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for which tensor products A®M and Hom-—groups Hom(A,M) are defined. More-
over there are derived functors of @ and Hom which generalize the classical Tor and
Ext groups respectively. For example the functors 2 and R of Eilenberg-Mac Lane
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Classical homological algebra is concerned with modules, additive functors, like the
tensor product and the Hom functor, and their derived functors, like Tor and Ext.

In this paper we describe and exploit a "quadratic extension" of homological algebra.
Indeed quadratic functors lead to the notion of a quadratic module M and there is
canonically a quadratic tensor product A ®M and a quadratic Hom—group
Hom(A,M). The elements of Hom(A,M) are quadratic forms on the module A with
values in M. We introduce and study quadratic derived functors which in particular

yield the groups Tor n(A,M) and Ext®(A,M) respectively. These groups are
embedded in long exact sequences as in the classical case, see §9. The functors given

by A®M, Hom(A,M) and the derived functors Tor_, Ext® are quadratic in A
and additive in M. '

Of special interest are quadratic Z—modules M which are the quadratic analogues of
abelian groups. They appear frequently in the meta stable range of algebraic topo-
logy; for example homotopy groups of spheres and the (co) homology of Eilenberg-
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Mac Lane spaces yield in a natural way quadratic Z-modules, see [4]. A quadratic
I—module M is just a pair of homomorphisms

H P
M=(M,—> M, ——M)

between abelian groups satisfying HPH = 2H, PHP = 2P. In case Me’ Mee are
homotopy groups of spheres these are the operators of the EHP—sequence where H is
the Hopf invariant and where P is induced by the Whitehead product, see [4], [11],
[16]. For example

F-gl-r12.nf=@g2-111)md =(0—7—0)
are quadratic Z-modules. They lead to the following quadratic tensor products and

torsion products respectively which turned out to be well known quadratic functors
from abelian groups A to abelian groups. In fact, there are natural isomorphisms

ICYs o SP2(A) (symmetric square)
Aot v A%a) (exterior square)
Aozl vr(a) (Whitehead’s functor)

AU ¥ R(A) and A®TF ¥ Q(A).
Here R and 0 are the functors of Eilenberg—Mac Lane [9] with R(A) = H5K(A,2)
and ((A)®A®1I/3=H,K(A,3). These examples illustrate that simple algebraic

data like IIF,ES or HA above are the crucial ingredients of fairly intricate quadratic
functors. Further examples of this kind are given in the paper. In [4] we describe
exact sequences for homotopy groups of Moore spaces and (co)—homology groups of
Eilenberg—Mac Lane spaces in terms of quadratic derived functors. These results
made it necessary to develop a quadratic extension of homological algebra as con-
gidered in this paper.

The author would like to acknowledge the support of the Max—Planck—Institut fiir
Mathematik in Bonn. Moreover the author is grateful to M. Hartl, V. Jeschonnek and
W. Neumann for useful comments.



§1 Hodules

We here fix some basic notations on categories, ringoids, rings and modules respec-
tively, compare also {14]. In particular, we describe the tensor product for modules
and ringoids. A bold face letter like C denotes a category, Ob(C) and Mor(C) are
the classes of objects and morphisms respectively. We identify an object A with its
identity 1, =1=A so that Ob(C) C Mor(C). We also write f € G if { is a mor-
phism or an object in C. The set of morphisms A — B is C(A,B). Surjective maps
and injective maps are indicated by arrows —— and >-— respectively.

A ringoid R 1is a category for which all morphism sets are abelian groups and for
which composition is bilinear, (equivalently a ringoid is a category enriched over the
monoidal category of abelian groups). A ringoid is also called a 'pre additive cate-
gory’, or an Ab—category, see [13). We prefer the notion ’ringoid’ since in this paper a
ringoid will play the role of a ring. In fact, a ringoid R with a single object e will
be identified with the ring R given by the morphism set R = R(e,e). Recall that a
biproduct (or a direct sum) in a ringoid R is a diagram

iy . i

1 2
(1.1) X—XvY—/]Y

I )

which satisfies rli1 =1, 1-2i2 =1 and ilr1 + i2r2 = 1. Sums and products in a
ringoid are as well biproducts, see [13]. An additive category is a ringoid in which bi-
products exist. Clearly the category Ab of abelian groups is an additive category
with biproducts denoted by X®Y. A functor F:R-—§ between ringoids is
additive if

(1.2) F(f+g) = F(f) + F(g)
for morphisms f,g € R(X,Y). Moreover, we say that F is quadratic if A, with
(1.3) A(f,g) = F(f+g) — F(f) — F(g),

is a bilinear function. A module with coefficients in a ringoid R or equivalently an
R—module is an additive functor

(1.4) M:R—Ab.
In case R has only one object e we identify M with the R(e,e)—module M(e),
which is a module over a ring in the usual sense, compare also [14]. An R~module is
also called a left R—module. A right R—module N is a contravariant additive functor
N:R — Ab. For f€ R(X,Y) we use the notation



(135) { () = F(x) - f x xEM(X),

N(f)(y) = yEN(Y).
A right R—module is the same as an R OP_module where 501’ is the opposite cate-
gory which is a ringoid. In case B is small (that is, if the class of objects in R is a
set) let M(R) be the category of R—modules. Morphisms in M(R) are natural
transformations. The category M(R) is an abelian category; as an example one has
M(Z) = Ab. We now recall the definition of tensor products of modules.

(1.6) Definition: Let B be a small ringoid, let A be an R°P~module and let B be
an R-module. The tensor product A @R B is the abelian group generated by the

elements a®b, a € A(X), b € B(X) where X is any object in R. The relations are
(a+a’)® =a®b + a’®b
a®(b+b’) = a® + a®b’
(3" p)® =2a"@(p-b)

for a,a’ € A(X), b,b’ € B(X), X — Y € R, a" € A(Y). For maps

f:A— A’ €EM(R) and g:B—B’E M(R°P) we have the induced homomor-
phisms f®g: A QBB — A’ @RB’ by (f@g)(a.ﬁb_) = (fa)®(gbh). Whence the tensor

product is a biadditive functor ®E=l : M(R°P) x M(R) — Ab .

If R=R is aring then A@BB above is the usual tensor product of modules over
R. We also need tensor produc;: of ringoids:

(1.7) Definition: The tensor product R®S of ringoids R,S is the following ringoid.
Objects are pairs (X,Y) with X €EOb(R), YEOb(§) and the morphisms
(X,Y) —(X’,Y’) are the elements of the temsor product of abelian groups
R(X,Y) ®; §(X,Y). Composition is defined by (f®g)(f'®") = (') ® (gg’). Any
biadditive functor F:R x § — Ab has a unique additive factorization (as well de-
noted by F) F: R®§ — Ab with F(f®g) = F(f,g). For example an B—module A
and on S—module B yield the R®3~module A®B given by (A®B)(f®g) = A(f)®;B(g).



§2 Quadratic U—modules

Let Add(Z) be the category of finitely generated free abelian groups. The additive
functors F : Add(Z) — Ab are in one one correspondence with abelian groups, the
correspondence is given by F— F(Z). In this section we introduce quadratic Z-mo-
dules which are in one one correspondence with quadratic functors Add(Z) — Ab. In
this sense a quadratic Z—module is just the "quadratic analogue" of an abelian group.

(2.1) Definition. A quadratic Z-module
M= (M, SM -Em)
is a pair of abelian groups M e’M ee together with homomorphisms H,P which satis-
fy PHP = 2P and HPH = 2H. A morphism f: M — N between quadratic Z—mo-
dules is a pair of homomorphisms f: M, — N, f: M, — N, (i=1,2) which
commute with H and P respectively. Let QM(Z) be the category of quadratic
I-modules. For a quadratic Z—module M we define the inyolution
T=HP-1: Mee — Mee' Then the equations for H and P are equivalent to

PT =P and TH = H. Moreover weget TT =1 since 1+T = HP = HPT = T+T%.
We define for n € Z the function

{n* : Me —_ Me

n(x) =nx+ (n(a-1)/2)PH(x), x € M,

One.can check that (n-m), =n m_ and that (n+m), =n_+ m_+ nmPH. Let
Z/n = Z/nl, n 2 0, be the cyclic group of order n. We call M a guadratic Z/n—mg-
duleif n - Mee =0 and n M =0 We identify a quadratic Z7—module M satis-
fying Mee = (0 with the abelian group Me’ this yields the full inclusion
Ab = M(Z) C QM(7). Next we observe that there is a duality functor

D : QM(Z) — QM(Z) with D(M) given by the interchange of the roles of H and

D D
P respectively, that is D(M) = ((DM), —2—s (DM) , £— (DM),)  with

(DM),=M,, and (DM),=M, BD =P and PP =H. Clearlly DD(M) =M.
Moreover an additive functor A : Ah— Ab induces a functor

A[]: QM(Z) — QM(T). Here we define the quadratic Z—module A[M] by
AM], = A(Me) and A[M]eez A(M,,) with H and P given by A(H) and A(P)
respectively. For example the functor A = _®,C, C € Ab, carries M to [M] ®,C.
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(2.2) Proposition: There is a ring Q together with an isomorphism
x : QM(Z) ¥ M(Q) of categories where M(Q) is the category of Q—modules.

Proof: For M € QM(7) we have inclusions and projections (7 = e,ee)

i r
T T
(1) MT—-’MeQMee—-tMT

They yield the following endomorphisms of the abelian group M, M,

(2) a= iere’ b= ieeree’ h= ieeHre’ pP= iePIee
which satisfy the relations

(a2 =a,b2=b,ab=ba=0,

a+b=1,
(3) 1ha = 0, bh = 0, pa = 0, bp = 0,

php = 2p, hph = 2h.

Let Q be the ring generated by a,b,h,p such that the relations are satisfied. Then
x in (2.2) carries M to the Q—module- M, ® M, defined by (2). As a I-module

Q isgiven by Q=120 with basis (a,b,h,p,ph,hp). Moreover the quadratic Z—mo-
dule y~Y(Q), as well denoted by Q, is given by

(4) Q, = a-Q=1T° with basis (a,ap,aph),
Qqo=b-Q =T with basis (b,bh,bhp),
and by
000 -1 00
(5) H=P=|102,T=HP-1=| 010].
010 101

(2.3) Corollary: The category QH(Z) is an abelian category.

Recall that an object X in an additive category is indecomposable if X admits no
isomorphism X~ A®B with A#0 and B#0. It is an interesting problem to
classify all finitely generated indecomposable quadratic Z-—modules up to isomor-
phism. This leads to the following examples. We say that a quadratic Z—module M
is of cyclic type if M, and M, are cyclic groups. Let 1 € I/n be the generator
and let k:7/n— Z/m be the homomorphism with k(1 )= kel k€I m|k-n.
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Then we obtain the following list where C=12 or C = ZI/pi, p = prime, s,t 2 1.

The isomorphic objects in the list are given by CF A CS if C=1/ qi (q odd). With
the notations in (2.1) we cleardly have C! =([27]@,C, C5=[z5)8,C and
ch = [HA]QHC. We leave it to the reader to describe the dualities in the list. An ele-

mentary but somewhat elaborate proof shows:

(2.5) Proposition; The quadratic Z~modules in (2.4) furnish a complete list of inde-

composable quadratic Z—modules of cyclic type.

(2.6) Definition: Let F: R — Ab be a quadratic functor and let X v Y be a bipro-

(2.4)
M M, M, H P
C 0 0 0
ch 0 c 0 0
ek c C 1 2
cS C C 2 1
H(t) I 1/2" gt~ 0
P(s) /6 I 0 981
s+t>1,H(s,t) 7/28 /2! gt—1 0
s+t>1,P(s,t) /2 /2t 0 A
s+t>3,M(s,t) /2" z/2* gt~ 981
I(s) 7/25%! /2 1 2
S(s) )2 7/285%! p 1
s>1, T’ (s) 7/25%! z/2° 1l 2
s>1, §’(s) /2 /28t o $1

duct in R. The gquadratic cross effect F(X|Y) is defined by the image group

(1)

F(X|Y) = im{A(i;r,,i,15) : F(XvY) — F(Xv Y)}
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see (1.3) and (1.1). If R is an additive category we get by (1) the biadditive functor

(2) F(_|_):RxR—Ab
Moreover we have the isomorphism
(3) ¥:F(C)eF(Y)8F(X|Y)~F(X v Y)

which is given by F(i,), F(iy) and the inclusion i, : F(X|Y) CF(XvY). Let Tyq

be the retraction of il2 obtained by gt and by the projection to F(X|Y). For the
biproduct XvY one has the maps u = i+ X — X¥Y and
V= r1+r2:Xv Y — X. They yield homomorphisms H and P with

4) F{X} = (F(X) -2 F(X|X) £ F(X))

by H=1,,F(s) and P= F(v)i;o. Moreover we derive from f+g = v(fvg)y the
formula

(5) F(f+g) = F(f) + F(g) + PF(f|g)H

or equivalently A(f,g) = PF(f|g)H, see (1.3).

(2.7) Proposition: Let F:R — Ab be a quadratic functor and assume R is an
additive category. Then F{X} is a quadratic Z-module and X+ F{X} defines a
functor R — QM(Z).

Proof of (2.7): We define the interchange map

T : XvX — XvX
(1) { . .
T=1 9T + 1,1,
Then we have Ty = 4 and vT = v. Moreover T induces a map
(2) T : F(X|X) — F(X| X)
with F(T)i;5 =i;,T and r,,F(T) = Tr;,. Whence weget TH=H and PT=P.
Moreover we obtain HP =1 + T by applying F to the commutative diagram in R

v I
XvX —+ X - XvX
(3) BY 4 AR
XV XY XV X~y » XVXv Xv X

Here we use the biadditivity of F(_[_) in (2.4).

The significance of quadratic Z-modules is described by the next result which is a
special case of (3.7) below. Let Add(Z/n) be the full subcategory of Ab consisting
of finitely generated free (Z/n)—modules; » 2 0, (for n =0 weset Z/0 = ).
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(2.8) Theorem: There is a 1-1  correspondence between quadratic functors
F: Add(Z/n) — Ab and quadratic Z/n—modules M, n 2 0. The correspondence
carries F to F{Z/n}, see (2.6)(4).

Here a '1-1 correspondence’ denotes a bijection which maps isomorphism classes to
isomorphism classes. Whence any quadratic functor F: Add(Z/n) — Ab is com-
pletely determined (up to isomorphism) by the fairly simple algebraic data of the
quadratic Z-module F{Z/n} which is actually a quadratic Z/n—module. In addition
to the correspondence in (2.8) we obtain in (3.7) below an equivalence of categories.

Finally we consider some examples of quadratic functors Ab-—— Ab which appear in
the literature, see for example [3]. Let ® be the functor which carries the abelian

group A to ? A = A®A. Moreover Let é2,A2,SP2 be given by the following rela-
tions (a,b € A):

®2(A) = A®A/(aBb+b®an0)
(2.9) A2(A) = A®A/(a®a ~ 0)
— SP2(A) = A®A/(a®b—b®a~0)

Next let [' be the quadratic functor of J.H.C. Whitehead [17], see also (9] §13 where
=T 4 i8 shown to be part of a free commutative ring with divided powers. We ob-

tain I' and a weak quadratic functor I as follows. A function f: A — B between
abelian groups is weak guadratic if (a,b]; = f(a+b) —f(a) —f(b) is bilinear, and f is

quadratic if in addition f(—a) € f(a). Let 7: A —T(A), resp. 7: A — ['(A), be the

"universal" quadratic, resp. weak quadratic function. The function 7(7'7) has the
property that any (weak) quadratic function f admits a unique factorization f= g7

(f=g%) where g(g) is a homomorphism. We write g =7 4(f) and g=% 4(0).

For the functors ' and ' one has the following natural commautative diagram with
short exact rows (see (8.16)) which is a pull back diagram.

7 (1)

0—-bSP2(A i fa) - A » 0

(2.10) H l 74(7) 1 q
0-— SP (A)——-—) F'(A) —i——»AGHﬂ-)O
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Here q is the quotient map and w, (W) carries {a®b} to [a,b] 5 ([:b]3). The
functors in (2.9) and (2.10) lead to the following list of quadratic Z—modules F{Z}
associated to a quadratic functor F. In (4.9) below we show that the functors
F: Ab— Ab in this list are actually completely determined by F{Z}.

(2.11) F F) 2 Fyn 2o r@) F{T}
& 7L, gez {Ll),g /ad
8 1224 -+ 71— ——7/2 P(1)
A2 0 LT 40 i
sp2 1—2 1 L 1 i
r 11— 1 —2 .1 -
P rer 2L 7 (19,787 3

The right hand column is compatible with the notation in (2.4). The basis of
(| T) IO is (e,@eye,8e,) where (eg,e,) is a basis of @I Moreover the
basis of I'(Z) v 78T is (€,,6,) with € = w{181} = (2)~-2%1) and €, uni-
quely determined by :;#(1)'52 =1, ;#(7)'52 = 7(1), see (2.10). The surjection
P = (Py:Py) I'{7} - r{Z} induced by 7}#(7) in (2.10) satisfies pl(gl) =2,
pi(€5) =1,py(1) =11,

We point out that the dual D(IZQ) of the quadratic Z-module ® in (2.11) is iso-

)

morphic to the quadratic Z-module Z". Up to isomorphism there is actually only

one quadratic Z-module M with M, ~ 797 and M, 3 I, namely Zlf .

Finally we remark that the ’universal’ quadratic Z-module Q in (2.2)(4), (5) is de-
composable, namely there are isomorphisms

(2.12) QuprPer®yal eprl vl 012°



-11 -

in QM(Z). Whence the quadratic functor Add(Z) — Ab corresponding to Q via

(2.8) is the functor ['® ®°. The isomorphism (DRQ)SHQ ~ Q is given by the matri-
ces

-110 0-11
001 forQea.nd 1 00 forQee.
100 0 10

§3 duadratic R~modules

For any ringoid R, one has quadratic R~modules which are the "quadratic generali-
zation" of R—modules in §1. For R = Z they are just the quadratic Z—modules dis-
cussed in §2 above.

(3.1) D@ni_tign:.Let R be a ringoid. A guadratic R—-module M = (Me’Mee'T’H’P)
i8 a pair of functors M, : R — Ab, M, : R x R — Ab (both as well denoted by
M) together with natural transformations
T = Ty y: M(X,¥) — M(Y,X) and M(X) 2o M(X,X) 2— M(x)
~such that the following properties are satisfied

(1) PT="P,

(2) TH=H,

(3) T =HP -1 on My(X,X),

(4) TT=1.

Moreover the functor M, is biadditive and the functor Me is quadratic with
(5) M(f+g) = M(f) + M(g) + PM(f,g)H

for f,g: X — Y €R. We also write f, = M(f) and (fg), = M(f,g). A morphism
F:M— N between quadratic R—~modules is a pair of natural transformations

(6) Fe:Me__'Ne’Fee:Mee—_’Nee

which commute with T,H, and P respectively. Let QM(R) be the category of qua-
dratic R—moduleg for a small ringoid R.

We identify a quadratic B—module, satisfying M, =0, with an R—module. This
yields the full inclusion of abelian categories M(R) C QM(R), see {2.3). On the other
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hand a quadratic R—module M with Me = 0 is the same as a pair (M ee,T) where
M, abiadditive functor RxR — Ab and where T = TX,Y:Mee(X’Y) & M (Y.X)
is a natural transformation with TT =1 and Ty x=-1 X,Y € Ob R. The direct
sum M®N of quadratic B—modules is given by (M®N) (X) =M e(X)GNe(X) and

(M8N) _(X,Y) = M_(X,Y)8N_(X,Y).

(3.2) Remark: For the ringoid R =17 a quadratic R—module M as in (3.1) is the
same as a quadratic Z-module with M e = M(e), M e = M(e,e). In fact, for
n € R(ee) =7 the induced map M(n) =n_ is defined in (2.1) and T = T&,‘3 in
(3.1) is defined by T in (2.1). This also shows that for the ring R = Z/n a quadra-
tic R—module is the same as a quadratic Z/n~module defined (2.1).

The equations (4.1)(1),(2),(3) for a quadratic R—module show that for X € Ob(R)

(3.3) M{X} = (M(X) -5 M(X,X) - M(X))

is a quadratic Z-module. Whence M yields a functor M: R — QM(Z) which
carries the object X to M{X}. The quadratic R—module M, however, is not deter-
mined by this functor since for example TX,Y in (3.1) is given for all pairs
(X,Y) € Ob(R) x Ob(R). In case R has a single object e, that is,if R=R is a
ring, then a quadratic R—module M consists of a quadratic Z—module

(1) M(e) —2— M(e,e) = M(e)

where M(ee) is an R ®; R—module and where the multiplicative monoid of R
acts on M(e) such that H and P are equivariant with respect to the diagonal
action on M(e,e) and such that

(2) (+8),(x) = £,(x) + &,(x) + P(fBg)- (Ex).

Here f_(x) denotes the action of f € R on x € M(e).

(3) Examples: Let R be a commutative ring. We define quadratic R—modules
RA,RS, and RP as follows.

M M(e) M(e,e) H P

rA 0 R 0 0

RS R R 2 1

RF R R 1 2

Here f€R actson x€M(e) by f (x)=f-f-x and f®g acts on y € M(e,e) by
(f®g)-y = {-g-y. Compare also (2.4) and (2.11).
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Now let M be a quadratic R—module and let XvY be a biproduct in R. Then one
gets the natural isomorphism of abelian groups
(3.4) ¥ M(X) @ M(Y) ® M(X,Y) ¥ M(XvY).

The coordinates of ¥ are i, i,, and P(il,i2)*; the coordinates of the inverse

1 are T1xT9x a0d (ry,15), H. The isomorphism (3.4) corresponds exactly to
(2.4)(8). This shows that (3.4) yields for XvY € Ob(R) the identification

(1) M(X,Y) = M(X]Y)

of quadratic cross effects. We can iterate (3.4) as follows. For an index set I let
'\EII X; bean I-old biproduct in R.If I is finite we obtain by (3.4) the formula

i

(2) M( i\él X,) = ? M(X,) @ 13 M(X;.X)

where we choose an ordering < of I. This formula holds as well for infinite index
sets I if Me and Mee commute with direct limits. Many examples of quadratic

R—modules arise as follows.

(3.5) Example: Let R be a ringoid, let A be an additive category, and let
i:R— A be an additive functor. Often R is a subringoid of A and i is the in-
clusion, for example R = A. Then any quadratic functor F: A — Ab yields a qua-
dratic R~module

¥
F{g} =i F= (Fe,Fee,T,H,P)

as follows. The functors F,= i*F and Foo = (ixi)*F(_|_) are the restrictions of
the functors F and F(_|_), see (2.6). Moreover H,P and T are given as in (2.6)
and in the proof of (2.7) respectively. In case R is the subringoid generated by the
identity 1y € Ob(A) than F{R} is the same as the quadratic Z—module F{X} in
2.7).

We now are ready to describe the generalization of theorem (2.8) for quadratic
R-modules; for this we recall from (VIII, §2) 18] the

(3.6) Definition: Let R be a ringoid. Then the free additive category

(1) i:RC Add(R)

is given as follows. The objects of Add(R) are the n—tuple X =(X,,....X ) of ob-
jects Xi in R, 0<n <o The morphisms are the corresponding matrices of mor-
phisms in R. The inclusion i carries the object X to the corresponding tuple of
length 1. Any additive functor f: R — A (where A is an additive category) has a
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unique extension f: Add(R) — A which carries the tuple X to the biproduct

f(X) =FX;v..v FX_ in A Let Quad(R) be the category of quadratic functors

(2) F : Add(R) — Ab,
morphisms are natural transformations.

(3.7) Theorem: There is an equivalence of categories Quad(R) —— QM(R) which
carries F to the restriction F{R} in (3.5).

For aring R = R the category Add(R) coincides with the full subcategory of finite-
ly generated free R—modules in M(R). Therefore (2.8) is readily obtained by (3.7)
above. The inverse of the equivalence (3.7) is given by the tensor products defined in
the next section; one gets (3.7) as a corollary of (4.4) below.

§4 The guadratic tengor product

We introduce the tensor product of an §°p—modu.le and a quadrétic R—module, this
is the quadratic generalization of the tensor product defined in (1.6).

(4.1) Definition: Let R be a small ringoid. We define the functor
®p - M(E’) x QM(R) — Ab
which carries the pair (A,M) to the temsor prodyct A ®xM. The abelian group
A GBM is generated by the symBols -
a®m, a € A(X), m € M(X)
{ [a,b]® n, a € A(X), b € A(Y), n € M(X,Y)
where X,Y areobjectsin R. The relations are

(1)



—15 -

(a+b)®m = a®m + b®m + [a,b] ® H(m),
a®m+m’) = a®m + a®m’ ,

[3,3]®n = a®P(n),

(2) 1(a,b]®n = [b,a]@T(n),

[a,b]®n is linear in each variable a,b, and n,
(¢"2)8m = 28(p,m),

[¢"2,9"b]en = [a,b]8(p,¥),,(n)

where ,¥ are morphismsin R and where a,b,m,m’ n are appropriate elements as
in (1). (We point out that the last two equations of (2) are redundant if R = Z.) For

morphisms F:A— A’ €MQRP) and G:M—M’ € QM(R) we define the
induced homomorphism
(3) F@G:A@EM——»A’@'E_M’

by the formulas

” {(F@G)(a@m) = (Fa)8(Gym)
(F®G)([a, b]®n) = [Fa.,Fb]G(Geen)
In case M, =0 we see that A ®pM coincides with the tensor product (1.6).

Whence the functor @p, in (4.1) extends canonically the functor @p in (1.6).
(4.2) Proposition: The tensor product (4.1) yields an additive functor

W A®g(1): QU(R) — Ab

foreach A in M(R) and a quadratic functor

2 (L) ®zM : M(RP) — Ab
foreach M in QM(R). The quadratic cross effect of (2) is given by the formula
(3) (A|B) 8gM = (A®B)®pgp M, .

Here A and B are R°P-modules which yield the (R ® R)°P-module A®B by
(1.7) and the R ® R~module M e 18 given by M. The right hand side of (3) is a ten-
sor product in the sense of (1.6). The isomorphism (3) is obtained by the inclusion

(4) ijg: (AQB)QR;-@EM T (AGB)QE'M
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which carries a®b@n to [ila.,izb]en for a € A(X), b € B(Y), n € M(X,Y). By (3.5)
the quadratic functor F = (_) OBM is as well a quadratic M(R)~module. Here the

structure maps T,H,P are given by the natﬁra.l transformations

T
() \ (AQB)QEQQM% — (BQA)QQQEM%:
H P
(6) AQ:-R:M —_ (AGB)GQ,@I:tM e A GEM
defined by the formulas

-~

H(a®m) = (a®a)®H(m)

H([a,b]®n) = (a®b)®n + (b®a)®T(n),

(M) | T((a®b)@n) = (b82)€T(a),

P((a®b)®n) = [a,b]€n.

We point out that the temsor product (4.1) is compatible with direct limits in

M(R°P) and QM(R) respectively.

Let A be an additive category and let F: A — Ab be a quadratic functor. For a
small subringoid R C A the quadratic B—module F{R} is defined by (3.5). On the

other hand each object U in A gives us the R°P—module
BU:RP—AR
which carries X € R to A(X,U) = [X,U]. We now define a map

(4.3) }: [BUIBRF{R} — F(V)

by A(a®m) = F(a)(m) for a € [X,U], m € F(X) and A(fa,b]®n) = PF(a|b)(n) for
b € Hom(Y,U) and n € F(X|Y).

(4.4) Proposition: The homomorphism A in (4.3) is well defined and natural. More-
over A is an isomorphism if U = X;v.vX isa finite biproduct with Xl €R for
i=1,..,r andif R is a full subringoid of A.

This result is a crucial property of the tensorproduct (4.1) which shows that defini-
tion (4.1) is naturally derived from the notion of a quadratic functor.
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The proposition shows that a quadratic functor F:Add(R)— Ab is completely

determined by the quadratic R-module F{R} = i*F. This proves theorem (3.7); in
fact, the inverse of the functor (3.7) carries M € QM(R) to the quadratic functor
(R,_] ®z M. The next corollary illustrates proposition (4.4). Let Cyc be the full

subcategory of Ab consisting of cyclic groups Z/n where n =0 or where n isa
prime power. Then we have the equivalence of categories

(4.5) Add(Cyg) — FAb
where FADb is the full subcategory of Ab consisting of finitely generated abelian

groups. Since each abelian group is the limit of its finitely generated subgroups we get
the ~

(4.6) Corollary: Let F:Ab-— Ab be a quadratic functor which commutes with
direct limits. Then F is completely determined by the quadratic Cyc—-module
F{Cyc}, see (3.5). In fact, we have the natural isomorphism

[CrcAl®g ,  F{Crc} ¥F(A) for A in Ab

We now consider examples of the natural transformation A in (4.3). A commutative

ring R  satisfies R°p.=: R. Therefore we get for any quadratic functor
F:M(R) — Ab the natural homomorphism (A € Ob M(R)) '

(4.7) A:A®pF{R} — F(A).
Here the quadratic R—module F{R} is essentially given by the homomorphisms in
Ab

F(R) -2+ F(R|R) == F(R),
see (2.6)(4) and (3.3)(1), and A is defined as follows. For a€ A let a:R— A be
the map in M(R) with a(1) = a. Then we get for m € F(R) and n € F(R{R) the

formulas A(a®m) = F(a)(m) and A({a,b]®n) = PF(a|b)(n). By (4.4) the map A is
an isomorphism if A is a finitely generated free R—module. We call A the fensor
approximation of the quadratic functor F. For R=1Z we have the following ex-
amples for which the tensor approximation is actually a natural isomorphism.
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(4.8) Proposition: The functors F = @2, 62, A2, SP2,1", and ' in the list (2.11)
satisfy A ®,F{I} =F(A) forall A € Ob(Ab).

The torsion functor F: Ah— Ab with F(A) = A*A, however, is a quadratic func-
tor for which the tensor approximation is no isomorphism, in fact, F{Z} = 0 in this
case. It is easy to check (4.8) by the definition of the relations in (2.9) and (4.1)
respectively. Finally we observe the next result where we use the notation [M] ®,C
in (2.1).

(4.10) Proposition: For M € QM(Z) and A,C € Ah we have the natural isomor-
phism
A8, ([M]®;C) v (A®;M)®,C .

§5 T 3 unc

Let R be a small ringoid. For R—modules A,B one has the abelian group
Homp(A,B) which consists of all natural transformations A — B. We now extend

this Hom functor for the case that B is a quadratic R—module.

(5.1) Definitiong: We define the functor

Homy, : M(R)* x QM(R) — Ab
which carries the pair (A,M)— to the abelian group HomB(A,M), the elements of

which are called quadratic formg A — M gver R. A quadratic form a: A —M is
given by functions (X,Y € Ob(R))

(1) ay : A(X) — M(X), ax y: A(X) x A(Y) — M(X,Y)

such that the following properties are satisfied; (they are analogues to the correspond-
ing properties in (4.1)(2) and they as well define the sume a+ 8 of quadratic
forms). ‘ '
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'ax(a'"b) = ax(a') + ax(b) + PQX,x(asb)
aX,X(a,a.) = Hay(a)

ax,Y(a.,b) = T"Y,x(b:a-)

(2) 1 ax Y is bilinear and (a+ﬂ)x Y = ax’Y + ﬁx’Y
Me(i")ax = axlA(?’)

_Mee(f""")"x,v = axl,yl(A(W) x A(¥))

Here a,b are appropriate elements in A(X) or A(Y) and ¢:X— X,
¥:Y— Y'1 are morphisms in R. The last two equations describe the "naturality"
of the quadratic form e, (these equations are redundant if R = Z). For morphisms
F:A’ — A in M(R) and G: M — M’ € QM(R) we define the induced homo-
morphisms

(3) Hom(F,G) : HomE(A,M) — HomB(A’,M’)
by the formulas Hom(F,G)(a) = 8 with -
(4) ﬁx= GeaxFy ﬂx,Y = GeeGX,Y(FxF)

In case Mee = ( we see that HomR(A,M) coincides with the usual group of natural

transformations A — M, whence the functor (5.1) extends canonically the classical
fanctor Homp for B —modules.

(5.2) Propggition: The Hom—functor (5.1) yields an additive functor

1) Homp(A,_) : QM(B) — Ab

foreach A in M(R) and a quadratic functor

(2) Homp (_,M) : M(R)*® — AD

for each M in QM(R). The quadratic cross effect of (2) is given by the formula
(3) Homli'(A |B,M) = Homg@g(A@B’Mee)

Compare (4.2) where we d&_scribe the corresponding result for quadratic tensor pro-
ducts. The isomorphism in (3) is obtained by the projection
(4) Ijg: Homg(AGB,M) — Homgeg(AﬂB,Mee)
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which carries a to the natural transformation §: A(X) ® B(Y) — M_(X,Y) with
B(a®b) = ay Y(ila"izb)' By (3.5) the quadratic functor F = HomB(_,M) is a qua-

dratic M_(BJOP—module; the structure maps T,H,P are given by the following na-
tural transformations

(5) Hompgp(A®BM,) —~ Hompgp (BAM, )

(6) Homp,(A,M) -2 Homp g (A®B,M,_ ) —— Homp(A,M)

defined by B o -
(TB)(a®b) = TH(a®b),

(M (Ha)(a®b) = a(a,b) + Ta(b,a),

(PB)(a) = HB(a®a) and (PS)(a,b) = A(a®b) .

(5.3) Examples: Let R be a commutative ring and consider the quadratic R—mo-

dules RA,RS and RT defined in (3.3)(3). Moreover let A be an R—module.

(1) A quadratic form a: A—RY can be identified with an R-bilinear map
a: AxA — R satisfying a(a,a) = 0. Whence a is just an alternating bjlinear form.

(2) A quadratic form a:A— RS can be identified with a function a:A —R

which satisfies a(A-a) = a2 a(a) for A €R, a € A and for which the function

A, :AxA —R, A (ab)= a(a+b)—a(a) — a(b)
is R—bilinear. Thus a is the same as a guadratic form on A in the classical sense,
see for example [1], [15].

(3) A quadratic form a:A—Rl can be identified with a pair of functions
a:A—R, A:AxA— R for which a:A—R, A:AxA — R for which

a()a) = A%a(a) and for which A is symmetric R—bilinear with
24A(a,b) = a{a+b)—a(a)—a(b) and A(a,a) = af{a). f R is uniquely 2-divisible a is
a special quadratic form as in (2) since in this case A is determined by a.

(5.4) Example: Let X be a connected space and let A be an abelian group.
J.H.C. Whitehead [17] considered the Ponirjagin gquare which is a function
(n = even)

p: BY(X,A) — BZY(X TA).
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Here the quadratic Z-module I'{A} = (TA — A®A — T'A), see (2.6)(4), yields the
induced quadratic Z—module

H P
& = (H28(X,[A) —*— H?2(X,A®A) —* 4 HB(X TA).
Now the Pontrjagin square p together with the cup product is a quadratic form
H(X,A) — ¥ over I, compare [17].

(5.5) Lemma: Let R be a ring and let F be a finitely generated free R—module.

Then Homp(F,R) is an R°P—_module such that
X: HomR(F,R) @RM N HomR(F,M)
for any quadratic R—-module M.

Proof: We define the natural isomorphism y as follows. Let ab € HomR(F,R),
m € M(e), n € M(e,e). Then x(a®m) =« is given by a(x) = M (a(x))(m) and
a(x,y) = M_ (a(x),a(y))H(m) for x,y € F. Moreover x([2,b]®n) =4 is given by
B(x) = PM (a(x),b(x))(n) and A(x,y) = M, (a(x),b(y))(n) + M (a(y),b(x))(n).

(5.8) Example: Let V be a finitely generated free abelian group and let
V# = Hom(V,Z). Then a quadratic form V¥ —T(V) can be identified via (5.5)

with an element in T'(V) since Hom(V¥ )= V. Now consider a closed 1—connec-
ted 4—dimensional manifold X and let b:H,X =7 -—T[(H,X) be Whitehead’s
secondary boundary operator. Here HoX =V is finitely generated free abelian and

b(1) € [(H,X) corresponds to a quadratic form (H,X)¥ = B%(X) — 2! which ac-
tually is the intersection form of X.

Let A be an additive category and let F: A°? — Ab be a quadratic functor. For a
small subringoid R C A the quadratic R°P—module F{R°P} is defined as in (3.5)

by B°P C A°P. On the other hand each object U in A gives as the R°P~module
[R.J] asin (4.3). We now define the map

(5.7) A:F(U)— Homﬂop([g,U],F{E)p})
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as follows. For ¢ E€F(U) let A(¢) be given by the functions

(X,Y € B%P) with ay(a) = a (£) = F(a)(£), a € [X,U] and
ay y(a,b) = F(a| b)H(£), b € {Y,U]. The next proposition corresponds to (4.4).

I XY

(5.8) Proposition: The homomorphism A in (5.7) is well defined and natural. More-
over A is an isomorphism if U=X,v..vX_is a finite biproduct with X; € R for
i=1,.,r andif R is a full subringoid of A.

This result is a crucial property of the Hom—group (5.1) which shows that definition
(5.1) is again naturally derived from the notion of a quadratic functor. We leave it to
the reader to formulate a corollary of (5.8) corresponding to (4.6). Moreover we get as
in (4.7) the following example. Let R be a commutative ring and let

F: M(R)°P — Ab be a quadratic functor. Then the quadratic R—module F{R} is
defined and we derive from (5.7) the natural transformation

(5.9) X : F(A) — Homp (A,F{R})

'where A € M(R), compare (4.7). By (5.8) this map is an isomorphism if A is a
finitely generated free R—module. We call (5.9) the Hom-approximation of the qua-
dratic functor F.

§6 e dr

In this section we associate with each quadratic R-module M quadratic chain func-

tors M, and M*. The definition of M, and M* is motivated by applications in
homotopy theory [4]. The quadratic chain functors as well form a first step for the
construction of the derived functors in §7 and §8.

Let R be a ringoid with a zero object denoted by 0. A chain complex X, = (x*,d)
in R is a sequence of maps in R

(6.1) X Ax L @en
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with dd=0. A chain map F:X —Y_  is given by maps ]§‘=Fn:}(n--—vYIl
with dF = Fd and a chain homotoy a: F ~ G is given by maps

e=e X ,—Y with —F +G =ad+da, . Thechaincomplex X, is

positive (negative) if X, =0 for i<0 (Xi =0 for i > 0). A negative chain com-
plex is also called a cochain complex X*  where we write X'=X -
d: X% — X2 Let R, (g._*) be the category of positive (negative) chain
complexes and let R/~ (3*/:) be its homotopy category.
We also need the category Pair(R) of pairs in R; objects are morphisms d in R
and maps F:d —d’,F=(F A Fp)» are commutative diagrams

FA. AI

A
(6.2) dl Fy ld’

B ———— B’

A homotopy a:F~G is a map a:B—A with "FA+GA= ad,
~Fp+ G =d’a. We have full inclusions of Paif(R)/~ into R,/~ and R¥/=
which carry d to the chain complex d: A = Xy —iB = XO and to the cochain com-
plex d: A= x? sB=x! respectively.

(6.3) Definition; Let M be a quadratic R—module. The guadratic clajn functorg asso-
ciated to M are the functors

m M, : Pair(R) — Ab, , M": Rair(R) — Ab"
which are defined as follows. For an object d: X; — X, in Pair(R) we define the
chain complex M_(d) by M;(d) =0 for i >2 and by

(2)  M(X},X) (P AL, M(X;) @ M(X;X,) (pP@1),) - M(X

I | |

My (d) M,(d) M, (d)
otherwise. On the other hand we define for an object d: X = x! in Pair(R) the
cochain complex M*(d) by Mi(d) =0 for i > 2 and by

0)



@) MY Gl H) m(xhem(x!,x% (B0, M(x!,x})

m°(a) M’ (q) M2 (d)
otherwise. For amap F:d —d’ in Pair(R) the induced chain maps M_(F) and
M*(F) are defined in the obvious way. One readily checks that the composition of

maps in (2) and (3) respectively is the trivial map 0. The definition of M,, M* is
motivated by the examples in (5.5), (6.5) and (6.10) in [4].

We point out that the definition of M* above is dual to the definitiion of M 4 here
duality is obtained by reversing arrows and by the interchange of H and P.

(6.4) Theorem. The quadratic chains functors (6.3) induce functors
: *
M, : Pair(B)/~ — Ab, /=, M*: Pair(R)/x — Ab*/=

between homotopy categories.

Proof: Let f=(f;,f)) and g=(g;.8;) be maps d — d’ in Pair(R) and let
a:f~g beahomotopy. We can define a homotopy

(1) B M, (f) x M (g)
by the matrices (2) and (3).
(2) B, = [Bl] with {Bl = %
- B By = () H
Ay = (ad,f,) H
(3) By=(A,, )with[1 .
2 1 A2 A2 = -(5110)*+ T(flsa)*
For the proof of (1) we have to check the following equations (4)...(9).
(4) 4 + 84 = 4,B; + P(d,1), B,
(5) _(fl’fl)* + (31’g1)* =AP- Ag(l’d)*
(6) ~f), + 84 =PA; +Bd,
(7) _(fleo)* + (glrgo)* = _(]-vd)*Ag + sz(dsl)*
(8) 0="PA, + B,P(d,1),
(9) 0=—1,d),A; +Bod,.

Originally we found the formulas in (2) ... (3) as a solutions of the system of equa-
tions (4)...(9). We now check (4).
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(10) d a, + P(d,1),(d,fp) H = (da), + P(da,,) H

= (da), + (da + f), —(da), — 1y, = 8gy —fou
Here we use (3.1)(5) and da = —{, + g,- Next we obtain (5) by ad=-f; +g, and
by (3.1)(3):
(1)  (ady) BP + (g,0),(1d), - T(f;,a),(1,d), =

(ad,fl)*T + (ad/fy), + (gp,ad), - T(fl,ad)* =

(Gd,fl)* + (gl,ad)* = (_fl + gl’fl)* + (gl'—fl+gl)*

= _(f]_:fl)* + (81:31)* .
In the last equation we use the biadditivity of the functor M, in (3.1). For equation
(6) we consider
(12) P(ad,fl)*H +aed, = (ad+f1)*— (ad), —f1*+ (ad), = =P 81k -
Next equation (7) follows from
(13) —(1,d),(g;,2),~(1,d), T(£;,a), +(a)f) ,HP(d,1) =

(gy.da), — (a,df), T + (ad i), + (a,fyd) T =
(g11_£0+g0)*+ (_f1+g11{0)* = (31'50)* - (fl’fo)*
Moreover we obtain (8) by '
(14) -P(gl,a)* + PT(fl,a)* + a,P(d,1), =
—P(g,,a), + P(f;,a), + P(ad,a), =0

In the last equation we use ad = —f; + g,. Finally we obtain (9) by
(15) —(l,d)*(ad,fl)*H + (a,fo)*Hd* = —(ad,dfl)*H + (ad,fod)*H =0
Here we use df, = fd. This completes the proof of theorem (6.4) for M. The proof
for M™ uses the 'dual’ arguments. Let f= (fo,fl), g= (go,gl) be maps d’ —d in
Pair(R) andlet a:f=~g be a homotopy. Then we define a homotopy

(16) B:MT(D) =M (g)
by the matrices (17) and (18).
B,=a
(17) ﬁo = (BI’B2) with [ B: _ Pta,{o)*
—p(ad’ §l
(18) gl = [il] with {AI P(mli s .
2 Ay=—g ,a), +T(f',a), -

One can check as above that (16) is satisfied.
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For a I-module M one has the functors which carry an abelian group A to the
group '

A®M, A*M, Hom(A,M) and Ext(A,M)
respectively. We now introduce for a quadratic Z—module M twelve quadratic func-
tors which generalize these classical functors. Using short free resolutions we obtain
functors
(7.1) i :Ab — Pair(Ab)/~ and i%P: AP — Pair(ARP)/~

as follows. For each abelian group A we choose a short exact sequence

d
G>AﬂFq%—:A

where G and F are free abelian groups and we set i(A) =d,. For a homomor-
phism ¢:A —B we can choose amap f:dy —dp in Pair(Ab) which induces
¢. The homotopy class {f} of f is well defined by ¢ and we set i(y) = {f}. The

functor i is actually full and faithful. The functor i°P is induced by i.

A quadratic Z-module M yields the quadratic functors
(7.2) ()®;M: Ab — Ab and Hom(_,M): AR°P 5 Ab

which as well yield a quadratic Ab-module {_}®;, M and a quadratic AR%P—mo-
dule Hom {__,M} respectively, compare (4.2)(5), (6) and (5.2)(5), (6). We now use
(6.4) and (7.1) for the definition of the guadratic chain functors

(13)  ({_}egM),i: Ab——— Ab,/=,
({_} ®pM)" i : Ab ——— AR*/~,
(Hom{_,M}),i* : Ab°® —— Ab, /=,
(Hom{_,M})*°P : AL — Ab*/x .

The (co)homology groups of these four quadratic chain functors yield six functors

Ab— Ab and six functors Ab°P — Ab which we denote as follows where
dy =1i(A) asin (7.1) and where j= 0,1, resp. 2.
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(7.4) Hj({_}QHM)*dA = A®M, Ax’M, resp. Ax"M,
B({_}®;M)*d, = AxM, A®M, resp. A®"M,
Hj(Hom{_,M})*dRp = Ext(A,M), Hom’(A,M), resp. Hom"(A,M),
BY(Hom{_,M})*d3P = Hom(A M), Ext’(A,M), resp. Ext"(A,M).

The first nine of these functors appear in the exact sequences of [4], see (2.5), (3.5)
and (4.5) in [4). For the convenience of the reader we now describe explicitly the
chain complexes used in (7.4). For this we choose d =d, : G—F asin (7.1).

(1) The chain complex ({_}®;M),d, is given by
ocoM_ =¥ ce MecereM yPdy) Fé
GeGeM _, —— GO, M8 G e ——— F&; M.
(2) The cochain complex ({__} ®HM)*d A 18 given by

(H,—d,) (dy,d, H)

%%k
FQFGM&h—FGHMQFGGGMee G@HM'

(3 The chain complex (Hom{_,M}),d$P is given by
* A

* x* *
Hom(F8F,M, ) (£:=4 ), Hom (F M)@Bom(FeG,M,_ ) (4P ), Hom_(G,M).
(4) The cochain complex (Hom{_,M})*d3P is given by

* *x .k
Hom(G®G M) B4 ) Hom (G, M) ® Hom(GeF M) {44 B) Bom_ (F,) .

Here d*,d* denote the maps induced by d and the formulas for H and P are
described in (4.2)(7) and (5.2)(7) respectively. The degree of the group at the right
hand side in each sequence above is 0.

(7.5) Remark: The notation in (7.4) is chosen since there is the following compati-
bility with classical functors. Assume M is a Z—module, that is Mee = 0, then one
readily verifies that the groups

A®M = A®M, AxM = Ax'M, Hom(A,M) = Hom’(A,M), Ext(A,M) = Ext’(A,M)
are given by the corresponding classical functors for abelian groups. Moreover all
groups A*"M, A®"M, Hom"(A,M) and Ext"(A,M) with j=2 in (7.4) are trivial
for Mee = (.
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(7.6) Proposition: One has natural isomorphisms A®M = A®,M and
Hom(A M) = Homﬂ(A,M) where the right hand side is defined by (4.1) and (5.1)
respectively. Compare also (8.10).

(7.7) Proposition: All functors in (7.4) are additive in M and quadraticin A. The
quadratic cross effects are naturally given by

(A|B)8M = ABBOM__ = (A|B) ®" M

(A|B)*M = AxB*M,, = (A|B) *" M

Ext(A | B,M) = Ext(A%B,M,) = Ext"(A|B,M)
Hom(A | B,M) = Hom(A®B,M_) = Hom"(A | B,M)
(A|B)¥M = H,(d,®pM,) = (A|B)®'M

Hom’(A|B,M) = H'(d,®dp M_) = Ext’(A|B,M).

Here d, denotes as well the chain complex (X,.d) with

d=d, :X;=G—X;=F, X, =0 for i 2 2. The Kinneth formula yields natural
_exact sequences

(1) (A%B)BM,, >— H,(d, 8dp,M_ ) — (A®B)*M_,

(2) Ext(A®B,M_ ) >— H'(d,®dg,M_) — Hom(A*B,M,,)

These sequences are split, the gplitting however is not natural. There is a natural iso-
morphism

(3) Hl(dA ® dB’Mee) = Trip(A,B,Mee)

where the right hand side is the triple torsion product of Mac Lane [12].

Proof of (7.7): We consider for N = {_}®;M the functor
- N,: Pair(Ab)/~ — Ab_/~, see (7.3). This functor is quadratic and its quadratic
cross effect admits a weak equivalence

¥:N(dy |dg) —d, @ OM
of chain complexes. For d A:}1[1-—»}(0 and dB : Y]L-—vY0 and
C,=N,(d, |dg) we have
CO=X0®Y0®M.ee
Cl=XIQYIOMeeOKlOYG@MBEGYIQXOOMee
Cz=X10Y1®Mee0Y1®X1®Mee
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The differential d,: C; — C,_, is given by

dy(x; ®y, ®n)=x,®y, ®n—x,®dpy, ®n

d,z(y1 Oxlen) =x Oyl O'Tn—ylsdAxl ®n

dy(x;®y, ®n)=d,x, ®dgy, ®n

d)(x) @5y ®n) =dpx;) @y, ®n

dy(y;®x;®n)=x;,@dpy; ®Tn
where v € Yi’ x; €EX,n€ Mee‘ The map ¥ is given by the identity in degree 0
and by

¥o(x;®y,810)=0

11'2(y1 ®x,®n)=x; ®y,®Tn

Wl(xl ®y, ® n) = x; ®dpy, ®n

Wl(xIQyOOn) =x10y00n

¥(y,9x)®n)=x,®y, @Tn
Since HjN*(dA |dg) is the cross effect in HjN*(dA ®dp) weobtain (A|B)®M,
(A|B)*M and (A|B)*"M by the weak equivalence ¥ and by the Kiinneth for-
mula. In a similar way one obtains the other cross effects in (7.7).

(7.8) Proposition: There are natural inclusions and projections of abelian groups
AX"M >———— A x A M,
AS'™M ———A®ABM,,
Hom"(A,M) >—— Hom(A®A M ee’)
Ext"(A,M) ——— Ext(A * AM,,).

Proof: We only consider the first inclusion. For this we see by (7.4)(1), that Ax"M
is the intersection (d, =1®@d®1).

ker(P) N ker(~d,) C G ® (A*M_) CGOGOM
where ker(—d,) = G ® (A*M_). We have to show (d®1@1)(A*"M) = 0. Then
the first inclusion in (7.8) is given. Let T:G@®G® M,—G®GO®M,, be the
interchange map with T(x®y®n)=y®x®Tn. Since HP =1+ T we see that
T restricted to ker(P) is —1. Whence we get for x € A*"M
(d@1®1)(x)=—d®1@1)T(x) =-T(1®d®1)(x)=0.

(7.9) Remark: Using (7.7) it is easy to compute the functors (7.4) for finitely genera-
ted abelian groups A. For this we need only to consider cyclic groups Z/n = A with
the presentation dA =n:4=G— I =F.In this case we have HﬁﬂM = Me and



Homz(Z,M) = M,; therefore the chain complexes (7.4)(1)...(4) can be expressed in
terms of H,P in the quadratic Z-module M. In particular (7.4)(1), resp. (2), is
givenfor dy =n by

(1) M, B, M oM (enP) o
(2) M, By o Lot

e
where n, is defined in (2.1). In addition we can use the following formulas for the
computation.

Iesp.

(7.10) Proposition: Let A be a finite abelian group and let AE = Ext(A,Z). Then
one has the natural isomorphisms

Ext (AM)=AP@®M,  Hom(AM)= AFM,
Hom'(A,M) = AE %M,  Ext(A,M) = AE @M,
Hom"(A,M) = AZx"M,  Ext"(A,M) = AF ey,

There is a non natural isomorphism AE ~A.

Proof: Since A is finite we obtain a presentation of Ext(A,Z) by

d:: P = Hom(F,Z) — G¥# = Hom(G,Z). Using (5.5) we can replace Hom(F,M)
by F#OEM. This way the chain complex (7.4)(3) for d, is the same as the chain
complex (7.4)(1) for dz. This proves the left hand side of equations in (7.10).

(7.11) Bemark: The 12 functors in (7.4) evaluated on A = Z are given by the table

IeM = M, Ix¥M =0 Ix"M =0

I*M =0 I®¥M =ker H "I®"M =cok H
Ext(IM)=0 Hom’(Z,M) = cok P Hom"(Z,N) = ker P
Hom(Z,M) = Me Ext'(ZM) =0 Ext"(Z,M) = 0.

Here H,P are the maps of the quadratic Z-module M.

(7.12) Examples: Eilenberg—Mac Lane introduced quadratic functors R: Ab — Ab
and Q1: Ab — Ab, compare § 22 and § 13 respectively in [9]. For these functors one
has a new interpretation since there are natural isomorphisms (see (3.15) and (3.7) in

[4])
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R(A) ¥ AxZ! and N(A)x A®T

Here T' is the quadratic Z-module in (2.11); we do not know, whether for example

also A% and A o1 play a role in the literature. Generalizations of the functors
R and 0 are described by J. Decker, see III (4.2)[7] and also [5].

§8 Quadratic derived functors

In this section we associate with a quadratic R-module M a chain functor and a co-
chain functor. If we apply these functors to a projective (resp. injective) resolution we
get the quadratic derived functors which coincide with the classical derived functors
in case M, = 0. We understand that Dold—Puppe [8] obtained derived functors of
non additive functors which as well generalized the classical derived functors of an
additive functor; the construction of the quadratic derived functors below is different
and relies on the structure of a quadratic module.

Let B be a ringoid with a zero object. An R—module . M yields the following chain
functorg which are as well denoted by M

(8.1) M:R,/~— Ab./~ and M:R*/x — Ab¥/~,

compare the notation in (6.1). For a chain complex X, in R, we define M(X,)
simply by setting M(Xm)11 = M(X_). The differential d, in M(X,) is induced by
the differential d in X, d, = M(d). Similarly we get induced chain maps M(F)
with M(F)n = M(F_) and induced chain homotopies M(a) with M(a) = M(a,).
Since M is an additive functor one readily observes that this chain functor is well
defined. In the same way one gets the cochain functor M which carries X* € g* to

the cochain complex M(X*).

Now le¢ M be a quadratic R—module. We associate with M the guadratic chajn
functors M as in (8.1) which again are simply denoted by M, see (8.2) and (8.3). In
fact, if Mee = 0 these chain functors coincide with the additive functors above.

(8.2) Definition: For X, in R, the chain complex C, = M(X,) is given by the
abelian groups (n 2 2)
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Co = M(XO)
(1) C,= cok{(P,—(l,d)*) : M(X1 ,Xl) - M(Xl) @ M(XI,XO)}
C,= cok{PG(I,d)*:M(Xn,Xn)GM(Xn,xl) —_ M(Xn)GM(Xn,XO)}
The differential d = d11 : C11 — Cn__.1 is induced by the maps

(2) {dl = (d*lp(d’l)*)!

d =d.@ (d,1),, n22
For a chain map F: X, —Y, we get the induced chain map
M(F) : MX « — MY, by
(3) {(MF)O = (FO)* '

(MF)n = (Fn)* ® (Fn)FO)*S a 2 1 .

Finally a chain homotopy a:F:G,an:X —-»Yning‘* yields a chain homo-
topy Ma: MF ~ MG by
(4) {(Ma)l =((al)*,(a1,F0)*H),

(Ma)n = (an)* @ (an’FO) *? n 2 2.
The next definition is dual to (8.2).

n-1

(8.3) Definition- For X* in R* the cochain complex C* = MX™ is given by the
abelian groups (n 2 2)

c® = M(x%)
(1) { ¢ = ker {(B,«1,d),) : M(x}) e M(x'x%) — M(x!xl)}

C® = ker {HO(1,d), : M(X") @ M(x® x%) — M(x? x")eM(x2x")}

The differential d = d®: C® — C%F! is induced by the maps
(2) d = (d,,(4,1),H), d® =d,®(d,1),, 2.
For a chain map F:X*—Y* we get the induced chain map
M(F) : MX* — MY* by
0_ (0 0
(3) (MF)" = (F°),, (MF)" = (F") ®(F"F"),, n21.

Finally a chain homotopy a:F=G (a®:X**' —Y®) in R* yields a chain
homotopy Ma : MF ~ MG by

(4) (Ma)® = ((a%),,P(a"F0),), (Ma)® = (a®),®(a™F0),, n21.
(8.4) Proposition: The definitions (8.2) and (8.3) yield well defined functors

M:R,/~— Ab,/~ and M:R*/~— Ab¥/~ respectively.
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The functors M in (8.4) are quadratic, the cross effect of these functors is described
in §9 below. The proof of (8.4) is similar to the proof of (6.4), in fact (6.4) can be used
for the 1—dimensional part of the proposition, compare (8.5) below.

We point out that the definition of the quadratic chain functors relies on the struc-
ture maps H and P of the quadratic R—module M; a functor R — Ab which is
merely quadratic is not appropriate for the definition of the functors in (8.4).

(8.5) Remark: The quadratic chain functors M, and M* in (6.3) are related to the
quadratic chain functors M in (8.4) as follows. Let d,: X;—X; and

d: X? — x! vegivenby X, and X* respectively. Then the 1—dimensional part
of MX,, resp. of MX*, coincides with the map

M, (d, )/boundaries — M(d,), resp. M%(d%) — cycles ¢ M'(a?),
compare the definition in (6.3) and (8.2), (8.3). This shows that for X, =0, X! = 0,
i 2 2, one has isomorphic homology groups HMX, = HM_(d,),
B'MX* = B'M*(d%) for i=0,1. The homology H,M,(d,) and HZM*(d®), how-
ever, cannot be obtained by MX, and MX™ respectively.

We now assume that the additive category A is an abelian category with enough
projectives and injectives respectively, for example A = M(R). The hdmology of
chain complexes in A is defined. We say that X* is a projective resolution of
X €O0b(A) ifachainmap e¢:X, —X in A_ is given (which induces an isomor-
phism in homology) where all X, of X, are projectivein A and where X is the

chain complex c;)ncentrated in degree 0. On the other hand X* isan injective reso-
lution of X if a chain map €:X — X" in A* is given (which induces an iso-
morphism in cohomology) where all X' of X* are injectivein A. It is well known

that the choice of resolutions X, X* yields functors i: A— A* [~ and
j:A— A/~ which are well defined up to canonical isomorphisms.

(8.6) Definition: Let A be an abelian category as above and let M: A — Ab bea
quadratic functor. Then (3.5) shows that M yields a quadratic A-module
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M =M{A} as well denoted by M. Using the resolution functors i,j above and
using (8.4) one gets functors

(1) Mi:A— Ab,/~ and Mj: A — Ab*/=.
The n—th (co)homology of these functors yields the guadratic derived functors
L M:A— Ab, R®M : A — Ab respectively, n > 0. For X € Ob(A) one has
- n gl *
(2) (L,M)X = H MX, and (R"M)X = H"MX

where X, X* are resolutions as above. The chain complexes MX,, MX* are de-
fined as in (8.2), (8.3).

(8.7) Remark: In case M in (8.6) is an additive functor, that is M., =0, the
derived functors coincide with the classical derived functors of M, see for example
[6], [10]. For a quadratic functor M Dold—Puppe [8] as well defined derived functors;
their construction, however, is different to the one in (8.6) and is available for any
non additive functor A — Ab. Our definition in (8.8) is adapted especially to qua~
dratic functors.

(8.8) Definition: Let A be an abelian category and let M : A — Ab be a quadratic
functor. We say that M is quadratic right exact if each exact sequence

X, d, Xq —34.X —0 in A inducesan exact sequence
(d,,P(d,1),) q
M(X,) ® M(X, | X ) — 0 M(Xg) —— M(X) — 0.

We say that M is quadratic left exact if each exact sequence
0—X-4x04,x! in A induces an exact sequence
i (d,.(d,1) H)
0 — M(X) =5 M(xY) 2 mxby e M(x!|x9).
The definitions immediately imply as in the classical case:

(8.8) Lemma: Let M: A — Ab be quadratic right exact then one has the natural
isomorphism M LOM. Dually if M is quadratic left exact one has the natural iso-

morphism M & ROM.

As examples of quadratic derived functors we obtain the following quadratic Tor and
Ext functors for a small ringoid R, n 2 0.
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(8.9) Torg” : M(R)P x QM(R) — Ab,

Extp : M(B)°P x QM(R) — Ab.

{==R o

For M in QM(R) these functors are derived from the quadratic functors
(1 _®M:M(R®) — Ab,

(2) Homp (_M) : M(B)*P — Ab,
that is, for a projective resolution X of X in M(R®P) and for a projective resolu-
tion Y of Y in M(R) we set

(3) Torl(X,M) = Ly(_8gM)(X) = H,((_8gM)(X,),
(4) Exti(Y,M) = RnHomg(_,M)(Y) = Hn(HomLt(_,M)(Y*)).

In (4) we consider Y, as an injective resolution in M(Q)OP and we use (8.3). Clear-
ly the groups (3), (4) are trivial for n 2 1 in case X and Y are projective objects
in A. The functors (8.9) are quadratic in the first variable and additive in the second
variable. ' ' ' '

(8.10) Proposition: The functor -®pM s quadratic right exact and the functor
HomBJ( _,M) is quadratic left exact S0 that we have natural isomorphisms (see (8.8))

R
Tor (X,M) = X 85 M and Extﬁ(Y,M) = Homp(Y,M).

In case M is an R—module, that is M e = 0, the Tor and Ext groups above coincide
with the classical groups, see [10].

(8.11) Example: Let R =7 be the ring of integers and let M be a quadratic Z-mo-
dule. For an abelian group A one gets (see (7.4)) Tor?(A,M) = A*%’M and
Extllz(A,M) = Ext’(A,M). This follows since d A in (7.4) is a projective resolution of

A, see (8.5). Clearly Torl =0=Ext} for n22 since the chain complex d, is
1-dimensional.
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We also introduce functors

{Tor% . M(B)°P  QM(B) — Ab,
(8.12)

Extp : M(R)P x QM(R) — Ab.

For A € M(R%P), resp. A € M(R)??, these functors are derived from the additive
functors

(1) A®p __: QM(R) — Ab, resp.

(2 Homp(A,_) : QM(B) — Ab.

That is, for a proje_ctive resolution M, resp. injective resolution M*  of
M € QM(R) we set

(3) TOR%(A,M) = Ln(Aﬁg_)M = Hn(AQE:M )

(4) EXTg(AM) = R"(Homp (A, ))M = Hn(HomB(A,M*)).

Clearly these groups are trivial for n 2 1 if M is a projective, resp. injective, object
in QM(R). Moreover, since (1), (2) are additive functors, all the usual results of ho-
mological algebra are available, for example in (8.16) we apply the long exact sequen-
ces induced by short exact sequences, see IV. (6.1) {10].

(8.13) Proposition. The functor AQR_ is right exact and the functor HomR(A,_)
R R o
is left exact, so that TOR j(A,M) = AQEM = Tor ;(A,M), and

0 _ 0
EXTQ(A,M) = Homg(A,M) = Extg(A,M).
It is a classical result (see for example {10]) that for M, =0 there are also natural

n
that this is not tree for Mo ¥ 0.

isomorphisms TOR% = TorB and Extﬁ = EXTﬁ, n 2 1. The next example shows

(8.14) Example: Let R =7 and M = Q, see (2.2). Then Q is a free (whence pro-
jective) Q—module and therefore TORZ(A,Q) =0 for n2 1. On the other hand
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Torl(A,Q) = A*’Q has the cross effect (A|B)*’Q = (A*B)®I, see (1.7). There-
fore TOR? # Torf

!

(8.15) Example: One has a short exact sequence 0—-;118-—»11 —Z—0 in

QM(T), see (2.11). This sequence induces the exact sequence

TORY(A,1) — A®T® — ASTL — AGT — 0
where TORZII(A,Z{) = AxZl = 0. Whence one gets this way the top row of (2.10), see

(4.9). On the other hand the exact sequence 0 I — Tk — Zf2—0 in
QM(Z), induces the exact sequence

ToRE(A,2") — TORZ(A,2/2) £ A0S L, ae" — AeT/2 — 0

where TOREIT(A,E/2) = AxI[2. We now show that i is injective so that §=10. In
fact i is injective if A is cyclic and whence also if A is finitely generated. Since
_O®M commutes with direct limits we see that i is injective for any abelian group
A.

§9 T u 3 ' u

We introduce biderived functors which describe the cross effects of the quadratic de-
rived functors in §8. Moreover we discuss various exact sequences for these functors.
We assume that R is a ringoid with a zero object.

(9.1) Definition: Let M be an R®R~module, see (1.7). Then we define the additive
functor
M:R, /@R, /e— Ab /[~

(as well denoted by M) as follows. For chain complexes X_,Y_ in R, we get
C, = M(X,_,Y,) by (n22)

Co=M(X,Y,)
() {Cymook{((Ld),i—{d 1) M(X,,Y;) — M(X,, Y)BM(X Y, )}

C=cok{(1,d),8(d,1),:M(X .Y, )BM(X,Y ) — M(X_,Y)8M(X,,Y )}
The differential d=d :C — C _, isinduced by the maps
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2) {dl = ((d’l)*: (lsd)*) '

d =(d,1), ®(1,d),, n22
For chain maps F:X —X;, G:Y —Y, we get the induced chain map
M(F®G) : M(X,.Y,) — M(X;,Y;) by

(3) {M(NG)O = (FO’GO)*
M(F,G)_ = (F,,G), © (FyG )y 221

Finally, chain homotopies a:F=F', #:G~G’ yield a chaiﬁ homotopy
M(a,B8) : M(F © G) ~ M(F'®G’) by
(4) {M(atﬁ)l=((011G0)*v(F0)ﬂ1)*):

The next definition is dual to (9.1).

(9.2) Definition: We now associate with an R®R—module M the additive functor
M:R"/~@R"/x — AR*/=
(as well denoted by M) as follows. For cochain complexes X*, Y* in g* we get
c* = M(xX*,Y*) by (0> 2) ‘
cO=mx%v?
(1) Cl=ker{((1,d),,~d,1),):M(X", Y% — M(x°, v1) — M(x!, Y1)}
CP=ker{(1,d),8(d,1),:M(X", YO)om(x%,¥?) — M(x™, v} )em(x!,Y?)}
The differential d = dn : Ct — Cn"'1 is induced by the maps
al = ((4,1) (1d),),
{d“ =(d,1),®(1,d),, 0 2’
For chain maps F: x* —-»X'*, G:Y'—=Y* we get the induced chain map
M(F8G) : G(X*,Y*) — M(X"* Y'*) vy
{ m(rec)” = (7°,¢%),,

(3)
M(F,G)" = (F",G%),@ (F°,G"),, n 2 1.
Finally chain homotopies a:F~F, :G~G yield a chain homotopy

(2)
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M(a,B) : M(F@G) ~ M(F'®G’) by
F’l(a,ﬂ)o = ((a%,6%,.(F%.8%,).
M

4
“ (a,6)" = (a",G%),8(F",8),,m 2 1
As in (8.4) one can readily check:

(9.3) Proposition: The functors in (9.1) and (9.2) are well defined and additive.
The crucial property of the functors (9.1) and (9.2) is described by the next result.

(9.4) Theorem: Let M be a quadratic R—module and let M(X *|Y*) and

M(X* |Y*) be cross effects of the quadratic functors M in (8.2) and (8.3) respec-
tively. Then there are natural isomorphism

* K x| K
®:M(X, | Y,) ¥ M (X,Y,) and x: M (X*,Y") 2 M(X*|Y™)
of chain complexes. Here M, is the R®R—module given by M, see (3.1) and (1.7),

~and Mee(x w1 Yy) and M&(X*,Y*) are defined by (9.1) and (9.2) respectively.-

Similarly as in (8.6) we can use the functors in (9.1), (9.2) for the definitions of de-
rived functors. Let A be an abelian category with enough projective and injectives.

(9.5) Definition: Let M be an A®A-module. Using the resolution functors
i:A—A,/~ and j: A— A*/: one gets the additive functors

(1) M(i®):ABA — Ab_/~ and M(j®j):A®A — Ab*/~ .
The n—th (co)homology of these functors yields the biderived functors

L M:A®A— Ab and R"M: A®A — Ab
respectively, n 2 0. For X,Y € Ob(A) one has

(R™M)(X,Y) = B*M(X* Y")
where X,,Y, (resp. X*,Y*) are projective (resp. injective) resolutions of X,Y. The
chain complexes M(X,,Y,), M(X*,Y*) are defined in (9.1), (9.2).

As a corollary of (9.4) one gets immediately.
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(9.6) Corollary: Let M be a quadratic A—module. Then the quadratic derived func-
tors (8.6) have the cross effects

(L M)(X|Y) = (LM, )(X,Y)

(R™M)(X]Y) = (R"M_)(X,Y)
where M is the A®A—module given by M.

In addition to (9.6) one gets the following natural exact sequences for quadratic de-
rived functors, they correspond to the classical exact sequences for derived functors in
case Mee = (. To this end we consider a short exact sequence

i 8
(9.7) S=(0—X—-—Y-2532—0)
in A and maps S — §’ between such sequences.

(9.8) Theorem: Let M be a quadratic A-module. Then S in (9.7) yields the fol-
lowing natural commutative diagram in which the rows and columns are long exact
sequences (n € Z).

L M (XY) | L M, (X,2)
|2 |
is
2L ML L MX LMY y LML MX—
ln+1 ! ln n" ’ ln ! n—1 l
8
AL Mz LML MY —* LMzl .1 M
n+41 n n n n—1
)
L M_(X,Z) L _ M (X.2)

1 l

We leave it to the reader to write down the dual diagram for right derived functors

R"; for this we simply replace L, by R* insucha way that & raises the degree
bylLIf M ce = 0 we see that the rows of the diagram are isomorphic, in this case the
row coincides with the classical exact sequence for left derived functors, see IV §6
[10]. In case the sequence S is split all boundaries @ are trivial and the remaining
short exact sequences are split, this yields (9.6).
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Proof of (9.8): We can choose a short exact sequence of projective resolutions

(1) 0—x, Ly, L4z, —0

of §, compare the proof of (IV. 6.1) [10]. As a module we have Y =X @Z . The
differential of Y, is given by

(2) (d®d) +i)éry: X ®Z =Y —X 02 ,=Y ,
Here d denotes the differential of X, and Y, respectively. We now derive from
(1) the following commutative diagram in which rows and columns are short exact
sequences of chain complexes

M(X,2,)
, j
1

> MY, — cok(i,)

I

er(q,)>+ MY, ——MZ_
j T

M(X,,2Z,)

MX,

The maps j are well defined chain maps since we have (2) for the boundary in Y.
We now set ‘

(4) L Mi® = H_ker(q,), L Mq® = H_cok(i,) .
Now (9.8) is obtained by the long exact sequences associated to short exact sequences
of chain complexes.

There are the following examples of biderived functors. We associate with M in
M(R®R) the additive functors

FmM : M(R*P)SM(RP) — Ab

(9.9)

Homgag(_vM) : @(E)OPQI_\‘__’I(Q)OP — Ab

which carry the object (X,Y) to (XQY)@RQRM and HomBoR(XQY,M) respec-

tively, compare (4.2)(3) and (5.2)(3). The biderived functors of (9.9) are denoted by

(1) Torf®RXY.M) = L,(_@pepM)(X.Y),
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(2) Extiag(x,Y,M) = Rn(Homg_gg(_,M)(X,Y).

Using (9.6) one obtains for a quadratic R~module M the cross effects (n 2 0)

(3) - TorX(x|Y,M) = Tor2®B(x,y. M),

(4) Extﬁ(x [Y,M) = ExtEQR(X YM,,).

As an exa.mple of (1) we get for R = Z the triple torsion product of Mac Lane [12]

(5) Torl(X,Y,M) = Trp(X,Y,M) = H, (d«&dy,, M),
compare (7.7)(3). We also can apply theorem (9.8) for the functors in (3), (4); this
leads for R = Z to the following results on the functors in (7.4), see (8.11).

(9.10) Theorem: Let M be a quadratic Z—module and let

S:0—9X A, Y3147 —0 be an exact sequence of abelian groups. Then one has
the following commutative diagrams in which the rows and the rectangle sequences of
broken arrows are exact sequences of abelian groups. Moreover these diagrams are
natural in S.

i

Hl(dxgdz,M&) ——————————— -+ xeM

q* a l

0=ix'M — Y¥'M —+ Z&'M — i8M — YOM—— Z@M- 0
!
XM to = e e = — = e —————— XOZeM
ee
Al(dy@d, M ) r———-2 - Hom(X,M)
X 2 ee T ’

OhExt('},M)d—Ext(Y,M)«—QtExt(Z,M)o-a—Hom(i,M)¢- Hom(Y,M) = Hom(Z, M)+ 0
Ext(%{,M) T e pp—— -+ Hc‘er(XQZ,Mee)

In case Mee = 0 the diagram above correspond exactly to the classical six term ex-
act sequences. We can apply these exact sequences for example if M is the quadratic

I-module M = Z!. In this case the torsion product Yo = R(Y) correspond to
the functor R of Eilenberg—Mac Lane, see (7.13).
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