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THE HOMOTOPY CATEGORY OF MOORE SPACES AND THE

COHOMOLOGY OF THE CATEGORY OF ABELIAN GROUPS

HANS-JOACHIM BAUES AND IvIANFRED HARTL

Nloore spaces i\1(A, n) and Eilenberg-Nlac Lane spaces f((A, n) are the funda
mental building blocks of homotopy theory; see for example [11], [8], [6]. For n 2:: 2
the homotopy category of Eilenberg-Mac Lane spaces ]((A, n) is isomorphie to
the eategory Ab of abelian groups. The homotopy eategory l\lI n of Nloore spaees
lvI(A, n), A E Ab, should also be isomorphie to an importantalgebraie category.
For n 2:: 3 a suitable algebraic model is known (see (V.3a.8) in [4] anel (I.§ 6) in
[6]). The homotopy category 1.\12 of Moore spaces in degree 2 is still not eompletely

understood. Up to equivalence the category 1\112 is determined by a non-trivial
cohomology dass of order 2, -

The results of this paper describe the restriction of this dass to the fnIl subcategory
of Ab consisting of direet sums of cydic groups, and the image of {1.\12

} under
surjection of coefficients (A, B E Ab) -

Hf: Ext(A, rB) ~ H.Ext(A,rB).

Moreover we show that {lvI 2
} is in the image of the coefficient homomorphism i*

given by the indusion of 2-torsion

i : Z/2 * Ext(A, r B) c Ext(A, r B)

For the proofs we use the .James-Hopf invariant 12 on J\1 2 which canonically yields
an element of order 2

{72} E H 1(Ab,Ext(-,A 2
))

We describe {72} algebraically by a cohomology dass {nil} defined via groups of

nilpotency degree 2. The image of {1\12
} under the coefficient homomorphism Hf

satisfies the formula

where ß is a Backstein h9momorphism. The element H: {iVJ 2
} determines up to

equivalence the image category of thc functor [1]: -

Typeset by A.rVfS- '"f'E.'<.



which carries ../vI(A,2) to the chain algebra of the loop space, c.n../vI(A, 2). This
simple example illustrates fundamental differences between spaces and chain al
gebras. Since the category ../112 is equivalent to the category of homotopy pairs
between Pontrjagin maps we can prove that also the universal Toda bracket [9),
(I()o., is non-trivial where J( is the homotopy category of Eilenberg-lvIac Lane
spaces I((A, 2), J((B,4) with A, B E Ab.

§1 Linear extensions of categories and the cohomology of categories

An extension of a group G by aG-module A is a short exact sequence of groups

O.-t A---+ E---+ G.-t 0
i P

where i is compatible with the action of G. Two such extensions E and E' are
equivalent if there is an isomorphisIll € : E ~ E' of groups with p' € = P and Ei = i'.
It is weH known that the equivalence classes of extensions are classified by the
cohomology H 2

( G, A).

VVe now describe linear extensions of a small category C by a "natural system" D.
The equivalence classes of such extensions are equally classified by the cohomology
H 2 (C, D). A natural system D on a category C is the appropriate generalization
of aG-module.

(1.1) Definition. Let C be a category. The categorv of factorizations in C, denoted
by FC, is given as follows. Objects are morphisms f, g, ... in C and morphisms
f .-t 9 are pairs (0:, ß) for which

A er) A'

Ir 19

B (ß B'

commutes in C. Here 0 f ß is fac torization of g. Cornposi tion is defined by (0' , ß') (Q , ß) =
(a'a,ßß'). We clearly have (a,ß) = (a, l)(l,ß) = (l,ß)(a, 1). A natural system
(of abelian groups) on C is a functor D : FC .-t Ab. The functor D carries the
object f to D I = D(f)-and earries the morphislll(;, ß) : f .-t 9 to the induced
homomorphism

D(O':ß) = a.ß* : DI .-t Dofß = Dg

Here we set D(a, 1) = a., D(l,ß) = ß·.

\Ve have a canonical forgetful functor Jr : FQ .-t QOP x Q so that each bifunctor
D : cop x C -+ Ab yields a natural system DJr, as weH denoted by D. Such a
bifunctor is~lso called a C -bimodule. In this case D f = D(B, A) depends only on
the objects A, B for all TE C(B, A). Two functors F, G : Ab .-t Ab yield the Ab
-bimodule
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Hom(F~ G) : Abop x Ab --+ Ab

which carries (A, B) to the group of hornomorphisms H om,(FA, GB). H F is
the identity functor \Ve write H om( -, G). Similarly we define the Ab -bimodule
Ext(F, G).

For a group C and a G-rTIodule A the corresponding natural system D on the
group C, considered as a category, is given by D g = A for 9 E G and g.a = g' a for
a E A, g·a = u. If we restrict the following notion of a "linear extension~ to the
case C = G and D = ~4 we obtain the notion of a group extension above.

(1.2) Definition. Let D be a natural system on C. We say that

D!..tE~C

is a linear extension of the category C by D if (a), (b) and (c) hold.

(a) E and C have the same objects and p is a fuH functor which is the identity
on objects.

(b) For each / ; A -+ B in C the abelian group Dfacts transitively and
effectively on the subset p-l (f) of morphisms in E. vVe write Ja + Ci for the
action of Ci E D f on 10 E p-l (J).

(c) The action satisfies the linear distributivity law:

(Ja +Ci) (gO +ß) = Joga + f.ß +g·Ci.

Two linear extensions E and E' are equivalent if there is an isomorphism of cate

gories € : E "'-I E' with p'E = P and with €(fo + a) = €(fo) + Ci for /0 E Mor(E), a E
Dpfo' The extension E is split if there is a functor s : C -+ E with ps = 1. Let
j\1(C, D) be the set of equivalence classes of linear extensions of C by D. Then
there is a canonical bijection

(1.3)

which maps the split extension to the zero element, see [2] and I\l §6 in [4]. Here
Hn(c, D) denotes the cohomology of C with coefficients in D which is defined
below. We obtain a representing cocvcle ~t of the cohomology class {E} = 'lj;(E) E

H2 (C, D) as follows. Let t be a "splitting" function for p which associates with
each morphism I : A --+ B in C a lTIorphism 10 = t(f) in E with pfo = I. Then t
yields a cocycle ~t by the formula

(1.4) . t(gf) = t(g)t(f) + ~t(g, f)

with 6. t (g, f) E D (g f). The cohonl01ogy dass {E} = {6. t} is trivial if and only if
E is a split extension.
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(1.5) Definition. Let C be a small category and let lVn(C) be the set of sequences
(/\1, ... ,An) of n composable morphisms in C (which are the n-simpliees of the
nerve of C). For n = 0 let lVo(C) = Ob(C) bethe set of objects in C. The coehain
group pn = pn (C, D) is the abelian grollp of all fune tions

(1) c : iVn(C) --7 ( U Dg ) = D
gEMor(Q)

with e( /\ 1, • .• ,/\n) E D,\ lO ... O'\n' Addi tion in pn is giyen by adcling pointwise in the
abelian groups D g • The coboundary f) : pn-l --7 pn is defined by the forrnula

(2)
n-l

+ L(-l)i e()\1, ... ,/\i Ai+l, ... ,/\n)
i=1

For n = 1 we have (fJc)(/\) = /\*e(A) - /\*c(B) for /\ : A -7 B E lVI (C). One can
check that oe E pn for e E pn-l and that aa = O. Henee the cohomology groups

(3)

are defined, n 2:: O. These groups are discussed in [2] and [4]. By change of
the universe eohomology groups Hn(c, D) can also be definecl if C is not a small
category. A funetor cp : C' -7 Cinduces the homomorphism

(4)

where 4> *D is the natural system giyen by (cP *D) f = D 1>( f) . On coehains the map
cj;* is given by the formula

(cp* !)(/\~, ... 1 /\~) = !(<pA;, ... ,<pA:J

where (A',... , /\~) E lvn ( Cf ). If <p is an equivalence of eategories then <p" is an
isomorphism. A natural transformation r : D -7 D' between natural systems
induees a homomorphism

(5)

by (T*f)(/\1, ... , /\n) = T,\f(/\I, ... ,/\n) where T,\ : D,\ -7 D~ with /\ = /\1 0 ... 0 An
is given by the transformation T. Now let
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f T
D" >--+ D ~ D'

be a short exact sequence of natural systems on C. Then we abtain as usual the
natural lang exact sequence -

(1.6) -+ Hn(C,D') ~ H 1l (C,D) -2t Hn(C,D") L Hn+1(C:D') ---+

where ß is the Backstein hamamorphism. For a cocyde e" representing a dass {e"}
in Hn(c, D") we abtain ß{clf } by choosing a cochain c as in (1.5) (1) with TC = c".
This is passible since T is surjective. Then ,,-lSC is a cocycle which represents
ß{elf}.

(1.7) Remark. The cohomology (1.5) generalizes the cohomology cf a graup. In
fact, let C be a group and let C be the corresponding category with a single objeet
and with morphisms given by the elements in C. AG-module A yields a natural
system D. Then the classieal definition of the cohomology H n ( C, A) coincides with
the definition af

Hn(G,D) = Hn(C,A)

given by (1.5). Further results and applications of the cohomology of categories
ean be found in [2], [3], [4], [5], (13].

§ 2 The homotopy category 1\12 of Moore spaces in degree 2

Let A be an abelian group. A Moore space 1\1( ..4, n), n 2:: 2, is a simply con
nected CvV-space ...Y with (reduced) homology groups H n){ = A and Hi"\ = 0 for
i f= n. An Eilenberg-NIac Lane space ]((A, n) is a CvV-space Y with homotopy
graups 1rnY = A and 7T" i y" = 0 for i f= n. Such spaces exist and their homotopy
type is weH defined by (A, n). The homotapy category of Eilenberg-NIac Laue
spaces ]((A, '11), A E Ab, is isomorphie via the functor 7T"n to the category Ab of
abelian groups. The corresponding result, however, does not hold for the homo
topy category 1\1n of NIoore spaces 1\1(A, n), A E Ab. This creates the problem
to find a suitable algebraic lTIodel of the category 1V!n. For n 2: 3 such a model

category of }.;fn is known (see (V.3a.8) in [4] and (I.§ 6) in [6]). The eategory 1\12

is not completely understood. Vve shall use the cohomology of the category Ab to

describe various properties of the category 1\12
.

Let r : Ab -+ Ab be .l.H.C. \Nhitehead's quadratic functor [14J with

(2.1)

Then we obtain the Ab -bimodule

Ext( -, r) : Abop
X Ab -+ Ab

which carries (A, B) to the group Ext(A, f(B)).

5



(2.2) Proposition. Tl1e category lvJ 2 is part of a non split linear extension

+ 2 H 2
Ext( -, f) >-+ lvI ~ Ab

and hence j\tf2, up to equivalence: 1S characterized by a COhOlllOlogy dass

{l~tf2} E H 2 (Ab, Ext(-, f)).

Since the extension 1S non split we have {J\;J 2
} =f o.

Proof. For a free abelian group A o with basis Z let

l1tfAo = VSI
z

be a one point union of 1-dilnensional spheres SI such that H 1 1VIAo = Ao. For an
abelian group A we choose a short exact sequence

o --+ A 1 ~ Ao --+ A --+ 0

where Ao, Al are free abelian. Let

d~ : .~tJ.41 --+ lvJAo

be a map which induces dA in homology and let lvIA be the mapping cone of d~.

Then

lvJ(A, 2) = E lvIA

is the suspersion of lvIA. The homotopy type of j\1JA, however, depends on the
choice of d~ and is not determined by A. Using the cofiber sequence for d~ we
obtain the weil known exact sequence of groups [11]

o--t Ext(A 1 Jr3~X") ~ [.l\!I(A, 2),_Y] ~ H om(A, 7f2-X") --+ 0

where [}'~, ./Y] denotes the set of homotopy classes of pointed maps }'~ --t _Y". vVe now
set ./\ = l\1(B, 2). Then J.l is given by the homology functor. vVe define the action
of a E Ext(A, r B) on ~ E [111(A, 2), l1if(B, 2)] by ~ +a = ~ +~(a) where \ve use the
group structure in [L: AtIA1 11tf(B, 2)]. This action satisfies the linear distributivity
law so that we obtain the linear extension in (2.2). Compare also (V.§ 3a) in [4]
where we show {j\1I 2

} # O.

(2.:1) Remark. A Pontrjagin Iuap TA for an abelian group A is a map

TA : J{(A, 2) --t J((r(A), 4)

which induces the identity of r(A),

Such Pontrjagin maps exist and are wen defined up to homotopy. The map TA

induces the Pontrjagin square which is the cohomology operation [14]
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The fiber of TA is the 3-type of .A1(A, 2). Therefore one gets isomorphisms of
categories (9]

lvI 2 = P(.1:') = H opair(X)

where.1' is the dass of all Pontrjagin maps TA, A E Ab. Here P(.1:') is the homotopy
category of fibers P (TA), TA E .1': and H opair (.1:') is the category of homotopy pairs

[10] between Pontrjagin maps. vVe have seen in [9] that via these isomorphisms the
dass {lvJ 2

} is the image of the universal Toda bracket (I()n E H3 (I(, Dn) where
1{ is the fnU homotopy category consisting of 1((A,2) and ]((f(A),4), A E Ab.
Hence we get by (2.2):

{2.4} Corollary. (I()n I- 0

§3 On the cohomology class {lvJ2
}

The quadratic functor f can also be defined by the universal quadratic map
, : ..4 -t f(A). \Ve have the natural exact sequence in Ab

(3.1 ) f(A) ~ A0A~ }\2A--+O

\vhere H is defined by H,(a) = a 0 a, a E A E Ab, and where ]\2 A = A (9 A/{a 0
a I"V O} is the exterior square with quotient map q. We also need the natural
homomorphism

(3.2) (1,1] = P : A 0 A -t f(A)

with P{a 0 b) = ,(a + b) - ,(a) - ,(b) = [a,b]. One readily checks that PH is
multiplication by 2 on f(A) and that HP(a 0 b) = a 0 b + b 0 a. For A E Ab we
obtain by P and H aud q above the following natural short exact sequences of Z/2
-vector spaces

(3.3)

Here a carries ,(a) 01 to a01, a E A. If we apply the functor H om( -, r(B) 0 Z /2)
to the exact sequence 5i(A), i = 1,2, we get the corresponding exact sequence of
Ab -bimodules denoted by H om(Si(-), f( -) 0 Z/2). The associated Bockstein
homomorphisms ßi yield thus homomorphisms
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(3.4)

HO(Ab, Hom.(r(-) ® 7l/2, f( -) (9 7l/2))

-l- ß2

H 1
( Ab, H om (A2

( - ) 0 7l /2, f (- ) (9 7l /2) )

-l- ßl

H 2 (Ab, Hom( - (9 7l/2, f( -) ® 7l/2))

Nloreover we use the natural hOlnomorphism

X : Hom(A (9 71./2, f(B) 0 7l/2) ~ Ext(A (9 71./2, r B)~ Ext(A~ f B)

where 9 is the natural isomorphism and where p : A -t A (9 71./2 is the projection.
Let

Ir E HO(Ab, Hom(f(-) (971./2, f( -) 0 71./2))

be the eanonieal class whieh earries the abelian group A to the identity of f(A) (9

71./2. Then one gets the element

determined by Ir and the homomorphisms above.

(3.5) Coniecture.

vVe shall prove various results whieh support this eonjeeture.

(3.6) Theorem. Let A be the full subcategory of Ab consisting of direet sums of
eyc1ic groups and let i.d : A -t Ab be the inc1usion functor. Then we have

Praot. vVe write Cf = (71. / a)O' if C is a eyclie group isomorphie to 71. / a with generator
0', a 2: O. A direet sum of eyclie groups

is orclered if the set of generators {O' i, <} is a well ordered set. The generator 0' i

also denotes the inclusion O'i : Z/ai C A and the eorresponcling inclusion

(3.7)
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Here Pn = SI Un e2 is the pseudo projective plane for 11 > 0 and Po = 51 so that
~Pn = NI(Z/n, 2). Let a i : A ~ Z/ai be the canonical retraction of 0i with
aiai = 1 and a j ai = 0 for j i= "i. Let

(3.8) rp : A = E9(Z/ai)ai ~ B = E9(Z/b j )ßj
j

be a hornornorphisrn. The coordinates rp j i E 71.., rp j i : 71.. / ai ~ 71.. / bj: 1 1------7 <P j i 1, are
giyen by the forrnula

<.pOi = L ßj rpji·

Let B z be the splitting function

[2: Pn, ~Pm] ;:. Hom(Z/n, Zlm)
8 2

obtained in (lU, Appendix D) of [5]. vVe define the map srp E [.i\d"(A, 2), Ad"(B, 2))
by the ordered surn

<
(srp)ai = L ßjBz(rpjr)

j

where we use the ordering < of the generators in B. Hence we obtain a splitting function
s

(3.9)
H 2

[Ad"(A, 2), NI(B, 2)] ~ Hom(A, B)
s

with Hzs(r.p) = rp. Each element ep E [NI(A, 2),lvl{B, 2)] is of the form ep =
s( rp) + ~ where ~ E Ext(A, r B). This way we cau characterize all elements in
[.A1(A, 2), lvl(B, 2)] provided A and B are ordered direct sums of cyclic groups. vVe
use s in (3.9) for the definition of the cocycle.6~ representing i*{l'd"z} in (3.6), that
is by (1.4):

Below we compute .6~. To this end we have to introduce the following groups.

q.e.d.

(9.10) Definition. Let A be an abelian group. \,Ve have the natural homomorphism
between Z /2 -vector spaces

(1) H : f(A) 0·Z/2 = f(A 0 7l/2) 0 7l/2 -r 0 2 (A 071../2)

with H(,(a) 0 1) = (a 0 1) 0 (a 0 1). This homomorphisnl is injective and heuce
adrni ts a retraction homomorphism
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(2)

wi th rH = id. For example~ giyen a basis E of the 7l /2 -vector space A 0 Z /2
and a weH ordering < on E we can define a retraction r< on basis elements by the
formula (b, b' E E)

(3)

for

for

for

b = b'

b> b'

b < b'

Now let q 2:: 1 and let

(4) jA : H om(7l / q1 A) = A *Z / q C A ~ A 0 7l /2

be giyen by the proj ection P with p(x) = x 0 1. Also let

(5)
p •

PA : f(A) 071/2 --# f(A) @tl/20tl/q = Ext(tl/20tl/q,f(A))~ Ext(Z/q,f(A))

be defined by the indicated projections p. Then we obtain the homomorphism

(6) {
.6.A : Hom(tl / q, A) 0 Hom(tl / q, A) -+ Ext(71/q, f A)

.6.A = PAr(jA 0 JA)

which depends on the choice of the retraction r in (2). Clearly.6..4 is not natural
in A since r cannot be chosen to be natural. However one can easily check that .6.A
is natural for homomorphisms <.p : Z/q -7 tl/t between cyclic groups that is

(7)

vVe now define a group

(8) G( q, A) = Horn(Zjq, A) x Ext(71jq, f(A))

where the group law on the right hand side is given by the cocycle .6..41 that is

(9) (a, b) + (a', b') = (a + a' 1 b+ b' + .6.A(a ® a')).

For any abelian group A there is by (XII.1.6) [6] an isomorphism
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(3.11) p : G(q, A) ~ [~Pq, .A1(A, 2)]

whieh is natural in 7l/q, q > 1, and which is eompatible with ~ and f.L in the proof
of (2.2). If A is a direet sum of eyclie groups as above we obtain maps

O:i : ~Pai ~ l1d"(A, 2)

by Qi = p(Oi'O) where 0i E Hom(71/ai,A) is the inclusion. These rnaps yield the
homotopyequivalenee

V~Pai ~ ]YI(A, 2)
l

\vhieh we use as in identifieation. Henee we may assume that p in (3.11) satisfies

(*)

where 0i is the inclusion in (3.7). vVe need the following funetion VA, clen.ned for
an ordered direet sum A of eyclie groups,

(3.12) VA: Hom(71/q,A) --+ Ext(Z/q,rA)

VA (x) = L: ~A(OiXi 0 ojxj).
i<j

Here Xi E Hom(71/q, 7l/ai) is the eoordinate of x = L:i 0iXi. We observe that
\J A = 0 is trivial if we define DoA by r< in (3.10) where the ordered basis E in
A 0 7l/2 is given by the ordered set of generators in A. Clearly 2 V A (x) = 0 sinee
2~A = O. The funetion VA has the following erueial property:

(3.13) Lemma. In the group G(q, A) we have the formula

<
L:Xr(ai,O) = (X,VA(X))

where the left hand side is the ordered sum of the elements Xi(Oi, 0) = (OiXi, 0) in
the group G(q, A).

The lerruna is an immediate consequenee of the group law (3.10) (9).

For 'P E H om(A, B) in (3.8) and q ~ 1 we den.ne the funetion

(3.14) V(cp): H01n(Z/q,A) ~ Ext(Z/q, f(B))

~
t
;

via the commutative diagram
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7r2 (Z / q, 1'1(A, 2))

1I

G(q, A)

11

Hom(Z/q, A) x Ext(Z/q, fA)

7r2(Z/Q, l'1(B, 2))

1I

C;( q, B)

11

Hom(Z/q, B) x Ext(Z/q, f B)

where the isomorphisms are given as in (3.11). The homomorphism (s<p h, induced
by s<p in (3.9), determines \7 (<p) by the formula

(s<p)o(:c,Cl') = (<p.x,f(<p).a + \7(<p)(x))

für x E Hom(Z/q,A) and Cl' E Ext(Z/q,fA). The fUllctiün \7(<p) is not a homo
morphism.

(3.15) Lemma. For x E Hom(Z/q,A) we have

\7(<p)(X) = f(<p). \7A (x) + L \7B(<pCl'jXd
J

+ L ö'8(<pO'j X i 0 <pÜtxr)
i<t

Since all summands are 2-torsion we have \7(<p) = 0 if q is odd.

Proof. For (Cl'i' 0) E G(Gi, A) one has the formula

<
(s<p)o(aj, O) = L(ßj<Pji' 0)

j

as follows from property (3.11) (*) of the isomorphism x. Hence we get by (3.13)
the following equations

(S<p)n(x, 0) + (0, f(<p). \l A (x)) = (s<p)tt(x, \7 A(X))
<

= (s<ph(L xi(ai, 0))

<
= Lxi(s<p)n(Üi'O)

J

< <
= L(L(ßJ'PjiXi, 0))

I j

<
= L(SOGiXi, \7 B(SOGiXi))

I

12



Here we have in G( q~ B) the equation

<
L(<pajxj,O) = (<px, L C1B(<pO:j Xi Q9 <pO:tXt))

i i<t

This yields the result in (3.15).

q.e.d.
VVe now describe cocycle eS in the class ß1ßz (1r ). For this let A, B, C be ordered

direct sums of cyclic grollps and consider homomorphisms

(3.16) 1jJ<p : A ~ B ~ C.

Let 1'A = r< be the retraction of H in (3.10) (3)

H
r(A) Q9 Z/2 ~ @2(A) 0 Z/2

rA

Moreover let S A be a splitting of a

u
f(A) 0 Z/2;:: A 0 Z/2

SA

defined by

(see Sz(A) in (3.3))

(see SI (A) in (3.3))

Here the O'j are the generators of A as in (3.7). We now obtain derivations D 1 , D z
by setting

Dz(1j;)q = -1/J*rB + 'ljJ*rcl

P D 1(<p) = -<.p*SA + <.p*SB.

For this we use the exact sequences Si(A) in (3.3). We define a 2-cocycle eS which
carries (7/;, <.p) to the composition

and we observe

(3.17) Lemma.

where ßl' ßz are the Bockstein homomorphisms in (3.4). VVe leave the proof of the
lemma as an exercise. The lemma yielcls a cocycle representing the right hand side
in (3.6).
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Next we determine the cocycle J~ in (3. g). For this we use the injection

g: Ext(A,fC) C x Hom(Ho1n(Z/q, .o4),Ext(71/q, fC))
q>l

The element 9 Ö, s (1jJ, r..p) is giyen by the 7l / q -natural homomorphism

(gö's(1}J,'P))q : H01n(71/q,.o4) -+ Ext(71/q,fC)

which satisfies

(gö,s(1}J,tp))q(X) = f(1}J). V (r..p)(x) + v{7jJ)(<px) - v(7jJ<p)(x)

This equation is an easy consequence of (3.14). As in the remark following (3.12)
we may assume that V A = V B = V c = 0 are trivial. NIoreover we may assume
that q is even since (g6. s ('1jJ, <p))q is trivial if q is odd. Vle define a fllnction

PA : .04 &; 7l/2 -t ]\2(.04 (9 7l/2)

PA(L: XiCYi 01) = L(XiCYi (9 1) 1\ (XtCYt 0 1)
i i<t

(S.18) Lemma.

V(r..p)(X) = Xq D2 (<p)PA(X 0 7l/2)

Here we have x E H om(71/q, A) and

x 0 7l/2 E H om(71/q 0 7l/2, .04 <9 7l/2) = .04 0 7l/2

since q is even. Nloreover Xq in lemma (3.18) is the composition

xq : f(B) &; 7l /2 = Ext(71 /2, f B) -+ Ext(71 / q, f B)

induced by 7l / q -+ 7l / q0 7l /2 = 7l /2. Lemma (3.18) is a consequence of the formula
in (3.15) and the definition of rA = r< in (3.10) (3). We apply Lemma (3.18) to
the formula for (g6.~(7jJ, 'P))q above and we get far x = x 071/2

(3.19) Lemma.

(gö's(IjJ,r..p))q(X) = X qD2 (7jJ)(PB (r..px) - 'P.PA(X))

This follows easily from (3.18) since D 1 is a derivation. Finally we observe:

(3.20) Lemma.

PB(<pX) - 'P*PA(X) = D1(cp)(x)

The proof of lemma (3.20) requires a lengthy computation with the definitions of
PB, PA and D 2 (<p). By (3.19) and (3.20) we thus get

(3.21 )
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and this yields the formula in (3.6). In fact (3.21) yie1cls an eaSy algebraic de
scription of the cocycle ~s in terms of the derivation D 1 and D 2 above since 9 is
injective.

q.e.cl.

§4 On the cohomology class {nil} and James-Hopf invariants on j\([2

In this section we prove a further formula for the class {.1\12
} which, however,

does not determine {1\;/2} completely. -

For the exterior square A2(B) of an abelian graup B we have the exact sequence
(3.1) which induces the exact sequence

Ext(A,fB) H.) Ext(A,0ZB) ~ Ext(A,A2 B) ~ 0

and hence we have the binatural short exact sequence

(4.1)
i 2 p. Z

H*Ext(A, f B) }-t Ext(A,0 B) ...... Ext(A, A B)

together with the surjective map

H' : Ext(A,fB) ~ H*Ext(A,rB)

induced by H*. The short exact sequence induces the Bockstein homomorphism

ß: H 1(Ab,Ext(-, AZ
)) -+ H2 (Ab,H*Ext(-,r))

(4.2) Theorem. The algebraic dass {nil} E H 1 (Ab, Ext{ -, A2)) defined below

and the c1ass {1\12
} of the homotapy category of lvIaare spaces in degree 2 satis(y

the formula

This result is true in the cohomology of Ab. For the algebraic definition of the
dass {nil} we need the following linear extension nil.

(4-3) Definition. Let (Z) be the free group generatecl by the set Z and let r n(Z)
be the subgroup generated by n-fold commutators. Then

A = (Z)jrz(Z) = E9 z
z

is the free abelian group generated by Z and

15

(1)

(2)



is the free nil(2)-group generated by Z. We have the dassical central extension of
groups

The map 10 is the commutator map with

( /\ )
-1-1

W qx qy = x y xy.

(3)

(4)

Here the right hand side denotes the commutator in the group E A . Using (3) we
get the linear extension of categories (compare also [3], (5])

(5)

Here ab and nil are the fuH subcategaries af the categary of graups cansisting of
free abelian graups and free nil(2) -graups respectively. The functor ab in (3) lS

abelianization and the action + is given by

f + 0' = f + woq (6)

for f : EA --+ EB, Q E H om(A, A2B). The right hand side of (6) is a weH defined
homomorphism since (3) is central.

(4.4)Definition. vVe define a derivation

nil: Ab --+ Ext(-, A2)

\vhich carries a homomorphism <p : A --+ B in Ab to an element nil( c.p) E Ext(A, A2 B).
The cohomology dass {nil} represented by the derivation nil satisfies the formula
in (4.2). For the definition of nil we choose for each abelian group Aashort exact
sequence

where Ao, Al are free abelian groups. \Ve also choose a homoluorphism

dA : EA i --+ EAo

between free nil(2) -graups such that the abelianization of dA is dA. For the
homomorphism c.p : A --+ B \ve choose a COffiIllutative diagrarn in Ab

Al
dA , Ao

q
) A

~11 1~o 1~

BI
da

) Bo
q

) B

and we choose a diagram of homomorphisffis

16



1~o
JBEB l ) EBo

which by abelianization induces ('Po, 'Pd. This diagram, in general, cannot he
chosen to be commutative. Since, however, <podA = dB'Pl there is a unique elernent

with

Here we use the action in (4.3) (6). Now let

be the element represented by the composition

(A 2 q)a: Al --+ A 2 B o --+ AZB

One can check that nil( 'P) does not depend on the choice of ('Po, 'PI) and ()Öo, <pd
respectively and that nil is a derivation, that is nil(ep7J;) = ep*nil(l/J) + 'ljJ*nil(ep).
This completes the definition of the cohomology class {nil}.

Next we use the derivation D l on Ab defined as in (3.16). The derivation D l

carries 'P : A --+ B to

and hence represents a cohomology dass

Let
PZ : Ext(A 0 Z/2, A2B) --+ Ext(A, A2B)

be induced by the projection A --* A (9 Z/2.

(4.5) Proposition. Let A be the full subcategory of Ab consisting of direct sums
of cyc1ic groups. Then we have

in HI(A,Ext(-,AZ)).

\Ve do not know \vhether this formula also holds if we omit iA. Proposition (4.5)

implies that the formulas in (4.2) and (3.6) are compatible. For the proof of (4.5)
we need the following properties of nil(2) -groups. A group G is a nil(2)-group
if all tripie commutators vanish in G. The commutators in G yield the central
homomorphism

(4.6)
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where G -t Gab, X l---t {X}, is the abelianization of G. vVe define 10 by the COffi
ffiutator

for X, Y E G. Let lvI be a set and let f : 1\1 -t G be a function such that only
finitely many elements f(m), m E lvI, are non trivial and let <, « be two total
orderings on the set 1\;1. Then \ve have in G the formula

m~I f( m) = mtl f( m) +W(m~m'Um} !I {fm'})
m <m

For a E G and n E Z let na = a + ... + a be the n-fold sum in G in case n 2: 0, and
let na = -Inla far n < 0. Then one gets in G the farmula

n t f(m) = t nf(m) - w ((;) L Um} !I {fm'})
mEM mE/v! m<m'

where (;) = n(n - 1)/2.

ProoE oE (4-5). Let A and B be direct sums of cyclic groups and let 'P : A --+ B
be given by Y'ji E Z as in (3.8). Let Ao be the free group generated by the set of
generators {ad of A and let Al be the free group generated by the {Oi, ai i= O}.
Then we choose, see (4.4),

{
(lA: E A ! --+ E Ao

dA(od = aioi

Similarly we define (IB . Nloreover we define rpl and <Po by the ardered surn

<
<PO(O'i) = L 'Pjißj E Eßo

}

<
rpdad = L(ai'Pji/bj)ßj E E ßl

}

Hence we get 0' in (4.4) by the farmula, see (4.6L

< <
dB<Pl (ai) - <Po dA (ai) = L ai'P jißj - ai L 'Pjißj

. .
} }

= w ( ;i )L {'Pj;ßj} !I {'Ptiß,}
}<t

18



Hence nil(<p) E Ext(A, 1\2 B) is given by the formula (ai: Z/aj C A as in (3.7))

(ad·nil( tp) = (~i) L <,?jiipti( 1 0 ßj 1\ ßd
j<t

where 1 0 ßj 1\ ßt E Z/ai (9 A2B = Ext(Z/ai, 1\2 B). Using the definition of D1 in
the proofof (3.16) it is easy to check that (ai)·p2D1 (1f') coincides with the right
hand side of the formula so that \ve actually have

nil( rp) = P2Dl (ip).

This proves the proposi tion in (4.5).

q.e.d.
We will need the following eleruent whieh proj ects to 11 i1(tp) above.

(4.7) Definition. For rp in the proof above let

be given by the formula

(a2)'nil(ip) = (~i) L ipjiipti(10 ßj 0 ßt)
J<t

vVe clearly have Ext( A, p)nil (<,0) = nil( tp) where p : fg? B ~ A2B is the projection.

Recall that we have for the bifunctor Ext(-,02 ) on Ab the canonical split linear
extension

Ext( -, (g?) >-t Ab x Ext(-, 0 2 ) ~ Ab

Objeets in Ab x Ext( -, ( 2
) are abelian groups and morphisms (<,0, a) : A -7 Bare

given by tp E Hom(A,B) and 0: E Ext(A,02 B) with composition (<,o,a)('I/J,ß) =
(tp'lj;, rp.ß + 'Ij,J. 0:). The derivation nil in (4.4) defines a subcategory

(4.8)

consisting of all morphisms (<p, 0:) : A -7 B which satisfy the condition

P.(o:) = nil(<p) E Ext(A, 1\2 B).

Here p : 0 2 B ~ A2Binduces p. = Ext( A, p). The exact sequence (4.1) shows that
we have a commutative diagram of linear extensions of categories

+ )H.Ext( -, f) Ab(nil)

n

+ ) Ab x Ext( _, (2)

19
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(4.9) Lenlma. The cobomology dass represented by tbe linear extension for Ab(nil)
satisfies

{Ab(nil)} = ß{nil} E H 2 (Ab, H.Ext( -, r))

,,,bere ß is tbe Bockstein operator in (4.2).

Proof. Let s : Ext(A, A2B) -t Ext(A,0 2 B) be a set theoretic splitting of Ext(A,p) =
p•. Then ß{nil} is represented by the 2-cocyde c = 'i- 1 5(s nil) where i is the indu
sion in (4.1) and where <5 is the coboundary in (1. 5). Hence c carries the 2-simplex
(1jJ, 'P) in Ab to

On the other hand we define a set theoretic section t for the linear extension Ab(nil)
by t(<.p) = ('P,snil(ep)). Then ~t in (1.4) is given by

s nil( 1jJ<.p) = 1jJ.s nil(<.p) + 'P. s nil(1jJ) + i~tCtP, 'P)

Hence c = -~t yields the proposition. In fact, since the elements in (4.9) are of
order 2 we can omit the sign.

q.e.d.
For NIoore spaces lvI(.A., 2) = "E.J11A and lvI(B, 2) = 'ElvIB as in (2.2) we have the

.James-Hopf invariant [12] 1 [7],

(4.10) ["E.lvIAl L.JvIB] ~ ["E.lvIA, 'EA1B /\ lvIB] = Ext(A, B ® B)

which satisfies for a E Ext(A, r B) the formula

(1)

Hence r2 induces a well defined function

(2) ')'2 : HO1n(A, B) -;.. Ext(A, A2 B)

defined by 1'2('P) = q.'.Y2(~) where ~ induces H2(~) = r.p : A -T B. One can check
that 1'2 is a derivation which represents a cohomology dass in H1 (Ab, Ext( -, A2 B)).
This cohomology dass does not depend on the choice of j1;IA, lvIB above.

(4.11) Theorem. Tlle cohoI1lo1ogy dass f=b} given by the James-Hopf invariant
-12 coincides with

Moreover there is a fuH functor T.
, f.
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which is the identi(v on objects and which is denned on lnorphisms by

T ( e) = (H2 e, r2 e)

The functor T is part of the follo'tving commutativ"e diagram of linear extensions

Ext(-, f) + ) lVI2 H"l Ab)

H'l Ir 11

H*Ext( -, f) +
> Ab(nil) ) Ab

Proot ot (4-2). The existence of the functor T shows that H; {lVI 2
} = {Ab(nil)}.

Therefore we obtain (4.2) by (4.9).

q.e.d.

(4-12) Remark. \Ve can give an alternative description of the functor T in (4.11) by
use of the singular chain complex of a loop space which yields the Adams-Hilton functor

C*S1 : H o(Top*) -t H o(DA)

between homotopy eategories (eompare [1] and also [4]). The funetor C*n restri eed

to M 2 leads to the following diagram where NI 2
C H o(DA) is the full subcategory

consisting of C*S11\1(A, 2), A E A.b,

lvI2 c"ü) 1':12
C H o(DA)

Ab(nil) ) Ab xExt(_,tg;2)

where j is an equivalenee of categories such that jiT is naturally isomorphie to C*S1.

Proof of (4-11). The image category of the functor

is Ab(nil) sinee we show

(1) i2 = nil

for compatible ehoices of (lA, d~4. in (4.4) and (2.2). \Ve use the equivalenee of
linear traek extension described in (VIA.7) of Baues [5]. This shows that a tripIe
(r.po, r.p 1, G) wi th GEHom( Al, 0 2 Ba) satisfying p .. G = a (see (4.4)) eorresponds
to a diagram

I: 1'1.4 1

~ d~
L: lVIAo)

(2) ~ '1 GI 1~ I'-J ,",1 ~
'-J ,",0

'f:t l'1B1
) l: lVIBo

~d~
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Here d~ and d'a induce dA and dB respectively and <p~, ep~ induces ~o, ~1 in
(4.4) . The track G' is determined by G. This track determines a principa! map
rp E [~lV[A,E111B] such that T(if?) = (tp,(0 2q).{G}) where {G} E Ext(A,C?J 2B)) is
represented by G. This follows from the bijection (6) ... (11) in (VI.4. i) Baues [5].
Since P.G = Q' we get 1'2 = nil. q.e.d.

(4.19) Example. Let A and B be clirect sums of cyclic groups as in (3.8) and let
scp E [iVI(A, 2), jYI(B, 2)] be defined as in (3.9). Then the functor r in (4.11) satisfies

r(s<p) = (ep,nil(ep))

where nil (ep) is defined in (4.7). Vle obtain this formula by the methods in the
proof of (4.11) above. In this case we also can compute the James-Hopf invariant
1'2(Sep) which actually is 1'2(S<p) = nil(<p).

As a corollary of (4.2) we get:

(4.14) Proposition. {J1;I 2
} is a (no~ trivia! ) element of order 2.

Proof. We know that multiplication by 2 on f(A) is the composition

where P = [1,1]. Hence also the composition

Ext(A,rB)

11

Ext(A,rB)

H '
----+) H.Ext(A, r B)

n

H. ) Ext(A, 0 2 B)

P'
---t) Ext(A,rB)

1I

P. ) Ext(A, r B)

is a multiplication by 2. Therefore we get by (4.2):

2{lVI2
} = (PI H' ).{J1;I2

}

= p; H~ {J1;I2
}

= P; ß{nil}

Here the commutative diagranl of short exact sequences

o --..,.) H.Ext(A,rB) ---+) Ext(A, 0 2 B) --..,.) 0

o ---+ Ext(A,rB) -------1» Ext(A, rB)
1
o -------1» 0

shows that P;ß = O.

q.e.d.

(4. 15) Proposition. Each element in H 1(Ab, Ext( _,1\2)) is of order 2, in particular,
2{nil} = O.
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ProoF. Let A: B be abelian groups and let <.p E H om(A, B). Let 2A - 2 id E
Hom(A, A) be multiplication by 2. Then we have

tp 0 2A = 2<p = 2B 0 rp.

Now the derivation property of lV wi th {lV} E H 1 (Ab, Ext (-, A2 )) shows:

JV( tp 02..d = <p. JV(2A) + (21'1)* lV(<p)

= rp. lV(2 A ) + 2JV(<.p)

lV (2B 0 <.p) = (2 B ). lV(<p) + <.p. lV(2B )

= 41V(tp) + cp. N(2B)

Hence we get

so that 2N is an inner derivation.

q.e.d.

§ 5 A subcategory of 1\112 given by diagonal elements

Let Z/2 * A be the 2-torsion of the abelian group A. \,Ve here construct a
subcategory H of the category of NIoore spaces M 2 with the following property.

(5.1) Theorem. There exists a subcategory H ofN1 2 togetber witb a commutative
diagrarn of linear extensions

Z/2 * Ext( -, r)

n

+ ) H

n 11

Ext( -, r)

The theorem shows that the dass {1\11 2
} is in the image

where i is the inclusion Z/2 * Ext(A, f(B)) C Ext(A, f(B)).

(5.2) Corollary. The extensioll j\12 --+ Ab is split Oll any full subcategory of Ab

consisting of objects A, B with (Z/2) * Ext(A, r B) = O.
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(5.3) Corollary. Let A be any abelian group for whicb the 2-torsion ofExt(A, r A)
is trivial. Then the group ofhomotopy equivalences oE ../11(A, 2) is given by the split
extension

Ext(A, f A) >-1 ~(1V1(A,2)) -+t Aut(A)

where<p E Aut(A) acts 011 a E Ext(A, r A) by<p' a = (fep)* (<p-l )*(a).

Proot ot (5.1). For a Moore space ../v1(A,2) = "f.1V1A we have the diagonal element

(1)

which is given by the suspension of the reduced diagonal 1111.4. ~ A1.4. 1\ lvIA . Let
{lA,lA] : 'ElvIA 1\ lvIA ~ 'Elv1A be the VVhitehead product far the identity 1A of
'2:.1111A. Then

(2)

is the trivial commutator. This ilnplies that also

(3) .ßA E !{er{[l, 1J* : Ext(A, A 0 A) ~ Ext(A, f A)}

with [1,1] in (3.2). We have the short exact sequences (see (3.3))

o~ Ext(A, r(A) <0 Z/2) H.) Ext(A,0 2 (A) 0 Z/2) q.) Ext(A, A2 (A) 129 7l/2) ~ 0

[1 11J·1 1
Ext(A, f(A) 0 Z/2)

which shows by (3) that far the projection p: 0 2 A ~ (0 2A)0Z/2 there is a unique
element .ß~ E Ext(A, f(A) 0 7l/2) with

(4)

vVe now choose by the surjection

P* : Ext(A, fA) ~ Ext(A, f(A) tg) Z/2)

an element .ß~ E Ext(A, f A) with

(5) Alf AI
P* L.l A = L.J. A
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\·Ve call .6.~ a diagonal structure for ..4. For the definition of the subcategory H in

lvJ 2 we choose such a diagonal structure for each abelian group A in Ab. We define
the set of mbrphisms in H with -

(6)

by the composi tion (compare (4.10))

[EIVIA, Ej1;!B] ..:!:3...t Ext(A, B ® B) [l,lJr Ext(A, r B),

and by diagonal structures L1~, L1'B, namely

(7)

We show that for !j? E H(A, B) and -/fJ E H(B, C) we actually have -/fJtj; E H(A, C)
so that H is a weIl defined subcategory cf J.'1 2

. For this \ve need the fact that 12 is
a derivation, namely

Hence we get:

[1, 1}*12 (-/fJtj;) = [1, 1)*(~.12(tj;) + <p*,2(~))

= ~. [1, 1]. f2 (tj;) + <p *[1, 1] *12 (r:p)

= ~. (-<P*.6.~1 + <p* 6.'iJ) + <p* (-~*LJ.'iJ + ~* LJ.c)

= -('lj}<p) *6.~ + Clj;<p) *6.c·
The crucial observation needed for the proof of theorem (5.1) is the following equa
tion where we use the interchange map T : B ®.i3 -+ E! ® B with T(x ® y) = y ® x,

(8)

This equation follows from the corresponding known property of .James-Hopf in
variants (Appendix A [6]) with respect to "cup products" which in our case has the
form

This equation is equivalent to (10). \Ve now consider the following commutative
diagrarn.
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Ext(A, rB) Ext(A,rB) - Ext(A,rB)

1+ 1H. 1.2

[:Sl\lA, ~lvIB] "(2 ) Ext(A, B 0 B)
[1,1].

Ext(A,rB);

1~ 1 1
Hom(A,B) '1'2 Ext(A, 1\2 B)

[1,1].
Ext( A, r(B) ® Z /2))

the columns are exact sequences. Here /2 is not a homolll0rphism; since however
(4.10) (1) holds we see that the induced function i2 is weH defined. Moreover we
lise [1, l]H = ·2 so that [1,1]* in the bottom row is weH defined. We now claim
that (8) implies the formula

(9)

This shows by the diagram above that for any <p E H om(A, B) there is an element
rp which satisfies the condition in (7). Thus the functor H -+ Ab is full, moreover
the diagram above shows that H is part of a linear extension as described in the
theorem. In fact for <p E H(A, B) we have rp + a E H(A, B) if and only if 2a = O.

It remains to prove (9). For this consider the commutative diagram

Ext(A,B 0 B)

~1-T) *

Ext(A,rB)

Ext(A, r(B) (9 Z/2)

A

Ext(A, B \8) B)

I
)

~
Ext(A, B !\ B)

Ext(A, B 0 B 0 B)

The square in this diagram coincides with the corresponding square in the diagram
above. Since for x 0 y E B ® B

Hf1, l](x 0 y) = x (9 y + y 0 x =x ® y - y 0 x mod 2

we see that the diagram commutes. The homomorphism t is induced by 1 - T.
On the other hand H", in the diagram is injective. This shows by the following
equations that (9) holds.
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H.[l, 1].12(<P) = H.p.[l,l].'"'(2<,O

= p. (1 - T). '.'(2<,0

=p.(<p.6.4 - <P·68)

=<P.(P.~A) - r.p·(P.~B)

= r.p.(H.~~) - tp·(H.~'a)

= H. (tp.~~4 - tp.~'a).

This completes the proof of theorem (5.1).

Formula (9) in the proof of (5.1) above and (1) in the proof cf (4.11) show

[1,1]. nil (<p) = [1,1]. <'o2(tp)

= -r.p. 6.~ + r.p. 6'a

Hence the composition [1,1]. nil with

[1,1]. : Ext(A, A2B) --+ Ext(A, rB 0 Z/2)

is an inner derivation. This implies

(5.4) Proposition.

[1, l].{nil} = 0
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