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Polynomial and Poisson Dependence in Free Poisson

Algebras and Free Poisson Fields

Leonid Makar-Limanov1 and Ivan Shestakov 2

Abstract

We prove that any two Poisson dependent elements in a free Poisson algebra and
a free Poisson field of characteristic zero are algebraically dependent, thus answering
positively a question from [8]. We apply this result to give a new proof of the tameness
of automorphisms for free Poisson algebras of rank two (see [9, 10]).

1 Introduction

The free Poisson algebras were first considered in [12]. They are naturally and closely
related to polynomial algebras, free associative algebras, and free Lie algebras. For exam-
ple, the free Poisson algebra and Poisson brackets were used in [13, 14] to prove that the
Nagata automorphism of the polynomial algebra of rank three is wild.

A systematic study of free Poisson algebras was started in [8] where several open
questions on their structure were formulated. It was proved in [8] that the centralizer
of a nonconstant element of a free Poisson algebra in the case of characteristic zero is
a polynomial algebra in a single variable; this is an analogue of the famous Bergman
Centralizer Theorem [1]. Then in [10] it was proved that locally nilpotent derivations of
free Poisson algebra of rank two in the case of characteristic zero are triangulable and
that automorphisms of these algebras are tame; these are analogues of the well-known
Rentschler Theorem [11] and Jung Theorem [5] respectively. Finally, in [9] the Freiheitssatz
was proved for free Poisson algebras over a field of characteristic zero.

In this paper we continue the study of free Poisson algebras and solve positively a
question formulated in [8] by proving that every two Poisson dependent elements in a
free Poisson algebra over a field of characteristic zero are algebraically dependent. In fact
we prove a bit more: any two Poisson dependent elements which are rational over a free
Poisson algebra are algebraically dependent.
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2Supported by FAPESP grant 2010/50347-9 and CNPq grant 305344/2009-9; Institute of Mathematics
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As a corollary, we give another proof of the result from [10] that the automorphisms of
free Poisson algebra of rank two in the case of characteristic zero are tame (see also [9]).

2 The main part

Below P = P〈X〉 denotes a free Poisson algebra on a set of generators X = {x1, . . . , xn}
over a field F of characteristic zero. Recall (see, for example [12]) that P is isomorphic to
S(Lie〈X〉), where Lie〈X〉 is the free Lie algebra over X and S(V ) means the symmetric al-
gebra over a vector space V . Denote by y1 = x1, y2 = x2, . . . , yn = xn, yn+1 = {x1, x2}, . . .
a basis of Lie〈X〉 consisting of the Lie monomials which are ordered by increasing Lie
degree (and arbitrary for monomials of the same degree). Hence as a commutative alge-
bra P is a polynomial algebra F [y1, y2, . . . ] with infinitely many generators. For elements
f, g ∈ P we denote by fg their product as elements of F [y1, y2, . . . ] and by {f, g} their
Poisson product (the Poisson bracket) which is defined on y1, y2, . . . as elements of Lie〈X〉,
extended on monomials of P by the Leibnitz law, and then on P by linearity.

A family of polynomial weight degree functions can be defined on F [y1, y2, . . . ] by
giving arbitrary real weights wi = w(yi) to the generators and extending it on monomials
M = yj1

1 yj2
2 . . . by w(M) =

∑
i jiw(yi). Then for f ∈ F [y1, y2, . . . ] degree can be defined as

D(f) = max(w(M)|M ∈ f), i.e. maximum by all monomials contained in f with non-zero
coefficients. Of course not all of these functions make sense for P as a Poisson algebra.
We say that a weight degree function D on P is compatible with the Poisson structure if
it satisfies the following natural condition:

for any two monomials M1, M2 ∈ P (as a polynomial algebra) the bracket {M1,M2} is
D-homogeneous.

For example the weight which is defined on a Lie monomial y as the number of appearances
of a free generator xk in y defines a compatible degree function dxk

. It is easy to check
that in order to define a compatible degree function the weight should be given on a Lie
monomial y by

w(y) =
∑

i

(w(xi)− c)dxi(y) + c

where w(xi) and c are arbitrary real numbers. To see it define ∆(i, j) = w(yi) + w(yj)−
D({yi, yj}) for two different Lie monomials yi, yj . Take {yiyj , yk} = {yi, yk}yj +yi{yj , yk}
where yi, yj , yk are pairwise different Lie monomials. Then D({yi, yk}yj) = D(yi{yj , yk}),
∆(i, k) = ∆(j, k), and ∆(i, j) = c is a constant. Therefore weight w is completely deter-
mined by wi = w(xi) and c = ∆(i, j).

Examples of compatible degree functions are dxk
defined above and the Poisson degree

which corresponds to w(x1) = · · · = w(xn) = 1, c = 0 (i. e. to the Lie degree). Total
polynomial degree deg on F [y1, y2, . . . ] is also compatible and corresponds to w(x1) =
· · · = w(xn) = c = 1.

Recall that deg({f, g}) = deg(f) + deg(g)− 1 for homogeneous f and g if {f, g} 6= 0.
Similar relation is true for any compatible weight degree function: D({f, g}) = D(f) +
D(g)− c if {f, g} 6= 0 and f and g are D-homogeneous.

Below we will consider only the weights for which all parameters are integers.
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Elements a1, . . . , am of a Poisson algebra S are called Poisson dependent if there exists
a non-zero element p(x1, . . . , xm) in the free Poisson algebra P〈x1, . . . , xm〉 such that
p(a1, . . . , am) = 0 in S; the elements a1, . . . , am are called algebraically dependent if there
exists a non-zero polynomial f(x1, . . . , xm) ∈ F [x1, . . . , xm] such that f(a1, . . . , am) = 0.

Element u is called algebraic over a Poisson algebra S if u belongs to a commutative
algebra T containing S (as a commutative subalgebra) and p(u) = 0 in T for a non-zero
polynomial p ∈ S[t]. If S is a domain the bracket can be extended uniquely from S to
the field S(u). Indeed, take a non-zero polynomial p(t) =

∑
i pit

i where pi ∈ S for which
p(u) = 0 of the minimal degree possible. If an extension of the bracket exists and we use
the same notation for it then 0 = {f, p(u)} = {f, u}p′(u)+

∑
i{f, pi}ui for any f ∈ S which

defines {f, u} provided p′(u) 6= 0, i. e. in the zero characteristic case or for a separable
extension. It is a straightforward computation to check that this bracket makes S(u) a
Poisson algebra.

Denote byQ the field of fractions of P considered as a commutative polynomial algebra.
We can extend the bracket from P to Q as we saw above. A compatible weight degree
function D can be extended from P to Q by D(a

b ) = D(a) −D(b). We will call Q a free
Poisson field.

Lemma 1 Let f, g be elements algebraic over a free Poisson algebra P. If f, g ∈ P[f, g]
are Poisson dependent and r1(x1, x2), r2(x1, x2) ∈ F (x1, x2) are rational functions then
r1(f, g), r2(f, g) ∈ P(f, g) are also Poisson dependent.

Proof. Elements f, g are Poisson dependent if the basic Lie monomials of f, g are al-
gebraically dependent. Denote by y1, . . . , yN(a) the set of all basic Lie monomials with
d(yj) ≤ a. Consider the smallest A for which y1(f, g), y2(f, g), . . . yN(A)(f, g) are al-
gebraically dependent. It is easy to check using induction on ai = d(yi(x1, x2)) that
yi(r1(f, g), r2(f, g)) ∈ F (f, g)[y3(f, g), . . . yN(ai)(f, g)]. Hence there is an algebraic depen-
dence between y1(r1(f, g), r2(f, g)), . . . , yN(A)(r1(f, g), r2(f, g)). 2

For f ∈ Q denote by supp (f) the minimal set of polynomial variables on which f
depends.

Lemma 2 Let f, g ∈ Q be elements which are algebraically independent. Then for a
given polynomial weight degree function D there exists an element h ∈ F [f, g] such that
the leading forms fD, hD are algebraically independent.

Proof. A standard proof of this fact would be based on the notion of Gelfand-Kirillov
dimension (see [4]) and is well-know for the polynomial case. We give a proof using
Poisson brackets which is possible in the case of zero characteristic.

Consider supp (f)
⋃

supp (g) = {yi1 , . . . , yik}. Since f, g are algebraically independent
we may assume without loss of generality that f, g, yi3 , . . . , yik are algebraically indepen-
dent and introduce on F (yi1 , . . . , yik) a deficiency function (somewhat similar to the one
introduced in [7]) by

def(f, h) = D(Jyi1
,...,yik

(f, h, yi3 , . . . , yik))−D(h)

where Jyi1
,...,yik

(f, h, yi3 , . . . , yik) is the Jacobian of f, h, yi3 , . . . , yik , i.e. the determinant
of the corresponding Jacobi matrix. This function is defined and has values in Z when
Jyi1

,...,yik
(f, h, yi3 , . . . , yik) 6= 0.
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Since Jyi1
,...,yik

(f, p(f, g), yi3 , . . . , yik) = Jyi1
,...,yik

(f, g, yi3 , . . . , yik)∂p
∂g for any p ∈ F [f, g]

and Jyi1
,...,yik

(f, g, yi3 , . . . , yik) 6= 0 function def is defined on any algebraically independent
pair from F [f, g].

Observe that

def(f, hk) = def(f, h),
def(f, hr(f)) = def(f, h), r(f) ∈ F (f) \ 0

def(f, h) ≤ D(f)− c,

where c is a constant which depends only on degrees of f, yi1 , . . . , yik .
If fD and gD are algebraically dependent then there exists a non-zero polynomial

q =
∑k

i=0 qi(x)yi ∈ F [x, y] for which all monomials with non-zero coefficients have the
same D degree (D(x) = D(f), D(y) = D(g)), k = degy(q) is minimal possible, and
q(fD, gD) = 0. In our setting elements f, g′ = q(f, g) are algebraically independent.
Denote in this Lemma only Jyi1

,...,yik
(f, h, yi3 , . . . , yik) by {f, h}.

We have

def(f, g′) = D({f, g′})−D(g′) = D(
∑

i

{f, qi(f)gi})−D(g′) >

D({f, qk(f)gk})−D(qk(f)gk) = def(f, gk) = def(f, g)

since D(g′) < D(qk(f)gk) while D({f, qk(f)gk}) = D(kqk(f) gk−1) + D({f, g}) =
D(

∑
i iqi(f) gi−1) + D({f, g}) = D(

∑
i{f, qi(f)gi}) (recall that

∑
i iqi(fD) gi−1

D 6= 0). If
fD, g′D are algebraically dependent, we repeat the procedure and obtain a pair f, g′′ with
def(f, g′′) > def(f, g′). Since def(f, h) ≤ D(f)− c for any h and def(f, h) ∈ Z, the process
will stop after a finite number of steps and we will get an element h ∈ F [f, g] for which
hD is algebraically independent with fD.

2

Lemma 3 Let f, g ∈ Q be elements which are Poisson dependent but not algebraically
dependent. Then there exists a pair of elements which are homogeneous relative to any
compatible weight degree function D with the same property.

Proof. Denote by hD the leading form of h ∈ Q relative to D. From the definition of
compatibility yi(f, g)D = yi(fD, gD) if yi(fD, gD) 6= 0. Since P (f, g) = 0 for a Poisson
polynomial, PD(fD, gD) = 0 for a polynomial PD consisting of monomials M of P for
which D(M(fD, gD)) is maximal possible. Hence fD, gD are Poisson dependent.

If fD and gD are algebraically dependent then we can use Lemma 2 to find an el-
ement h ∈ F [f, g] such that hD and fD are algebraically independent and to obtain a
D-homogeneous pair of Poisson dependent elements which are algebraically independent.
The space of compatible weights is finite dimensional lattice, hence we can obtain a pair
of Poisson dependent elements which are algebraically independent and are homogeneous
relative to all compatible degree functions. 2

We will call elements which are homogeneous relative to all compatible degree functions
completely homogeneous.
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Lemma 4 Let f, g ∈ Q be a Poisson dependent pair and x be the smallest element in
supp (f). Write f = xnfx + · · · , g = xmgx + · · · , where fx, gx do not contain x and dots
stand for terms with smaller (polynomial) degrees in x. Then the pair fx, gx is Poisson
dependent as well.

Proof. Consider the Poisson polynomial P (x1, x2) for which P (f, g) = 0; it is a sum of
monomials of the type

u = yk1
1 yk2

2 · · · yks
s ,

where yi are Lie monomials in x1, x2. We have

{f, g} = xn+m{fx, gx}+ . . . ,

yi(f, g) = xNiyi(fx, gx) + · · · , Ni = ndx1(yi) + mdx2(yi),

u(f, g) = xN(u)u(fx, gx) + · · · , N(u) =
∑

i

kiNi,

where again dots mean terms of smaller degree in x. Observe that x cannot appear in
{fx, gx} or in yi(fx, gx) when d(yi) > 1 since for any y ∈ supp (f), z ∈ supp (g) we have
{y, z} > y ≥ x. Therefore,

0 = P (f, g) = Q(fx, gx)xN + · · · ,

where N = max{N(u) |u monomial in P (x1, x2)}, Q(x1, x2) =
∑

N(u)=N u(x1, x2). Since
all monomials u in P (x1, x2) are linearly independent, we have Q(x1, x2) 6= 0 and hence
fx, gx are Poisson dependent. 2

Lemma 5 In the conditions of Lemma 4, assume that fx = 1, f = xn + αxn−1 + · · · .
Then the pair nx + α, gx is Poisson dependent.

Proof. Let us check by induction on the Poisson degree that yi(f, g) = xNiyi(nx+α, gx)+
· · · for i > 1, where Ni = (n− 1)dx1(yi) + mdx2(yi) for any Lie monomial with i > 1 and
dots stand for the terms of smaller degree in x (recall that degx(g) = m). The base of
induction for y2(f, g) = g is clear. A Lie monomial yk(f, g) with k > 2 can be presented as
either {yl(f, g), f} or {yl(f, g), g} where yl is a monomial with a smaller Poisson degree.
If l = 1 then k = 3 is the only interesting case and y3(f, g) = {f, g} = {xn + α xn−1 +
· · · , xmgx + · · · } = nxn−1+m{x, gx}+xn−1+m{α, gx}+ · · · = xn−1+m{nx+α, gx}+ · · · . If
l > 1 then by induction yl(f, g) = xNlyl(nx + α, gx) + · · · and similar computations verify
the claim. It is essential that x is the smallest element in supp (f) because supp ({y, z})
does not contain x if y ≥ x and no additional powers of x may appear as results of Poisson
brackets.

Therefore for u = yk1
1 yk2

2 · · · yks
s the leading form of u(f, g) relative to x is xnk1+Nuy2(nx+

α, gx)k2 · · · ys(nx + α, gx)ks where Nu = (n− 1)dx1(y
k2
2 · · · yks

s ) + mdx2(y
k2
2 · · · yks

s ). Hence
different monomials of P (f, g) cannot cancel in the x-leading form of P (f, g) and the
elements nx + α, gx are Poisson dependent. 2

Consider now a pair of algebraically independent elements f, g ∈ Q. By the Shirshov-
Witt theorem a subalgebra of a free Lie algebra is a free Lie algebra (see [15, 17]) so the
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elements of supp (f)
⋃

supp (g) generate a free Lie algebra L with the free basis which
contains two smallest elements x, y of supp (f)

⋃
supp (g). Elements x and y are different

since otherwise supp (f)
⋃

supp (g) = x and f, g are algebraically dependent. If P is
the free Poisson algebra which correspond to L and Q is the field of fractions of P then
f, g ∈ Q. Though f, g are possibly written through different generators, the size of
supp (f)

⋃
supp (g) did not change.

Assume that there exists a pair of algebraically independent Poisson dependent ele-
ments in a free Poisson field Q. Then we can find a pair which is minimal in the fol-
lowing sense: the size |f, g| of supp (f)

⋃
supp (g) is minimal possible, Q is generated by

supp (f)
⋃

supp (g), elements f and g are completely homogeneous.
As we observed |f, g| does not change when we replace the original Poisson field

with the “minimal” one. The elements may stop being completely homogeneous but by
Lemma 3 we can produce a completely homogeneous pair which belongs to F [f, g], hence
the union of supports of these two elements belongs to the union of supports of the original
elements. Since |f, g| is minimal it implies that the size cannot become smaller, so the
union of supports of a completely homogeneous pair is the same as for the original pair.

Recall that if two homogeneous polynomials f, g ∈ F [X] are algebraically dependent
then there exists a homogeneous polynomial h ∈ F [X] such that f = αhk, g = βhl for
some α, β ∈ F and natural numbers k, l (see, for example, [2]). Similar statement is true
for two algebraically dependent homogeneous rational functions f, g ∈ F (X) if one of
them, say f , has a non-zero degree. Indeed, since we may assume that D(f igj) is the
same for all monomials of q

q(f, g) =
∑

iD(f)+jD(g)=d

qijf
igj = 0.

If D(g) = 0 then q(f, g) = faqa(g), qa(g) = 0 and g ∈ F . If D(g) 6= 0 then q(f, g) =
fagbq̃(fρg−σ) where ρ, σ are relatively prime integers for which ρD(f) = σD(g) and
q̃(x) ∈ F [x]. Hence q(f, g) = fagb

∏
(fρg−σ − ci) where ci ∈ F , an algebraic closure

of F . So fρ − cgσ = 0 for some c ∈ F . Furthermore, if rρ + sσ = 1, r, s ∈ Z, and
h = fsgr then hσ is proportional to f and hρ is proportional to g. If we also assume
that h is not a proper power (of a rational function) then all rational functions which are
algebraically dependent with h belong to F (h).

Lemma 6 Let f, g ∈ Q be a minimal pair. If x is the smallest element in supp (f)
⋃

supp (g),
then there exists a minimal pair f̃ = x + f1, g̃ where supp (f1)

⋃
supp (g̃) 63 x.

Proof. Write f = xnfx + · · · , g = xmgx + · · · , where fx, gx do not contain x and
dots stand for terms with smaller (polynomial) degrees in x. Then the pair fx, gx is
Poisson dependent by Lemma 4 and is algebraically dependent since |fx, gx| < |f, g|.
If D(fx) = 0 for any compatible degree function consider the second smallest element
y ∈ supp (f)

⋃
supp (g) and present f = yn1fy + · · · where fy does not contain y and dots

stand for terms with smaller degrees in y. If D(fy) = 0 for any compatible degree function
then D(xn) = D(yn1) for any compatible degree. But x, y are elements of a free basis, so
the Poisson degrees dx and dy are compatible degree functions and either x = y which is
impossible or n = n1 = 0. Similar considerations for g show that either D(gx) or D(gy)
is not identically zero or m = m1 = 0. If n = m = 0 consider polynomial dependence q
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between fx, gx and a minimal pair f, g1 = q(f, g). Then g1 = xkg1x + . . . where k < 0.
So either D(g1x) or D(g1y) is not identically zero. Since x, y are elements of a free basis
we can reorder them as well as f, g1 and assume that D(fx) 6= 0 for some compatible
degree function. Then by remarks above there exists a completely homogeneous element
h ∈ Q such that fx = c1h

a, gx = c2h
b where c1, c2 ∈ F \ 0, D(h) 6= 0 for some compatible

degree function, and a 6= 0. Without loss of generality we may assume that c1 = c2 = 1.
Hence f = xnha + · · · , g = xmhb + · · · . The pair f bg−a, f ∈ Q is Poisson dependent by
Lemma 1. We can write f bg−a = xbn−am +α xnb−am−1 + . . . . Hence by Lemma 5 the pair
(bn− am)x + α, ha is Poisson dependent. Recall that supp (α)

⋃
supp (h) 63 x. Therefore

(bn− am)x+α and h are algebraically independent if (bn− am) 6= 0. So if (bn− am) 6= 0
we proved the Lemma.

If bn−am = 0 then algebraically independent rational functions f, g have algebraically
dependent leading forms relative to polynomial degx. According to Lemma 2 ring F [f, g]
contains an element g′ such that degx-leading forms of f and g′ are algebraically indepen-
dent. Since supp (g′) ⊂ supp (f)

⋂
supp (g) the pair f, g′ is minimal and we can use it to

prove the lemma. 2

Theorem 1 Every two Poisson dependent elements in the free Poisson field Q are alge-
braically dependent.

Proof. Assume that the theorem is not true. Then by the previous lemmas there exists a
completely homogeneous Poisson dependent algebraically independent pair f = x+f1, g ∈
Q, where the size |f, g| is minimal possible, x is the minimal element in supp (f)

⋃
supp (g)

and supp (f1)
⋃

supp (g) 63 x, and x is an element of the free basis of P.
Consider the smallest element y ∈ supp (g) and write f = ynfy + . . . , g = ymgy + . . .

where supp (fy)
⋃

supp (gy) 63 y. Elements fy and gy should be Poisson dependent by
Lemma 4 and algebraically dependent since |fy, gy| < |f, g|.

If n = 0 then fy = x + f1y and gy are algebraically dependent and dx(fy) = 1. Hence
gy = cf b

y and b = 0 since otherwise supp (gy) 3 x. If furthermore m = 0 then g = c + . . .

where c ∈ F and we will replace g by g̃ = g − c. Then g̃ = ym̃g̃y + . . . where m̃ 6= 0.
Furthermore, fy = x+f1y and g̃y are Poisson and algebraically dependent, which as above
is possible only if g̃y ∈ F . Since y is a Lie monomial and y 6= x there is an element
z 6= x in the free basis for which dz(y) 6= 0 and dz(g̃) = m̃dz(y) 6= 0. But D(g̃) = 0 for
any compatible weight degree function. Therefore g̃y 6∈ F, g̃y = cf b

y where b is a non-
zero integer, and supp (g̃y) 3 x, a contradiction. We can conclude that m 6= 0 and that
fy,my + mβ are Poisson dependent by Lemma 5. Since fy = x + f1y where all elements
of supp (f1y) are larger than x and all elements of supp (β) are larger than y we can see
that yi(x + f1y, y + β) = yi(x, y) + . . . for any Lie monomial yi where . . . stand for Lie
monomials larger than yi(x, y). Hence these elements are Poisson independent and n = 0
is impossible.

Since x is an element of the free basis it follows from the complete homogeneity that
0 = dz(x) = dz(ynfy). Therefore dz(fy) = −ndz(y) 6= 0. Elements fy, gy are algebraically
dependent, hence fy = c1h

a, gy = c2h
b for some element h where a 6= 0 and we may

assume that c1 = c2 = 1.
If b = 0 and m 6= 0 then g = ym + . . . and fy and my + β are Poisson depen-

dent. They are algebraically independent since y 6∈ supp (fy), y ∈ supp (my + β). But
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supp (fy)
⋂

supp (gy) 63 x and we have a contradiction with the minimality of the pair
f, g. If m = 0 consider g̃ = g− 1. Then g̃ = ym̃g̃y + . . . where m̃ 6= 0 and g̃y = hb̃ because
fy = ha where a 6= 0. Now, dx(f) = dx(x) = 1 = dx(ynfy), dz(f) = dz(x) = 0 = dz(ynfy)
and dx(fy) = 1 − ndx(y), dz(fy) = −ndz(y). Since dx(ym̃hb̃) = 0, dz(ym̃hb̃) = 0 and
dx(fy) = 1 − ndx(y), dz(fy) = −ndz(y) both m̃ = b̃ = 0, which is impossible. Therefore
b 6= 0.

Replace now g by g̃ = g−af b. Then g̃ = yk + yk−1g̃1 + . . . . The case k = 0 could be
brought to a contradiction just as the case b = m = 0 above. Therefore k 6= 0.

Elements ky + g̃1, fy are algebraically independent since supp (fy) 63 y and k 6= 0.
Since

supp (ky + g̃1)
⋃

supp (fy) ⊆ supp (f)
⋃

supp (g)

we should have supp (ky + g̃1)
⋃

supp (fy) = supp (f)
⋃

supp (g) by the minimality condi-
tion and x ∈ supp (g̃1) (x 6∈ supp (fy) since n > 0). Recall that g̃ = g−af b and therefore
x ∈ supp (g̃1) only if n = 1, i. e. if f = yha+(x+δ)+. . . where . . . stand for the terms with
negative powers in y. Hence g̃ = (yha+(x+δ)+... )b

(ymhb+εym−1+... )a = yk + [b(x + δ)h−a− aεh−b]yk−1 + . . .

and g̃1 = b(x + δ)h−a − aεh−b.
The elements (ky + g̃1)fy, fy are Poisson dependent by Lemma 1. Hence [ky + b(x +

δ)h−a − aεh−b]ha = b(x + δ)− aεha−b + kyha and ha are Poisson dependent.
It is clear that supp (ha) is a proper subset of supp (g). So we may apply induction on

the size of supp (g) to prove the Theorem. The base of induction when |g| = 1 corresponds
to g = ym, m 6= 0. As we have seen above in order to avoid a contradiction we should
have f = ynfy + . . . where n 6= 0, fy 6∈ F , and gy 6∈ F . But gy = 1 and we have a
contradiction which proves the theorem.

2

It was shown in [8] that f, g ∈ P is algebraically dependent if and only if {f, g} = 0
i.e. f and g are Poisson commuting. Of course if two elements f, g of a Poisson algebra
which is a domain are algebraically dependent they Poisson commute: p(f, g) = 0 implies
that pg(f, g){f, g} = 0. The Theorem shows that for f, g ∈ Q Poisson commuting implies
an algebraic dependence. Hence for the pairs from Q the notions of Poisson commuting,
algebraic dependence, and Poisson dependence are equivalent.

Corollary 1 Let f, g ∈ Q, {f, g} 6= 0. Then f, g generate a free Lie algebra with respect
to the bracket {, }, and they generate a free Poisson subalgebra in Q in complete analogy
to the case of free associative algebras.

Observe that the theorem is evidently not true for more than two elements: the ele-
ments x1, x2, {x1, x2} are Poisson dependent but are algebraically independent. It is not
true as well if char F = p > 0 ; the elements x1, x

p
2 are algebraically independent but

{x1, x
p
2} = p xp−1

2 {x1, x2} = 0.

3 Application to automorphisms

It is well known [3, 5, 16, 6] that the automorphisms of polynomial algebras and
free associative algebras in two variables are tame. The automorphisms of free Poisson
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algebras in two variables over a field of characteristic zero are also tame [10]. In [9] this
result was obtained as a corollary of the Freiheitssatz for Poisson algebras. Here we show
that the result follows from our theorem as well.

Theorem 2 [10] Automorphisms of the free Poisson algebra P〈x, y〉 of rank two over a
field F of characteristic 0 are tame.

Proof. Let α be an automorphism of P2 = P〈x, y〉. Since any (tame) automorphism
of F [x, y] can be lifted to a (tame) automorphism of P2, we can assume without loss of
generality that the abelianization of α (that is, its homomorphic image under the natural
epimorphism Aut(P2) ³ Aut(F [x, y])) is the identity automorphism of F [x, y]. It remains
to show that then α is the identity automorphism of P2.

Let α(x) = f , α(y) = g. Assume that either f 6= x or g 6= y. If we take weights
w(x) = ρ, w(y) = 1 where ρ ≥ 0 then f∼= x and g∼= y where f∼ and g∼ are the lowest
Poisson forms of f and g with respect to w. If we start now to decrees ρ then for some
non-positive value of ρ either f∼ 6= x or g∼ 6= y for the corresponding f∼ and g∼. Let
us take the largest ρ with this property. Then f∼ and g∼ are Poisson w-homogeneous,
dw(f∼) = ρ, dw(g∼) = 1, f∼= x+f1, g∼= y+g1, where at least one of f1, g1 is nonzero and
their abelianizations in F [x, y] are both zero. Clearly, f∼and g∼are Poisson independent.

Let x = X(f, g) for some Poisson polynomial X(x1, x2), then x = (X(f, g))∼ =
X∼(f∼, g∼) since f∼ and g∼ are Poisson independent. Similarly, y belongs to the Poisson
subalgebra generated by f∼ and g∼. Therefore, the w-homogeneous Poisson forms f∼, g∼
generate P2.

Consider now the Poisson leading forms (̃f∼) and (̃g∼) of f∼and g∼with respect to the
Poisson degree, when d(x) = d(y) = 1. If they were Poisson independent, then as above
they would generate P2. But this is impossible since otherwise their abelianizations, the
images under the epimorphism P2 ³ F [x, y], would generate F [x, y], while at least one of
them is 0.

Next we can use our Theorem and conclude that (̃f∼) and (̃g∼) are algebraically depen-
dent. Therefore up to scalars they are ha, hb for a certain Poisson-homogeneous element
h ∈ P2 and non-negative integers a, b. Then we have adw(h) = ρ, bdw(h) = 1 where
ρ < 0, which is impossible. 2
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