad c_{j}^{\prime}=c_{j}, j \neq i, i+1
$$

for some $1 \leq i<m$.
The cases $i, i+1 \in\left\{r_{1}, \ldots, r_{l}\right\}, i, i+1 \in\left\{s_{1}, \ldots, s_{k}\right\}, i, i+1 \in\left\{t_{1}, \ldots, t_{h}\right\}$ are trivial. In these cases $r_{c}=r_{c^{\prime}}, s_{c}=s_{c^{\prime}}$, hence the needed equivalence (19) follows. In the case $i+1 \in\left\{r_{1}, \ldots, r_{l}\right\}$ also nothing to prove since the definition of the elements r_{c}, s_{c} involves the process of repeating of such operations. In the case $i \in\left\{t_{1}, \ldots, t_{h}\right\}$ or $i+1 \in\left\{t_{1}, \ldots, t_{h}\right\}$ we clearly have $\left[r_{c}, s_{c}\right] \equiv\left[r_{c^{\prime}}, s_{c^{\prime}}\right] \bmod \left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]$.

Only nontrivial case to consider is $i \in\left\{r_{1}, \ldots, r_{l}\right\}, i+1 \in\left\{s_{1}, \ldots, s_{k}\right\}$. Clearly then, $\left[r_{c^{\prime}}, s_{c^{\prime}}\right]=\left[r_{c^{\prime \prime}}, s_{c^{\prime \prime}}\right]$, where the sequence $c^{\prime \prime}$ is obtained by applying again the operation (iv) to the sequence c^{\prime} :

$$
c_{i}^{\prime \prime}=c_{i+1}^{-1} c_{i} c_{i+1}, \quad c_{i+1}^{\prime \prime}=c_{i+1}^{-1} c_{i}^{-1} c_{i+1} c_{i} c_{i+1} .
$$

Let $c_{i}=c_{r_{j}}, c_{i+1}=c_{s_{e}}$. Repeating the operation (iv), we can deform the sequences c and $c^{\prime \prime}$ to the form

$$
r_{2}=r_{1}+1, \ldots, r_{j-1}=r_{j-2}+1, r_{j+2}=r_{j+1}+1, \ldots, r_{l}=r_{l-1}+1
$$

without changing $\left[r_{c}, s_{c}\right]$ and $\left[r_{c^{\prime \prime}}, s_{c^{\prime \prime}}\right]$. Now we can form the triple of words in F :

$$
\mathcal{R}_{1}^{\prime}=\mathcal{R}_{1} \cup\left\{c_{r_{1}} \ldots c_{r_{j-1}}, c_{j+1} \ldots c_{l}\right\}, \mathcal{R}_{2}^{\prime}=\mathcal{R}_{2}, \quad \mathcal{R}_{3}^{\prime}=\mathcal{R}_{3}
$$

Clearly, this triple preserves the triple of normal subgroups R_{1}, R_{2}, R_{3} and we can consider the new identity sequences for the triple of words $\mathcal{R}_{1}^{\prime} \cup \mathcal{R}_{2}^{\prime} \cup \mathcal{R}_{3}^{\prime}$ formed by gluing the elements $c_{r_{1}}, \ldots, c_{r_{j-1}}$, and $c_{r_{j+1}}, \ldots, c_{r_{l}}$:

$$
c^{\prime \prime \prime}=\left(*, \ldots, *, c_{r_{1}} \ldots c_{r_{j-1}}, *, \ldots, *, c_{r_{j+1}} \ldots c_{r_{l}}, *, \ldots, *\right) .
$$

It is easy to see that

$$
\left[r_{c}, s_{c}\right]=\left[r_{c^{\prime \prime \prime}}, s_{c^{\prime \prime \prime}}\right]
$$

in F. Hence, we can always assume that $l=3, c_{r_{2}}=c_{i}$ and reduce arbitrary case to this one using the described procedure. In these notations, we have sequences

$$
\begin{aligned}
& c=\left(*, \ldots, *, c_{r_{1}}, *, \ldots, *, c_{r_{2}}, c_{s_{e}}, *, \ldots, *, c_{r_{3}}, *, \ldots, *\right), \\
& c^{\prime \prime}=\left(*, \ldots, *, c_{r_{1}}, *, \ldots, *, c_{r_{2}}^{s_{e}}, c_{s_{e}}^{c_{r_{2}} c_{s_{e}}}, *, \ldots, *, c_{r_{3}}, *, \ldots, *\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& {\left[r_{c}, s_{c}\right]=\left[c_{r_{1}} c_{r_{2}} c_{r_{3}}, S_{1}\right],} \\
& {\left[r_{c^{\prime \prime \prime}}, s_{c^{\prime \prime \prime}}\right]=\left[c_{r_{1}} c_{r_{2}} c_{r_{3}}, S_{2}\right],}
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{1}=\left(\prod_{s_{j}<r_{1}} c_{s_{j}}^{c_{r_{1}} c_{r_{2}} c_{r_{3}}}\right)\left(\prod_{r_{1}<s_{j}<s_{e}} c_{s_{j}}^{c_{r_{2}} c_{r_{3}}}\right) \cdot c_{s_{e}}^{c_{r_{3}}} \cdot\left(\prod_{s_{e}<s_{j}<r_{3}} c_{s_{j}}^{c_{r_{3}}}\right)\left(\prod_{r_{3}<s_{j}} c_{s_{j}}\right), \\
& S_{2}=\left(\prod_{s_{j}<r_{1}} c_{s_{j}}^{c_{r_{1}} c_{r_{2}}^{c_{s}} c_{r_{3}}}\right)\left(\prod_{r_{1}<s_{j}<s_{e}} c_{s_{j}}^{c_{s_{s}}^{c_{s}} c_{r_{3}}}\right) \cdot c_{s_{e}}^{c_{r_{2}} c_{s_{e}} c_{r_{3}}} \cdot\left(\prod_{s_{e}<s_{j}<r_{3}} c_{s_{j}}^{c_{r_{3}}}\right)\left(\prod_{r_{3}<s_{j}} c_{s_{j}}\right) .
\end{aligned}
$$

We then have

$$
\begin{aligned}
{\left[c_{r_{1}} c_{r_{2}}^{c_{s_{e}}} c_{r_{3}}, S_{2}\right]=} & c_{r_{3}}^{-1} c_{r_{2}}^{-1}\left[c_{r_{2}}^{-1}, c_{s_{e}}\right] c_{r_{1}}^{-1} S_{2}^{-1} c_{r_{1}} c_{r_{2}}^{c_{s_{e}}} c_{r_{3}} S_{2}= \\
& c_{r_{3}}^{-1} c_{r_{2}}^{-1}\left[c_{r_{2}}^{-1}, c_{s_{e}}\right] c_{r_{1}}^{-1} S_{2}^{-1} c_{r_{3}}^{-1} c_{r_{2}}^{-c_{s}} c_{r_{2}}^{c_{s_{e}}} c_{r_{3}} c_{r_{1}} c_{r_{2}}^{c_{s_{e}}} c_{r_{3}} S_{2} \equiv \\
& c_{r_{3}}^{-1} c_{r_{2}}^{-1} c_{r_{1}}^{-1} S_{2}^{-1} c_{r_{3}}^{-1} c_{r_{2}}^{-c_{s}}\left[c_{r_{2}}^{-1}, c_{s_{e}}\right] c_{r_{2}}^{c_{s_{e}}} c_{r_{3}} c_{r_{1}} c_{r_{2}}^{c_{s_{e}}} c_{r_{3}} S_{2} \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right],
\end{aligned}
$$

since $S_{2}^{-1} c_{r_{3}}^{-1} c_{r_{2}}^{-c_{s_{e}}} \in R_{3},\left[c_{r_{2}}^{-1}, c_{s_{e}}\right] \in R_{1} \cap R_{2}$. Therefore,

$$
\left.\left[c_{r_{1}} c_{r_{2}}^{c_{s_{e}}} c_{r_{3}}, S_{2}\right] \equiv c_{r_{3}}^{-1} c_{r_{2}}^{-1} c_{r_{1}}^{-1} S_{2}^{-1} c_{r_{3}}^{-1} c_{r_{2}}^{-c_{s e}} c_{r_{2}} c_{r_{3}} c_{r_{1}} c_{r_{2}}^{c_{s e}} c_{r_{3}} S_{2}\right] .
$$

However,

$$
c_{r_{1}} c_{r_{2}}^{c_{s e}} c_{r_{3}} S_{2}=c_{r_{1}} c_{r_{2}} c_{r_{3}} S_{1} \in R_{3},
$$

therefore, $S_{2}=c_{r_{3}}^{-1} c_{r_{2}}^{-c_{s e}} c_{r_{2}} c_{r_{3}} S_{1}$ and we have

$$
\left[c_{r_{1}} c_{r_{2}}^{c_{s e}} c_{r_{3}}, S_{2}\right] \equiv\left[c_{r_{1}} c_{r_{2}} c_{r_{3}}, S_{1}\right] \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right]
$$

Hence, we always have the needed equivalence (19) and we proved that the map Λ_{x} is well-defined.

For the generator $x \in \pi_{3}\left(S^{2}\right)$ denote by Λ the composite map of the natural projection $\pi_{2}(K) \rightarrow \pi_{2}(K) / i_{1} \pi_{2}\left(K_{1}\right)+i_{2} \pi_{2}\left(K_{2}\right)+i_{3} \pi_{2}\left(K_{3}\right)$ and the map Λ_{x} :

$$
\Lambda: \pi_{2}(K) \rightarrow \frac{R_{1} \cap R_{2} \cap R_{3}}{\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]} .
$$

Proposition 3. Let $b \in i_{12} \pi_{2}\left(K_{1} \cup K_{2}\right)+i_{13} \pi_{2}\left(K_{1} \cup K_{3}\right)+i_{23} \pi_{2}\left(K_{2} \cup K_{3}\right) \subseteq \pi_{2}(K)$ where the maps i_{12}, i_{13}, i_{23} are induced by the inclusions

$$
i_{12}: K_{1} \cup K_{2} \rightarrow K, i_{13}: K_{1} \cup K_{3} \rightarrow K, i_{23}: K_{2} \cup K_{3} \rightarrow K
$$

Then $\Lambda(a+b)=\Lambda(a)$ for every $a \in \pi_{2}(K)$.
Proof. Let a be an element from $\pi_{2}(K)$ presented by identity sequence (16) and the element b be an element from $i_{12}\left(K_{1} \cup K_{2}\right) \subseteq \pi_{2}(K)$ presented by the identity sequence $\left(d_{1}, \ldots, d_{l^{\prime}}, e_{1}, \ldots, e_{k^{\prime}}\right)$ with $d_{i} \in \mathcal{R}_{1}^{F}, e_{i} \in \mathcal{R}_{2}^{F}$. Then the element $a+b$ can be presented by the following identity sequence

$$
c(a+b)=\left(c_{r_{1}}, \ldots, c_{r_{l}}, d_{1}, \ldots, d_{l^{\prime}}, c_{s_{1}}^{d_{1} \ldots d_{l^{\prime}}}, \ldots, c_{s_{k}}^{d_{1} \ldots d_{l^{\prime}}}, e_{1}, \ldots, e_{k^{\prime}}, f_{1}, \ldots, f_{h^{\prime}}\right)
$$

with $f_{1}, \ldots, f_{h^{\prime}} \in \mathcal{R}_{3}^{F}$. Denote $a_{1}=c_{r_{1}} \ldots c_{r_{l}}, a_{2}=d_{1} \ldots d_{l^{\prime}}, b_{1}=c_{s_{1}} \ldots c_{s_{k}}, b_{2}=e_{1} \ldots e_{k^{\prime}}$. Then we have

$$
\begin{aligned}
& {\left[a_{1} a_{2}, b_{1}^{a_{2}} b_{2}\right]=a_{2}^{-1} a_{1}^{-1} b_{2}^{-1} a_{2}^{-1} b_{1}^{-1} a_{2} a_{1} b_{1} a_{2} b_{2} \equiv} \\
& \\
& a_{1}^{-1} b_{2}^{-1} a_{2}^{-1} b_{1}^{-1} a_{1} b_{1} a_{2} b_{2} \equiv a_{1}^{-1} b_{1}^{-1} a_{1} b_{1} \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right],
\end{aligned}
$$

since $a_{2} \in R_{1} \cap R_{2}, a_{1}^{-1} b_{2}^{-1} a_{2}^{-1} b_{1}^{-1} \in R_{3}, a_{2} b_{2}=1$. Hence $\Lambda(a+b)=\Lambda(a)$.
In the case $b \in i_{13} \pi_{2}\left(K_{1} \cup K_{3}\right)+i_{23} \pi_{2}\left(K_{2} \cup K_{3}\right)$, we have obviously, that the elements which represent $\Lambda(a+b)$ and $\Lambda(a)$ are equal modulo [$\left.R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right.$] hence $\Lambda(a+b)=\Lambda(a)$.

The following example shows that the map Λ is not always surjective.
Example. Let F be a free group with generators x_{1}, x_{2}. Consider the following sets of words:

$$
\mathcal{R}_{1}=\left\{x_{1}\right\}, \mathcal{R}_{2}=\left\{\left[x_{1}, x_{2}\right]\right\}, \mathcal{R}_{3}=\left\{\left[x_{1}, x_{2}, x_{1}\right]\right\} .
$$

Denoting R_{1}, R_{2}, R_{3} the normal closures of the sets $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$ respectively, we have

$$
\left[R_{1}, R_{2} \cap R_{3}\right],\left[R_{2}, R_{3} \cap R_{1}\right],\left[R_{3}, R_{1} \cap R_{2}\right] \subseteq \gamma_{4}(F)
$$

where $\gamma_{4}(F)$ the 4 -th lower central series term of F. However,

$$
\left[x_{1}, x_{2}, x_{1}\right] \in\left(R_{1} \cap R_{2} \cap R_{3}\right) \backslash \gamma_{4}(F)
$$

since $\left[x_{1}, x_{2}, x_{1}\right]$ is a basic commutator of length three in F. Suppose we have

$$
\Lambda(x)=\left[x_{1}, x_{2}, x_{3}\right] \cdot\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]
$$

for some element x of the second homotopy module of the standard complex constructed for the group presentation

$$
\left\langle x_{1}, x_{2} \mid x_{1},\left[x_{1}, x_{2}\right],\left[x_{1}, x_{2}, x_{1}\right]\right\rangle .
$$

Then

$$
\begin{equation*}
\left[x_{1}, x_{2}, x_{1}\right] \equiv[r, s] \quad \bmod \gamma_{4}(F) \tag{20}
\end{equation*}
$$

for some $r \in R_{1}, s \in R_{2}$, such that

$$
\begin{equation*}
r s \in R_{3} . \tag{21}
\end{equation*}
$$

However, the condition (21) implies that $r \in \gamma_{2}(F)$, since $s \in \gamma_{2}(F)$. Therefore $[r, s] \in$ $\gamma_{4}(F)$ and the equivalence (20) is not possible. Hence, the map Λ is not surjective.

Theorem 2. The map Λ is a homogenous quadratic map, i.e.

$$
\Lambda(a, b)=\Lambda(a+b)-\Lambda(a)-\Lambda(b)
$$

is bilinear and $\Lambda(x)=\Lambda(-x)$ for any $a, b, x \in \pi_{2}(K)$.
Proof. For $x, y \in \pi_{2}\left(K_{\left\langle X \mid \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}\right\rangle}\right)$, consider the cross-effect

$$
\Lambda(a, b)=\Lambda(a+b)-\Lambda(a)-\Lambda(b) \in \frac{R_{1} \cap R_{2} \cap R_{3}}{\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]}
$$

Represent elements a, b by identity sequences:

$$
c(a)=\left(c_{1}, \ldots, c_{m}\right), c(b)=\left(c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right) .
$$

Consider the corresponding divisions of the sequences $c(a)$ and $c(b)$:

$$
\begin{aligned}
& \left\{c_{r_{1}}, \ldots, c_{r_{l}}\right\} \cup\left\{c_{s_{1}}, \ldots, c_{s_{k}}\right\} \cup\left\{c_{t_{1}}, \ldots, c_{t_{n}}\right\}=\left\{c_{1}, \ldots, c_{m}\right\}, \\
& \left\{c_{\bar{r}_{1}}^{\prime}, \ldots, c_{\bar{r}_{l^{\prime}}}^{\prime}\right\} \cup\left\{c_{\bar{s}_{1}}^{\prime}, \ldots, c_{\bar{s}_{k^{\prime}}}^{\prime}\right\} \cup\left\{c_{\bar{t}_{1}}^{\prime}, \ldots, c_{\bar{t}_{n^{\prime}}}^{\prime}\right\}=\left\{c_{1}^{\prime}, \ldots, c_{m}^{\prime}\right\}
\end{aligned}
$$

with $c_{r_{i}}, c_{\bar{r}_{i}}^{\prime} \in \mathcal{R}_{1}^{F}, c_{s_{i}}, c_{\bar{s}_{i}}^{\prime} \in \mathcal{R}_{2}^{F}, c_{t_{i}}, c_{\bar{t}_{i}}^{\prime} \in \mathcal{R}_{3}^{F}$. Consider then the induced division of the sequence $c(a+b)=\left(c_{1}, \ldots, c_{m}, c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right)$, which represents the element $a+b \in$ $\pi_{2}\left(K_{\left\langle X \mid \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}\right\rangle}\right):$

$$
\left\{c_{r_{1}}, \ldots, c_{r_{l}}, c_{\bar{r}_{1}}^{\prime}, \ldots, c_{\bar{r}_{l^{\prime}}}^{\prime}\right\} \cup\left\{c_{s_{1}}, \ldots, c_{s_{k}}, c_{\bar{s}_{1}}^{\prime}, \ldots c_{\bar{s}_{k^{\prime}}}^{\prime}\right\} \cup\left\{c_{t_{1}}, \ldots, c_{t_{n}}, c_{\bar{t}_{1}}^{\prime}, \ldots, c_{\bar{t}_{n^{\prime}}}^{\prime}\right\}
$$

For the description of the functor $\Lambda(a, b)$, using the Peiffer operation (iv) to the sequences $c(a)$ and $c(b)$, we can reduce the general case to the case of $l=1, k=1, l^{\prime}=1, k^{\prime}=1$ with $r_{1}<s_{1}, \bar{r}_{1}<\bar{s}_{1}$. Denote $x_{1}=c_{r_{1}}, y_{1}=c_{s_{1}}, x_{2}=c_{\bar{r}_{1}}^{\prime}, y_{2}=c_{\bar{s}_{1}}^{\prime}$.

Then

$$
\begin{aligned}
& \Lambda(a)=\left[x_{1}, y_{1}\right], \Lambda(b)=\left[x_{2}, y_{2}\right] \\
& \Lambda(a+b)=\left[x_{1} x_{2}, y_{1}^{x_{2}} y_{2}\right]
\end{aligned}
$$

We have

$$
\begin{aligned}
\Lambda(a+b) & =\left[x_{1}, y_{2}\right]^{x_{2}}\left[x_{2}, y_{2}\right]\left[x_{1}, y_{1}^{x_{2}}\right]^{x_{2} y_{2}}\left[x_{2}, y_{1}^{x_{2}}\right]^{y_{2}} \\
& \equiv\left[x_{1}, y_{2}\right]^{x_{2}}\left[x_{2}, y_{2}\right]\left[x_{1}, y_{1}^{x_{2}}\right]\left[x_{2}, y_{1}\right] \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right] \\
& \equiv\left[x_{1}, y_{2}\right]^{x_{2}}\left[x_{2}, y_{2}\right] x_{1}^{-1} x_{2}^{-1} y_{1}^{-1} x_{2} x_{1} y_{1} \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right] \\
& \equiv\left[x_{1}, y_{2}\right]^{x_{2}}\left[x_{2}, y_{2}\right]\left[x_{2}, y_{1}\right]^{x_{1}}\left[x_{1}, y_{1}\right] \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right] .
\end{aligned}
$$

Since $x_{1} y_{1}, x_{2} y_{2} \in R_{3}$,

$$
\begin{aligned}
\Lambda(a, b)=\Lambda(a+b)-\Lambda(a)-\Lambda(b) & \equiv\left[x_{1}, y_{2}\right]^{x_{2}}\left[x_{2}, y_{1}\right]^{x_{1}} \quad \bmod \left[R_{3}, R_{1} \cap R_{2}\right] \\
& \equiv\left[x_{1}, y_{2}\right]^{y_{2}^{-1}}\left[x_{2}, y_{1}\right]^{y_{1}^{-1}} \bmod \left[R_{3}, R_{1} \cap R_{2}\right] \\
& \equiv\left[y_{2}^{-1}, x_{1}\right]\left[y_{1}^{-1}, x_{2}\right] \bmod \left[R_{3}, R_{1} \cap R_{2}\right]
\end{aligned}
$$

Now lets show the linearity of the functor $\Lambda(*, *)$, i.e. that

$$
\begin{align*}
& \Lambda(a+b, d)=\Lambda(a, c)+\Lambda(b, d) \tag{22}\\
& \Lambda(a, b+d)=\Lambda(a, b)+\Lambda(a, d) \tag{23}
\end{align*}
$$

for arbitrary elements $a, b, d \in \pi_{2}\left(K_{\left\langle X \mid \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}\right\rangle}\right)$. Let $c(a), c(b)$ and $c(d)$ be the identity sequences represented the elements a, b and d respectively. Again, without loss of generality we can assume that these elements are represented by identity sequences with single element from each class \mathcal{R}_{i}. Denote the correspondent pairs by $x_{1}, y_{1} \subset c(a)$ (the settheoretical inclusion means that x_{1}, y_{1} are elements of the sequence $\left.c(a)\right), x_{2}, y_{2} \subset c(b)$,
$x_{3}, y_{3} \subset c(d)$. In this notation, modulo $\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]$, we have

$$
\begin{aligned}
\Lambda(a+b, d) & \equiv\left[y_{3}^{-1}, x_{1} x_{2}\right]\left[y_{2}^{-1} y_{1}^{-x_{2}}, x_{3}\right] \\
& \equiv\left[y_{3}^{-1}, x_{2}\right]\left[y_{3}^{-1}, x_{1}\right]^{x_{2}}\left[y_{2}^{-1}, x_{3}\right]^{y_{1}^{-x_{2}}}\left[y_{1}^{-x_{2}}, x_{3}\right] \\
& \equiv\left[y_{3}^{-1}, x_{2}\right] x_{2}^{-1} y_{3} x_{1}^{-1} y_{3} x_{1} y_{1} x_{2} y_{2} x_{3}^{-1} y_{2}^{-1} x_{2}^{-1} y_{1}^{-1} x_{2} x_{3} \\
& \equiv\left[y_{3}^{-1}, x_{2}\right] x_{2}^{-1} y_{3} x_{1}^{-1} y_{3} x_{1} y_{1}\left(x_{2} y_{2} x_{3}^{-1} y_{2}^{-1} x_{2}^{-1} x_{3}\right) x_{3}^{-1} y_{1}^{-1} x_{2} x_{3} \\
& \equiv\left[y_{3}^{-1}, x_{2}\right] x_{2}^{-1}\left(x_{2} y_{2} x_{3}^{-1} y_{2}^{-1} x_{2}^{-1} x_{3}\right) y_{3} x_{1}^{-1} y_{3} x_{1} y_{1} x_{3}^{-1} y_{1}^{-1} x_{2} x_{3} \\
& \equiv\left[y_{3}^{-1}, x_{2}\right]\left[y_{2}^{-1}, x_{3}\right] x_{3}^{-1} x_{2}^{-1} x_{3} y_{3} x_{1}^{-1} y_{3} x_{1} y_{1} x_{3}^{-1} y_{1}^{-1} x_{2} x_{3} \\
& \equiv\left[y_{3}^{-1}, x_{2}\right]\left[y_{2}^{-1}, x_{3}\right] x_{3}^{-1} x_{2}^{-1} x_{3}\left[y_{3}^{-1}, x_{1}\right]\left[y_{1}^{-1}, x_{3}\right] x_{3}^{-1} x_{2} x_{3} \\
& \equiv\left[y_{3}^{-1}, x_{2}\right]\left[y_{2}^{-1}, x_{3}\right]\left[y_{3}^{-1}, x_{1}\right]\left[y_{1}^{-1}, x_{3}\right] \\
& \equiv \Lambda(a, d)+\Lambda(b, d),
\end{aligned}
$$

since $\left[y_{3}^{-1}, x_{1}\right]\left[y_{1}^{-1}, x_{3}\right] \in R_{2} \cap R_{3}$ and (22) follows. The equality (23) can be proved analogically.

Now let us prove that $\Lambda(-x)=\Lambda(x)$. Clearly, we can assume that our identity sequence representing the element $x \in \pi_{2}(K)$ has the form

$$
\left(r_{1}, s_{1}, t_{1}\right)
$$

with $r_{1} \in \mathcal{R}_{1}, s_{1} \in \mathcal{R}_{2}, t_{1} \in \mathcal{R}_{3}$. The inverse sequence, which represents the element $-x$ has the form

$$
\left(t_{1}^{-1}, s_{1}^{-1}, r_{1}^{-1}\right)
$$

Then we have

$$
\Lambda(-x)=\left[r_{1}^{-1}, s_{1}^{-r_{1}^{-1}}\right]=\left[s_{1}^{-1}, r_{1}\right]=\left[r_{1}, s_{1}\right]^{s_{1}^{-1}} \equiv\left[r_{1}, s_{1}\right] \equiv \Lambda(x) \quad \bmod \left[R_{2}, R_{3} \cap R_{1}\right] .
$$

Theorem 3. The function Λ induces the homomorphism of $F / R_{1} R_{2} R_{3}$-modules

$$
\bar{\Lambda}: \pi_{3}(K) \rightarrow \frac{R_{1} \cap R_{2} \cap R_{3}}{\left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right]} .
$$

Proof. Let $x \in \pi_{2}\left(K_{\left\langle X \mid \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}\right\rangle}\right)$. Present x by the sequence

$$
c(x)=\left(c_{1}, \ldots, c_{m}\right)
$$

For a given element $f \in \pi_{1}(K)$, present this element as a coset $f=w \cdot R_{1} R_{2} R_{3}$ for some element $w \in F$. Then the element $f \circ x \in \pi_{2}\left(K_{\left\langle X \mid \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}\right\rangle}\right)$ can be presented by sequence

$$
c(x)^{w}=\left(c_{1}^{w}, \ldots, c_{m}^{w}\right) .
$$

It follows directly from the definition of $\Lambda(x)$, that

$$
\Lambda(f \circ x) \equiv \Lambda(x)^{w} \quad \bmod \left[R_{1}, R_{2} \cap R_{3}\right]\left[R_{2}, R_{3} \cap R_{1}\right]\left[R_{3}, R_{1} \cap R_{2}\right] .
$$

Since $\pi_{3}(K)=\Gamma \pi_{2}(K)$, we have the needed homomorphism of $F / R_{1} R_{2} R_{3}$-modules due to Theorem 2.

Example. For two-dimensional sphere S^{2}, clearly, Λ defines the isomorphism (2):

$$
\bar{\Lambda}: \pi_{3}\left(S^{2}\right) \rightarrow I_{3}\left(\mathcal{F}_{3}\left(\bar{S}_{3}\right)\right)
$$

with $\bar{S}_{3} \in \mathcal{K}_{3}$ defined in (5).
Example. Consider a group presentation

$$
\mathcal{P}=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{l}\right\rangle
$$

of a group G. Let \mathcal{P}^{\prime} be another presentation of G with $k+2 l$ generators and $3 l$ relators given by

$$
\mathcal{P}^{\prime}=\left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}, z_{1}, \ldots, z_{l} \mid y_{1}, \ldots, y_{l}, z_{1} y_{1}^{-1}, \ldots, z_{l} y_{l}^{-1}, z_{1}^{-1} r_{1}, \ldots, z_{l}^{-1} r_{l}\right\rangle
$$

Then the standard complex $K_{\mathcal{P}^{\prime}}$ is the union $K_{1} \cup K_{2} \cup K_{3}$, where K_{1}, K_{2}, K_{3} are standard complexes of the following presentations

$$
\begin{aligned}
& \left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}, z_{1}, \ldots, z_{l} \mid y_{1}, \ldots, y_{l}\right\rangle, \\
& \left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}, z_{1}, \ldots, z_{l} \mid z_{1} y_{1}^{-1}, \ldots, z_{l} y_{l}^{-1}\right\rangle, \\
& \left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}, z_{1}, \ldots, z_{l} \mid z_{1}^{-1} r_{1}, \ldots, z_{l}^{-1} r_{l}\right\rangle
\end{aligned}
$$

respectively. Denoting $\bar{K}=\left(K_{\mathcal{P}^{\prime}}, K_{1}, K_{2}, K_{3}\right) \in \mathcal{K}_{3}$, we have the following isomorphism of G-modules:

$$
\pi_{3}\left(K_{\mathcal{P}}\right) \simeq \pi_{3}\left(K_{\mathcal{P}^{\prime}}\right) \simeq I_{3}\left(\mathcal{F}_{3}(\bar{K})\right)
$$

This isomorphism follows directly from the description of Kan's loop construction $G K_{\mathcal{P}}$ and the fact that for a simplicial group G_{*} with G_{2} generated by degeneracy elements, one has $\pi_{2}\left(G_{*}\right) \simeq I_{3}\left(G_{2}, \operatorname{ker}\left(d_{0}\right), \operatorname{ker}\left(d_{1}\right), \operatorname{ker}\left(d_{2}\right)\right)$.

References

[1] G. Donadze, N. Inassaridze, T. Porter: N-fold Čech derived functors and generalised Hopf type formulas. K-Theory 35, 341-373 (2006).
[2] M. Gutierrez and P. Hirschhorn: Free simplicial groups and the second relative homotopy group of an adjunction space, J. Pure. Appl. Alg. 39, (1986), 119-123.
[3] M. A. Gutierrez and J. Ratcliffe: On the second homotopy group, Quart. J. Math. Oxford, 32 (1981), 45-55.
[4] S. J. Pride: Identities among relations, Group theory from a geometrical point of view, 687-717 (1991).
[5] H. Toda: Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49 Princeton University Press, Princeton, N.J. (1962)
[6] J. Wu: Combinatorial description of homotopy groups of certain spaces, Math. Proc. Camb. Phyl. Soc. 130, (2001), 489-

Max-Planck-Institut fur Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
E-mail address: baues@mpim-bonn.mpg.de
Steklov Mathematical Institute, Gubkina 8, 119991 Moscow, Russia
E-mail address: rmikhailov@mail.ru

[^0]: The research of the second author was partially supported by Russian Foundation Fond of Fundamental Research, grant N 05-01-00993.

