THE HOMOTOPY CATEGORY OF MOORE SPACES AND THE COHOMOLOGY OF THE CATEGORY OF ABELIAN GROUPS

HANS-JOACHIM BAUES
AND
MANFRED HARTL

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Federal Republic of Germany

THE HOMOTOPY CATEGORY OF MOORE SPACES AND THE COHOMOLOGY OF THE CATEGORY OF ABELIAN GROUPS

Hans-Joachim Baues and Manfred Hartl

Moore spaces $M(A, n)$ and Eilenberg-Mac Lane spaces $K(A, n)$ are the fundamental building blocks of homotopy theory; see for example [11], [8], [6]. For $n \geq 2$ the homotopy category of Eilenberg-Mac Lane spaces $K(A, n)$ is isomorphic to the category $A b$ of abelian groups. The homotopy category $\underline{\underline{M}}^{n}$ of Moore spaces $M(A, n), A \in \underline{\underline{A} b}$, should also be isomorphic to an important algebraic category. For $n \geq 3$ a suitable algebraic model is known (see (V.3a.8) in [4] and (I.§6) in [6]). The homotopy category $\underline{\underline{M}}^{2}$ of Moore spaces in degree 2 is still not completely understood. Up to equivalence the category $\underline{\underline{M}}^{2}$ is determined by a non-trivial cohomology class of order 2 ,

$$
\left\{\underline{\underline{M}}^{2}\right\} \in H^{2}(\underline{\underline{A b}}, \operatorname{Ext}(-, \Gamma))
$$

The results of this paper describe the restriction of this class to the full subcategory of $\underline{\underline{A b}}$ consisting of direct sums of cyclic groups, and the image of $\left\{\underline{\underline{M}}^{2}\right\}$ under surjection of coefficients $(A, B \in \underline{\underline{A b}})$

$$
H^{\prime}: \operatorname{Ext}(A, \Gamma B) \rightarrow H_{*} \operatorname{Ext}(A, \Gamma B) .
$$

Moreover we show that $\left\{\underline{\underline{M}}^{2}\right\}$ is in the image of the coefficient homomorphism i_{*} given by the inclusion of 2 -torsion

$$
i: \mathbb{Z} / 2 * \operatorname{Ext}(A, \Gamma B) \subset \operatorname{Ext}(A, \Gamma B)
$$

For the proofs we use the James-Hopf invariant γ_{2} on \underline{M}^{2} which canonically yields an element of order 2

$$
\left\{\bar{\gamma}_{2}\right\} \in H^{1}\left(\underline{\underline{A b}}, \operatorname{Ext}\left(-, \Lambda^{2}\right)\right)
$$

We describe $\left\{\bar{\gamma}_{2}\right\}$ algebraically by a cohomology class $\{\underline{\underline{n i l}\}}\}$ defined via groups of nilpotency degree 2. The image of $\left\{\underline{\underline{M}}^{2}\right\}$ under the coefficient homomorphism H^{\prime} satisfies the formula

$$
H_{*}^{\prime}\left\{\underline{\underline{M}}^{2}\right\}=\beta\{\underline{\underline{n i l}}\}
$$

where β is a Bockstein homomorphism. The element $H_{*}^{\prime}\left\{\underline{\underline{M}}^{2}\right\}$ determines up to equivalence the image category of the functor [1]:

$$
C_{*} \Omega: \underline{\underline{M}}^{2} \rightarrow H o(\underline{\underline{D A}})
$$

which carries $M(A, 2)$ to the chain algebra of the loop space, $C_{*} \Omega M(A, 2)$. This simple example illustrates fundamental differences between spaces and chain algebras. Since the category \underline{M}^{2} is equivalent to the category of homotopy pairs between Pontrjagin maps we can prove that also the universal Toda bracket [9], $\langle\underline{\underline{K}}\rangle_{\Omega}$, is non-trivial where $\underline{\underline{K}}$ is the homotopy category of Eilenberg-Mac Lane spaces $K(A, 2), K(B, 4)$ with $A, B \in \underline{\underline{A b}}$.

§1 Linear extensions of categories and the cohomology of categories

An extension of a group G by a G-module A is a short exact sequence of groups

$$
0 \rightarrow A \underset{i}{\longrightarrow} E \underset{p}{\longrightarrow} G \rightarrow 0
$$

where i is compatible with the action of G. Two such extensions E and E^{\prime} are equivalent if there is an isomorphism $\epsilon: E \cong E^{\prime}$ of groups with $p^{\prime} \epsilon=p$ and $\epsilon i=i^{\prime}$. It is well known that the equivalence classes of extensions are classified by the cohomology $H^{2}(G, A)$.

We now describe linear extensions of a small category $\underline{\underline{C}}$ by a "natural system" D. The equivalence classes of such extensions are equally classified by the cohomology $H^{2}(\underline{\underline{C}}, D)$. A natural system D on a category $\underline{\underline{C}}$ is the appropriate generalization of a G-module.
(1.1) Definition. Let $\underline{\underline{C}}$ be a category. The category of factorizations in $\underline{\underline{C}}$, denoted by $F \underline{\underline{C}}$, is given as follows. Objects are morphisms f, g, \ldots in $\underline{\underline{C}}$ and morphisms $f \rightarrow g$ are pairs (α, β) for which

commutes in $\underline{\underline{C}}$. Here $\alpha f \beta$ is factorization of g. Composition is defined by $\left(\alpha^{\prime}, \beta^{\prime}\right)(\alpha, \beta)=$
 (of abelian groups) on $\underline{\underline{C}}$ is a functor $D: F \underline{\underline{C}} \rightarrow \underline{\underline{A b}}$. The functor D carries the object f to $D_{f}=D(f)$ and carries the morphism $(\alpha, \beta): f \rightarrow g$ to the induced homomorphism

$$
D(\alpha, \beta)=\alpha_{*} \beta^{*}: D_{f} \rightarrow D_{\alpha f \beta}=D_{g}
$$

Here we set $D(\alpha, 1)=\alpha_{*}, D(1, \beta)=\beta^{*}$.
We have a canonical forgetful functor $\pi: F \underline{\underline{C}} \rightarrow \underline{\underline{C}}^{o p} \times \underline{\underline{C}}$ so that each bifunctor $D: \underline{\underline{C}}^{o p} \times \underline{\underline{C}} \rightarrow \underline{\underline{A b}}$ yields a natural system $D \pi$, as well denoted by D. Such a bifunctor is also called a $\underline{\underline{C}}$-bimodule. In this case $D_{f}=D(B, A)$ depends only on the objects A, B for all $\overline{f \in \underline{C}}(B, A)$. Two functors $F, G: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ yield the $\underline{\underline{A b}}$ -bimodule

$$
H o m(F, G): \underline{\underline{A b}}^{o p} \times \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}
$$

which carries (A, B) to the group of homomorphisms $\operatorname{Hom}(F A, G B)$. If F is the identity functor we write $\operatorname{Hom}(-, G)$. Similarly we define the $\underline{\underline{A b}}$-bimodule $\operatorname{Ext}(F, G)$.

For a group G and a G-module A the corresponding natural system D on the group G, considered as a category, is given by $D_{g}=A$ for $g \in G$ and $g_{*} a=g \cdot a$ for $a \in A, g^{*} a=a$. If we restrict the following notion of a "linear extension" to the case $\underline{\underline{C}}=G$ and $D=A$ we obtain the notion of a group extension above.
(1.2) Definition. Let D be a natural system on $\underline{\underline{C}}$. We say that

$$
D \stackrel{+}{\mapsto} \underline{\underline{E}} \xrightarrow{p} \underline{\underline{C}}
$$

is a linear extension of the category $\underline{\underline{C}}$ by D if (a), (b) and (c) hold.
(a) $\underline{\underline{E}}$ and $\underline{\underline{C}}$ have the same objects and p is a full functor which is the identity on objects.
(b) For each $f: A \rightarrow B$ in $\underline{\underline{C}}$ the abelian group D_{f} acts transitively and effectively on the subset $p^{-\overline{1}}(f)$ of morphisms in $\underline{\underline{E}}$. We write $f_{0}+\alpha$ for the action of $\alpha \in D_{f}$ on $f_{0} \in p^{-1}(f)$.
(c) The action satisfies the linear distributivity law:

$$
\left(f_{0}+\alpha\right)\left(g_{0}+\beta\right)=f_{0} g_{0}+f_{*} \beta+g^{*} \alpha .
$$

Two linear extensions $\underline{\underline{E}}$ and $\underline{\underline{E}}^{\prime}$ are equivalent if there is an isomorphism of categories $\epsilon: \underline{\underline{E}} \cong \underline{\underline{E^{\prime}}}$ with $\overline{p^{\prime}} \epsilon=p$ and with $\epsilon\left(f_{0}+\alpha\right)=\epsilon\left(f_{0}\right)+\alpha$ for $f_{0} \in \operatorname{Mor}(\underline{\underline{E}}), \alpha \in$ $D_{p f_{0}}$. The extension $\underline{\underline{E}}$ is split if there is a functor $s: \underline{\underline{C}} \rightarrow \underline{\underline{E}}$ with $p s=1$. Let $M(\underline{\underline{C}}, D)$ be the set of equivalence classes of linear extensions of $\underline{\underline{C}}$ by $\underline{\underline{D}}$. Then there is a canonical bijection

$$
\begin{equation*}
\psi: M(\underline{\underline{C}}, D) \cong H^{2}(\underline{\underline{C}}, D) \tag{1.3}
\end{equation*}
$$

which maps the split extension to the zero element, see [2] and IV $\S 6$ in [4]. Here $H^{n}(\underline{\underline{C}}, D)$ denotes the cohomology of $\underline{\underline{C}}$ with coefficients in D which is defined below. We obtain a representing cocycle Δ_{t} of the cohomology class $\{\underline{\underline{E}}\}=\psi(\underline{\underline{E}}) \in$ $H^{2}(\underline{\underline{C}}, D)$ as follows. Let t be a "splitting" function for p which associates with each morphism $f: A \rightarrow B$ in $\underline{\underline{C}}$ a morphism $f_{0}=t(f)$ in $\underline{\underline{E}}$ with $p f_{0}=f$. Then t yields a cocycle Δ_{t} by the formula

$$
\begin{equation*}
t(g f)=t(g) t(f)+\Delta_{t}(g, f) \tag{1.4}
\end{equation*}
$$

with $\Delta_{t}(g, f) \in D(g f)$. The cohomology class $\{\underline{\underline{E}}\}=\left\{\Delta_{t}\right\}$ is trivial if and only if $\underline{\underline{E}}$ is a split extension.
(1.5) Definition. Let $\underline{\underline{C}}$ be a small category and let $N_{n}(\underline{\underline{C}})$ be the set of sequences $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of n composable morphisms in $\underline{\underline{C}}$ (which are the n-simplices of the nerve of $\underline{\underline{C}}$). For $n=0$ let $N_{0}(\underline{\underline{C}})=\mathrm{Ob}(\underline{\underline{C}})$ be the set of objects in $\underline{\underline{C}}$. The cochain group $F^{n}=F^{n}(\underline{\underline{C}}, D)$ is the abelian group of all functions

$$
\begin{equation*}
c: N_{n}(\underline{\underline{C}}) \rightarrow\left(\bigcup_{g \in \operatorname{Mor}(\underline{\underline{C}})} D_{g}\right)=D \tag{1}
\end{equation*}
$$

with $c\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in D_{\lambda_{1} \circ \ldots \circ \lambda_{n}}$. Addition in F^{n} is given by adding pointwise in the abelian groups D_{g}. The coboundary $\partial: F^{n-1} \rightarrow F^{n}$ is defined by the formula

$$
\begin{align*}
(\partial c)\left(\lambda_{1}, \ldots, \lambda_{n}\right) & =\left(\lambda_{1}\right) * c\left(\lambda_{2}, \ldots, \lambda_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} c\left(\lambda_{1}, \ldots, \lambda_{i} \lambda_{i+1}, \ldots, \lambda_{n}\right) \tag{2}\\
& +(-1)^{n}\left(\lambda_{n}\right)^{*} c\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)
\end{align*}
$$

For $n=1$ we have $(\partial c)(\lambda)=\lambda_{*} c(A)-\lambda^{*} c(B)$ for $\lambda: A \rightarrow B \in N_{1}(\underline{\underline{C}})$. One can check that $\partial c \in F^{n}$ for $c \in F^{n-1}$ and that $\partial \partial=0$. Hence the cohomology groups

$$
\begin{equation*}
H^{n}(\underline{\underline{C}}, D)=H^{n}\left(F^{*}(\underline{\underline{C}}, D), \delta\right) \tag{3}
\end{equation*}
$$

are defined, $n \geq 0$. These groups are discussed in [2] and [4]. By change of the universe cohomology groups $H^{n}(\underline{\underline{C}}, D)$ can also be defined if $\underline{\underline{C}}$ is not a small category. A functor $\phi: \underline{\underline{C}}^{\prime} \rightarrow \underline{\underline{C}}$ induces the homomorphism

$$
\begin{equation*}
\phi^{*}: H^{n}(\underline{\underline{C}}, D) \rightarrow H^{n}\left(\underline{\underline{C}}^{\prime}, \phi^{*} D\right) \tag{4}
\end{equation*}
$$

where $\phi^{*} D$ is the natural system given by $\left(\phi^{*} D\right)_{f}=D_{\phi(f)}$. On cochains the map ϕ^{*} is given by the formula

$$
\left(\phi^{*} f\right)\left(\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)=f\left(\phi \lambda_{1}^{\prime}, \ldots, \phi \lambda_{n}^{\prime}\right)
$$

where $\left(\lambda^{\prime}, \ldots, \lambda_{n}^{\prime}\right) \in N_{n}\left(\underline{\underline{C}}^{\prime}\right)$. If ϕ is an equivalence of categories then ϕ^{*} is an isomorphism. A natural transformation $\tau: D \rightarrow D^{\prime}$ between natural systems induces a homomorphism

$$
\begin{equation*}
\tau_{*}: H^{n}(\underline{\underline{C}}, D) \rightarrow H^{n}\left(\underline{\underline{C}}, D^{\prime}\right) \tag{5}
\end{equation*}
$$

by $\left(\tau_{*} f\right)\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\tau_{\lambda} f\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $\tau_{\lambda}: D_{\lambda} \rightarrow D_{\lambda}^{\prime}$ with $\lambda=\lambda_{1} \circ \ldots \circ \lambda_{n}$ is given by the transformation τ. Now let

$$
D^{\prime \prime} \stackrel{I}{\mapsto} D \stackrel{\tau}{\rightarrow} D^{\prime}
$$

be a short exact sequence of natural systems on $\underline{\underline{C}}$. Then we obtain as usual the natural long exact sequence

$$
\begin{equation*}
\longrightarrow H^{n}\left(\underline{\underline{C}}, D^{\prime}\right) \xrightarrow{l_{0}} H^{n}(\underline{\underline{C}}, D) \xrightarrow{\tau_{\cdot}} H^{n}\left(\underline{\underline{C}}, D^{\prime \prime}\right) \xrightarrow{\beta} H^{n+1}\left(\underline{\underline{C}}, D^{\prime}\right) \longrightarrow \tag{1.6}
\end{equation*}
$$

where β is the Bockstein homomorphism. For a cocycle $c^{\prime \prime}$ representing a class $\left\{c^{\prime \prime}\right\}$ in $H^{n}\left(\underline{\underline{C}}, D^{\prime \prime}\right)$ we obtain $\beta\left\{c^{\prime \prime}\right\}$ by choosing a cochain c as in (1.5) (1) with $\tau c=c^{\prime \prime}$. This is possible since τ is surjective. Then $\iota^{-1} \delta c$ is a cocycle which represents $\beta\left\{c^{\prime \prime}\right\}$.
(1.7) Remark. The cohomology (1.5) generalizes the cohomology of a group. In fact, let G be a group and let $\underline{\underline{G}}$ be the corresponding category with a single object and with morphisms given by the elements in G. A G-module A yields a natural system D. Then the classical definition of the cohomology $H^{n}(G, A)$ coincides with the definition of

$$
H^{n}(\underline{\underline{G}}, D)=H^{n}(G, A)
$$

given by (1.5). Further results and applications of the cohomology of categories can be found in [2], [3], [4], [5], [13].

$\S 2$ The homotopy category \underline{M}^{2} of Moore spaces in degree 2

Let A be an abelian group. A Moore space $M(A, n), n \geq 2$, is a simply connected CW-space X with (reduced) homology groups $H_{n} X=A$ and $H_{i} X=0$ for $i \neq n$. An Eilenberg-Mac Lane space $K(A, n)$ is a CW-space Y with homotopy groups $\pi_{n} Y=A$ and $\pi_{i} Y=0$ for $i \neq n$. Such spaces exist and their homotopy type is well defined by (A, n). The homotopy category of Eilenberg-Mac Lane spaces $K(A, n), A \in \underline{\underline{A b}}$, is isomorphic via the functor π_{n} to the category $\underline{\underline{A b}}$ of abelian groups. The corresponding result, however, does not hold for the homotopy category $\underline{\underline{M}}^{n}$ of Moore spaces $M(A, n), A \in \underline{\underline{A b}}$. This creates the problem to find a suitable algebraic model of the category $\underline{\underline{M}}^{n}$. For $n \geq 3$ such a model category of $\underline{\underline{M}}^{n}$ is known (see (V.3a.8) in [4] and (I.§6) in [6]). The category $\underline{\underline{M}}^{2}$ is not completely understood. We shall use the cohomology of the category $\underline{\underline{A} \bar{b}}$ to describe various properties of the category $\underline{\underline{M}}^{2}$.

Let $\Gamma: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ be J.H.C. Whitehead's quadratic functor [14] with

$$
\begin{equation*}
\Gamma(A)=\pi_{3} M(A, 2)=H_{4} \Gamma(A, 2) \tag{2.1}
\end{equation*}
$$

Then we obtain the $\underline{\underline{A b}}$-bimodule

$$
E x t(-, \Gamma): \underline{\underline{A b}}^{o p} \times \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}
$$

which carries (A, B) to the group $\operatorname{Ext}(A, \Gamma(B))$.
(2.2) Proposition. The category $\underline{\underline{M}}^{2}$ is part of a non split linear extension

$$
\operatorname{Ext}(-, \Gamma) \stackrel{+}{\mapsto} \underline{\underline{M}}^{2} \xrightarrow{H_{2}} \underline{\underline{A} b}
$$

and hence $\underline{\underline{M}}^{2}$, up to equivalence, is characterized by a cohomology class

$$
\left\{\underline{\underline{M}}^{2}\right\} \in H^{2}(\underline{\underline{A b}}, \operatorname{Ext}(-, \Gamma)) .
$$

Since the extension is non split we have $\left\{\underline{\underline{M}}^{2}\right\} \neq 0$.
Proof. For a free abelian group A_{0} with basis Z let

$$
M_{A_{0}}=\bigvee_{Z} S^{1}
$$

be a one point union of 1-dimensional spheres S^{1} such that $H_{1} M_{A_{0}}=A_{0}$. For an abelian group A we choose a short exact sequence

$$
0 \rightarrow A_{1} \xrightarrow{d_{A}} A_{0} \rightarrow A \rightarrow 0
$$

where A_{0}, A_{1} are free abelian. Let

$$
d_{A}^{\prime}: M_{A_{1}} \rightarrow M_{A_{0}}
$$

be a map which induces d_{A} in homology and let M_{A} be the mapping cone of d_{A}^{\prime}. Then

$$
M(A, 2)=\Sigma M_{A}
$$

is the suspersion of M_{A}. The homotopy type of M_{A}, however, depends on the choice of d_{A}^{\prime} and is not determined by A. Using the cofiber sequence for d_{A}^{\prime} we obtain the well known exact sequence of groups [11]

$$
0 \rightarrow \operatorname{Ext}\left(A, \pi_{3} X\right) \stackrel{\Delta}{\leftrightarrows}[M(A, 2), X] \xrightarrow{\mu} \operatorname{Hom}\left(A, \pi_{2} X\right) \rightarrow 0
$$

where $[Y, X]$ denotes the set of homotopy classes of pointed maps $Y \rightarrow X$. We now set $X=M(B, 2)$. Then μ is given by the homology functor. We define the action of $\alpha \in \operatorname{Ext}(A, \Gamma B)$ on $\xi \in[M(A, 2), M(B, 2)]$ by $\xi+\alpha=\xi+\Delta(\alpha)$ where we use the group structure in [$\left.\Sigma M_{A}, M(B, 2)\right]$. This action satisfies the linear distributivity law so that we obtain the linear extension in (2.2). Compare also (V.§3a) in [4] where we show $\left\{\underline{\underline{M}}^{2}\right\} \neq 0$.
(2.3) Remark. A Pontrjagin map τ_{A} for an abelian group A is a map

$$
\tau_{A}: K(A, 2) \rightarrow K(\Gamma(A), 4)
$$

which induces the identity of $\Gamma(A)$,

$$
\Gamma(A)=H_{4} K(A, 2) \rightarrow H_{4} K(\Gamma(A), 4)=\Gamma(A)
$$

Such Pontrjagin maps exist and are well defined up to homotopy. The map τ_{A} induces the Pontrjagin square which is the cohomology operation [14]

$$
H^{2}(X, A)=\left[X, \Pi^{-}(A, 2)\right] \xrightarrow{\left(r_{A}\right)}[X, K(\Gamma(A), 2)]=H^{4}(X, \Gamma(A))
$$

The fiber of τ_{A} is the 3-type of $M(A, 2)$. Therefore one gets isomorphisms of categories [9]

$$
\underline{\underline{M}}^{2}=\underline{\underline{P}}(\mathcal{X})=\underline{\underline{\text { Hopair}}}(\mathcal{X})
$$

where \mathcal{X} is the class of all Pontrjagin maps $\tau_{A}, A \in \underline{\underline{A b}}$. Here $\underline{\underline{P}}(\mathcal{X})$ is the homotopy category of fibers $P\left(\tau_{A}\right), \tau_{A} \in \mathcal{X}$, and $\operatorname{Hopair}(\mathcal{X})$ is the category of homotopy pairs [10] between Pontrjagin maps. We have seen in [9] that via these isomorphisms the class $\left\{\underline{\underline{M}}^{2}\right\}$ is the image of the universal Toda bracket $\langle\underline{\underline{K}}\rangle_{\Omega} \in H^{3}\left(\underline{\underline{K}}, D_{\Omega}\right)$ where $\underline{\underline{K}}$ is the full homotopy category consisting of $\Pi(A, 2)$ and $\Pi(\Gamma(A), 4), A \in \underline{A b}$. Hence we get by (2.2):
(2.4) Corollary. $\langle\underline{\underline{K}}\rangle_{\Omega} \neq 0$

$\S 3$ On the cohomology class $\left\{\underline{\underline{M}}^{2}\right\}$

The quadratic functor Γ can also be defined by the universal quadratic map $\gamma: A \rightarrow \Gamma(A)$. We have the natural exact sequence in $\underline{\underline{A b}}$

$$
\begin{equation*}
\Gamma(A) \xrightarrow{H} A \otimes A \xrightarrow{q} \Lambda^{2} A \rightarrow 0 \tag{3.1}
\end{equation*}
$$

where H is defined by $H \gamma(a)=a \otimes a, a \in A \in \underline{\underline{A b}}$, and where $\Lambda^{2} A=A \otimes A /\{a \otimes$ $a \sim 0\}$ is the exterior square with quotient map q. We also need the natural homomorphism

$$
\begin{equation*}
[1,1]=P: A \otimes A \rightarrow \Gamma(A) \tag{3.2}
\end{equation*}
$$

with $P(a \otimes b)=\gamma(a+b)-\gamma(a)-\gamma(b)=[a, b]$. One readily checks that $P H$ is multiplication by 2 on $\Gamma(A)$ and that $H P(a \otimes b)=a \otimes b+b \otimes a$. For $A \in \underline{\underline{A b}}$ we obtain by P and H and q above the following natural short exact sequences of $\mathbb{Z} / 2$ -vector spaces

$$
\left\{\begin{array}{l}
S_{1}(A): \Lambda^{2}(A) \otimes \mathbb{Z} / 2 \stackrel{P}{\stackrel{P}{\mapsto}} \Gamma(A) \otimes \mathbb{Z} / 2 \stackrel{\sigma}{\rightarrow} A \otimes \mathbb{Z} / 2 \tag{3.3}\\
S_{2}(A): \Gamma(A) \otimes \mathbb{Z} / 2 \stackrel{H}{\mapsto} \otimes^{2}(A) \otimes \mathbb{Z} / 2 \stackrel{q}{\rightarrow} \Lambda^{2}(A) \otimes \mathbb{Z} / 2
\end{array}\right.
$$

Here σ carries $\gamma(a) \otimes 1$ to $a \otimes 1, a \in A$. If we apply the functor $\operatorname{Hom}(-, \Gamma(B) \otimes \mathbb{Z} / 2)$ to the exact sequence $S_{i}(A), i=1,2$, we get the corresponding exact sequence of $\underline{\underline{A b}}$-bimodules denoted by $\operatorname{Hom}\left(S_{i}(-), \Gamma(-) \otimes \mathbb{Z} / 2\right)$. The associated Bockstein $\overline{\text { homomorphisms } \beta_{i} \text { yield thus homomorphisms }}$

$$
\begin{aligned}
H^{0}(\underline{\underline{A b}}, & \operatorname{Hom}(\Gamma(-) \otimes \mathbb{Z} / 2, \Gamma(-) \otimes \mathbb{Z} / 2)) \\
& \downarrow \beta_{2} \\
H^{1}(\underline{\underline{A b}}, & \left.H o m\left(\Lambda^{2}(-) \otimes \mathbb{Z} / 2, \Gamma(-) \otimes \mathbb{Z} / 2\right)\right) \\
& \downarrow \beta_{1} \\
H^{2}(\underline{\underline{A b}}, & H o m(-\otimes \mathbb{Z} / 2, \Gamma(-) \otimes \mathbb{Z} / 2))
\end{aligned}
$$

Moreover we use the natural homomorphism

$$
\chi: \operatorname{Hom}(A \otimes \mathbb{Z} / 2, \Gamma(B) \otimes \mathbb{Z} / 2) \stackrel{g}{=} \operatorname{Ext}(A \otimes \mathbb{Z} / 2, \Gamma B) \xrightarrow{p^{*}} \operatorname{Ext}(A, \Gamma B)
$$

where g is the natural isomorphism and where $p: A \rightarrow A \otimes \mathbb{Z} / 2$ is the projection. Let

$$
1_{\Gamma} \in H^{0}(\underline{\underline{A b}}, \operatorname{Hom}(\Gamma(-) \otimes \mathbb{Z} / 2, \Gamma(-) \otimes \mathbb{Z} / 2))
$$

be the canonical class which carries the abelian group A to the identity of $\Gamma(A) \otimes$ $\mathbb{Z} / 2$. Then one gets the element

$$
\chi_{*} \beta_{1} \beta_{2}\left(1_{\Gamma}\right) \in H^{2}(\underline{\underline{A b}}, \operatorname{Ext}(-, \Gamma))
$$

determined by 1_{Γ} and the homomorphisms above.

(3.5) Conjecture.

$$
\left\{\underline{\underline{M}}^{2}\right\}=\chi_{*} \beta_{1} \beta_{2}\left(1_{\Gamma}\right)
$$

We shall prove various results which support this conjecture.
(3.6) Theorem. Let $\underline{\underline{A}}$ be the full subcategory of $\underline{\underline{A b}}$ consisting of direct sums of cyclic groups and let $i_{\underline{\underline{A}}}: \underline{\underline{A}} \rightarrow \underline{\underline{A} b}$ be the inclusion functor. Then we have

$$
i_{\underline{\underline{A}}}\left\{\underline{\underline{M}}^{2}\right\}=i_{\underline{\underline{A}}}^{*} \chi_{*} \beta_{1} \beta_{2}\left(1_{\gamma}\right) \in H^{2}(\underline{\underline{A}}, \operatorname{Ext}(-, \Gamma))
$$

Proof. We write $C=(\mathbb{Z} / a) \alpha$ if C is a cyclic group isomorphic to \mathbb{Z} / a with generator $\alpha, a \geq 0$. A direct sum of cyclic groups

$$
A=\bigoplus_{i}\left(\mathbb{Z} / a_{i}\right) \alpha_{i}
$$

is ordered if the set of generators $\left\{\alpha_{i},<\right\}$ is a well ordered set. The generator α_{i} also denotes the inclusion $\alpha_{i}: \mathbb{Z} / a_{i} \subset A$ and the corresponding inclusion

$$
\begin{equation*}
\alpha_{i}: \Sigma P_{a_{i}} \subset \bigvee_{i} \Sigma P_{a_{i}}=M(A, 2) \tag{3.7}
\end{equation*}
$$

Here $P_{n}=S^{1} \cup_{n} e^{2}$ is the pseudo projective plane for $n>0$ and $P_{0}=S^{1}$ so that $\Sigma P_{n}=M(\mathbb{Z} / n, 2)$. Let $\alpha^{i}: A \rightarrow \mathbb{Z} / a_{i}$ be the canonical retraction of α_{i} with $\alpha^{i} \alpha_{i}=1$ and $\alpha^{j} \alpha_{i}=0$ for $j \neq i$. Let

$$
\begin{equation*}
\varphi: A=\bigoplus_{i}\left(\mathbb{Z} / \alpha_{i}\right) \alpha_{i} \rightarrow B=\bigoplus_{j}\left(\mathbb{Z} / b_{j}\right) \beta_{j} \tag{3.8}
\end{equation*}
$$

be a homomorphism. The coordinates $\varphi_{j i} \in \mathbb{Z}, \varphi_{j i}: \mathbb{Z} / a_{i} \rightarrow \mathbb{Z} / b_{j}, \mathbf{1} \longmapsto \varphi_{j i} \mathbf{1}$, are given by the formula

$$
\varphi \alpha_{i}=\sum \beta_{j} \varphi_{j i}
$$

Let B_{2} be the splitting function

$$
\left[\Sigma P_{n}, \Sigma P_{m}\right] \underset{B_{2}}{\underset{~}{\leftrightarrows}} \operatorname{Hom}(\mathbb{Z} / n, \mathbb{Z} / m)
$$

obtained in (III, Appendix D) of [5]. We define the map $s \varphi \in[M(A, 2), M(B, 2)]$ by the ordered sum

$$
(s \varphi) \alpha_{i}=\sum_{j}^{<} \beta_{j} B_{2}\left(\varphi_{j i}\right)
$$

where we use the ordering $<$ of the generators in B. Hence we obtain a splitting function s

$$
\begin{equation*}
[M(A, 2), M(B, 2)] \underset{s}{\stackrel{H_{2}}{\rightleftarrows}} \operatorname{Hom}(A, B) \tag{3.9}
\end{equation*}
$$

with $H_{2} s(\varphi)=\varphi$. Each element $\bar{\varphi} \in[M(A, 2), M(B, 2)]$ is of the form $\bar{\varphi}=$ $s(\varphi)+\xi$ where $\xi \in \operatorname{Ext}(A, \Gamma B)$. This way we can characterize all elements in [$M(A, 2), M(B, 2)]$ provided A and B are ordered direct sums of cyclic groups. We use s in (3.9) for the definition of the cocycle Δ, representing $i^{*}\left\{\underline{\underline{M}}^{2}\right\}$ in (3.6), that is by (1.4):

$$
s(\psi \varphi)=s(\psi) s(\varphi)+\Delta_{s}(\psi, \varphi)
$$

Below we compute $\Delta_{\boldsymbol{g}}$. To this end we have to introduce the following groups.
q.e.d.
(3.10) Definition. Let A be an abelian group. We have the natural homomorphism between $\mathbb{Z} / 2$-vector spaces

$$
\begin{equation*}
H: \Gamma(A) \otimes \mathbb{Z} / 2=\Gamma(A \otimes \mathbb{Z} / 2) \otimes \mathbb{Z} / 2 \rightarrow \otimes^{2}(A \otimes \mathbb{Z} / 2) \tag{1}
\end{equation*}
$$

with $H(\gamma(a) \otimes 1)=(a \otimes 1) \otimes(a \otimes 1)$. This homomorphism is injective and hence admits a retraction homomorphism

$$
\begin{equation*}
r: \otimes^{2}(A \otimes \mathbb{Z} / 2) \rightarrow \Gamma(A) \otimes \mathbb{Z} / 2 \tag{2}
\end{equation*}
$$

with $r H=i d$. For example, given a basis E of the $\mathbb{Z} / 2$-vector space $A \otimes \mathbb{Z} / 2$ and a well ordering $<$ on E we can define a retraction $r^{<}$on basis elements by the formula $\left(b, b^{\prime} \in E\right)$

$$
r^{<}\left(b \otimes b^{\prime}\right)=\left\{\begin{array}{lll}
\gamma(b) \otimes 1 & \text { for } & b=b^{\prime} \tag{3}\\
{\left[b, b^{\prime}\right] \otimes 1} & \text { for } & b>b^{\prime} \\
0 & \text { for } & b<b^{\prime}
\end{array}\right.
$$

Now let $q \geq 1$ and let

$$
\begin{equation*}
j_{A}: H o m(\mathbb{Z} / q, A)=A * \mathbb{Z} / q \subset A \xrightarrow{p} A \otimes \mathbb{Z} / 2 \tag{4}
\end{equation*}
$$

be given by the projection p with $p(x)=x \otimes 1$. Also let
$p_{A}: \Gamma(A) \otimes \mathbb{Z} / 2 \xrightarrow{p} \Gamma(A) \otimes \mathbb{Z} / 2 \otimes \mathbb{Z} / q=\operatorname{Ext}(\mathbb{Z} / 2 \otimes \mathbb{Z} / q, \Gamma(A)) \xrightarrow{p^{*}} \operatorname{Ext}(\mathbb{Z} / q, \Gamma(A))$
be defined by the indicated projections p. Then we obtain the homomorphism

$$
\left\{\begin{array}{l}
\Delta_{A}: \operatorname{Hom}(\mathbb{Z} / q, A) \otimes \operatorname{Hom}(\mathbb{Z} / q, A) \rightarrow E x t(\mathbb{Z} / q, \Gamma A) \tag{6}\\
\Delta_{A}=p_{A} r\left(j_{A} \otimes j_{A}\right)
\end{array}\right.
$$

which depends on the choice of the retraction r in (2). Clearly Δ_{A} is not natural in A since r cannot be chosen to be natural. However one can easily check that Δ_{A} is natural for homomorphisms $\varphi: \mathbb{Z} / q \rightarrow \mathbb{Z} / t$ between cyclic groups that is

$$
\begin{equation*}
\Delta_{A}\left(\varphi^{*} \otimes \varphi^{*}\right)=\varphi^{*} \Delta_{A} \tag{7}
\end{equation*}
$$

We now define a group

$$
\begin{equation*}
G(q, A)=\operatorname{Hom}(\mathbb{Z} / q, A) \times \operatorname{Ext}(\mathbb{Z} / q, \Gamma(A)) \tag{8}
\end{equation*}
$$

where the group law on the right hand side is given by the cocycle Δ_{A}, that is

$$
\begin{equation*}
(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}+\Delta_{A}\left(a \otimes a^{\prime}\right)\right) \tag{9}
\end{equation*}
$$

For any abelian group A there is by (XII.1.6) [6] an isomorphism

$$
\begin{equation*}
\rho: G(q, A) \cong\left[\Sigma P_{q}, M(A, 2)\right] \tag{3.11}
\end{equation*}
$$

which is natural in $\mathbb{Z} / q, q>1$, and which is compatible with Δ and μ in the proof of (2.2). If A is a direct sum of cyclic groups as above we obtain maps

$$
\bar{\alpha}_{i}: \Sigma P_{a_{i}} \rightarrow M(A, 2)
$$

by $\bar{\alpha}_{i}=\rho\left(\alpha_{i}, 0\right)$ where $\alpha_{i} \in \operatorname{Hom}\left(\mathbb{Z} / a_{i}, A\right)$ is the inclusion. These maps yield the homotopy equivalence

$$
\bigvee_{i} \Sigma P_{a_{i}} \simeq M(A, 2)
$$

which we use as in identification. Hence we may assume that ρ in (3.11) satisfies

$$
\begin{equation*}
\rho\left(\alpha_{i}, 0\right)=\alpha_{i} \tag{*}
\end{equation*}
$$

where α_{i} is the inclusion in (3.7). We need the following function ∇_{A}, defined for an ordered direct sum A of cyclic groups,

$$
\begin{align*}
& \nabla_{A}: \operatorname{Hom}(\mathbb{Z} / q, A) \rightarrow E x t(\mathbb{Z} / q, \Gamma A) \tag{3.12}\\
& \nabla_{A}(x)=\sum_{i<j} \Delta_{A}\left(\alpha_{i} x_{i} \otimes \alpha_{j} x_{j}\right)
\end{align*}
$$

Here $x_{i} \in \operatorname{Hom}\left(\mathbb{Z} / q, \mathbb{Z} / a_{i}\right)$ is the coordinate of $x=\sum_{i} \alpha_{i} x_{i}$. We observe that $\nabla_{A}=0$ is trivial if we define Δ_{A} by $r^{<}$in (3.10) where the ordered basis E in $A \otimes \mathbb{Z} / 2$ is given by the ordered set of generators in A. Clearly $2 \nabla_{A}(x)=0$ since $2 \Delta_{A}=0$. The function ∇_{A} has the following crucial property:
(3.13) Lemma. In the group $G(q, A)$ we have the formula

$$
\sum_{i}^{<} x_{i}^{*}\left(\alpha_{i}, 0\right)=\left(x, \nabla_{A}(x)\right)
$$

where the left hand side is the ordered sum of the elements $x_{i}^{*}\left(\alpha_{i}, 0\right)=\left(\alpha_{i} x_{i}, 0\right)$ in the group $G(q, A)$.

The lemma is an immediate consequence of the group law (3.10) (9).
For $\varphi \in \operatorname{Hom}(A, B)$ in (3.8) and $q \geq 1$ we define the function

$$
\begin{equation*}
\nabla(\varphi): \operatorname{Hom}(\mathbb{Z} / q, A) \rightarrow E x t(\mathbb{Z} / q, \Gamma(B)) \tag{3.14}
\end{equation*}
$$

via the commutative diagram

where the isomorphisms are given as in (3.11). The homomorphism $(s \varphi)_{t}$, induced by $s \varphi$ in (3.9), determines $\nabla(\varphi)$ by the formula

$$
(s \varphi)_{\sharp}(x, \alpha)=\left(\varphi_{*} x, \Gamma(\varphi)_{*} \alpha+\nabla(\varphi)(x)\right)
$$

for $x \in \operatorname{Hom}(\mathbb{Z} / q, A)$ and $\alpha \in \operatorname{Ext}(\mathbb{Z} / q, \Gamma A)$. The function $\nabla(\varphi)$ is not a homomorphism.
(3.15) Lemma. For $x \in \operatorname{Hom}(\mathbb{Z} / q, A)$ we have

$$
\begin{aligned}
\nabla(\varphi)(x) & =\Gamma(\varphi)_{*} \nabla_{A}(x)+\sum_{i} \nabla_{B}\left(\varphi \alpha_{i} x_{i}\right) \\
& +\sum_{i<t} \Delta_{B}\left(\varphi \alpha_{i} x_{i} \otimes \varphi \alpha_{t} x_{t}\right)
\end{aligned}
$$

Since all summands are 2 -torsion we have $\nabla(\varphi)=0$ if q is odd.
Proof. For $\left(\alpha_{i}, 0\right) \in G\left(a_{i}, A\right)$ one has the formula

$$
(s \varphi)_{\sharp}\left(\alpha_{i}, 0\right)=\sum_{j}^{<}\left(\beta_{j} \varphi_{j i}, 0\right)
$$

as follows from property (3.11) (*) of the isomorphism χ. Hence we get by (3.13) the following equations

$$
\begin{aligned}
(s \varphi)_{\sharp}(x, 0) & +\left(0, \Gamma(\varphi)_{*} \nabla_{A}(x)\right)=(s \varphi)_{\sharp}\left(x, \nabla_{A}(x)\right) \\
& =(s \varphi)_{\sharp}\left(\sum_{i}^{<} x_{i}^{*}\left(\alpha_{i}, 0\right)\right) \\
& =\sum_{i}^{<} x_{i}^{*}(s \varphi)_{\sharp}\left(\alpha_{i}, 0\right) \\
& =\sum_{i}^{<}\left(\sum_{j}^{<}\left(\beta_{j} \varphi_{j i} x_{i}, 0\right)\right) \\
& =\sum_{i}^{<}\left(\varphi \alpha_{i} x_{i}, \nabla_{B}\left(\varphi \alpha_{i} x_{i}\right)\right)
\end{aligned}
$$

Here we have in $G(q, B)$ the equation

$$
\sum_{i}^{\leq}\left(\varphi \alpha_{i} x_{i}, 0\right)=\left(\varphi x, \sum_{i<t} \Delta_{B}\left(\varphi \alpha_{i} x_{i} \otimes \varphi \alpha_{t} x_{t}\right)\right)
$$

This yields the result in (3.15).
q.e.d.

We now describe cocycle δ in the class $\beta_{1} \beta_{2}\left(1_{\Gamma}\right)$. For this let A, B, C be ordered direct sums of cyclic groups and consider homomorphisms

$$
\begin{equation*}
\psi \varphi: A \xrightarrow{\varphi} B \xrightarrow{\psi} C . \tag{3.16}
\end{equation*}
$$

Let $r_{A}=r<$ be the retraction of H in (3.10) (3)

$$
\Gamma(A) \otimes \mathbb{Z} / 2 \underset{r_{A}}{\stackrel{H}{\rightleftarrows}} \otimes^{2}(A) \otimes \mathbb{Z} / 2 \quad\left(\text { see } S_{2}(A) \text { in }(3.3)\right)
$$

Moreover let s_{A} be a splitting of σ

$$
\Gamma(A) \otimes \mathbb{Z} / 2 \underset{s_{A}}{\stackrel{\sigma}{\rightleftarrows}} A \otimes \mathbb{Z} / 2 \quad\left(\text { see } S_{1}(A) \text { in }(3.3)\right)
$$

defined by

$$
s_{A}\left(\sum_{i} x_{i} \alpha_{i} \otimes 1\right)=\sum_{i} x_{i} \gamma\left(\alpha_{i}\right) \otimes 1
$$

Here the α_{i} are the generators of A as in (3.7). We now obtain derivations D_{1}, D_{2} by setting

$$
\begin{aligned}
& D_{2}(\psi) q=-\psi_{*} r_{B}+\psi^{*} r_{C} \\
& P D_{1}(\varphi)=-\varphi_{*} s_{A}+\varphi^{*} s_{B}
\end{aligned}
$$

For this we use the exact sequences $S_{i}(A)$ in (3.3). We define a 2 -cocycle δ which carries (ψ, φ) to the composition

$$
\delta(\psi, \varphi): A \otimes \mathbb{Z} / 2 \xrightarrow{D_{1}(\varphi)} \Lambda^{2}(B) \otimes \mathbb{Z} / 2 \xrightarrow{D_{2}(\psi)} \Gamma(C) \otimes \mathbb{Z} / 2
$$

and we observe
(3.17) Lemma.

$$
\beta_{1} \beta_{2}\left(1_{\Gamma}\right)=\{\delta\}
$$

where β_{1}, β_{2} are the Bockstein homomorphisms in (3.4). We leave the proof of the lemma as an exercise. The lemma yields a cocycle representing the right hand side in (3.6).

Next we determine the cocycle δ_{s} in (3.9). For this we use the injection

$$
g: \operatorname{Ext}(A, \Gamma C) \subset \underset{q>1}{\times} \operatorname{Hom}(\operatorname{Hom}(\mathbb{Z} / q, A), \operatorname{Ext}(\mathbb{Z} / q, \Gamma C))
$$

The element $g \Delta_{s}(\psi, \varphi)$ is given by the \mathbb{Z} / q-natural homomorphism

$$
\left(g \Delta_{s}(\psi, \varphi)\right)_{q}: \operatorname{Hom}(\mathbb{Z} / q, A) \rightarrow \operatorname{Ext}(\mathbb{Z} / q, \Gamma C)
$$

which satisfies

$$
\left(g \Delta_{s}(\psi, \varphi)\right)_{q}(x)=\Gamma(\psi)_{*} \nabla(\varphi)(x)+\nabla(\psi)(\varphi x)-\nabla(\psi \varphi)(x)
$$

This equation is an easy consequence of (3.14). As in the remark following (3.12) we may assume that $\nabla_{A}=\nabla_{B}=\nabla_{C}=0$ are trivial. Moreover we may assume that q is even since $\left(g \Delta_{s}(\psi, \varphi)\right)_{q}$ is trivial if q is odd. We define a function

$$
\begin{aligned}
& \rho_{A}: A \otimes \mathbb{Z} / 2 \rightarrow \Lambda^{2}(A \otimes \mathbb{Z} / 2) \\
& \rho_{A}\left(\sum_{i} x_{i} \alpha_{i} \otimes 1\right)=\sum_{i<t}\left(x_{i} \alpha_{i} \otimes 1\right) \wedge\left(x_{t} \alpha_{t} \otimes 1\right)
\end{aligned}
$$

(3.18) Lemma.

$$
\nabla(\varphi)(x)=\chi_{q} D_{2}(\varphi) \rho_{A}(x \otimes \mathbb{Z} / 2)
$$

Here we have $x \in \operatorname{Hom}(\mathbb{Z} / q, A)$ and

$$
x \otimes \mathbb{Z} / 2 \in \operatorname{Hom}(\mathbb{Z} / q \otimes \mathbb{Z} / 2, A \otimes \mathbb{Z} / 2)=A \otimes \mathbb{Z} / 2
$$

since q is even. Moreover χ_{q} in lemma (3.18) is the composition

$$
\chi_{q}: \Gamma(B) \otimes \mathbb{Z} / 2=E x t(\mathbb{Z} / 2, \Gamma B) \rightarrow E x t(\mathbb{Z} / q, \Gamma B)
$$

induced by $\mathbb{Z} / q \rightarrow \mathbb{Z} / q \otimes \mathbb{Z} / 2=\mathbb{Z} / 2$. Lemma (3.18) is a consequence of the formula in (3.15) and the definition of $r_{A}=r^{<}$in (3.10) (3). We apply Lemma (3.18) to the formula for $(g \Delta s(\psi, \varphi))_{q}$ above and we get for $\bar{x}=x \otimes \mathbb{Z} / 2$
(3.19) Lemma.

$$
\left(g \Delta_{s}(\psi, \varphi)\right)_{q}(x)=\chi_{q} D_{2}(\psi)\left(\rho_{B}(\varphi \bar{x})-\varphi_{*} \rho_{A}(\bar{x})\right)
$$

This follows easily from (3.18) since D_{1} is a derivation. Finally we observe:
(3.20) Lemma.

$$
\rho_{B}(\varphi \bar{x})-\varphi_{*} \rho_{A}(\bar{x})=D_{1}(\varphi)(\bar{x})
$$

The proof of lemma (3.20) requires a lengthy computation with the definitions of ρ_{B}, ρ_{A} and $D_{2}(\varphi)$. By (3.19) and (3.20) we thus get

$$
\begin{equation*}
\left(g \Delta_{s}(\psi, \varphi)\right)_{q}(x)=\chi_{q} D_{2}(\psi) D_{\mathbf{1}}(\varphi)(\bar{x}) \tag{3.21}
\end{equation*}
$$

and this yields the formula in (3.6). In fact (3.21) yields an easy algebraic description of the cocycle Δ_{s} in terms of the derivation D_{1} and D_{2} above since g is injective.

> q.e.d.

$\S 4$ On the cohomology class \{nil\} and James-Hopf invariants on $\underline{\underline{M}}^{2}$

In this section we prove a further formula for the class $\left\{\underline{\underline{M}}^{2}\right\}$ which, however, does not determine $\left\{\underline{\underline{M}}^{2}\right\}$ completely.

For the exterior square $\Lambda^{2}(B)$ of an abelian group B we have the exact sequence (3.1) which induces the exact sequence

$$
\operatorname{Ext}(A, \Gamma B) \xrightarrow{H .} \operatorname{Ext}\left(A, \otimes^{2} B\right) \xrightarrow{\text { q. }} \operatorname{Ext}\left(A, \Lambda^{2} B\right) \rightarrow 0
$$

and hence we have the binatural short exact sequence

$$
\begin{equation*}
H_{*} E x t(A, \Gamma B) \stackrel{i}{\rightarrow} \operatorname{Ext}\left(A, \otimes^{2} B\right) \xrightarrow{p .} \operatorname{Ext}\left(A, \Lambda^{2} B\right) \tag{4.1}
\end{equation*}
$$

together with the surjective map

$$
H^{\prime}: \operatorname{Ext}(A, \Gamma B) \rightarrow H_{*} \operatorname{Ext}(A, \Gamma B)
$$

induced by H_{*}. The short exact sequence induces the Bockstein homomorphism

$$
\beta: H^{1}\left(\underline{\underline{A b}}, E x t\left(-, \Lambda^{2}\right)\right) \rightarrow H^{2}\left(\underline{\underline{A b}}, H_{*} E x t(-, \Gamma)\right)
$$

(4.2) Theorem. The algebraic class $\{$ nil $\} \in H^{1}\left(\underline{\underline{A b}}, \operatorname{Ext}\left(-, \Lambda^{2}\right)\right)$ defined below and the class $\left\{\underline{\underline{M}}^{2}\right\}$ of the homotopy category of Moore spaces in degree 2 satisfy the formula

$$
H_{*}^{\prime}\left\{\underline{\underline{M}}^{2}\right\}=\beta\{n i l\} \in H^{2}\left(\underline{\underline{A b}}, H_{*} \operatorname{Ext}(-, \Gamma)\right)
$$

This result is true in the cohomology of $\underline{A b}$. For the algebraic definition of the class $\{$ nil $\}$ we need the following linear extension nil.
(4.9) Definition. Let $\langle Z\rangle$ be the free group generated by the set Z and let $\Gamma_{n}\langle Z\rangle$ be the subgroup generated by n-fold commutators. Then

$$
\begin{equation*}
A=\langle Z\rangle / \Gamma_{2}\langle Z\rangle=\bigoplus_{Z} \mathbb{Z} \tag{1}
\end{equation*}
$$

is the free abelian group generated by Z and

$$
\begin{equation*}
E_{A}=\langle Z\rangle / \Gamma_{3}\langle Z\rangle \tag{2}
\end{equation*}
$$

is the free nil(2)-group generated by Z. We have the classical central extension of groups

$$
\begin{equation*}
\Lambda^{2} A \stackrel{w}{\mapsto} E_{A} \xrightarrow{q} A \tag{3}
\end{equation*}
$$

The map w is the commutator map with

$$
\begin{equation*}
w(q x \wedge q y)=x^{-1} y^{-1} x y \tag{4}
\end{equation*}
$$

Here the right hand side denotes the commutator in the group E_{A}. Using (3) we get the linear extension of categories (compare also [3], [5])

$$
\begin{equation*}
\operatorname{Hom}\left(-, \Lambda^{2}-\right) \stackrel{+}{\stackrel{n i l}{\underline{a b}} \xrightarrow{\underline{a b}} .} \tag{5}
\end{equation*}
$$

Here $\underline{\underline{a b}}$ and nil are the full subcategories of the category of groups consisting of free abelian groups and free nil(2) -groups respectively. The functor $\underline{\underline{a b}}$ in (3) is abelianization and the action + is given by

$$
\begin{equation*}
f+\alpha=f+w \alpha q \tag{6}
\end{equation*}
$$

for $f: E_{A} \rightarrow E_{B}, \alpha \in \operatorname{Hom}\left(A, \Lambda^{2} B\right)$. The right hand side of (6) is a well defined homomorphism since (3) is central.
(4.4)Definition. We define a derivation

$$
n i l: \underline{\underline{A b}} \rightarrow \operatorname{Ext}\left(-, \Lambda^{2}\right)
$$

which carries a homomorphism $\varphi: A \rightarrow B$ in $\underline{\underline{A b}}$ to an element nill $(\varphi) \in \operatorname{Ext}\left(A, \Lambda^{2} B\right)$. The cohomology class \{nil\} represented by the derivation nil satisfies the formula in (4.2). For the definition of nil we choose for each abelian group A a short exact sequence

$$
0 \rightarrow A_{1} \xrightarrow{d_{A}} A_{0} \xrightarrow{q} A \rightarrow 0
$$

where A_{0}, A_{1} are free abelian groups. We also choose a homomorphism

$$
\bar{d}_{A}: E_{A_{1}} \rightarrow E_{A_{0}}
$$

between free nil(2)-groups such that the abelianization of \bar{d}_{A} is d_{A}. For the homomorphism $\varphi: A \rightarrow B$ we choose a commutative diagram in $\underline{\underline{A b}}$

and we choose a diagram of homomorphisms

which by abelianization induces $\left(\varphi_{0}, \varphi_{1}\right)$. This diagram, in general, cannot be chosen to be commutative. Since, however, $\varphi_{0} d_{A}=d_{B} \varphi_{1}$ there is a unique element

$$
\alpha \in \operatorname{Hom}\left(A_{1}, \Lambda^{2} B_{0}\right) \quad \text { with } \quad \bar{\varphi}_{0} \bar{d}_{A}+\alpha=\bar{d}_{B} \bar{\varphi}_{1}
$$

Here we use the action in (4.3) (6). Now let

$$
\operatorname{nil}(\varphi) \in \operatorname{Ext}\left(A, \Lambda^{2} B\right)=\operatorname{Hom}\left(A_{1}, \Lambda^{2} B\right) / d_{A}^{*} \operatorname{Hom}\left(A_{0}, \Lambda^{2} B\right)
$$

be the element represented by the composition

$$
\left(\Lambda^{2} q\right) \alpha: A_{1} \rightarrow \Lambda^{2} B_{0} \rightarrow \Lambda^{2} B
$$

One can check that nil(φ) does not depend on the choice of (φ_{0}, φ_{1}) and ($\bar{\varphi}_{0}, \bar{\varphi}_{1}$) respectively and that nil is a derivation, that is $n i l(\varphi \psi)=\varphi_{*} n i l(\psi)+\psi^{*} n i l(\varphi)$. This completes the definition of the cohomology class $\{$ nil $\}$.

Next we use the derivation D_{1} on $\underline{\underline{A b}}$ defined as in (3.16). The derivation D_{1} carries $\varphi: A \rightarrow B$ to

$$
D_{1}(\varphi) \in H o m\left(A \otimes \mathbb{Z} / 2, \Lambda^{2}(B) \otimes \mathbb{Z} / 2\right)=\operatorname{Ext}\left(A \otimes \mathbb{Z} / 2, \Lambda^{2} B\right)
$$

and hence represents a cohomology class

$$
\left\{D_{1}\right\} \in H^{1}\left(\underline{\underline{A b}}, \operatorname{Ext}\left(-\otimes \mathbb{Z} / 2, \Lambda^{2}\right)\right)
$$

Let

$$
p_{2}: \operatorname{Ext}\left(A \otimes \mathbb{Z} / 2, \Lambda^{2} B\right) \rightarrow \operatorname{Ext}\left(A, \Lambda^{2} B\right)
$$

be induced by the projection $A \rightarrow A \otimes \mathbb{Z} / 2$.
(4.5) Proposition. Let $\underline{\underline{A}}$ be the full subcategory of $\underline{\underline{A b}}$ consisting of direct sums of cyclic groups. Then we have

$$
i_{\underline{\underline{A}}}^{*}\left(p_{2}\right) *\left\{D_{1}\right\}=i_{\underline{\underline{A}}}^{*}\{n i l\}
$$

in $H^{1}\left(\underline{A}, \operatorname{Ext}\left(-, \Lambda^{2}\right)\right)$.
We do not know whether this formula also holds if we omit $i_{\underline{\underline{A}}}^{*}$. Proposition (4.5) implies that the formulas in (4.2) and (3.6) are compatible. For the proof of (4.5) we need the following properties of nil(2) -groups. A group G is a nil(2)-group if all triple commutators vanish in G. The commutators in G yield the central homomorphism

$$
\begin{equation*}
w: \Lambda^{2}\left(G^{a b}\right) \rightarrow G \tag{4.6}
\end{equation*}
$$

where $G \rightarrow G^{a b}, x \longmapsto\{x\}$, is the abelianization of G. We define w by the commutator

$$
w(\{x\} \wedge\{g\})=x^{-1} y^{-1} x y
$$

for $x, y \in G$. Let M be a set and let $f: M \rightarrow G$ be a function such that only finitely many elements $f(m), m \in M$, are non trivial and let $<, \ll$ be two total orderings on the set M. Then we have in G the formula

$$
\sum_{m \in M}^{\ll} f(m)=\sum_{m \in M}^{<} f(m)+w\left(\sum_{\substack{m \ll m^{\prime} \\ m^{\prime}<m}}\{f m\} \wedge\left\{f m^{\prime}\right\}\right)
$$

For $a \in G$ and $n \in \mathbb{Z}$ let $n a=a+\ldots+a$ be the n-fold sum in G in case $n \geq 0$, and let $n a=-|n| a$ for $n<0$. Then one gets in G the formula

$$
n \sum_{m \in M}^{<} f(m)=\sum_{m \in M}^{<} n f(m)-w\left(\binom{n}{2} \sum_{m<m^{\prime}}\{f m\} \wedge\left\{f m^{\prime}\right\}\right)
$$

where $\binom{n}{2}=n(n-1) / 2$.
Proof of (4.5). Let A and B be direct sums of cyclic groups and let $\varphi: A \rightarrow B$ be given by $\varphi_{j i} \in \mathbb{Z}$ as in (3.8). Let A_{0} be the free group generated by the set of generators $\left\{\alpha_{i}\right\}$ of A and let A_{1} be the free group generated by the $\left\{\alpha_{i}, a_{i} \neq 0\right\}$. Then we choose, see (4.4),

$$
\left\{\begin{array}{l}
\bar{d}_{A}: E_{A_{1}} \rightarrow E_{A_{0}} \\
\bar{d}_{A}\left(\alpha_{i}\right)=a_{i} \alpha_{i}
\end{array}\right.
$$

Similarly we define \bar{d}_{B}. Moreover we define $\bar{\varphi}_{1}$ and $\bar{\varphi}_{0}$ by the ordered sum

$$
\begin{aligned}
& \bar{\varphi}_{0}\left(\alpha_{i}\right)=\sum_{j}^{<} \varphi_{j i} \beta_{j} \in E_{B_{0}} \\
& \bar{\varphi}_{1}\left(\alpha_{i}\right)=\sum_{j}^{<}\left(a_{i} \varphi_{j i} / b_{j}\right) \beta_{j} \in E_{B_{1}}
\end{aligned}
$$

Hence we get α in (4.4) by the formula, see (4.6),

$$
\begin{aligned}
\bar{d}_{B} \bar{\varphi}_{1}\left(\alpha_{i}\right) & -\bar{\varphi}_{0} \bar{d}_{A}\left(\alpha_{i}\right)=\sum_{j}^{<} a_{i} \varphi_{j i} \beta_{j}-a_{i} \sum_{j}^{<} \varphi_{j i} \beta_{j} \\
& =w\binom{a_{i}}{2} \sum_{j<t}\left\{\varphi_{j i} \beta_{j}\right\} \wedge\left\{\varphi_{t i} \beta_{t}\right\}
\end{aligned}
$$

Hence $\operatorname{nil}(\varphi) \in \operatorname{Ext}\left(A, \Lambda^{2} B\right)$ is given by the formula $\left(\alpha_{i}: \mathbb{Z} / a_{i} \subset A\right.$ as in (3.7))

$$
\left(\alpha_{i}\right)^{*} n i l(\varphi)=\binom{a_{i}}{2} \sum_{j<t} \varphi_{j i} \varphi_{t i}\left(1 \otimes \beta_{j} \wedge \beta_{t}\right)
$$

where $1 \otimes \beta_{j} \wedge \beta_{t} \in \mathbb{Z} / a_{i} \otimes \Lambda^{2} B=E x t\left(\mathbb{Z} / a_{i}, \Lambda^{2} B\right)$. Using the definition of D_{1} in the proof of (3.16) it is easy to check that $\left(\alpha_{i}\right)^{*} p_{2} D_{1}(\varphi)$ coincides with the right hand side of the formula so that we actually have

$$
\operatorname{nil}(\varphi)=p_{2} D_{1}(\varphi) .
$$

This proves the proposition in (4.5).
q.e.d.

We will need the following element which projects to nil(φ) above.
(4.7) Definition. For φ in the proof above let

$$
\overline{n i l}(\varphi) \in \operatorname{Ext}\left(A, \otimes^{2} B\right)
$$

be given by the formula

$$
\left(\alpha_{2}\right)^{*} \overline{n i l}(\varphi)=\binom{a_{i}}{2} \sum_{j<t} \varphi_{j i} \varphi_{t i}\left(1 \otimes \beta_{j} \otimes \beta_{t}\right)
$$

We clearly have $E x t(A, p) \overline{\operatorname{nil}}(\varphi)=\operatorname{nil}(\varphi)$ where $p: \otimes^{2} B \rightarrow \Lambda^{2} B$ is the projection.
Recall that we have for the bifunctor $\operatorname{Ext}\left(-, \otimes^{2}\right)$ on $\underline{\underline{A b}}$ the canonical split linear extension

$$
\operatorname{Ext}\left(-, \otimes^{2}\right) \mapsto \underline{\underline{A b}} \times \operatorname{Ext}\left(-, \otimes^{2}\right) \rightarrow \underline{\underline{A b}}
$$

Objects in $\underline{\underline{A b}} \times E x t\left(-, \otimes^{2}\right)$ are abelian groups and morphisms $(\varphi, \alpha): A \rightarrow B$ are given by $\varphi \in \operatorname{Hom}(A, B)$ and $\alpha \in \operatorname{Ext}\left(A, \otimes^{2} B\right)$ with composition $(\varphi, \alpha)(\psi, \beta)=$ $\left(\varphi \psi, \varphi_{*} \beta+\psi^{*} \alpha\right)$. The derivation nil in (4.4) defines a subcategory

$$
\begin{equation*}
\underline{\underline{A b}}(n i l) \subset \underline{\underline{A b}} \times E x t\left(-, Q^{2}\right) \tag{4.8}
\end{equation*}
$$

consisting of all morphisms $(\varphi, \alpha): A \rightarrow B$ which satisfy the condition

$$
p_{*}(\alpha)=\operatorname{nil}(\varphi) \in E x t\left(A, \Lambda^{2} B\right)
$$

Here $p: \otimes^{2} B \rightarrow \Lambda^{2} B$ induces $p_{*}=E x t(A, p)$. The exact sequence (4.1) shows that we have a commutative diagram of linear extensions of categories

(4.9) Lemma. The cohomology class represented by the linear extension for $\underline{\underline{A b}(n i l)}$ satisfies

$$
\{\underline{\underline{A b}}(n i l)\}=\beta\{n i l\} \in H^{2}\left(\underline{\underline{A b}}, H_{*} \operatorname{Ext}(-, \Gamma)\right)
$$

where β is the Bockstein operator in (4.2).
Proof. Let $s: \operatorname{Ext}\left(A, \Lambda^{2} B\right) \rightarrow \operatorname{Ext}\left(A, \otimes^{2} B\right)$ be a set theoretic splitting of $\operatorname{Ext}(A, p)=$ p_{*}. Then $\beta\{n i l\}$ is represented by the 2 -cocycle $c=i^{-1} \delta(s$ nil $)$ where i is the inclusion in (4.1) and where δ is the coboundary in (1.5). Hence c carries the 2 -simplex (ψ, φ) in $\underline{\underline{A b}}$ to

$$
c(\psi, \varphi)=i^{-1}\left(\psi_{*} s \operatorname{nil}(\varphi)-s \operatorname{nil}(\psi \varphi)+\varphi^{*} s \operatorname{nil}(\psi)\right)
$$

On the other hand we define a set theoretic section t for the linear extension $\underline{\underline{A b}}($ nil $)$ by $t(\varphi)=(\varphi, \operatorname{snil}(\varphi))$. Then Δ_{t} in (1.4) is given by

$$
\operatorname{snil}(\psi \varphi)=\psi_{*} s \operatorname{nil}(\varphi)+\varphi^{*} \operatorname{snil}(\psi)+i \Delta_{t}(\psi, \varphi)
$$

Hence $c=-\Delta_{t}$ yields the proposition. In fact, since the elements in (4.9) are of order 2 we can omit the sign.
q.e.d.

For Moore spaces $M(A, 2)=\Sigma M_{A}$ and $M(B, 2)=\Sigma M_{B}$ as in (2.2) we have the James-Hopf invariant [12], [7],

$$
\begin{equation*}
\left[\Sigma M_{A}, \Sigma M_{B}\right] \xrightarrow{\gamma_{2}}\left[\Sigma M_{A}, \Sigma M_{B} \wedge M_{B}\right]=E x t(A, B \otimes B) \tag{4.10}
\end{equation*}
$$

which satisfies for $\alpha \in \operatorname{Ext}(A, \Gamma B)$ the formula

$$
\begin{equation*}
\lambda_{2}(\xi+\alpha)=\lambda_{2}(\xi)+H_{*} \alpha \tag{1}
\end{equation*}
$$

Hence γ_{2} induces a well defined function

$$
\begin{equation*}
\bar{\gamma}_{2}: \operatorname{Hom}(A, B) \rightarrow \operatorname{Ext}\left(A, \Lambda^{2} B\right) \tag{2}
\end{equation*}
$$

defined by $\bar{\gamma}_{2}(\varphi)=q_{*} \gamma_{2}(\xi)$ where ξ induces $H_{2}(\xi)=\varphi: A \rightarrow B$. One can check that $\bar{\gamma}_{2}$ is a derivation which represents a cohomology class in $H^{1}\left(\underline{\underline{A b}}, \operatorname{Ext}\left(-, \Lambda^{2} B\right)\right)$. This cohomology class does not depend on the choice of M_{A}, M_{B} above.
(4.11) Theorem. The cohomology class $\left\{\bar{\gamma}_{2}\right\}$ given by the James-Hopf invariant γ_{2} coincides with

$$
\left\{\bar{\gamma}_{2}\right\}=\{n i l\} \in H^{1}\left(\underline{\underline{A b}}, E x t\left(-, \Lambda^{2}\right)\right)
$$

Moreover there is a full functor τ, ,

$$
\underline{\underline{M}}^{2} \stackrel{\Gamma}{\underline{A b}}(n i l) \stackrel{i}{\subset} \underline{\underline{A} b} \times \operatorname{Ext}\left(-, \otimes^{2}\right)
$$

which is the identity on objects and which is defined on morphisms by

$$
\tau(\xi)=\left(H_{2} \xi, \gamma_{2} \xi\right)
$$

The functor τ is part of the following commutative diagram of linear extensions

Proof of (4.2). The existence of the functor τ shows that $H_{*}^{\prime}\left\{\underline{\underline{M}}^{2}\right\}=\{\underline{\underline{A b}}($ nil $)\}$. Therefore we obtain (4.2) by (4.9).
q.e.d.
(4.12) Remark. We can give an alternative description of the functor τ in (4.11) by use of the singular chain complex of a loop space which yields the Adams-Hilton functor

$$
C * \Omega: H o\left(\underline{\underline{T o p}}{ }^{*}\right) \rightarrow H o(\underline{\underline{D A}})
$$

between homotopy categories (compare [1] and also [4]). The functor $C_{*} \Omega$ restriced to $\underline{\underline{M}}^{2}$ leads to the following diagram where $\underline{\underline{M}}^{2} \subset H o(\underline{\underline{D A}})$ is the full subcategory consisting of $C_{*} \Omega M(A, 2), A \in \underline{\underline{A b}}$,

where j is an equivalence of categories such that $j i \tau$ is naturally isomorphic to $C * \Omega$.
Proof of (4.11). The image category of the functor

$$
\tau: \underline{\underline{M}}^{2} \rightarrow \underline{\underline{A b}} \times \operatorname{Ext}\left(-, \otimes^{2}\right)
$$

is $\underline{\underline{A b}}($ nil $)$ since we show

$$
\begin{equation*}
\bar{\gamma}_{2}=n i l \tag{1}
\end{equation*}
$$

for compatible choices of $\bar{d}_{A}, d_{A}^{\prime}$ in (4.4) and (2.2). We use the equivalence of linear track extension described in (VI.4.7) of Baues [5]. This shows that a triple $\left(\bar{\varphi}_{0}, \bar{\varphi}_{1}, G\right)$ with $G \in \operatorname{Hom}\left(A_{1}, \otimes^{2} B_{0}\right)$ satisfying $p_{*} G=\alpha$ (see (4.4)) corresponds to a diagram

$$
\begin{array}{cl}
\Sigma M_{A_{1}} & \xrightarrow{\Sigma d_{A}^{\prime}} \Sigma M_{A_{0}} \\
\Sigma \varphi_{1}^{\prime} \downarrow & \stackrel{\sigma^{\prime}}{\Rightarrow} \quad \mid \Sigma \varphi_{0}^{\prime} \tag{2}\\
\Sigma M_{B_{1}} & \xrightarrow[\Sigma d_{B}^{\prime}]{ } \Sigma M_{B_{0}}
\end{array}
$$

Here d_{A}^{\prime} and d_{B}^{\prime} induce \bar{d}_{A} and \bar{d}_{B} respectively and $\varphi_{0}^{\prime}, \varphi_{1}^{\prime}$ induces $\bar{\varphi}_{0}, \bar{\varphi}_{1}$ in (4.4). The track G^{\prime} is determined by G. This track determines a principal map $\bar{\varphi} \in\left[\Sigma M_{A}, \Sigma M_{B}\right]$ such that $\tau(\bar{\varphi})=\left(\varphi,\left(\otimes^{2} q\right)_{*}\{G\}\right)$ where $\{G\} \in \operatorname{Ext}\left(A, \otimes^{2} B\right)$) is represented by G. This follows from the bijection (6) ... (11) in (VI.4.7) Baues [5]. Since $p_{*} G=\alpha$ we get $\bar{\gamma}_{2}=n i l$. q.e.d.
(4.19) Example. Let A and B be direct sums of cyclic groups as in (3.8) and let $s \varphi \in[M(A, 2), M(B, 2)]$ be defined as in (3.9). Then the functor τ in (4.11) satisfies

$$
\tau(s \varphi)=(\varphi, \overline{n i l}(\varphi))
$$

where $\overline{n i l}(\varphi)$ is defined in (4.7). We obtain this formula by the methods in the proof of (4.11) above. In this case we also can compute the James-Hopf invariant $\gamma_{2}(s \varphi)$ which actually is $\gamma_{2}(s \varphi)=\overline{n i l}(\varphi)$.

As a corollary of (4.2) we get:
(4.14) Proposition. $\left\{\underline{M}^{2}\right\}$ is a (non trivial) element of order 2.

Proof. We know that multiplication by 2 on $\Gamma(A)$ is the composition

$$
2=P H: \Gamma A \rightarrow \otimes^{2} A \rightarrow \Gamma A
$$

where $P=[1,1]$. Hence also the composition

is a multiplication by 2 . Therefore we get by (4.2):

$$
\begin{aligned}
2\left\{\underline{\underline{M}}^{2}\right\} & =\left(P^{\prime} H^{\prime}\right)_{*}\left\{\underline{\underline{M}}^{2}\right\} \\
& =P_{*}^{\prime} H_{*}^{\prime}\left\{\underline{\underline{M}}^{2}\right\} \\
& =P_{*}^{\prime} \beta\{n i l\}
\end{aligned}
$$

Here the commutative diagram of short exact sequences

shows that $P_{*}^{\prime} \beta=0$.
q.e.d.
(4.15) Proposition. Each element in $H^{1}\left(\underline{A b}, \operatorname{Ext}\left(-, \Lambda^{2}\right)\right)$ is of order 2, in particular, $2\{n i l\}=0$.

Proof. Let A, B be abelian groups and let $\varphi \in \operatorname{Hom}(A, B)$. Let $2_{A}=2 i d \in$ $\operatorname{Hom}(A, A)$ be multiplication by 2 . Then we have

$$
\varphi \circ 2_{A}=2 \varphi=2_{B} \circ \varphi
$$

Now the derivation property of N with $\{N\} \in H^{1}\left(\underline{A b}, \operatorname{Ext}\left(-, \Lambda^{2}\right)\right)$ shows:

$$
\begin{aligned}
N\left(\varphi \circ 2_{A}\right) & =\varphi_{*} N\left(2_{A}\right)+\left(2_{A}\right)^{*} N(\varphi) \\
& =\varphi_{*} N\left(2_{A}\right)+2 N(\varphi) \\
N\left(2_{B} \circ \varphi\right) & =\left(2_{B}\right) * N(\varphi)+\varphi^{*} N\left(2_{B}\right) \\
& =4 N(\varphi)+\varphi^{*} N\left(2_{B}\right)
\end{aligned}
$$

Hence we get

$$
2 N(\varphi)=\varphi_{*} N\left(2_{A}\right)-\varphi^{*} N\left(2_{B}\right)
$$

so that $2 N$ is an inner derivation.
q.e.d.

§5 A subcategory of \underline{M}^{2} given by diagonal elements

Let $\mathbb{Z} / 2 * A$ be the 2 -torsion of the abelian group A. We here construct a subcategory $\underline{\underline{H}}$ of the category of Moore spaces $\underline{\underline{M}}^{2}$ with the following property.
(5.1) Theorem. There exists a subcategory $\underline{\underline{H}}$ of $\underline{\underline{M}}^{2}$ together with a commutative diagram of linear extensions

The theorem shows that the class $\left\{\underline{\underline{M}}^{2}\right\}$ is in the image

$$
i_{*}: H^{2}(\underline{\underline{A b}}, \mathbb{Z} / 2 * \operatorname{Ext}(-, \Gamma)) \rightarrow H^{2}(\underline{\underline{A b}}, E x t(-, \Gamma))
$$

where i is the inclusion $\mathbb{Z} / 2 * \operatorname{Ext}(A, \Gamma(B)) \subset \operatorname{Ext}(A, \Gamma(B))$.
(5.2) Corollary. The extension $\underline{\underline{M}}^{2} \rightarrow \underline{\underline{A b}}$ is split on any full subcategory of $\underline{\underline{A b}}$ consisting of objects A, B with $(\mathbb{Z} / \overline{2}) * E \overline{\operatorname{xtt}(} A, \Gamma B)=0$.
(5.3) Corollary. Let A be any abelian group for which the 2-torsion of $\operatorname{Ext}(A, \Gamma A)$ is trivial. Then the group of homotopy equivalences of $M(A, 2)$ is given by the split extension

$$
\operatorname{Ext}(A, \Gamma A) \longmapsto \mathfrak{E}(M(A, 2)) \rightarrow \operatorname{Aut}(A)
$$

where $\varphi \in \operatorname{Aut}(A)$ acts on $a \in \operatorname{Ext}(A, \Gamma A)$ by $\varphi \cdot a=(\Gamma \varphi)_{*}\left(\varphi^{-1}\right)^{*}(a)$.
Proof of (5.1). For a Moore space $M(A, 2)=\Sigma M_{A}$ we have the diagonal element

$$
\begin{equation*}
\Delta_{A} \in\left[\Sigma M_{A}, \Sigma M_{A} \wedge M_{A}\right]=\operatorname{Ext}(A, A \otimes A) \tag{1}
\end{equation*}
$$

which is given by the suspension of the reduced diagonal $M_{A} \rightarrow M_{A} \wedge M_{A}$. Let $\left[1_{A}, 1_{A}\right]: \Sigma M_{A} \wedge M_{A} \rightarrow \Sigma M_{A}$ be the Whitehead product for the identity 1_{A} of ΣM_{A}. Then

$$
\begin{equation*}
\left[1_{A}, 1_{A}\right] \Delta_{A}=-1_{A}-1_{A}+1_{A}+1_{A}=0 \tag{2}
\end{equation*}
$$

is the trivial commutator. This implies that also

$$
\begin{equation*}
\Delta_{A} \in \operatorname{Ker}\left\{[1,1]_{*}: \operatorname{Ext}(A, A \otimes A) \rightarrow \operatorname{Ext}(A, \Gamma A)\right\} \tag{3}
\end{equation*}
$$

with $[1,1]$ in (3.2). We have the short exact sequences (see (3.3))

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}(A, \Gamma(A) \otimes \mathbb{Z} / 2) \xrightarrow{H \cdot} \operatorname{Ext}\left(A, \otimes^{2}(A) \otimes \mathbb{Z} / 2\right) \xrightarrow{\text { q. }} \operatorname{Ext}\left(A, \Lambda^{2}(A) \otimes \mathbb{Z} / 2\right) \rightarrow 0 \\
{[1,1] \cdot \downarrow}
\end{gathered}
$$

$$
\operatorname{Ext}(A, \Gamma(A) \otimes \mathbb{Z} / 2)
$$

which shows by (3) that for the projection $p: \otimes^{2} A \rightarrow\left(\otimes^{2} A\right) \otimes \mathbb{Z} / 2$ there is a unique element $\Delta_{A}^{\prime} \in \operatorname{Ext}(A, \Gamma(A) \otimes \mathbb{Z} / 2)$ with

$$
\begin{equation*}
H_{*} \Delta_{A}^{\prime}=p_{*} \Delta_{A} \tag{4}
\end{equation*}
$$

We now choose by the surjection

$$
p_{*}: E x t(A, \Gamma A) \rightarrow \operatorname{Ext}(A, \Gamma(A) \otimes \mathbb{Z} / 2)
$$

an element $\Delta_{A}^{\prime \prime} \in \operatorname{Ext}(A, \Gamma A)$ with

$$
\begin{equation*}
p_{*} \Delta_{A}^{\prime \prime}=\Delta_{A}^{\prime} \tag{5}
\end{equation*}
$$

We call $\Delta_{A}^{\prime \prime}$ a diagonal structure for A. For the definition of the subcategory $\underline{\underline{H}}$ in $\underline{\underline{M}}^{2}$ we choose such a diagonal structure for each abelian group A in $\underline{\underline{A b}}$. We define the set of morphisms in $\underline{\underline{H}}$ with

$$
\begin{equation*}
\underline{\underline{H}}(A, B) \subset\left[\Sigma M_{A}, \Sigma M_{B}\right] \tag{6}
\end{equation*}
$$

by the composition (compare (4.10))

$$
\left[\Sigma M_{A}, \Sigma M_{B}\right] \xrightarrow{\gamma_{2}} \operatorname{Ext}(A, B \otimes B) \xrightarrow{[1,1] .} \operatorname{Ext}(A, \Gamma B),
$$

and by diagonal structures $\Delta_{A}^{\prime \prime}, \Delta_{B}^{\prime \prime}$, namely

$$
\begin{equation*}
\bar{\varphi} \in \underline{\underline{H}}(A, B) \Leftrightarrow[1,1]_{*} \gamma_{2} \bar{\varphi}=-\varphi_{*} \Delta_{A}^{\prime \prime}+\varphi^{*} \Delta_{B}^{\prime \prime} \tag{7}
\end{equation*}
$$

We show that for $\bar{\varphi} \in \underline{\underline{H}}(A, B)$ and $\bar{\psi} \in \underline{\underline{H}}(B, C)$ we actually have $\bar{\psi} \bar{\varphi} \in \underline{\underline{H}}(A, C)$ so that $\underline{\underline{H}}$ is a well defined subcategory of $\underline{\underline{M}}^{2}$. For this we need the fact that γ_{2} is a derivation, namely

$$
\gamma_{2}(\bar{\psi} \bar{\varphi})=\psi_{*} \gamma_{2}(\bar{\varphi})+\varphi^{*} \gamma_{2}(\bar{\varphi}) .
$$

Hence we get:

$$
\begin{aligned}
{[1,1]_{*} \gamma_{2}(\bar{\psi} \bar{\varphi}) } & =[1,1]_{*}\left(\psi_{*} \gamma_{2}(\bar{\varphi})+\varphi^{*} \gamma_{2}(\bar{\psi})\right) \\
& =\psi_{*}[1,1]_{*} \gamma_{2}(\bar{\varphi})+\varphi^{*}[1,1]_{*} \gamma_{2}(\bar{\varphi}) \\
& =\psi_{*}\left(-\varphi_{*} \Delta_{A}^{\prime \prime}+\varphi^{*} \Delta_{B}^{\prime \prime}\right)+\varphi^{*}\left(-\psi_{*} \Delta_{B}^{\prime \prime}+\psi^{*} \Delta_{C}^{\prime \prime}\right) \\
& =-(\psi \varphi)_{*} \Delta_{A}^{\prime \prime}+(\psi \varphi)^{*} \Delta_{C}^{\prime \prime} .
\end{aligned}
$$

The crucial observation needed for the proof of theorem (5.1) is the following equation where we use the interchange map $T: B \otimes B \rightarrow B \otimes B$ with $T(x \otimes y)=y \otimes x$,

$$
\begin{equation*}
(1-T)_{*} \gamma_{2}(\bar{\varphi})=\varphi_{*} \Delta_{A}-\varphi^{*} \Delta_{B} \tag{8}
\end{equation*}
$$

This equation follows from the corresponding known property of James-Hopf invariants (Appendix A [6]) with respect to "cup products" which in our case has the form

$$
\stackrel{\rightharpoonup}{\varphi} \cup \bar{\varphi}=\Delta_{1,1} \bar{\varphi}+\left(1+T_{2,1}\right) \gamma_{2}(\bar{\varphi}) .
$$

This equation is equivalent to (10). We now consider the following commutative diagram.

the columns are exact sequences. Here γ_{2} is not a homomorphism; since however (4.10) (1) holds we see that the induced function $\bar{\gamma}_{2}$ is well defined. Moreover we use $[1,1] H=\cdot 2$ so that $[1,1]_{*}$ in the bottom row is well defined. We now claim that (8) implies the formula

$$
\begin{equation*}
[1,1]_{*} \bar{\gamma}_{2}(\varphi)=-\varphi * \Delta_{A}^{\prime}+\varphi^{*} \Delta_{B}^{\prime} \tag{9}
\end{equation*}
$$

This shows by the diagram above that for any $\varphi \in \operatorname{Hom}(A, B)$ there is an element $\bar{\varphi}$ which satisfies the condition in (7). Thus the functor $\underline{\underline{H}} \rightarrow \underline{\underline{A b}}$ is full, moreover the diagram above shows that $\underline{\underline{H}}$ is part of a linear extension as described in the theorem. In fact for $\bar{\varphi} \in \underline{\underline{H}}(A, B)$ we have $\bar{\varphi}+\alpha \in \underline{\underline{H}}(A, B)$ if and only if $2 \alpha=0$.

It remains to prove (9). For this consider the commutative diagram

The square in this diagram coincides with the corresponding square in the diagram above. Since for $x \otimes y \in B \otimes B$

$$
H[1,1](x \otimes y)=x \otimes y+y \otimes x \equiv x \otimes y-y \otimes x \quad \bmod 2
$$

we see that the diagram commutes. The homomorphism t is induced by $1-T$. On the other hand H_{*} in the diagram is injective. This shows by the following equations that (9) holds.

$$
\begin{aligned}
H_{*}[1,1]_{*} \bar{\gamma}_{2}(\varphi) & =H_{*} p_{*}[1,1]_{*} \gamma_{2} \bar{\varphi} \\
& =p_{*}(1-T)_{*} \gamma_{2} \bar{\varphi} \\
& =p_{*}\left(\varphi_{*} \Delta_{A}-\varphi^{*} \Delta_{B}\right) \\
& =\varphi_{*}\left(p_{*} \Delta_{A}\right)-\varphi^{*}\left(p_{*} \Delta_{B}\right) \\
& =\varphi_{*}\left(H_{*} \Delta_{A}^{\prime}\right)-\varphi^{*}\left(H_{*} \Delta_{B}^{\prime}\right) \\
& =H_{*}\left(\varphi_{*} \Delta_{A}^{\prime}-\varphi^{*} \Delta_{B}^{\prime}\right) .
\end{aligned}
$$

This completes the proof of theorem (5.1).
q.e.d.

Formula (9) in the proof of (5.1) above and (1) in the proof of (4.11) show

$$
\begin{aligned}
{[1,1]_{*} \operatorname{nil}(\varphi) } & =[1,1]_{*} \bar{\varphi}_{2}(\varphi) \\
& =-\varphi_{*} \Delta_{A}^{\prime}+\varphi^{*} \Delta_{B}^{\prime}
\end{aligned}
$$

Hence the composition $[1,1] *$ nil with

$$
[1,1]_{*}: \operatorname{Ext}\left(A, \Lambda^{2} B\right) \rightarrow \operatorname{Ext}(A, \Gamma B \otimes \mathbb{Z} / 2)
$$

is an inner derivation. This implies

(5.4) Proposition.

$$
[1,1]_{*}\{n i l\}=0
$$

in $H^{1}(\underline{\underline{A b}}, \operatorname{Ext}(-, \mathbb{Z} / 2 \otimes \Gamma))$.

Literature

1. Adams, J.F. and Hilton, P.J., On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330.
2. Baues, H.-J. and Wirsching, G., The cohomology of small categories, J. Pure Appl. Algebra 38 (1985), 187-211.
3. Baues, H.-J. and Dreckmann, W., The cohomology of homotopy categories and the general linear group, K-Theory 3 (1989), 307-338.
4. Baues, H.-J., Algebraic Homotopy, Cambridge Studies in Advanced Math. 15 (1988), Cambridge University Press, 450 pages.
5. Baues, H.-J., Combinatorial homotopy and 4-dimensional complexes, de Gruyter Berlin (1991), 380 pages.
6. Baues, H.-J., Homotopy Type and Homology, Preprint MPI für Math. (1994), 430 pages.
7. Baues, H.-J., Commutator calculus and groups of homotopy classes, London Math. Soc., Lecture Notes Series, Vol. 50 (1981), Cambridge University Press.
8. Baues, H.-J., Homotopy Types, Preprint MPI für Math. (1994).
9. Baues, H.-J., On the cohomology of categories, universal Toda brackets, and homotopy pairs, Preprint MPI für Math. (1994).
10. Hardie, K.A., On the category of homotopy pairs, Topology and its applications, 14 (1982), 59-69.
11. Hilton, P., Homotopy theory and duality, Nelson (1965), Gordon Breach.
12. James, I.M., Reduced product spaces, Ann. of Math., 62 (1955), 170-197.
13. Jibladze, M. and Pirashvili, T., Cohomology of algebraic theories, Journal of Algebra, 137 (1991), 253-296.
14. Whitehead, J.H.C., A certain exact sequence, Ann. of Math., 52 (1950), 51-110.
