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Abstract
It is proven that any structure of a fiber space into va-
rieties of Kodaira dimension zero on a generic Fano com-
plete intersection of index 1 and dimension M in PM+k for
M ≥ 2k + 1 is a pencil of hyperplane sections. We describe
K-trivial structures on varieties with a pencil of Fano com-
plete intersections.
Bibliography: 9 items.
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1. Formulation of the main result. Fix k ≥ 2, M ≥ 2k +1 and a set of integers
(d1, . . . , dk) ∈ Zk

+ satisfying the conditions dk ≥ . . . ≥ d1 ≥ 2 and

d1 + . . . + dk = M + k.

Assume in addition that if M = 2k + 2, then k ≥ 4, and if M = 2k + 1, then k ≥ 5
and (d1, . . . , dk) 6= (2, . . . , 2, k + 3).

The symbol P denotes the complex projective space PM+k. Consider a smooth
complete intersection of codimension k in P

V = {f1 = . . . = fk = 0} ⊂ P,

where fi ∈ H0(P,OP(di)) are homogeneous polynomials of degree di. The aim of
this note is to give a complete description of structures of non-maximal Kodaira
dimension on a generic complete intersection V , from which one immediately de-
rives a description of K-trivial structures on varieties with a pencil of complete
intersections.

Let β: W → S be a morphism of projective varieties with connected fibers (a
fiber space). By the relative Kodaira dimension κ(W/S) of the fiber space W/S
we mean the Kodaira dimension of a fiber of general position β−1(s), s ∈ S. By a
structure of a fiber space of the relative Kodaira dimension κ ∈ {−∞, 0, 1, . . . , M}
on the variety V we mean an arbitrary birational map χ: V 99K W , where β: W → S
is a fiber space of the relative Kodaira dimension κ. It is well known [1], that the
generic complete intersection V is birationally superrigid, in particular, on V there
are no structures of negative relative Kodaira dimension. The main result of this
note is

Theorem 1. Let χ: V 99K W be a structure of a fiber space of non-maximal
relative Kodaira dimension on a sufficiently general complete intersection V ⊂ P,
that is, the inequality

κ(W/S) + dim S < dim W = M

holds. Then κ(W/S) = 0, S = P1 and there exists a uniquely determined linear
subspace Λ ⊂ P of codimension two such that the following diagram of maps is
commutative

V
χ99K W

π ↓ ↓ β
P1 = S ,

where π = πΛ|V : V 99K P1 is the restriction onto V of the linear projection πΛ:P 99K
P1 from the subspace Λ.

Obviously, the restriction onto V of the projection πΛ from a subspace of codi-
mension two is a K-trivial structure. Theorem 1 immediately implies a complete
description of such structures on varieties with a pencil of Fano complete intersec-
tions. Recall the construction of such varieties [2].

Let Π
µ→ P1 be a locally trivial bundle with the fiber P. Consider a smooth

subvariety X ⊂ Π of codimension k, such that every fiber of the projection µX =
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µ|X : X → P1 is a (possibly singular) Fano complete intersection of the type d1 ·. . .·dk

in µ−1(t) ∼= P. The variety X is assumed to be generic in the sense of regularity
conditions [2,Theorem 5]; besides, the fiber of general position µ−1

X (t) is assumed to
be generic in the sense of Proposition 1, which is formulated and proved below.

Let σ:P1 → Gr(M + k − 2, Π) be an arbitrary map, associating to a point
t ∈ P1 a linear subspace of codimension two σ(t) ∈ Gr(M + k − 2, µ−1(t)) in the
fiber µ−1(t) ∼= P. By the symbol ∆σ we denote the ruled surface, consisting of the
hyperplanes H ⊂ µ−1(t), containing the subspace σ(t), by the symbol

πσ: Π 99K ∆σ

the fiber-wise projection, πσ|µ−1(t) is the projection from the subspace σ(t) onto P1.
Theorem 1 implies directly

Theorem 2. Assume that a Fano fiber space X/P1 satisfies the conditions
(i) K2

X + 2HF 6∈ Int A2
+X,

(ii) −KX 6∈ A1
movX,

where HF = (−KX · F ) is the class of a hyperplane section of the fiber of the
projection µX in A2X. Then for any structure χ: X 99K W of a fiber space of the
relative Kodaira dimension zero we get dim S = 2 and, moreover, there are a section
σ:P1 → Gr(M + k− 2, Π) and a birational map γ: ∆σ 99K S such that the following
diagram is commutative:

X
χ99K W

πσ ↓ ↓ β

∆σ

γ99K S.

One obtains Theorem 2 from Theorem 1 in a trivial way, see the proof of Theorem
5 in [2].

2. A summary of known results. It was observed in XIX century that the
problems of description of structures of a rationally connected fiber space (or struc-
tures of negative relative Kodaira dimension) and of structures of relative Kodaira
dimension zero are parallel to each other. If for a given rationally connected vari-
ety the first problem admits a complete solution, then the second problem can be
solved by the same methods (but not the other way round!). In the modern period
of algebraic geometry the first paper describing the structures of relative Kodaira
dimension zero was [3]. In [4] a description of K-trivial structures on generic Fano
hypersurfaces of index 1 (an analog of Theorem 1 for these varieties) was derived
from the results of [5]. See also [6,7]. In [1] a sketch of the proof of the following
fact was given.
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Theorem 3. In the assumptions of Theorem 1 every structure χ: V 99K W of
relative Kodaira dimension zero on V is a pencil: dim S = 1.

Theorem 3 is weaker than Theorem 1. In fact, in [1, Sec. 0.4] a proof of the
following fact was sketched: in the assumptions of Theorem 1, let Σ be the (β ◦ χ)-
preimage on V of an arbitrary movable linear system on the base S, Σ ⊂ | − nKV |
for some n ≥ 1. Then there exists an irreducible subvariety of codimension two
B ⊂ V such that

multB Σ = n, (1)

in particular, the self-intersection of this movable linear system Z = (D1 ◦ D2),
Di ∈ Σ, is Z = n2B (whence Theorem 3 immediately follows). Since the subvariety
B is numerically equivalent to a section of the variety V by a linear subspace of
codimension two, in [1, Sec. 0.4] it was conjectured that Σ is composed from some
pencil of hyperplane sections of V (this is equivalent to the claim of Theorem 1). In
[8] a more detailed proof of Theorem 3 was given, using the cone techniques [5,9]. In
the argument, given in [8], there was a gap when the Bertini theorem was illegally
used to describe the intersection of the base of the cone and a curve lying on the
cone. (The Bertini theorem claims that the singularities of a generic divisor of a
movable linear system are concentrated on its base set. In [8] the Bertini theorem
is applied to a set of movable linear systems, however, the divisors in those systems
are chosen not independently of each other, more precisely, once a generic divisor
in one of them has been chosen, the choice of the remaining divisors is uniquely
determined. Therefore, the Bertini theorem does not apply or, in order to apply it,
one needs a special argument.) Finally, in [2] the argument of [8] was replaced by
another one and the proof of Theorem 3 was completed (see [2, Proposition 3.5]).
As an immediate corollary, the following fact was obtained.

Theorem 4. In the assumptions of Theorem 2 for any structure χ: X 99K W of
relative Kodaira dimension zero we get dim S = 2 and the structure χ is compatible
with the projection X → P1. (See [2, Theorem 5].)

Theorem 4 is a weaker version of Theorem 2. In this note, we make the concluding
step in the description of structures of zero Kodaira dimension on Fano complete
intersections.

3. The structure of the proof of Theorem 1. The variety V is assumed to
be generic in the following sense. Firstly, V satisfies the regularity condition [1] at
every point, see [1, Sec. 1.2]. Secondly, the following claim holds.

Proposition 1. A sufficiently general complete intersection V satisfies the fol-
lowing condition: for any linear subspace Λ ⊂ P of codimension k+1 the intersection
V ∩ Λ is an irreducible reduced variety of dimension M − k − 1.

Proof is given in Sec. 5. By the Lefschetz theorem the claim of the proposition
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holds for M ≥ 2k + 3 for any smooth complete intersection V . Only two cases need
to be considered: M = 2k + 2 and M = 2k + 1.

We assume that the complete intersection V satisfies the property of Proposition
1.

Let χ: V 99K W be a structure of a fiber space of non-maximal relative Kodaira
dimension, Σ the strict transform on V with respect to χ of the pull back on W of
some movable linear system on the base S. Then Σ ⊂ | − nKV |, n ≥ 1, the pair
(V, 1

n
Σ) is not terminal, the system Σ is composed from a pencil and there is an

irreducible subvariety B ⊂ V of codimension two, such that the inequality (1) holds
[1, Proposition 3.5]. Let b ∈ B be a point of general position, ∆ = TbB ⊂ P the
tangent space.

Proposition 2. Let µ∆:P 99K Pk+1 be the linear projection from ∆,

µ = µ∆|V : V 99K Pk+1

its restriction onto V . Then the fibers of the rational map µ are irreducible and
reduced, whereas the linear system Σ is the pull back via µ of a movable linear
system Γ on Pk+1.

Proof is given in Sec. 4.
Proof of Theorem 1. By Proposition 1, the set V ∩∆ has codimension k + 2

in V . Considering the dimensions, we conclude that µ(B) = B̄ is an irreducible
subvariety of codimension two (B̄ can not be a divisor, since in that case the linear
system Γ, and therefore also Σ, would have had a fixed component), so that B =
µ−1(B̄). Therefore,

multB̄ Γ = n,

where Γ is a linear system of hypersurfaces of degree n. This is possible in one case
only, when B̄ ⊂ Pk+1 is a linear subspace of codimension two, and the system Γ
is composed from the pencil of hyperplanes, containing B̄. But then B = Λ ∩ V ,
where Λ = µ−1

∆ (B̄) is a linear subspace of codimension two in P, and the system Σ
is composed from the pencil of sections of V by hyperplanes containing Λ. Q.E.D.
for Theorem 1.

As we noted above, Theorem 2 follows immediately from Theorem 1.

4. Linear projections and cones. Let us prove Proposition 2. Proposition 1
implies that the fibers of µ are irreducible and reduced. To prove the main claim
that Σ = µ∗Γ, let us consider a point of general position p ∈ V . Let D ∈ Σ be the
divisor, containing that point. Now we get

Proposition 3. The following inclusion holds

Tpµ
−1(µ(p)) ⊂ TpD.
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Proposition 2 follows immediately from Proposition 3: as the point p is generic,
we get that µ(D) ⊂ Pk+1 is a divisor (that is, µ(D) 6= Pk+1), so that Σ = µ∗Γ for
some linear system Γ, which is what we need. Q.E.D.

Proof of Proposition 3. Set P = 〈∆, p〉 to be the fiber of the linear projection
µ∆, so that µ−1(µ(p)) = P ∩ V . Since the point p is generic and the fiber µ−1(µ(p))
is non-singular at this point, we get

codimP(P ∩ TpV ) = codimP P + k,

that is, the linear subspaces P and TpV ⊂ P are in general position.
Assume now that the point of general position b ∈ B was chosen in the following

way: on the variety B we considered an arbitrary family of irreducible k-dimensional
subvarieties {Yu, u ∈ U}, sweeping out B, in that family we chose a variety Y = Yu

of general position, and the point b is a point of general position on Y . In particular,
TbY is a generic linear subspace of dimension k in ∆ = TbB ⊂ P. In particular,

dim(〈TbY, p〉 ∩ TpV ) = 1, (2)

that is, the linear subspaces 〈TbY, p〉 TpV are in general position.
By the symbol [b, p] we denote the line in P, joining these two points, by the

symbol (b, p) the set [b, p] \ {b, p}. Take a point x ∈ (b, p). Set C(Y, x) to be the
cone with the vertex x and the base Y .

Proposition 4. For sufficiently general Y , b, p, x the following claims are true:
(i) the point z ∈ C(Y, x) is a singularity of that cone, if either z = x, or z ∈ [y, x],
where y ∈ Sing Y ,
(ii) the closed algebraic set R(Y, x), which is the union of all irreducible components
of the intersection C(Y, x)∩ V , containing the point p, is an irreducible curve, non-
singular at the point p,
(iii) the curve R(Y, x) intersects the subvariety Y outside the closed subset Sing Y
of singular points of this variety.

Proof of the claim (i) is given in [2, Sec. 3.3.1] (in addition to the arguments,
given in [2], one needs to note that V can not be contained in the variety of secant
lines Sec Y of the variety Y : even if M = 2k + 1, the variety V is not covered by
lines). Furthermore, [b, p] ∩ Y = {b}, so that the point p ∈ C(Y, x) is non-singular.
Obviously,

TpC(Y, x) = 〈TbY, p〉,
whence, taking into account (2), it follows that the varieties C(Y, x) and V intersect
transversally at the point p, which proves (ii). Finally, the claim (iii) is proved by
the arguments of [2, Sec. 3.3.1], taking into account that when Y , b ∈ Y and p ∈ V
vary, the points x ∈ (b, p) fill out an open subset of the projective space P (for
instance, by the surjectivity of the map µ). Q.E.D. for Proposition 4.

Now we argue as in [2, Sec. 3.3]: the curve R(Y, x) meets Y at the points, which
are non-singular both on Y and on the cone C(Y, x). Therefore, we get that the
intersection number (R(Y, x) · Y )C(Y,x) is well defined.

Lemma 1. The following equality holds: (R(Y, x) · Y )C(Y,x) = deg R(Y, x).
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Proof is given in [9, §1].
Now let us come back to the divisor D ∈ Σ, containing the point p.
Lemma 2. The following inclusion holds: R(Y, x) ⊂ D.
Proof. Obviously, (D · R(Y, x)) = n deg R(Y, x). On the other hand, as it was

shown in [2, Sec. 3.3.2],

∑

y∈D∩R(Y,x)∩Y

(D ·R(Y, x))y ≥ (R(Y, x) · Y )C(Y,x) multY D.

Taking into account that multY D = multB D = n and the equality of Lemma 1, we
obtain the claim of Lemma 2, since

p ∈ D ∩R(Y, x)

and p 6∈ Y . Q.E.D. for the lemma.
Lemma 2 implies the inclusion

〈TbY, p〉 ∩ TpV ⊂ TpD,

whence, since the subspace TbY ⊂ ∆ is generic, we get the inclusion

〈∆, p〉 ∩ TpV ⊂ TpD,

which completes the proof of Proposition 3.

5. Complete intersections of general position. Let us prove Proposition
1. As we noted in Sec. 3, we have to consider the two cases: when M = 2k + 2
and M = 2k + 1. Consider first the following general problem. Let X ⊂ PN be an
irreducible subvariety of dimension l ≥ 2. By the symbol Pd = Pd,N we denote the
space of homogeneous polynomials of degree d on PN . Let Ud(X) ⊂ Pd be the open
set, consisting of such polynomials f ∈ Pd, that {f |X = 0} is an irreducible reduced
subvariety of dimension (l− 1). Respectively, let Rd(X) = Pd \ Ud(X) be the set of
“incorrect” polynomials. The problem is to estimate from below the codimension of
the closed set Rd(X) in the space Pd.

Lemma 3. The following estimate holds:

codim(Rd(X) ⊂ Pd) ≥
(

d + l − 2

d

)
− l + 1.

Proof. Let γ:PN 99K Pl−1 be the linear projection from a (N − l)-plane of
general position, γX = γ|X : X 99K Pl−1 its restriction onto X (the set of points
where γX is not defined is zero-dimensional). Obviously, the map γX is surjective,
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all its fibers are one-dimensional and the fiber γ−1
X (z) over a point of general position

z ∈ Pl−1 is an irreducible curve. The set ∆ ⊂ Pl−1, consisting of such points z, that
the fiber γ−1

X (z) is reducible or non-reduced, is a proper closed subset of Pl−1 (at
most a divisor). Therefore, for any irreducible divisor D on Pl−1, such that D 6⊂ ∆,
its inverse image

γ−1
X (D) = γ−1(D) ∩X

is irreducible and reduced. In other words, for any irreducible polynomial f on Pl−1,
such that {f = 0} 6⊂ ∆, we get γ∗f ∈ Ud(X). The set γ∗Pd,l−1 is a linear subspace of
the space Pd (the same polynomials considered as polynomials in a larger number of
variables). Let Rd,l−1 ⊂ Pd,l−1 be the closed subset of reducible polynomials. From
what was said, it follows that

codim(Rd(X) ⊂ Pd) ≥ codim(Rd,l−1 ⊂ Pd,l−1).

The last codimension is easy to compute: the irreducible component of maximal
dimension of the set Rd,l−1 consists of the polynomials of the form f = f ]h, where
h ∈ P1,l−1 is a linear form. Q.E.D. for Lemma 3.

Let us come back to the proof of Proposition 1. Assume that M = 2k + 2.
Assume also that the complete intersection V is generic in the following sense: the
variety

V ] = {f1 = . . . = fk−1 = 0} ⊂ P (3)

is smooth. Obviously, dim V ] = 2k + 3, so that by the Lefschetz theorem the
intersection V ] ∩ Λ is irreducible, reduced and has dimension k + 2 for any linear
subspace Λ ⊂ P of codimension k + 1. Fix such a subspace. Obviously,

V ∩ Λ = {fk|V ]∩Λ = 0}.

Let RΛ ⊂ Pdk,M+k be the closed subset of polynomials fk of degree dk, for which
V ∩ Λ is not an irreducible reduced subvariety of dimension k + 1. By Lemma 3,

codim RΛ ≥
(

dk + k

dk

)
− k − 1. (4)

The equality d1 + . . . + dk = M + k implies that dk ≥ 4. Elementary computations
show that the right hand part of the inequality (4) is strictly higher than the dimen-
sion of the projective Grassmanian of (2k + 1)-planes in P for k ≥ 4. This proves
Proposition 1 for M = 2k + 2.

Assume now that M = 2k + 1. In this case the arguments are completely
similar to those given above, but we need two steps. First, we consider the complete
intersection

V + = {f1 = . . . = fk−2 = 0} ⊂ P,

which is assumed to be smooth. By the Lefschetz theorem the intersection V + ∩ Λ
is irreducible and reduced. Now the arguments similar to those given above for
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M = 2k + 2, show that for a generic polynomial fk−1 of degree dk−1 ≥ 3 the closed
set

{fk−1|V +∩Λ = 0}
is irreducible and reduced for any subspace Λ. Now we consider the variety V ],
defined by the formula (3), and argue as in the case M = 2k + 2 and complete the
proof. We omit the details of elementary computations. Q.E.D. for Proposition 1.

Remark 1. The additional (compared to [1]) restrictions for the parameters k,
d1,. . . dk are needed precisely for the reason that for the excluded values the proof
of Proposition 1 does not work. However, there are no doubts that both the claim
of Proposition 1 and, the more so, Theorem 1 are true for those values as well. Here
is the list of excluded families:

2 · 5 and 3 · 4 in P7,

2 · 6, 3 · 5 and 4 · 4 in P8,

2 · 2 · 6, 2 · 3 · 5, 2 · 4 · 4 and 3 · 3 · 4 in P10,

2 · 2 · 7, 2 · 3 · 6, 2 · 4 · 5, 3 · 3 · 5 and 3 · 4 · 4 in P11,

2 · 2 · 3 · 6, 2 · 2 · 4 · 5, 2 · 3 · 3 · 5 and 2 · 3 · 4 · 4 in P13,

and the infinite series 2 · . . . · 2 · (k + 3) in P3k+1, k ≥ 2.
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