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HECKE ALGEBRAS FOR p-ADIC LOOP GROUPS

V. Ginzburg, M. Kapranov

Let G be a split reductive algebraic group over Z. For every field F' we have the group
G(F) of F-points of G, and the study of representations of such groups for various fields F
is a classical subject of representation theory. For example, when F is locally compact (i.e.,
is a finite extension of R, F,((¢)) or Q, ), then so is G(F); thus G(F) possesses a Haar
measure, which serves as a crucial ingredient for the deep and well-developed harmonic
analysis on groups of this type. An early but important result here is the determination of
the algebra of functions on G bi-invariant with respect to a maximal compact subgroup K.
For the case when F' is non-Archimedean, this algebra is known as the unramified Hecke
algebra. It is commutative and in fact naturally identified with the Grothendieck ring
of finite-dimensional algebraic representations of the Langlands dual group £G (Satake’s
isomorphism). ' o

The next in difficulty is the case when F' is a complete discrete valued field whose
residue field & is locally compact, for example F' = C((t}) or Q,((t)) is the field of formal
Laurent series with complex or p-adic coefficients. In this case the groups G(F') are called
(complex or p-adic) loop groups. They are not locally compact and hence do not possess
any invariant measure, although there exists a very interesting representation theory of
complex loop groups [PS]. In particular, the standard definition of the Hecke algebra
cannot be applied here since it involves convolution with respect to the Haar measure.

The aim of the present paper is to show how to associate to a p-adic loop group
G(F) a natural Hecke algebra H and to describe this algebra completely, generalizing the
Satake isomorphism. As in the classical case, H consists of certain G(F)-invariant integral
operators on the homogeneous space G(F')/K where K is an appropriate analog of the
maximal compact subgroup (see below). For this choice of K the set G(F)/K is the set
of vertices of a so-called double Bruhat-Tits building in the sense of A.N. Parshin [Pal-
2], and the geometry of this building is our first main tool. Another ingredient, needed
to avoid appealing to the (non-existent) Haar measure on G(F), is the systematic use
of so-called Poisson measures on the boundaries of Bruhat-Tits complexes for ordinary
p-adic groups. The Poisson measure associated to a vertex can be interpreted in terms
of the Brownian motion on the complex, as the probability that the Brownian particle
eventually exits into the given region of the boundary (so it is a particular case of the
so-called exit measure on the Martin boundary known in the theory of Markov processes
[Do] [Dy] [Fu]). Even though our constructions are purely algebraic, the appearance of
concepts with such probabilistic interpretation is quite natural since we are dealing here
with (a certain algebraic version of) the integration over the loop space.
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Let us describe our results more precisely. The residue field of F' is denoted by k. It
is a locally compact non-archimedean field, so it is, in its turn, a complete discrete valued
field whose residuc field is a finite field F,;. Let O = Op and O be the rings of integers of
F and k respectively, so that we have a surjection

7:0 > k.
Denote by O’ C O the preimage 7~ 1(O}), so we have surjections
p: 0" 5 Fy, pe:GO) > GF,).

The subgroup G(O’) will be denoted by K’ and will serve as the analog of a maximal
compact subgroup in a p-adic Lie group. It was proved by Parshin for the case G = PGL,
(see below for general case) that the double coset space K'\G/K' is discrete and does not
depend on the number of elements in the last residue field F,. Our Hecke algebra H will
consist of functions on K'\G/K’ satisfying certain finiteness conditions.

In contrast with-the classical case the-algebra H is not-commutative, but is related to
the Heisenberg algebra. More precisely, let T C & be a split maximal torus, X its lattice
of characters and XV the lattice of 1-parameter subgroups in 7. Denote by TV the dual
torus to T, i.e., the spectrum of the group algebra of XV. Denote, as usual, by W the
Weyl group of G and by A C X (resp. A™) the system of roots (resp. positive roots)
of G. Then there is a Z-valued bilinear form ¥ on XV defined entirely in terms of the
root system Denote by A the semidirect product of two copies of the group algebra of XV,
generated by monomials 2%, w®, a,b € XV with the relations

b = za+b’ a, b a+b

wiwd = wott, ozt = g¥ab) by,

2%z
We call A the Heisenberg algebra. The Hecke algebra H turns out to be very closely related
to A. More precisely, let X_\{_ C XV be the set of positive coweights. Let .4 C A be the
subalgebra consisting of polynomials of the form ) . Xy fa(z)w® with each f,(z) being
invariant under the subgroup W, C W preserving a. In particular, fo is W-invariant. Now
our results are as follows.

Theorem 1. The associated graded algebra of an appropriate filtration of H is isomorphic
to the Heisenberg algebra A.

Theorem 2. The algebra H can be embedded into the completion of A as the algebra of
series ) ¢ Xy fa(2)w® where the summation is over a finite subset of dominant coweights,

and each f,(2) is a Laurent series in z invariant under Wj,.

These results open the way to the study of a new class of infinite-dimensional rep-
resentations of loop groups which are analogs of principal series representations for real
or p-adic Lie groups. Recall that for a p-adic group a representation from the unramified
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principal series can be realized as the space of functions on the vertices of the Bruhat-Tits
complex which are common eigenfunctions of the unramified Hecke algebra (which is in
this case commutative). In the situation of a p-adic loop group the Hecke algebra H is non-
commutative so the analogs of the principal series representations should be parametrized
by irreducible representations of # and be the multiplicity spaces of such representations in
the space of functions on the Parshin building. Note that the only representations of loop
groups which have been systematically studied are so-called integrable representations of
complex loop groups and they are analogs of algebraic finite-dimensional representations
of algebraic groups over C. In particular, their construction cannot be modified to give
complex representations of p-adic loop groups. On the contrary, the “principal series rep-
resentations” arising from harmonic analysis on the Parshin building are much larger in
size and can be defined for p-adic loop groups.

We would like to thank A.B. Goncharov and A.N. Parshin for useful discussions. The
second author would like to acknowledge financial support from NSF grants and A.P.
Sloan Research Fellowship as well as from the Max-Planck Institute fiir Mathematik in
Bonn which provided excellent conditions for working on this paper.



§1. PGL, over an ordinary local field: a reminder.

In this and the following section we work out in detail the case G = PG L3, in order
to give the reader a good feeling of what is going on. The aim of this section is to recall
some well known material on ordinary local fields. We refer to the books [FN] [Se] and to
Cartier’s Bourbaki talk [Ca] for more details.

(1.1) Bruhat-Tits trees. Let F' be a complete discrete valued field with ring of integers
Op and residue field k. We denote by = a uniformising element of F, so z € O and
ord(z) = 1.

It is well known that the left cosets of PG Lo(F) by PG Ly(Op) form the set of vertices
of a certain tree, called the Bruhat-Tits tree and denoted by 7. It has the following
properties:

(1.1.1) The group PGLy(F) acts on T with the stabilizer of one vertex being PGL2(OF).

(1.1.2) For every vertex v € T the set of edges incident with v is naturally a projective
line over the field &.

(1.1.3) The set T of “ends” of T is naturally identified with P1(F).

Recall that an end of 7 is an equivalence class of half-infinite edge paths without
returns, where two such paths are called equivalent if they eventually coincide.

In a more invariant fashion, one may start with an arbitrary projective line PP over F,
instead of the standard P! (for instance, PP can be the projectivization of a 2-dimensional
F-vector space V for which an identification with F'2 is not chosen). Then we have the
group PGL(P) of projective automorphisms of P. The Bruhat-Tits tree 7(FP) has as
vertices all maximal compact subgroups in PGL(P), and its boundary is P itself.

(1.2) Distance, apartments and horocycles. For any two vertices v, v’ of 7 there is a
unique edge path A(v,v’) without returns which joins v and v’. Its length (i.e., number of
edges) is denoted by d(v,v"). This makes the set of vertices of T' into a metric space which
is a non-Archimedean analog of the Lobachevski plane, the projective line 8T playing the
role of the absolute [Se]. For any v € T and r € Z,. we denote by S,(v) the sphere with
center v and radius r. For instance, S;(v) is identified with the set of edges issuing from
v, which is a projective line over k.

For any two ends p,p’ € 87 there is a unique edge path A{p,p’) (infinite in both
directions) which “joins” p and p’. Such paths are called apartments. They are in bijection
with split tori in PGL(F): given such a torus T, the points p,p’ are the directions of the
two common eigenvectors of T. Let D(p,p’) be the set of vertices of A(p,p’). It has a
natural structure of a Z-torsor (depending on the ordering of p,p’). More precisely, let To
be the (unique) maximal compact subgroup of T. The action of T preserves D(p, p') with
To acting trivially in such a way that the action of T'/Tep = Z is simply transitive.
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Let p be a point of 7. Then for any vertex v there is a unique half-infinite edge
path A(p,v) joining v and p. The “distance” between p and v, i.e., the length of A(p,v)
is of course infinite. Still, one can speak about the difference between such distances for
two vertices v, v’. Indeed, the paths A(p,v) and A(p,v’) eventually coincide. Suppose they
coincide after a vertex w. Define the “difference” to be

Ap(v,v) = d(v,w) — d(v',w) € Z.

It is clear that
Ap(v,v") + A, (0, v") = Ay (v, v").

Thus we can define a natural Z-torsor D(p) which is generated by the symbols d(p,v),
v € T subject to the relations

d(p,v) — d(p,v') = Ap(v, ).

For each v € T the distance d(p, v) is now a well defined element of the torsor D(p). Note
that D(p), being a Z-torsor, is equipped with a natural order.

Given p € 8T = PY(F) and r € D(p), the horocycle S, (p) with center p and radius r
is the set S,(p) = {v e T :d(p,v) =r}. Let N, C PGLy(K) be the unipotent subgroup
fixing p. Then horocycles with center p are just orbits of N,. This implies the following
fact.

(1.2.1) Proposition. Take the line bundle O(—1) on 8T = PYF) and its fiber at p.
This is a 1-dimensional F-vector space, denote it L,. So L, — {0} is a F*-torsor. The
Z-torsor D(p) is natrally identified with the torsor obtained from L, — {0} by the base
change with respect to the valuation homomorphism ord : F* — Z.

Proof: Let G = PGLy(F), K = PGL3(Op), B the Borel subgroup and N C B the
unipotent. Let T be the diagonal subgroup. We have a natural fibration 7 : G/N —
G /B = P(F) with fibers principal homogeneous spaces over T ~ F*. From the Iwasawa
decomposition G = KTN it follows that D(p) is obtained from w~!(p) by factorizing by
K NT. But G/N is nothing but A% — {0}, the punctured affine plane which is the same
as the total space of the bundle O(—1) with zero section deleted.

(1.3) Double cosets. Hecke algebra. The set of double cosets
PGLyOr)\PGLy(F)/PGLy(OF)

is the set of all possible relative positions of two vertices v,v’ on 7 (i.e., equivalence classes
of pairs of vertices modulo the action of PGLy(F)). Such relative position is uniquely
determined by the distance d(v,v’) € Z4. So we have the identification

™ 0

Z. — PGLy(Op)\PGLy(F)/PGLy(OF), nF+PGLﬂOp)(O 1

)PGLﬂOF)
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Here z € F' is our uniformiser.

Assume that k is a finite field F,. Denote by S the space of all functions on Vert(7).
The unramified Hecke algebra Ho = H{(PGL2(F), PGLy(©)) is, by definition, the algebra
of compactly supported doubly PGL2(O)-invariant functions on PGL,(F) with the mul-
tiplication given by the convolution. It can also be defined as the algebra of operators in
S generated by the operators Ty,,n > 1, where for ¢ € S we set

(Tud)(0) = D $(").

v'id(v,v')=n

It is straightforward that if m # n, then
(131) T'an = T‘nTm =dmin + (q - l)Tm+n—2+

'HJ((I' - 1)Tm+ﬂ—4 + ot qp—2(q - 1)Tm+n—2p+2 + +qp_1Tm+n~—2;u

where ¢ = min(m,n). When m = n, we have

(1.3.2) T,i =Tom+ (= 1)Tom_o+qlg—D)Tom—q+...+ q"‘_z(q -7y + qm'l(q+ 1)-1.

(1.4) Stabilization of the Hecke algebra. Satake isomorphism. The relations
(1.3.1) imply that Ho is the polynomial algebra in one generator T7. The regular action
of T} in the basis of the T;, is particularly simple:

T+ 9o, n>2

(14) O F Y

For later purposes it is convenient to extend the regular representation of Hy to a module
M with basis £, for all n € Z and the action of T given by the first case of (1.4.1), i.e.:

(1.4.2) ity =tp41 +qtn-1, Vn € Z,
or, equivalently,
(1.4.3) Ttn = tmin + (¢ — Dtmgn—2+ ... + qm—z(q — Dtpnemi2 + " tn_m-

In other words, M is obtained by observing that the rule for muitiplying T3, by T5, for m <
n is translation invariant with respect to n and then extending this rule by translational
invariance to all n € Z. For this reason we call M the stabilization of Hg. The translation
invariance of relations in M means that M is an (%o, C[z,27'])-bimodule, where z €
C[z,2~ '] acts by t,z = t,41. Clearly, M is free of rank 1 over C[z,z7!] and hence the
bimodule structure gives a homomorphism of algebras

(1.4.4) S:Ho— Endc[z,z—ll(M) = C[z,z_l].
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Its explicit form is immediately found from (1.4.3) to be:
(1.4.5) T = 2™+ (g =122 4 .+ ¢ (g - D)z7™ 2 g™,
(1.4.6) Proposition. The map S identifies Ho with the subalgebra of C[z, z7!] consisting
of f(z) such that f(qz~1) = f(2).
This identification is the simplest instance of the Satake isomorphism.

(1.5) Poisson measures on 07. Assume that the residue field & is a finite field F,. Then
every vertex v € T defines a natural measure p, on the absolute 87 ~ P1(F). Namely,
for every vertex w # v consider the set

M,(w) = {p€ 8T : A(p,w) C Alp,v)}.

Such sets obviously form a basis of the topology on 37I'. The measure p, is uniquely

specified by setting
1

(q+ DT

Thus we have p,(97T) = 1, so py is a probability measure. In plain words, a choice of v
represents 97 as an inverse limit of the spheres

po (My(w)) =

S1(v) + Sa(v) « S3(v) + ...

with all the fibers of all maps having cardinality ¢. Our measure is just associated with
this inverse system.

The measure p, has the following probabilistic meaning [Ca]. Consider the (isotropic)
Brownian motion on 7T, i.e., the Markov chain whose states are vertices of 7 and such that
the probability of the transition from a vertex v to any adjacent vertex w has the same
value 1/(¢ +1). Then pu,(U) for U C 9T is the probability that the Brownian particle,
having started from the point v, will, as the time goes to infinity, converge (“exit”) to a
boundary point from U. This concept of exit probability can be defined for any Markov
chain or even continuous Markov process, the role of 7 being played in general case by
the so-called Martin boundary [Do] [Dyl.

(1.5.1) Proposition. The measure p, is the unique, up to scalar, measure on 97T invari-
ant under the compact subgroup in PG Lo(F') preserving v.

So p, is analogous to the Fubini-Study metric (volume form) on the projective line
RP! associated to a scalar product on R2. This volume form can also be interpreted
as exit probability, this time for the Brownian motion in the Lobachevsky plane whose
(Martin) boundary is RP!,

By construction, j, depends on v. For two vertices v,w the mecasures p,, 1, are
absolutely continuous with respect to each other, so that their ratio (Radon-Nikodim
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derivative) is just a nonvanishing function b — (/) (b) = (v, w,b) on 8T known as
the Poisson kernel. Explicitly, one has

(1.5.2) TI(v, w, b) = q4(v0)=d(w.b)

Here the distances d(v,b) and d(w,b) in the exponent are elements of the Z-torsor D(b),
so their difference is a well defined integer.

Given b € P!(F), the functions w — II(v,w,b) on Vert(T) for various v are scalar
multiples of each other, so we have a well-defined 1-dimensional C-vector space [T, C S of
such functions. Taken together, these 1-dimensional spaces form a PGL,(F)-equivariant
complex line bundle IT on P!(F).

(1.5.3) Proposition. (a) As an equivariant bundle, 11 is isomorphic to |O(—1)|, the
complex line bundle on P!(F) obtained from the F-line bundle O(—1) by the base change
with respect to the norm homomorphism F* — C* a + |a].

(b) For any b € PY(F), ant f € II, is an eigenfunction of the Hecke algebra Hy with
T f=(qg+1)f.

(c) More generally, for any f € 11, and s € C the complex power f*® is an eigenfunction of
Ho with Ty f* = (¢° + ¢ ~°) f°.

Part (a) follows from (1.2.1), while (b) and (c) are checked explicitly.

Thus the Poisson kernel establishes an isomorphism between two realizations of the
unramified principal series representations of PGLo(F). The first realization is as the
space of sections V, = T(P(F),|0O(~1)|* ® meas™!), where |O(—1)|* is the C-line bundle
obtained from ©O(—1) by the base change F* — C* a = |a|* = ¢*°"%%) and meas
is the sheaf of mecasures (isomorphic to [O(—1)[?). The second realization of the same
representation can be given as the space of functions f on Vert(7) such that T(1)f =
(¢° +q'=°)f.



§2. PGLy over a 2-dimensional local field.

(2.1) The Parshin tree. We return to the setup of the introduction, so F is a 2-
dimensional local field, O = Op its ring of integers, mg C O the maximal ideal and k its
residue field. The field k is a locally compact non-archimedean field) with ring of integers
Ok, maximal ideal my, and finite residue field F,. We also denote by O’ C O the preimage
of O under the natural projection.

Considering F' as just a local field with residue field k, we associate to it the Bruhat-
Tits tree T, whose vertices correspond to left coset of PGLy(F) by PGL2(®). For any
vertex v € Tp the set of edges incident to v is a projective line P} over k, so it is of
“continuous” nature.

Let 7, be the Bruhat-Tits tree with boundary P} (and the valence of each vertex g-+1).
Let us think of this tree as “microscopic” and insert this tree, together with its boundary,
instead of the neighborhood of the vertex v in 7F. Do this for all the vertices. This way,
each edge of Tp will become a “bridge” joining two boundary points of two neighboring
microscopic trees. The infinite tree thus obtained is called the Parshin tree and denoted
P. The reader can consult [Pal-2] for a more formal construction and a picture. Clearly,
the group PGL2(K) acts on P by automorphisms.

Note that we have a continuous map
(2.1.1) m:P = Tr

which contracts each microscopic tree 7, with its boundary into one vertex v € Tp.

In the sequel we will refer to vertices or edges of P which are among vertices or edges
of some microscopic tree (not of its boundary) as thin and call the points on the boundary
of microscopic trees as well as edges (“bridges”) joining them thick vertices or edges of P.
Thus thin vertices are isolated and thick vertices are limits of thin ones. A thick edge is
an edge joining two thick vertices. Thick edges of P are in bijection (induced by the map
n above) with edges of Tg

(2.1.2) Proposition. The set of left cosets PGLy(F)/PGLy(0’) is naturally identified
with the set of thin vertices of P.

As in the case of an ordinary local field, for any two vertices w, w’ (thick or thin) of P
there is a unique edge path A(w,w’) joining them. This path can, however, have several
infinite fragments which are separated by thick edges

More precisely, we have the following proposition.

(2.1.3) Proposition. Let v,v’ be two vertices of Tp and T,, T, the corresponding mi-
croscopic trees inside P. Then all paths A{w,w’} for w € 7,, w' € 7, have the same set
of thick vertices. In particular, the segments of these paths between the first and the last
thick vertices are the same for all w,w'.



(2.2) Distances, spheres and horocycles. We choose uniformising elements z,y €
O’ such that ordp(y) = 1,ordp(z) = 0 and ordg(z modmp) = 1. Then we have the
decomposition

F* = {z™y"}- 0™

We have the analog of the Cartan decomposition for the group PG Lo(F') found by Parshin
[Pal-2]:

(2.2.1) PGL(F) = PGLy(0') { (“’";yn (1)) } PGL, (0.

Note that (2.2.1) is different from the kind of Cartan decompositions for p-adic loop groups
found by Garland [Ga].

It follows that double cosets are labelled by equivalence classes of the group Z& Z =
{z™y"} by the involution (m,n) — (—m,—n). A set of respesentatives of monomials
modulo this involution is provided by the semigroup

(2.2.2) A= {(m,n) €Z®Z: m>0 and if m =0, then n> 0}.

We order A lexicographically, i.e., (m,n) < (m/,n’) if m < m/ or m = m’ and n < n'.
We will also write an element (m,n) € A as moo + n, so that the ordering becomes more
intuitive. In terms of the tree P the above considerations can be summarized as follows.

(2.2.3) Proposition. (a) For every two thin vertices w,w’ € P there is a well defined dis-
tance d(w,w') € A, which satisfies the triangle inequality: d(w,w") < d(w,w") +d(w', w")
and is preserved by the action of the group PGLy(K).

(b) Given two pairs of points (wy,w]) and (wq,w)) a necessary and sufficient condi-
tion for existence of ¢ € PGLy(F) taking wy — wa and w] — wj is the equality
d(wy, w]) = d(ws, w}).

(c) If d(w,w') = moo + n, then in the path A(w,w') there are exactly m thick edges.

For any A € A and a thin vertex w of P we denote by Sy (w) the sphere of radius A, i.e.,
the set of thin vertices w’ such that d(w,w’) = A. Let v be the vertex of the “continuous”
Bruhat-Tits tree 7z such that w lies in the microscopic tree 7,. Then clearly

Sv:;oo+n (w) C U Ty

v' €Vert(Tr): drp (v,v')=m

where dr, is the Z -valued distance in the tree 7p. If v’ € Tr is any vertex entering into
the above formula, denote by e(v,v’) the last thick vertex on any path A(w,w’) , w € 7,
w' € 7. This vertex lies on the boundary of 7.
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(2.2.4) Proposition. If w € 7, and v' € Ty Is such that dy,(v,v') = m, then for any
n € Z the intersection Speo4n(w) N Ty is a horocycle in 1, with center e(v,v').

As we saw in §1, for any Bruhat-Tits tree 7 and any infinite point p € 9T the
“distances” parametrizing horocycles with center p are in fact elements of a certain Z-
torsor D{p) = D7(p) (the second notation in introduced to emphasize the dependence of
this torsor on 7). So the very possibility of attaching the A-valued distances from v to
horocycles in 7, in (2.2.4) amounts to a non-trivial extra structure on the Parshin tree P
which is not at all clear from the direct iterative construction of P described in (2.1). Let
us describe this structure explicitly.

Recall that for any Abelian group A (written additively) the category of all A-torsors
has a natural symmetric monoidal structure (“tensor product”), denoted ®. Namely, if
51, 52 are two A-torsors then S; ® S, is generated by symbols sy © s2, 8; € S; modulo the
relations (a 4+ 1) © 82 = s1 © (a + s2). We will use this structure for A = Z.

(2.2.5) Proposition. For any thick edge e of P with ends p and p' (which thus lie on
the absolutes of two adjacent microscopic trees 7, and Ty) there is an identification of
Z-torsors 7y, = Dy, (p) © D, (p') = Z. This-system of identifications is equivariant with
respect to the action of the group PG Lo(F') on P.

This identification comes about as follows. Given elements ¢ € D, (p) and o' €
D ,(p'), we represent them as distances: a = d(w, p), @’ = d(w’, p') for some thin vertices
w € Ty, W € Tyr. Then the distance in P between w and w’ has the form d(w, w’) = co+m
for some m € Z, and we set v.(a ©® a’) = m. This is well defined by 2.2.4.

Notice that unlike the case of ordinary Bruhat-Tits trees, neither the A-valued distance
d nor the System of identifications {, } are preserved under the full group of automorphisms
of P. Clearly, the {v.} determine d and vice versa. Thus it is of some interest to give
a more geometric construction of the <, not appealing to matrix calculations. Such a
construction can be obtained, by applying Proposition 1.2.1, from a statement concerning
ordinary Bruhat-Tits trees.

Namely, let F' be any local field with residue field & (so k is not assumed to have any
extra structure) and 7 be the corresponding Bruhat-Tits tree, as in §1. For any vertices
v € T the set of edges incident to v is, as we saw, a projective line over k or, more precisely,
the set of k-points of an algebraic curve P, over k isomorphic (not naturally) to P'. If
two vertices v, v’ are adjacent and joined by an edge e, then e represents a point (v/e) on
P, as well as a point (v'/e) on P,:. Now the statement we mean is as follows.

(2.2.6) Proposition. For every v,v', e as before there is a natural nondegenerate pairing
of tangent spaces
Be : Tvje)Pv @ T(yrjey Py — £,

and the system of these pairings is equivariant under the action of PGLy(F) on T.

As we will see from the proof, the choice of these pairings will depend on the choice
of a uniformising parameter z € F.
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To construct the 7. (and thus the distance function) out of the 8. it is enough to
notice that the tangent bundle on P! is isomorphic to O(2), so by Proposition 1.2.1 we get
a pairing between D, (p)®? and D- , (p')®2. But since the group Z has no torsion, such a
pairing gives rise to a unique pairing between D, (p) and D, , (p').

Proof of (2.2.6): We can represent a vertex v € T by a rank 2 vector bundle V on the formal
curve C' = Spec(Op). Let 0 € S be the unique closed point. We denote by V; the fiber
of V at 0. It is a 2-dimensional k-vector space. The set P, is P(Vp), the projectivization
of (the set of lines in) Vp. Let | C Vp be the line corresponding to the edge e. As for
any projective space, the tangent space T{, )P, = T;P(Vp) is naturally identified with
I* ® (Vp/l). Further, the bundle V' corresponding to v’ (the other end of €) is described
(see [Se]) as the coherent subsheaf of V' consisting of those sections s for which s(0) € (.
Therefore we have an exact sequence for the fiber of V' at 0:

0= (W/HRT;C = V; =10,

where T C' is the cotangent space to C at 0. Moreover, the line in Vj corresponding to
the same edge e, is the subspace (Vo/l) ® Ty C. Therefore Ty /)Py is naturally identified
with ((Vp)/1)*®@I®ToC. But our choice of a uniformiser z € F identifies ToC — k. Q.E.D.

(2.3) Measures on spheres. Let w be a thin vertex of P and A = moo +n € A. Our
aim is to introduce a natural measure p,, on the sphere Sy (w).

To do this, denote again by Tr the continuous Bruhat-Tits tree (corresponding to
F considered as an ordinary local field) and v = w(w) € Vert(Tr) the vertex such that
w € 7. For m € Z4 let Sy, p(v) be the sphere of radius m in 7g. Then we have the
following diagram of projections:

(2.3.1)  Smootn(W) 2 Sm p(v) 23 Sm_1,p(v) = ..S2.5(v) B S1r(v) B Sor(v) = {v}.

As we saw, the fibers of 7 are horocycles, in particular, they are countable. The fiber of
p1 is S1,r(v), i.e., a projective line over the 1-dimensional local field £ which is the same
as dr,. The fibers of ¢;, > 2, are afline lines over k. We have seen in §1 that a choice of
w € Vert(r,) defines a particular probability measure on d7,, the Poisson measure.

Further, any fiber of p» over a point b € 07, is described as follows. Let 7, be the
unique microscopic tree adjacent to 7, which has b on its absolute. Then p; ' (b) = 87, —{b}
We can identify this affine line with the set of all infinite edge paths A(b, ') joining e with
other points &' € dr,. The basis of topology on this affine line is given by the following
subsets:

(2.3.2) M, = {A(b,b’) :w' € A(b, b’)}

where w’ € 7, is a vertex. Now, the distance d(w,w’) from our fixed w to w’ (this distance
has form 0o + n, n € Z) gives us the canonical measure g, on o7, — {b}. Namely, we
set:

(2.3-3) uw,b(er) — q_(d(ui,w’)_m).
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Here d(w,w’) — oo is an integer, so the formula makes sense. In other words, i, is a
Lebesgue measure on the affine line dr,» — {b}, and (2.3.3) serves to normalize it.

In a similar way, one defines the measure on each fiber of p;, by subtracting (7 — 1)co
from the distances.

Finally, on the horocycles which are fibers of m we introduce the Dirac measure which
assigns to each element the value 1 (so the integration by this measure is just the summa-
tion).

In this way we have constructed a canonical measure p,, » on the whole sphere S, (w),
A = moo + n as the (Fubini) product of measures on the fibers of projections in (2.3.1).

(2.3.4) Proposition. The measure p,, Is the unique, up to scalar, measure invariant
under the subgroup K, in PGL,(F) preserving the vertex w.

Such a subgroup is of course conjugate to PGLy(O').

(2.4) The Hecke algebra. We are now going to define a kind of Hecke algebra for the

subgroup K' = PGLy(Q') € PGLy(F). To explain the construction, recall that for a

locally compact group G and its compact subgroup H the Heckealgebra H(G, H) can be

defined in one of three equivalent ways:

(1) As the algebra of compactly supported doubly H-invariant continuous functions on G
with the operation given by convolution with respect to the chosen Haar measure.

(2) As the algebra of G-invariant integral operators in the space of all continuous functions
on G/H.

(3) As the abstract algebra formed by kernels of such operators.

Let us comment on (3). If X is any topological space, we denote by Ox and M x the
sheaves of continuous functions and measures on X. Consider the sheaf M = p1Ox ®
»Mx on X x X. Its sections will be called (0,1)-measures, i.c., functions in the first
variable and measures in the second variable. We write them as R(z, y)dy. Such a measure
is called properly supported in the projection of its support to the first factor is a proper
map. Then kernels of G-invariant operators in (3) are just properly supported G-invariant
(0,1)-measures on (G/H) x (G/HY). The product of such measures is the convolution

(R(z, y)dy)(S(z, y)dy) = Uz, y)dy, Ulz,y) = [ _ Rl S p)de

We now return to the case of G = PGLy(F),H = PGLy(0’). As G has no Haar
measure, the description (1) does not make sense; we are going to see that one can give
sense to (2) and (3) although they will no longer be equivalent.

We start with (3). Let V = PGLo(F)/PGLy(0’) be the set of thin vertices of P. Fix
A € A. The PGL4(F)y-invariant measures p,, » on the spheres Sy(w), w € V fit together
to form a PG L (F)-invariant (0,1)-measure Ty on V x V. This measure is not properly
supported, so the possibility of taking products of the T needs a special analysis. Call a
subset S C A well-ordered if any subset S’ C S has a maximal element.
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(2.4.1) Proposition. Let # be the C-vector space of formal series > aea AT\ whose
support (i.e., the set of A with ¢ # 0) Is well-ordered. Then:

(a) Convolution of (0,1)-measures on V x V makes H into an algebra.

(b) H has an algebra filtration F parametrized by A with FxH consisting of series 3", ., cx T

(¢) H has an algebra grading H{ = Direz, H,, where H,, consists of sums EnNzoo cnTimootn -

Part (a) basically follows from the triangle inequality for the distance. Part (b) is
obvious Property (c¢) means that HonHem' C Hynam. Note that a priori possible summands
in the expansion of T\T}, include all Ty, _, with v < min(A, x). Geometrically, T}, is the
averaging over all points on distance p from the given one, so T\T), is obtained by first
going to distance p and then to a distance A from there, whereby we can happen to first
retrace back any number v of steps of our path. The statement in (¢} is that that unless v is
finite, the probability of such retracing is zero and thus the corresponding T'(A+ p—v) will
not enter into the expansion. This is indeed true, since the coeflicient at the corresponding
T(A + p — v) will be obtained as an integral, with respect to a product of Lebesgue and
Poisson measures,-of-a function supported .on a veriety of positive codimension.

Note that the degree 0 part of 7 is just the Hecke algebra Ho for PGLy(k) from §1.

(2.5) The subalgebra H C #H and its action on functions. The algebra H is of
“complete” nature. In particular, it is not finitely generated. Let 2 C # be the subalgebra
generated by T7 and T,,. We will now show how to make H act on an appropriate class
of functions on the set V = PGLy(F)/PGLy(0'). This action does not seem to extend to
the whole H.

(2.5.1) Definition. A function f : V — C is called a Schwartz-Bruhat function, if the
following condition holds: For any w € V and any n € Z the restriction of f to the sphere
Soo4n(w) (which is a Z-torsor over a p-adic projective line 07y () is a locally constant
function with compact support.

The space of Schwartz-Bruhat functions will be denoted S.

It may be not obvious that Schwartz-Bruhat functions exist at all. So let us give a
construction of a large class of them. Namely, we will construct many Schwartz-Bruhat
functions f with the following property: in each microtree 7, there is exactly one vertex
. w(v) on which f # 0, and whenever 7,7, are adjacent, we have d(w(v),w(v')) = oo.
For this, start with some wy € 7,,. The sphere So,(wp) is a Z-torsor over 87y, ~ P'(k).
Choose a continuous section o, : 07y, — Sco(wg) of this torsor. In this way, we mark,
for any adjacent microtree 7, , one point wy; = w(vy) on distance oo from wy. Forther,
look at any such 7, and at the Z-torsor Seo(wq) — 07y,. The point wp is an element
of Seo(wy) lying over the point py, ,, € 07y, nearest to 7,,. Choose a continuous section
Gy, : 0Ty, = Soo(w1) such that oy, (Pyy,v,) = wo. In this way we mark, for any microtree
Ty, With d7,, (vo,v2) = 2, a point wg = w(v2) € Ty, on distance 200 from w and on distance
oo from w(v1) where v lies between vy and ve. Continuing like this, we mark, for each
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v € Tr, a point w(v) € 7,

Now we construct a function f. We take f(wg) to be arbitrary. To define f(w(v;)) for
v adjacent to vo, choose any continuous (i.c., locally constant) function ¢, : d7,, = C and
put f(o)v,(p)) = du(p). Further, for any marked wq € 7,, with d{wp,w;) = oo, choose
a locally constant function ¢,, : dr,, — C with the property ¢y, (Pyo,v,} = flwo) and

put f(oy,(q)) = ¢, (g), ¢ € 97, and so on. In this way we construct a Schwartz-Bruhat
function f.

(2.5.2) Proposition. The (0,1)-measures Ty, Ty, and, more generally, Tyoo4n, m < 1,
give rise to well-defined integral operators preserving S. Explicitly,

(Tx fH(w) = f F(Wdpy,r, A=moo+mn, m<1,00.
w'eSy(w)

These operators commute with the action of PGLo(F).

(2.6) Calculations in # and H. The Hecke algebra # is not commutative, as one can
see from the next proposition.

(2.6.1) Proposition. We have the following equalities in M.:
(262) TlToo = Too+1 + Q’Too_l, TooTl = qToo+1 + T -1
More generally,

TvnToo+n = Too+m-+—n + ((] - 1)Tco-{--m+n—2 -+ Q(q - 1)Too+m+n—4 + ...

(2‘6-3) ot qm_l(q - 1)T00+m+n—2(m—1) + quoo-!-ﬂ—m-
Too+nTm = quoo+n+m + (qm—l - qm_2)Too+n+m—2 + (qm—2 - qm—B)Too+n+m—4 + ...
(2-6-4) ot (q - 1)Too+n+m—2(m—1) + 1 Totn—m-

The equality (2.6.3) is obtained in much the same way as (1.4.1): the combinatorial
counting is the same.

Let us prove (2.6.4). For this, we have to take into account the change of the Poisson
measure on the boundary of a microscopic tree when the vertex defining the measure is
moved away to distance m. This change of given by formula (1.5.2). More precisely, start
with some thin vertex w € 7,. For every edge e incident to w let M, C 97, be the set of p
such that the shortest part A(w, p) contains e. Then for the Poisson measure corresponding
to w we have py,(M,) = 1/(g+1). If w' is another vertex, then p,,-measures of the same
sets are, in virtue of (1.5.2), as follows:

(M,) = (qTi)qld(—w.w’Ta if e¢ A(w,w'),
Mt T\ = e i e € A(w,w)
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Now let us calculate Toon T - Since this is an integral operator, its value on the §-function
at w is a measure on the set of vertices of the neighboring microtrees 7,,,. In order to find
thie measure and compare it with those given by the T4i, choose in a continuous way,
for each such 7/, one vertex on the horocycle of points of distance oo + 7 from w. Let
M (%) be the set of such vertices and, for any edge e adjacent to w as before, let M, (i) be
the subset of M (7) consisting of points w’ such that A{w,w’) contains e. Then

/ ' Too-H(Jw) = 1/((1 + 1):
M, (i)

where the integral just means the value of a measure on a set. Therefore the coefficient at
Toot+n+m—i in the expansion of Too Ty, is the integral

M. (co+n+m—i)

Let us first find the coefficient at Tooynym. In order to get from w to a point at distance
oo + n + m we should go first to distance m and then from there to distance oo +n by a
path without repetitions. Let w’ be the intermediate vertex of such path, d(w,w’) = m.
Consider the set of those points p of 97, which are farther away from w than w’, i.e.,
w’ € A(w,p). The p,-measure of this set is q¢/(g + 1). Further, for a chosen e as above,
the set of such possible w' leading to points from M.(co +m + n) is ¢™~!. Thus the first
term of expansion is:
TootnTm = ¢ Tootntm + -

Let us find the next term. It corresponds to paths with one repetition: we first go to from
w a vertex w’ on distance m and then from there to a vertex w” € M.(co +m + n — 2)
by retracing exactly one step of the path A{w,w’), The number of all paths of length m
starting from w and passing through e is ¢q™~1. If we want to retrace exactly one step
of such path A{w,w’), then after this retracing we have exactly ¢ — 1 possibilities for the
next ramification. For each such ramification the pu.,/-measure of the set of all points from
M(oco + m + n — 2) reachable by going further without repetitions is 1/¢q(q + 1). This
implies that the coefficient at Tooysmin_2 is ¢ (1 —1/q) = ¢™~ 1 — g™ 2,

The next coefficient corresponds to paths with exactly two repetitions. As before, the
set of w’ reachable by going to distance m through e, has cardinality ¢™~! and the set of
possible ramifications after retracing two last steps of the path A(w,w’) has cardinality
g~1. The py-measure of the set of points of M, (co+m-+n~4) reachable by going further
after a choice of that ramification is 1/¢q?(g+ 1), so we get the coefficient at Tpopnim—a tO
be ¢™~2 — ¢™~3 and so on.

At the end the pattern will be slightly different: in this case we have to retrace the
entire initial path A{w,w’), and in order that the composite path reaches a point from
M.(0o+n—m), the initial path should not pass through e. the number of paths with this
property is ¢™, while for the end w' of any such path we have p, (M) = 1/¢™, so the last
coefficient will be 1. Proposition 2.6.1 is proved.

Formulas (2.6.2) imply the following statement.
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(2.6.5) Theorem. The associated graded algebra gr™ (#) is isomorphic to the Heisenberg
algebra generated by symbols a1, ax which are subject to the relations

Qool] = Q1800

(2.7) The full multiplication table in #. The multiplication in H is completely
described by the following proposition.

(2.7.1) Proposition. Ifa,b> 0, then
(2.7.2)

Taoo+meoo+n - qan (T(a+b)oo+(m+n) + (q n 1) Z q(l_2a)i_1T(a+b)oo+m+n—2i) ’

i=1

Ifb> 0, then
(2.7.3)

Tmeoo+n = Thootmsn + (q - 1)Tboo+m+n-2 + (92 - Q)Tboq+m+n—4 + ...+ quboo+n—m-

If a # 0, then

(2.7.4)
n—1
Taoo+an = qcm (Taoo+(m+n) + (q - 1) Z q(l_za)i_lTaoo+m+n—2i) + q{l—a)n aco+m—n
i=1

The proof is similar to that of (2.6.1) and left to the reader: one has to take to account
the change in the Poisson measures on the boundary of the microtree as well as in the
normalized Lebesgue measures on the punctured boundaries of the adjacent microtrees.
It may be not immediately obvious that the multiplication given by the proposition is
associative, and it is a good exercise to check it, for instance, to verify that (TooT1)T0o =
Too(T1Ts). A little later we will give a more conceptual explanation of this associativity.

Let 1% C H be the subspace consisting of series Eﬁﬂ Zfi_w AmiTmeots With the
property that for cach m the series 3~ a,,;2* represents a rational function in z. Proposition
2.7.1 implies that:

Proposition 2.7.5. The subspace H"® is a subalgebra.
Let us note another consequence of 2.7.1:

Proposition 2.7.6. Any Tr.00+i can be expressed as a non-commutative rational function
inTy, Tw.

Proof: By Prop. 2.7.1, we have

(2.7.7) TiTmeoti = Tmooti+1 + @Tmootio1y  Tmoo+iTi = ¢ Tmooti+1 + & " Trmooi-1-
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Therefore

Tmoo+iT1 - q-mTleoo-H
qm —_ q-m

1 Tmco-:' —

- m.oo+:'T1 + quleoo+i

Tmoo+i+1 = q1+m _ ql—m

So it is enough to express T, as a rational function in T7,7T,,. Let us show how to do
this for m = 2, the argument in the general case being similar. By repeated application of
(2.7.1), we have:

(2.7.8) T2T = ¢*Tacot1 + (= 1+ ¢ ) acom1 + (1= ¢ + ¢7% = ¢7) Too-3+

Ha ' - P+ ¢ = ) o5 + -

(2.7.9) TooT1Too = qT20041 + (2 — ¢ o001 + (2 — 2" ) T200—3+

+(2¢71 = 207 ) Th00—s + ...

(27.10)  TT2 =Toeor1+ (@ +0 = ¢ ) Ta0om1 + (1 = ¢~ 4472 < ™) Too3+

He T -+ - g ) o5 + -

This implies:
(2.7.11) TET — YT = (¢° + D)Teeoq1 — (1 + ¢ ) T200—1

(2.7.12)
TToo — (140 ) TooT1To0 + T1 T2 = (6" — g+ 1+ ¢ ) T20041+ (20— 343¢7 " +47°) Ta00-1.

Therefore there are numbers ¢y, cq, ¢3 such that

A TET) + coTooTi Too + 3T = Tooota
as well as numbers ¢}, ¢5, ¢ such that

ATET) + chTooT1Teo + ATITE = Toco—1
Now, since T1 Toooti = T200it1 + @T200+i—1, We can find Toe.

T1T200 = qT20041 + Troo1 = 1TE T + a2 TeoT1 Teo + asT1 T2,
for some ay, aq, as, so
Taoo = TTHarTET) + aaToo Ty Too + a3ThT2).

Proposition is proved.
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(2.8) Bimodules and correspondences (preliminaries). Before going further into
study of ?—1, some preliminary discussion is in order. Given any (possibly non-commutative)
graded algebra A = B, 5, An, cach A,, is an Ag-bimodule. So in order to describe
the structure of A, it is e_nough to describe each A, as an Ap-bimodule together with
multiplication maps A,, ® 4, Am' = Amgm '

Suppose that Ay is commutative. Then an Ag-bimodule is just an Ag ®c Ag-module
and it can be visualized as a coherent sheaf on Spec(Ag) x Spec(Ap). Further, tensor
product of bimodules translates geometrically into “convolution” of sheaves on the product
similar to the composition of kernels of integral operators, or of correspondences. More
precisely, let S be any affine scheme over C and F, ' be quasicoherent sheaves on S x S
and M, M’ the corresponding C[S]-bimodules. Denote by p12,p13,p23 : SXSXx S5 = §x S
obvious projections. Then the convolution sheaf

Fx F' = prau(piaF ® p3F’)
corresponds to the bimodule M ®@cg) M'.

(2.8.1) Example: ‘Let-A-be the standard Heisenberg algebra of polynomials in z,w with
wz = gzw, graded by deg(z) = 0, deg(w) = 1. Then Ay = Clz], so 4y ® 49 = C[2', 2]
where 2’ stands for the left action of z and 2" for the right action. So Spec(Ao ® Ap) is
the affine plane with coordinates z’, z” and A,,, as coherent sheaf on this plane, is just
the structure sheaf of the line 2/ = ¢™2’. This line is the graph of the multiplication by
g™ as a map from C to itself, and the tensor product of A,, ® 4, Am is the graph of the
composition of such maps, so it is naturally identified with A,,4,.

(2.9) Structure of the # as bimodule over Ho. We now apply the considerations of
(2.8) to H. Let H,, C H,. be the direct sum of C - Tyoorn for all n € Z. Equivalently,
H., is the sub-Hg-bimodule in H generated by T,,0,. The graded component Hon is just
the completion of H!,, so we describe H/, as a bimodule. By (2.7.3) we have that as a left
Ho-module, each H, , m > 0, is isomorphic to M, the “stabilization of the Hecke algebra”
from §1. To describe both right and left module structures, write t' =T, ® 1, t" =1 Ty
for the generators of Ho ® Hg. Denote for short Tooq; by e;. Then the action of t',#” on
the basis vectors is found from (2.7.7) to be

(2.9.1) { ' Tmooti = Tmooti+1 + ¢Tmooti-1
t”Tmoo+i = qu1noo+i+1 + ql—meoo+i-1
Let z be the shift operator in H!,, namely zTimeot+i = Tmooti+1. Then H, is a free
Cl[z, z7!}-module of rank 1, and the action of ¢’,¢” can be written as
t'=z+qz7?
(292) {t" — qnzf_i_ ql—-mz—l

Now this equation can be seen as defining a parametrized curve C(m) in the affine plane
with coordinates t’,t" (so z is a parameter on the curve). This curve is the support of our
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bimodule. It is a hyperbola with asymptotas ¢t/ = ¢¥™¢'. This fact for m = 1 means that
there are two ways of filtering the algebra generated by T3, T\ so as to get the Heisenberg
algebra ba = gab. For instance, C(1) has the equation

(2.9.3) (' = qt")gt' —t") = —(¢* = 1)*
or, in the developed form,
(2.9.4) qt? — (@ + D't + qt"? = —(¢* - 1)2

Summarizing, we have the the following.

(2.9.5) Proposition. The coherent oherent sheaf on Spec C[t',t"] corresponding to the
‘Ho-bimodule H!, is the structure sheaf of the curve C(m). For instance, M, is an Ho-
bimodule with one generator T, and one relation

(2.9.6) qu (P + V)T Th + qTe T2 = —(¢° — 1)°To.

This relation is quite remarkable: it looks like the Serre relation in the quantum
enveloping algebra U,(sl3), but is inhomogeneous (has right hand side).

The group-theoretical meaning of C(m) is as follows. Let 7V =~ C* be the maximal
torus in SLy(C), the Langlands dual group of PGL9, and let 2z be the coordinate in
TV. Denoting by W = {1,0} the Weyl group of SL;, we have the Satake isomorphism
Ho = C[TV /W] where o € W acts by o(z) = gz~!. This isomorphism is just read off the
left Ho-action on Hy. Let p: TV — TV /W be the natural projection. For any m € Z let
C(m) C TV x TV be the shifted diagonal consisting of (z,4~™z). Then

(2.9.7) C(m) = (p x p)(C(m)) C (TV/W) x (TV/W).

(2.10) The Heisenberg algebra A. We now compare # with a simpler algebra 4. Note
that there are natural isomorphisms

(2.10.1) R?rl’m’ N Oé(m) *k Oé(m,) i} Oé(m+m;), 771, m! € Z,
similar to Example 2.8.1. The corresponding algebra

.A @ TV/W (TV)/Wﬂ C)C_'(m))
meZ

is nothing but the Heisenberg algebra generated by 2+, w*! with wz = gzw, and deg(z) =
0, deg(w) = 1. Let
A= @ F(TV X TV, OC(m))-

m20

20



Then A is also an algebra, the composition maps

Km,m’ : C)C(m) * OC’(m’) — OC(m+m’)

being induced by the £y, ;. More precisely, for m > 0 the projection (p x p) : C(m) —

C(m) is an isomorphism, s0 Ay = Ay, while Ag = AY = Clz,2~4%. Thus A is a
subalgebra in A.

Let A7 denote the extension of .4 consisting of finite sums S iez #i(2)w* where each

¢; is a rational function in z, with the commutation rule given by w¢(z) = ¢(g2)w. In A
each ¢; is a Laurent polynomial. Let A" be the subalgebra of Arat consisting of sums
> >0 $i(2)w* in non-negative powers of w in which @y is actually a W-symmetric Laurent
polynomial.

(2.11) Theorem. The algebra 1™ is isomorphic to A™**.

Proof: We identify Ho ~ ALt = C[z,z7 Y|, with T} — z + gz~!. Further, we have an
isomorphisms of Ho-bimodules 9, : H], ~ A, which just takes Tyoo4m — 2™ w*. However,
these isomorphisms'do not agree with the products H}, @, H; — H%,. Let us denote
by o the new product in A" induced by the product in H"%t, via the identifications 1,.
From Proposition 2.7.1 we find that for a,b > 0 we have

22 -1
22 —q’

o0
(z"w*) o (z"w®) = R(¢"2)z™w 2" w®, R(z)=1+(g—1) Z ¢ 17 =
i=1

while for a = 0 or b = 0 we have
(z™Mw?) o (z"wb) = 2w wb.

Define now an isomorphism x : AT — A% of graded vector spaces as follows. On Aj*
it is the identity. If m > 0, and o € AT, then we define x(a) = R(z)"'a. It follows
that x(afB) = x(a) o x(B). In other words, x gives an algebra isomorphism A" — H7¢t.
Theorem is proved.
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§3. Bruhat-Tits buidings and Hecke algebras for arbitrary G.

(3.1) Notations. As in (1.1), we let F be a complete discrete valued field with ring
of integers @ = Op and residue field k. We denote by z a uniformising element of F.
For an affine algebraic variety Z over K, a subset ¥ C Z(F) is called bounded if the set
{ord(f(2)},z € z(F)} is bounded from below. When the residue field & is finite, being
bounded is the same as being compact.

Let G be a split semisimple algebraic group over F. We introduce the standard
paraphernalia related to G, see, e.g., [Sp]. Thus:

T C G is a split maximal torus, B D T a Borel subgroup, N = [B, B] the maximal
unipotent subgroup of B.

X = X(T), XY = XV(T) are the lattices of characters of T (weights) and and 1-parameter
subgroups of 7' (coweights) respectively. We denote hg = XV ® R. For a lattice L we
denote LY = Hom(L, Z).

A C X is the root system of G. By A, C Ay C A we denote the systems of simple
roots, positive roots. Positive roots are the roots of the Lie algebra of B. We choose a
numeration of simple roots: Az, = {a, ..., a1}

AV C XV is the system of coroots. For & € A we denote by @V the corresponding coroot,
and denote AY, A}, . the set of oV for positive (or simple) roots c.

Y C X is the lattice generated by A, and Z C XV is the lattice generated by AY. We can
regard YV as a lattice in hg. Thus X/Y is the character group of the center of G while

XV/Z is the fundamental group of G.

G is the universal cover of G and G is the adjoint group of G, so we have maps G —
G — G°4. By T we denote the maximal torus in G®¢ which is the image of T under the
last map. Note that the lattice of characterts of T2% is Y.

X4+ C X, XY C XV are the cones of dominant weights and coweights, i.e., those weights or
coweights whose scalar product with each positive coroot or root is non-negative. Similarly
for Yy,YY etc. We denote by ¢; the fundamental coweights, characterized by the condition
that (e, €;) = d;;. They form a semigroup basis of Y.

For a subset I C {1,...,{} we denote by P’ the standard parabolic subgroup corresponding
to I. Its Lie algebra is generated by the Chevalley generators corresponding to all the
positive roots and the negative roots (—«;),7 € I. Fori € {1,...,1} we denote the maximal
parabolic subgroup P{1+-#={&} simply by P;. We denote P#¢ the image of P; in G*°.

Not all maximal bounded subgroups of G are conjugate. More precisely, the group
G*? has only one conjugacy class of maximal bounded subgroups, while for G this number
equals JJ({; + 1) where I; are the ranks of quasi-simple factors of G. We will denote by
K the bounded subgroup G(O). Let I C K be the standard Iwahori subgroup, i.c., the
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preimage, under the natural surjection K = G(O) — G(k) of the Borel subgroup in G(k).
By an Iwahori subgroup we mean any subgroup conjugate to I; a parahoric subgroup is, by
definition, a bounded subgroup containing an Iwahori subgroup. It is known that maximal
parahoric subgroups are the same as maximal bounded subgroups.

(3.2) The (affine) building. To every G as before there is associated a natural cell
complex B(G) = B(G, F) with G-action known as the (affine) Bruhat-Tits building of
G. It depends on G, F' and the local field structure on F. Let us recall briefly its main

properties which may be used to characterize it uniquely, see [BT] {Br] [Ro] for more
details.

(3.2.1) B(G) is a contractible [-dimensional cell complex with G(F)-action whose ertices
are in bijection with maximal bounded subgroups in G(F') while cells of arbitrary dimension
are in bijection with parahoric subgroups. In particular, maximal ({-dimensional) cells
correspond to Iwahori subgroups. We denote by o(P) the simplex corresponding to a
subgroup P.

(3.2.2) If G is quasi-simple (has no normal subgroups of positive dimension), then B{(G)
is a simplicial complex.

(8.2.3) For the product of two groups we have B(G; x G2) = B(G1) x B(G2) (the product
of cell complexes).

(3.2.4) As cell complex, B(G) = B(G**) depends only on G** (this is because there is a
bijection between parahoric subgroups in G(F) and G*¢(F)).

When G and F are fixed, we will denote the bulding B(G, F') just by B. Note that
the action of G(F'} on the maximal cells of B is always transitive while the action on cells
of smaller dimension, e.g., on vertices, may be not. However, the action of G*¢(F) is
transitive on vertices.

(3.3) Apartments. To any choice of a split F-torus i in G there corresponds an apart-
ment A(H) C B This is a subcomplex homeomorphic to the Euclidean space R!. More
precisely, A(H) has a natural structure of an affine space over hg with the subdivision
given by the alcoves of the affine Weyl group of G. We will use the Killing form on hg to
make A(H) into a Euclidean affine space. It is known that for any two cells 0,0’ of T(G)
there always is an apartment containing them, any any two apartments with this property
can be taken into each other by an element of G preserving o, o’.

(3.4) Spherical buildings. Links and the boundary of the affine building. For
any field L (without any local field structure) we denote by X(G, L) the spherical Bruhat-
Tits building associated to G and L. It is defined in almost the same way as the affine
building, only instead of parahoric subgroups one considers parabolic (in the usual sense)
subgroups in G(L). With this modification, the analogs of the properties (3.2.1-4) are all
true with the exception that ¥(G, L) is not contractible but rather is homotopy equivalent
to a wedge of spheres.
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For any cell complex C' and any cell 0 € C of dimension d the link Lk(c/C) is the cell
complex whose i-dimensional cells are in bijection with (i -+ d + 1)-dimensional cells of C
containing o, with the same closure relation. The links in the affine building are described
as follows.

(3.4.1) Proposition. If P is a parahoric subgroup in G(F) and o = o(P) is the corre-
spoding cell in the affine building B, then Lk(c/B) is identified with the spherical building
Y(P, k) where P is the semisimplification of the reduction of P modulo the maximal ideal
of O. In particular, for the vertex associated to the standard maximal bounded subgroup
K the link is isomorphic to £(G, k).

This generalises property (1.1.2) that the set of edges of a Bruhat-Tits tree incident
to a given vertex is a projective line over the residue field k. Note, in particular, that for
each vertex v the edges coming out of v are subdivided into [ types, one for each conjugacy
class of a maximal parabolic subgroup in G*¢(k). These conjugacy classes are labelled by
simple roots, namely to a root «; there corresponds the maximal parabolic subgroup P,
see (3.1). We will refer to edges (coming out of z) corresponding to P; as edges of type
i. Note that this concept depends not just on the edge itself but also on the choice of the
“beginning” z. More precisely, there is a well-defined involution 7 = i on {1,...,1} such
that if (z,y) is of type 7, then (y,z) is of type 4. This involution is an automorphism of
the Dynkin diagram. For example, for the group PGL, the situation is as follows. If we
number the simple roots in the linear order with respect to the Dynkin diagram A,_,,
theni=n—-1-—1.

We now briefly recall how the boundary 98 is defined, see [Br] for more details. One
calls a ray in B a subset r C B which lies in some apartment A and represents a linearly
embedded half-line [0, co] with respect to the Euclidean structure of A. (In this case same
statement will hold for any apartment containing r. Two rays r,r’ are called parallel if
they lie in a common apartment A and are parallel there (represent the same point on
the sphere at the infinity of A). Being parallel is an equivalence relation, and equivalence
classes are called ideal points of B. Their set is denoted dB8. An ideal simplex in 08 is a set
obtained as follows. Take any apartment A C B, any vertex v € A, any cell ¢ containing
v and form the cone with apex v by drawing all straight (with respect to the Euclidean
structure on A) half-lines starting from v and passing through points of o. Cones of this
type are called conical cells in B. The set of points on the sphere at the infinity of A
represented by a conical cell is called an ideal cell of 9B. Now the generalization of the
property (1.1.3) is as follows.

(3.4.2) Proposition. The boundary 0B(G, F') with the decomposition into ideal cells de-
scribed above, is naturally identified with the spherical building (G, F'). The apartments
in B(G, F) and dB(G, F) = (G, F) are in natural bijection.

Note the particular case when the residue field % is finite. Then the affine building B
is a locally compact CW-complex, with each link being a finite CW-complex. Stabilizers
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of vertices of B are all the maximal compact subgroups in G(F'). The set of cells (of all
dimensions) of the spherical building (G, F) is just the disjoint union of G(F)/P(F) for
all conjugacy classes of parabolic subgroups P C G. In particular, this set has a natural
topology induced by the valuation topology of F', with respect to which it is compact.
Further, the spherical building £(G, K) has a natural topology which mixes the standard
topology on cells and the compact completely disconnected topology on the union of the
G/ P, see [Br]. With this topology X(G, K) is compact. There is a natural way to topologize
the union B = B[] 8B which is also compact, see Borel [Bo).

(3.5) Distances. Similarly to the case of Bruhat-Tits trees, for any two vertices v,v’ €
B there is a well-defined “distance” d(v,v’) which is, however, not an integer but an
element of YV /W. (Recall that YV is the lattice of 1-parameter subgroups in 7%, the
maximal torus of G*?.) Namely, the set of vertices of B is G*(F)/K, and we have the
Iwasawa decomposition G = KT%N, where N is the commutant of the Borel subgroup.
Hence K\G% /K = XV(T")/W. The distance satisfies the invariance property d(gv, gv') =
d(v,v") for any ¢ € Ad(G) and the following analog of the triangle inequality:

d(v,v") C Conv(W (d(v, ') + d(v','v"))).

We can, if we want, identify YV/W with Y, the cone of dominant integer coweights of
G4, For every r € YV we denote ry. € Y, the unique representative of the W-orbit Wr
lying in Y.

Note the case when v’ is a vertex joined to v by an edge. In this case this edge has one
of [ types, see above; if the type is %, then d(v, v’) is the fundamental coweight ¢; associated
to the simple root «;.

For every r € YY /W and any vertex v € B we denote by S, (v) the “sphere” of radius
r and center v, i.e.,

Sp(z) = {v' : d(v,v") =1}.

Given two vertices v,v’ € B, we denote by A(v,v’) the intersection of all the apart-
ments containing v,v’. This is the analog of the shortest path between two vertices on a
tree. In our case A(v,v') is a finite cell subcomplex in B which may have any dimension
between 0 (when v = v') and I = rk(G).

(3.5.1) Proposition. Let d{v,v’) = Zli=1 mi€;, m; > 0. Let A be any apartment con-
taining v and v'. Then A(v,v') C A is, with respect to the affine structurc on A, a
parallelotope, namely a translation of the following parallelotope in hg:

i
{Z /\ie;, 0 S /\i S TI'L,'}.

i=1

In particular,
(a) The dimension of A(v,v") is equal to | minus the number of simple roots vanishing on
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d(v,v').

(b) Consider all edge paths in B joining © and y and having minimal possible length. The
set of vertices of A(v,v') is the union of the sets of vertices of such minimal paths.

(c) If vg = z,v1,...,uxy = v is any minimal edge path joining v and v’, then

N-1
d(z,y) = Z Em(vi,vip1)
i=0
where m(v;, vi41) € {1,...,1} is the type of the edge [vi, viy1].
(d) If dim(A(v,v")) = d, then there exist exactly one d-dimensional cell of A(v,v') con-
taining v (resp. v').

The reader may consult [Ko] for a more thorough discussion of the example G = PG L3.

We will denote the d-dimensional cell of A(v,v') containing v, by dir(v, v') and call it
the direction to v’ from v. The d-dimensional cell of A(v, v’} containing v’, will be denoted
by codir(v,v') = dir(v’, v) and called the codirection from v to v'.

(3.5.2) Proposition. Let v,v',v" be three vertices of B. Then the following conditions
are equivalent: T

(i) d(v,v') + d(v',v") = d(v,v").

(ii) The cells of the spherical building Lk(v' /B) corresponding to codir(v, v') and dir(v’, v"),
are in generic position.

(iii) v,v',v" lie in a common apartment and A(v,v") N A(v',v") = {v'}.

Let us explain the meaning of (ii). The set of cells of Lk(v'/B) of any given type is a
flag variety G(k)/P? (k) over the residue field k. One says that two points a € G(k)/P!(k)
and b € G(k)/P7(k) are in generic position, if they lie in the unique open orbit of G on
(G/P) x (G/PY).

The parallelotope A(v,v’) is the analog of the finite edge path joning two vertices of a
Bruhat-Tits tree. We will need the analogs of (semi)infinite paths as well. Namely, if o, 7
are cells of the spherical building 88, we denote by A(o, 7) C B the intersection of all the
apartments containing ¢, 7 at the infinity. It is always an affine subspace in an apartment.
For example, if 0,7 are maximal cells in generic position, then A{o,7) is an apartment
(two complete flags in generic position determine a unique maximal torus). If v is a vertex
of B and o is a cell in 9B, then we define A(v, o) as the intersection of all the apartments
containing z,o. It is always a conical cell.

(3.5.3) Proposition. Let v,v' € B be two vertices and K,, ,» C G(F) be the subgroup
fixing both v and v'. Then the image of K,, ,+ in Aut(Lk(v/B)) is the parabolic subgroup
fixing the cell dir(v,v'). Similarly, the image in Aut{Lk(v'/B)) is the parabolic subgroup
fixing codir(v, v’).

(3.6) Horocycles and mixed horocycles. A sphere in B can be defined as an orbit
of a subgroup in G*¢(F) conjugate to K®¢. Similarly, we call a horocycle an orbit of a
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subgroup conjugate to the unipotent subgroup N. Thus to specify a horocycle, one has
first to specify a subgroup N’ conjugate to N and second, an orbit of this subgroup. The
set of all subgroups conjugate to N is nothing but the full flag variety G(F)/B(F), and
we think of the point of G(F)/B(F') corresponding to N’ as the center of the horocycle.
In terms of B the center of a horocycle is just a maximal cell of the spherical building 9B.

Having fixed such a cell b (or, equivalently, asubgroup N'), we will distinguish various
orbits of N’ (i.e., horocycles with center b) by their “radii” which are elements of a certain
YV-torsor D(b). This torsor is obtained from the fiber of the projection G/N — G/B over
b (this fiber is an T¢-torsor) by quotienting by the maximal compact subgroup in 7%¢,

In particular, for any b € G/B and any two vertices v,v' € Vert(B) we have a well
defined difference of the (infinite) distances from v and v’ to b. This difference is an element
of YV and denoted by d(v,b) — d(v,b), where d(v,b),d(v',b) are elements of D(b).

We will also need objects interpolating between spheres and horocycles (see [Kar] for
the discussion of the archimedean case). More precisely, let P C G*? be any parabolic
subgroup (not necessarily a standard one) and Np C P its unipotent radical. A mized
horocycle of type P is by definition, .an.orbit of a subgroup of the form 7=1(K,) where
Kp C P/N is any maximal bounded subgroup and 7 : P — P/N is the natural projection.
Note that such Kp gives rise to a maximal bounded subgroup in any Levi complement
to Np. . Note also that we do not exclude here the case when P = G*?¢ in which case a
 mixed horocycle is just a sphere.

Thus the “center” of a mixed horocycle is a pair (P, Kp). We prefer to encode this
data geometrically in terms of the building. Namely, P corresponds just to a cell o C OB
of arbitrary dimension (the case of an honest sphere is obtained when ¢ = §). Further, a
choice of Kp C P/Np is just a choice of a vertex of the Euclidean building B(P/Np) asso-
ciated to the semisimple group P/Np over F. This Euclidean building has, as boundary,
the link Lk(o/3B). In terms of B itself, o C 9B is represented as an ideal cell, i.e., the part
at infinity of a conical cell (sector) & in an apartment in B. Two conical cells C, C’ define
the same ideal cell if they are parallel in the obvious sense. There is a trivial possibility
to achieve this: take two conical cells in the same apartment which represent the same
region at the sphere at the infinity but whose apexes are different. In this case CNC’ will
be nonempty. We will say that two parallel conical cells C,C’ are essentially different if
CNC" = . A choice of a vertex in B(P/Np) is nothing but a choice of a conical cell C
in the given class of parallel conical cells, whereby we distinguish only essentially different
cells. Let us summarize this discussion as follows.

(3.6.1) Proposition. Any conical cell C C B determines a center of a mixed horocycle.
Two conical cells C,C’ determine the same center if and only if they lie in a common
apartment A and can be obtained from each other by an affine translation (with respect
to the affine structure on A).

In particular, vertices of B are conical cells, and the corresponding mixed horocycles
are just spheres.
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Having described what is a center C of a mixed horocycle, we go on to give a geometric
interpretation of the radius as an element of some torsor. First, any parabolic subgroup

has a type I C {1,...,{}, i.e, it is conjugate to the standard parabolic subgroup P?, see
(3.1). Let

Y ={veY": (vyai)=0,i¢ I} = P2Zei;, YV/I=PLei=YV/YY.
i€l gl

Let also W; C W be the Weyl group of G', the semisimplification of P!, i.e., the subgroup
generated by the simple reflections corresponding to ;, i € I. It acts on Y}Y. Let also 0C
be the cell in the spherical building 98 represented by C. We can think of C as an element
of the generalized flag variety G(F')/P!(F). There is a principal fibration G/P! — G/N'
with structure group G!. Pass to the induced fibration with structure group being the
torus G1, = GT/[G!,G!]. Note that the quotient of GI,(F) by the maximal bounded
subgroup is a lattice naturally identified with YV /I. So by taking a further associated
bundle, we get an YV /I-torsor over G(F)/P!(F) which we denote by D®. Its fiber over
a point p will be denoted D™ (p). Now define, for a conical cell C of type I,

(3.6.2) D(C) = (Y)Y /W) x D*(8C),

where we regard OC as a point of G(F)/P!(F).

(3.6.3) Proposition. For a spherical cell C' the set of possible mixed horocycles with
center C is identified with D(C).

An element of D(C) will be written as r = (', ") according to the decomposition
(3.6.2). For r € D(C) we write S,.(C) for the horocycle with center C and radius r. Given
C, any vertex z € B3 lies on a unique horocycle S, (C). The corresponding value of 7 will
be called the distance from x to C and denoted d(z, C). We will write d'(z,C) € Y /W
and d"(z,C) € D*(9C) for the components of d(z, C).

(3.6.4) Proposition. Let C C B be a conical cell such that ¢ = 9C C ¥ is invariant
with respect to the standard torus Hy = T(F). Then every mixed horocycle with center C
meets the standard apartment A(Hy). Moreover, if o is of type I C {1,...,1}, the there is
a unique intersection point of the form z%uvy, where a € YV is I-dominant, i.e., (a;,a) > 0
forie Il

This follows from the Iwasawa decomposition.

(3.7) Hecke operators. Assume now that the residue field of F is finite, of ¢ elements.
Then G(F) is locally compact and has the Haar measure normalized by the requirement
that K has measure 1. The Hecke algebra Ho(G) is defined to be the algebra of compactly
supported doubly K-invariant functions on G with the operation given by the convolution.
Since K\G/K ~ XV/W ~ XY, a C-basis of Ho(G) is formed by elements T, r € XY
which are just the characteristic functions of the corresponding double cosets.
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Let S be the space of all functions on Vert(B) with finite support. The algebra Ho(G)
can be realized as the algebra of operators in § with 7). being represented as the averaging
operator

(3.7.1) (TH) = D ).
v'd(v,v’)=r

The operators T, are known to commute with each other and form a polynomial algebra
H with | generators. Note that all possible distances between vertices of B are given by
elements of Y)Y D XV so Ho(G) is a subalgebra in Ho(G*¢) with the basis of that bigger
algebra formed by T,.,7 € Y)Y. In the treatment of questions related to Hecke algebras it
is often convenient to treat the case of an adjoint group first and then specialize to the
subalgebra Ho(G) C Ho(G9).

For instance, a system of polynomial generators of Ho(G®?) is given by the operators
Te,., m =1,...,1 corresponding to the fundamental coweights (3.1). Moreover, the sphere
S, () with any center z is the set of Fg-points of a generalized Grassmannian variety
G/Py,. Thus the formula for the product Tt T, can be obtained from the decomposition
of (G/Pn){Fy) into Schubert cells: More precisely, let W,,, = W, C W be the Weyl group
of the Levi subgroup of P,. It is nothing but the stabilizer of €,,. The set of Schubert
cells in G/ P, is identified with W/W,,,. Let lt,, be the corresponding length function on
W/W,, (giving the dimension of the corresponding Schubert cell). Then

(3.7.2) TeTo=ToTe, = 3, ¢ Tapuien).-

weW/W,,
Here the subscript “+” means the dominant representative in the W-orbit of a vector.
Note that if « is dominant enough, then r + w(e,,) is already dominant so nothing should
be done with it. The equalities (3.7.2) completely describe Ho(G®?). The subalgebra
Ho(G) for a non necessarily adjoint G does not possess such a simple multiplication table
but can be analyzed using (3.7.2).

(3.8) Stabilizations of the Hecke algebra and the Satake isomorphism. Formula
(3.7.2) implies the following.

(3.8.1) Proposition. Given G and any basis vector T, € Ho(G), v € Y/, there exist
numbers ¢, g, 8 € XV, almost all zero, such that whenever o is dominant enough (compared
tor), then

(3.8.2) T, To =Y cepTrip.
8

In other words, the multiplication by T} eventually acts as a difference operator. We
now define the Hy(G)-module M(G) to be the C-vector space with basis t, for all @ € XV
and the action of 7). given by

(3.8.3) Trta =Y Crptrsp.
8
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The fact that Ho(G) is a module over itself together with (3.8.2) imply that (3.8.3) indeed
defines a module. For example, if G = G®¢, then the action of T, on ty is given by the
same formula as in (3.8.2) but without ever passing to the dominant representative.

We call M(G) the stabilization of Ho(G). It is also known as the universal principal
series representation, see [Kat1-2]. It is a free module of rank |W]|.

Let TV be the torus dual to T, i.c., the spectrum of the group algebra C[XV]. We
denote a typical point of TV by z so for r € XV we denote z” the monomial function on
TV corresponding to 7. Because the action of Ho(G) on M(G) is given by translation
invariant difference operators, M(G) is in fact an (Ho(G), C[XV])- bimodule where XV
acts on the right by translations: ¢42" = ta4.. Clearly as a C[XY}-module it is free of
rank 1 so the left module structure gives us an algebra homomorphism

(3.8.3) S:Hy(G) = CXV]=C[TY], T, crpz”.

(3.8.4) Proposition (Satake isomorphism). The map S identifies Ho(G) with the
invariant subalgebra C[XV]W = C[TV/W] where the action of W on TV is defined by
w* 2z = ¢ Pw(g’z). ;

There is another way to stabilize the algebra Hy(G). Namely, take two basis vectors
Tw,Tp where both « and 3 are dominant enough and look at their product. Obviously, it
has the form

ToeTp = Z ClﬁTﬂ+ﬁ—‘7‘
YEXY

In other words, the maximal term in the product will be T,,...g while all the other summands
will correspond to coweights less dominant than « + 8. The stabilization we have in mind
is obtained by noticing that the the coefficients cgﬁ actually depend only on «, provided
7 is well inside the region formed by all possible summands in T,,7}.

(3.8.5) Proposition. (a) There exist numbers ¢("),~v € Y)Y with the following property:
for any finite subset S C Y there exist an open cone C C XY ® R such that whenever
a,f€C and v € S, we have ¢z = M.

(b) Explicitly, the c(?) can be found from the expansion of the following rational function

onTV: )
1—2
_ ),y _
CERD SRR et
’)‘EY_;_’ Ech,

Proof: Macdonald [Mac] has found the image of T, under the Satake isomorphism § :
Ho — C[I},/W]. Namely, for a strictly dominant o we have

l—q 1 1u(£)

S(Ta)(z) = P( _1) Z ) H T — w6

£eDy
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where P(t) = 3 cw t@) Now note that for the “stabilization” we have in mind only
one summand in Macdonald’s formula is relevant, namely that corresponding to w being
the unit element. In other words, the "stable” coefficients cgﬁ will be the same as the
coeflicients obtained by multiplying these summands alone. Our statement follows from
this.

Stabilizations of the kind described above will appear in the study of infinite Hecke
operators in the next section. In fact we need a slight generalization of this construction
in which we allow coweights not necessarily dominant but just lying far away in a cone
given by partial dominance conditions. More precisely, for a set I C {1,...,1} we denote by
A (I) the set of positive roots which are roots for the unipotent radical of the standard
parabolic subgroup P/, and let

(3.8.6) Ri(2)= ] 1=

— ga’
0€A+(I) 1 9z

(3.8.7) Proposition. Let I, I» C I be two subsets. Then the coefficients of the expansion

.RI (Z)Rjg(z) . Z ()
Bn\a)ln\z) S~ o)y, 1)
RhUIz(z) ’rEY_,Y

have the following interpretation. For any finite S C Y} there exist open cones C, C
YY N &P;c;, Ze: such that whenever o € C1, 8 € C; and v € S, we have 62'.3 = (I, ).

(3.9) Poisson measures. We continue to assume that the residue field & is finite, k = F.

(3.9.1) Proposition-definition. Let z € B be any vertex. For any parabolic subgroup
P C G there is a unique probability measure uf on G(F)/P(F) invariant with respect to
K, C G, the compact subgroup preserving the point z. This measure is called the Poisson
measure.

The mesure uf depends in the choice of z. For two vertices z,y the ratio pf'/ul is
a well defined function on G/P. This function, regarded as a function of z,y as well is

known as the Poisson kernel and denoted
P
Mp(z,y,b) = 25(b), =,y € Vert(B), b€ G/P
Mg

(3.9.2) Proposition. If P is a parabolic subgroup then for any b € G/P we have
[p (5,5, b) = g7 (@ (@0=4" )

where d'(z,b) € D> (b) was defined in (3.6) and dp is the sum of all roots entering the
root decomposition of np, the nilpotent subalgebra of P.

Proof: Note that pz(U) = jg(z)(g(U)) for any z € Vert(B) and any U C G/P. Thus, if
g(b) = b then, taking for U an “infinitesimally small neighborhood” of b, we find:

o (b) = | det dy(g),
Hg(z)
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where dy(g) : To(G/P) — T,(G/P) is the differential of g at b acting on the tangent space.
Further, by homogeneity it is enough to verify the statement of the proposition at any
one point b € G/P. We take b to be a point invariant with respect to the standard torus
H = T(F), so it represents a cell at the boundary of the standard apartment A = A(H).
Also we take = to be a vertex of A and y to be of the form h(z), h € H. Then h(b) = b
and by the above Ilp(z,y,b) = | det(Tyh)|. It remains to notice that the characters of the
torus action on the tangent space T},(G/P) are precisely the roots of np. Q.E.D.

The measure pp, associated to the maximal parabolic subgroup P,, m =1,...,1, has
the following probabilistic interpretation. We consider the random walk W,, on Vert(5)
in which a particle at a vertex z can move, with equal probability to any neighboring
vertex y such that the corresponding edge is on type m. The Martin boundary for W,,
is the Grassmannian G(F')/ Py, (lying inside the full boundary of B which is the spherical
building). The measure pp, is the exit measure corresponding to the Markov chain W,,.
Note that the Markov chains W, are independent for different m, which is just a rephrasing
of the fact that the Hecke operators T, , commute with each other. The reader can consult

[Fu] for a treatment of Archimedean symmetric spaces from this point of view.

(3.10) Measures on big cells. We consider the following sutuation:
B = B(G, F) is the affine building of G over the local field F' (with finite residue ficld F).
¥ = 9B is the corresponding spherical building.

b € ¥ is a 0-dimensional cell, so it corresponds to a maximal parabolic subgroup P, C G(F).
We assume that Py is of type i € {1,...,1}, so P, is conjugate to the standard subgroup P!
where I = {1,...,1} — {¢}. Let also N, C P, be the unipotent radical.

The lattice YV/I is naturally identified with Z. So the torsor D*°(b) parametrizing
radii of horocycles with center b, is a Z-torsor. Fix any type j € {1,...,{} and let Gr; ~
G(F)/P; be the set of 0-cells of £ of type j. Let U(b, j) C Gr; be the open subset consisting
of ¢ € Gr; which are in generic position with b (in the same sense as in Proposition 3.5.2
(ii)). Suppose that a maximal compact subgroup K, C P,/Np is chosen. Let 7 : P, —
Py /Ny be the natural projection.

(3.10.1) Proposition. The space of measures on U(b, j) invariant under the subgroup
7=1(Ky), is 1-dimensional.

Proof: The set U(b, j) is the set of F-points of a smooth quasiprojective variety over the
p-adic field F, and the action of 77!(Kj) is by regular maps. Thus our statement follows
from the next two facts: first, the action of 7=1(K}) on U(b, 7) is transitive, and second,
for any fixed point ¢ of any transformation g € 77!(Kj}) the Jacobian det(d.g) € F* has
norm 1. Both these facts are verified straightforwardly.
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§4. Double Bruhat-Tits buildings and Hecke algebras for arbitrary G.

(4.1) The double building. We return to the situation of (2.1) and the introduction,
so F is a 2-dimensional local field, k its locally compact residue field, F, the finite residue
field of k etc. We also keep all the notations of (3.1) related to our fixed reductive group G.
Our first aim is to associate to G and F' (as well as the 2-dimensional local field structure
on F) a cell complex B = B(G, F, k) called the double Bruhat-Tits building of G. For
the case G = PGL, the complex B is closely related to (although not identical with) the
higher building constructed by Parshin [Pal-2].

We need some notation. Let P be any polyhedral ball (a CW-complex of dimension d
which has one cell of dimension d and is homeomorphic to a d-ball). We associate to it a
new polyhedral ball P which again has only one d-cell and whose boundary is a polyhedral
sphere obtained as follows. We first take the barycentric subdivision of 9P, getting a
simplicial (d — 1)-sphere, and then take the CW-decomposition of 4~ dual to the one
given by that barycentric subdivision. Thus vertices of P are in bijection with proper cells
of P (of any dimension). If P is a convex polytope, then P can also be realized as a convex
polytope. Namely, we first cut out, like with a knife, all vertices of P (so the each vertex
will be replaced by a small new face), then make cuts parallel to the edges of P, then make
cuts parallel to 2-faces etc. For example, if P is a simplex, then Pisa permutohedron
(the convex hull of a generic orbit of the symmetric group S,, in R").

We now describe the construction of B. Considering F as just a local field with residue
field k£, we associate to it (and G) the “continuous” Bruhat-Tits building Br = B(G, F).
We will distinguish the objects related to this building by the subscript F', for instance,
we will write dp(v,v) for the Y)Y-valued distance in B, as well as Ap(v,v') for the
intersection of all the apartments containing v, v’ etc.

The link Lk(c) of any cell o € Br is thus a spherical building over the p-adic field &.
As we know, there is a canonical locally finite Bruhat-Tits building 8, whose boundary is
Lk(o). We will call it the microscopic building (or just the microbuilding) associated to o.
Let 8, = B, || Lk(c) be the compactification of 3, obtained by attaching the boundary.
We now take the disjoint union of & x Bo for all cells 0 € Bp. Then, for any cells ¢ C ¢’ of
Br we identify each face of & x 38, with the corresponding face of &' x ,. The resulting
topological space {with the topology induced, via the gluings, from the compact topologies
on the & x f3,) is, by definition, the double bullding B. Let us summarize its properties
(obvious from the construction} in the following proposition.

(4.1.1) Proposition. (a) The building B has a natural G(F)-action. It extends to a
G4(F)-action.
(b) There is a G**(F)-equivariant projection

(4.1.2) 7:B — Bp,
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whose fiber over any interior point of any cell ¢ € By is naturally identified with (3.

We will call a vertex of B thin if it is among the vertices of the microscopic buildings
By where v is a vertex of Bp. The set of thin vertices will be denoted V. Clearly, G(F)
and G*¢(F) act on V. Recall that by construction, Br has a distinguished vertex vo with
stabilizer G(Or). Thus f,, is canonically identified with the building B(G, k), and in
particular it has a distinguished vertex wo whose stabilizer in g(k) is G(Oy).

(4.1.3) Proposition. (a) The stabilizer of wy in G(F) is G(O").
(b) The group G*(F) acts on the set V of thin vertices of B in a transitive way.

For a vertex v of Br we will denote G,, the stabilizer of v and by G, the image of G,
in the group of automorphisms of the spherical building Lk(v/Br). Thus G, is a group
over k. In particular, G,, = G(k).

(4.2) Apartments in B. Let H C G(F') be a split maximal torus. Denote by Ap(H) C
Br the corresponding apartment in Br. For every cello C Ap(H) the link Lk(o/Ar(H)) is
an apartment in the spherical building Lk(¢/Br) = 0, and thus gives an affine apartment
A(H), in 8,. We will call it the microscopic apartment corresponding to 0. Let A(H), be
the union of A(H), and its boundary Lk(c/Ar(H)). So topologically it is a ball. It follows
that the products & x A(H), fit together to form a cell subcomplex A(H) C n~(Ar(H))
which we call the double apartment corresponding to H. The fiber of the natural map

(restriction of )
(4.2.1) TH : A(H) — AF(H)

over an interior point of a cell ¢ is, by construction, A(H),.
(4.2.2) Proposition. Any two cells of B are contained in a common double apartment.

As in §3, we will use the notation A(o, 7) for the intersection of all the (double) apartments
containing two given cells ¢ and 7.
The following construction will be important for describing spheres in B.

(4.2.3) Proposition-definition. Let A = A(H) be a double apartment, Ap = 1(A) C
Br the corresponding ordinary apartment and v,v’ be vertices of Ap. Let dirp(v,v") C
Lk(v/Br) and codirg(v,v') C Lk(v'/Br) be the extreme cells of the parallelotope Ap(v,v") C
A, see (3.5). Let G, be the the group defined in (4.1). It acts on Lk(v'/Bp). Then each
vertex w € B, naturally gives rise to a maximal compact subgroup &, (v') in the parabolic
subgroup Stab(codirg(v,v")) C G-

Construction: As we saw in (3.6), for any cell ¢ C Lk(v'/Br) = 9f,» maximal compact
subgroups in Stab(c) correspond to conical cells in B, defining 0. Now, let w be given
and let h = y97(¥") € H(F). The translation by h gives a point w’ € B,,. Consider the
double parallelotope A(w,v’). Its part lying in 3, is a conical cell defining the boundary
cell dirp(v,v’). Translating it by h, we get a conical cell defining h - dirp(v,v’) which is
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just the cell opposite to codirg(v,v’) in the spherical apartment Lk(v'/Ar). Now, for the
stabilizers of two opposite cells in a spherical apartment one can naturally identify the
semisimplifications and thus their maximal compact subgroups.

(4.3) Cartan decomposition. Distances in B. Let I' = F*/(0’)* be the valuation
group of the 2-dimensional local field . We denote by ord : F* — T the natural projection.
The group T is (non-canonically) isomorphic to Z? and included into a canonical exact
sequence

02Z->T—=2—=0.

Let us choose uniformizers z,y € O, as in (2.2). Such a choice defines an identification
Z: 5T, (m,n)— ord(y™z").

We will use this identification in the sequel, in particular, we will equip I" with the lexico-
graphical order and write (m,n) as moo + n to highlight this order.

The quotient T(F)/T(0’) is naturally identified with XV ®T'. We will write elements
of XV®TI as A = yoo+¢ with v;¢ € XV. The Weyl group' W acts on XV &I and we denote
the quotient (XV@T')/W by Ag. The quotient Agae = (YVQ®T')/W will be denoted simply
by A. We will identify Ag with the set of representatives of the form oo + { where 7 is
dominant (i.e., (v, ;) > 0 for any simple root ¢;) and ¢ is such that (¢, ;) > 0 whenever
(v, ;) = 0. We introduce a partial order on YV by saying that v < 4’ if ' —~ is dominant.
By using this order, we order A {and thus Ag) lexicographically: vyoo + ¢ < v'o0 + (' iff
vy<y ory=+" and ( <.

(4.3.1) Proposition. We have the following Cartan decomposition:

GFRy= [ GO)=Ey")G(O).
Yyoo+{EAG

Here 28 is the value of the 1-parameter subgroup ( : G,, — T on z, and similarly for y".

Proof: It is enough to consider the adjoint case. As with the Cartan decomposition for
ordinary local fields, it is useful to restate the problem geometrically, in terms of the double
building B. let wy € S, be the distinguished vertex of B and Ay be the standard doubla
apartment through wg. Geometrically, our statement says that any other thin vertex
w € 3, can be brought by a transformation from K’ = Stab(wo) C G(F) to a unique point
of the form zSy” - wy € Ao such that yoo + ¢ € A.

From the Cartan decomposition for F' cosidered as an ordinary local field, we conclude
that there is g € K = Stab(vp) such that gv = y"vo for a unique v € Y. Therefore Of
course, g(wp) may not equal wg, we just know that it lies in f,,. So let K, ,, C G(F)
be the subgroup preserving v,vo. By Proposition 3.5.3 the image of K, ,, in Aut(f,,) is
the parabolic subgroup in G(k) preserving the generalized flag dir(vg,v). By the Iwasawa
decomposition for the local field k, the action of this parabolic subgroup on vertices of 3y,
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is transitive, so by composing g with an appropriate transformation from K, ,,, we get
h € K' = G(O') such that h(wg) = wo, h{w) € Byvy,- Denote y7vg simply by v' and the
cell codir(v, v’} C Lk(v'/Br) = 88, by o.

Further, let K, ,, = K,,/NK'; let P, C Aut(f,) be the parabolic subgroup preserving
o; denote N, C P, the unipotent radical and =, : P, = P,/N, the natural projection.
Then the image of K, . in Aut(8,) lies in P, and coincides with the preimage 77! (Kwp,v')
where Ky C Py /N, is the maximal compact subgroup described in (4.2.3). So its orbits
are mixed horocycles is 3, whose center i3 a boundary cell fixed by the standard torus. So
by Proposition 3.6.4 this horocycle meets the standard apartment in a unique y-dominant
point.

We can restate this as follows.

(4.3.2) Proposition. There is a G(F)-invariant distance function d : V x V — A satis-
fying the triangle inequality with respect to the lexicographic order on A. Moreover:

(a) For wy,wq, w}, wh € V the existence of g € G**(F) such that g(w;) = w}), is equivalent
to the condition d(wy,wy) = d(w}, ws).

(b) If d(wy, we) = yoo+f,-then in-the.continual building Br we have dp(n(w,), m(w2)) = 7.

Similarly to what we saw in (2.2), the existence of d means that we have some natural
identifications of the distance torsors parametrising horocycles in neighboring microbuild-
ings. As in (2.2.6), these identifications can be deduced from a statement about iden-
tifications of fibers of natural line bundles for two neighboring vertices in any ordinary
Bruhat-Tits building. We leave this as an exercise for an interested reader.

(4.4) Spheres in B and horocycles in the microbuildings. Let w € V be a thin
vertex of B and r € A. We denote by S,.(w) = {w' : d(w,w’) = r} the sphere of radius r
with center w. let » = yoo + ¢ and let v = w(w), so w lies in the microbuilding 3,. Then,
by Proposition 4.2.2 (b),

Swy=J[ S-w)ng..

dr(v,v')=y
We are going to describe each of the parts of this decomposition.
(4.4.1) Proposition. For any v’ € Br such that dp(v,v') = -y the intersection Sy (w)N By
is a mixed horocycle in (B, . Its center is given by the cell

codirp(v,v') C Lk(v'/Br) = 98,

and by the maximal compact subgroup &, (v') in the stabilizer of this cell.
This follows from the proof of the Cartan decomposition (4.3.1)

(4.5) Measures on spheres in B. Let w € 8, C B be a thin vertex and let r = yoo+( €
A. Denote by K/, C G(F) the subgroup preserving w. The sphere S,(w) has a natural
structure of a locally compact completely disconnected topological space.
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(4.5.1) Proposition. The space of Borel measures on S,.(w) invariant under the group
K,,, is 1-dimensional.

Proof: Note first that we have a surjection
Sr(w) = Sy, r(v)

whose fibers are (mixed) horocycles. In particular, they are countable and discrete. Fur-
ther, the weight v being dominant, let us write it in the form v = Z;‘_—.o m;e; with my; > 0.
Let vo = 0,71, .., Ym,+...4m; = 7 be the sequence of vertices obtained by first going m4
steps in the direction €;, then mq steps in the direction ¢; and so on. We will say that v; is
the jth pivot of this sequence, if ¢ = my + ... + m;, i.e., our sequence changes direction at
v;. If 4; goes after the jth pivot but before the (j+ 1)st pivot, then the edge (v;, vi4+1) has
the type 7 (see (3.4) for the discussion of edge types). We have a sequence of fibrations

(4.5.2) Sy r(w) TEST 5 S p(0) B S, pv) B Sy r(v) = {v}.

Each fiber of each of the maps here is a big cell in some generalized Grassmannian. More
precisely, let v; € .Sy, p(v) and let vy 4" < 4 be its images. in the previous spheres. If ; is
not a pivot and lies after the jth pivot, then the edge (v;,v;—1) has type ;7 where the bar
means the involution on {1,...,1} described in (3.4). This edge represents thus a 0-cell b;
of type j in the spherical building Lk(v;/Br). The fiber p; .} (v;) is nothing but the big
cell U(b;, j) in the generalized Grassmannian Grj, see (3.10). Similarly, if v; is a jth pivot,
then (v;, vi—1) represents a 0-cell b; in Lk(v;/Br) but of type 7 — I and pi; (v;) is U(bs, 5)
in Gr;. Note that at every step we have a canonically defined maximal compact subgroup
K; in the stabilizer of b; in the p-adic group acting on Lk(v;/Br). Now our statement
follows by repeated application of Proposition 3.10.1.

(4.6) The Hecke algebra M. Let wg be the distinguished thin vertex of B (whose
stabilizer is the subgroup K’). For r € A denote the 1-dimensional space of K’-invariant
measures on S,(wg) by H(r). Let ¥ € XY be a dominant coweight. Denote H., to be the
space of formal series Y 5 1 cc Byoosc Where each hqeoy¢ is an element of H(yoo + ()
such that the set

{C : hyoot¢ # 0}
is contained in some translation of (—XY), the cone opposite to the cone of dominant
coweights. Finally, let H = EB'reX}f Hy.
As in (2.4), we can view elements of each H, as G(F)-invariant (0,1)-measures on
(G(F)/K') x (G(F)/K') so that formally the convolution of such measures is defined.

(4.6.1) Proposition. The convolution of (0,1)-measures makes H into an algebra so that
for v, € XY we have HyHy C Hyqy. In other words, the algebra H is X{-graded.
Further, it has a filtration F parametrized by the ordered semigroup A with F)\’H consisting

The proof is similar to (2.4.1).
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We will call H the double Hecke algebra of the p-adic loop group G(F). Note that
Ho is the standard unramified Hecke algebra for G(k), i.e., Ho ~ C[TV/W]. As in §2, we
denote M/, C H, the subspace ), H(voo + () of finite sums. The following proposition is
clear.

(4.6.2) Proposition. Each H. is an Ho-bimodule and H., is a sub-bimodule.

Let us introduce some distinguished elements of H. First, we will retain the notations
Tw, @ € XY for the finite Hecke operators from Ho. Second, if 7 = €,,00 + a is such that
its infinite part is a fundamental coweight, then for any thin vertex w € 3, the sphere
Sr(w) is a fibration over the p-adic generalized Grassmannian S, r(v) ~ (G/Py)(k) with
countable discrete fibers (which are mixed horocycles). So we define the measure i, ,
on this sphere to be the (Fubini) product of the Poisson probability measure p,, on the
Grassmannian and the discrete Dirac measures on the horocycles. Therefore, for r of the
described form we have specified certain elements 7, € H(r).

For arbitrary v € XY it is difficult to normalize geometrically the measure on the
Syoot+c{w). However, let us note that, for a fixed v, a choice of such a normalization for
one particular value of { produces a normalization for all other values of {. This is because
the spheres Syoo4¢ and Syeo4¢s are fibered over the same continuous variety Sy p(v), each
with discrete fiber, and the measures we are talking about are products of the measures
on this Sy p(v) with the corresponding Dirac measures on the fibers. Therefore we choose
once and for all some non-zero elements Ty, € H(v00) and define Tyooi¢ to be the image
of T’y under the identification just described. For v = €, this is compatible with the
above convention.

(4.7) Structure of H., as an Hp-bimodule. Let v € XY, and let X C XV be the cone
of elements £ such that (€,a) > 0 for each positive root « such that (v,«) = 0. Thus, for
a strictly dominant v we have XY = XV while or v = 0 we have X = XY. Note that
X}; is the fundamental domain for the action of the subgroup W, C W preserving v. An
element yoo + ¢ lies in A iff { € X, For any £ € XV we denote by &, € X,‘;’ the unique
W, -translation of £ lying in X}r’ . Thus for v = 0 {4 = {4 is the dominant representative.

As a left Hy-module, each ’ny has a very simple structure, namely
(4.7.1) TemT—yoo+C = Z qltm(w)T(voo+(,‘+w(em)).,a
weW/ W,
similarly to (3.7.2). In particular, if -y is strictly dominant, then the subscript v does not
change anything, so 'Hﬂr is isomorphic to M = M gaa, the stabilization of the Hecke algebra

from (3.8).
Now we describe the right module structure of the simplest infinite graded components.

(4.7.2) Proposition. We have the following equalities in H.:

Tejoo+CT€m — Z qltm (w)+61(W(Em))T(EJOO'f'C‘i‘w(Em))eJ .
weW/Wn,
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Here §; is the sum of all the weights of N, the unipotent radical of the maximal parabolic
subgroup P;.

Proof: 1t is clear that T¢;004¢Te,, will have the same |W/W,,| summands as the product
in (4.7.1) but with different coefficients appearing from measure changes. These changes
are found from Proposition 3.9.2.

(4.8) The bilinear forms ¥ and & and the Heisenberg algebras. We introduce a
Z-valued bilinear form ¥ on YV by defining its values on pairs of basis vectors to be:

(4.8.1) U(ej,em) =05(em) = > (@ em).
QEA+
(a.cj)#O

The form ¥ is, in general, neither symmetric nor W-invariant. However, there is a related
form & possessing both these properties. It is given by

(4.8.2) (I)(Ejaem) = Z (c, '5j) (e E'm)v

acd,

so that for any a,b € YV we have

(4.8.3) o) = 3 (@a) (@b) = % S (@, 0) - ().

acA,. aCA

The last form of writing ® implies its W-invariance. In the case when each quasi-simple
factor of G is of type A, for some n (i.e., is a cover of PGL(n + 1)), we have ¥ = & since
(a, €;) is, in this case, always equal to either 0 or 1. However, in general it is the form W
which will appear in our description of the Hecke algebra.

Using the form ¥ we define the Heisenberg algebra A gencrated by monomials 2, w®

for a,b € YV with relations

(4.8.4) 2%2% = 2870, wlwb = wott, w2 = g (@) by,

b

Thus we can think of z,w as points lying in T, the dual torus for G%¢. An element from
A can be written, uniquely, in the normal form

Z ¢b(z)wbv

beyv

where each ¢, is a Laurent polynomial in z. Let also A(G) C A be the subalgebra generated
by the z*,w® with a € XV C YV. Thus A = A(G*%). Let A(G) C A(G) be the subalgebra
consisting of polynomials of the form ), vy ¢n(2)w®, such that each ¢y is symmetric with
respect to the action of Wy, the subgroup in the Weyl group preserving b. The algebra
A(G*?) will be denoted simply by .A.
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(4.9) Theorem. The associated graded algebra grpH(G) with respect to the filtration
F described in (4.6.1), is naturally isomorphic to A(G).

Proof: For the case G = G*¢ the statement follows from (4.7.2) and the fact that 73T, is
a constant multiple of T4, plus lower order terms. The general case follows from this by
identifying grpH(G) C grpH(G*®) with the corresponding subalgebra in A(G*%).

(4.10) The rational subalgebra ;. Let #(G).* be the subspace in #(G), consisting
of elements 3 . a¢Tyeo+¢ such that the formal Laurent series 3. aSz° represents a rational

function on TV. Let H(G)™ = @, H(G)}*.

(4.10.1) Proposition. The subspace H(G)"** C H(G) is a subalgebra.

Proof: Our statement will follow from the next lemma about the bigger space H™** C
H = H(G*%) which says that the product of any two generators ThT), lies in H(G)™** but
describes the corresponding rational function more precisely. We will say that a coweight
~ is strictly I-dominant, where I C {1,...,l} is a subset, if (a;,7y) > 0 for i € I while
(j,v) =0 for I ¢ I. It is clear that every dominant coweight is strictly I-dominant for a
uniquely defined I.

(4.10.2) Lemma. Let~, € YY,v = 1,2 be two dominant coweights and each -y, is strictly
I,-dominant. Then for any (1,(2 € YV such that y,00+ {, € A we have

Ty1004+¢1 Thacotca = q‘I’(C1,’12) Z C(A)(Il’Iz)q-(’n’I\)T(’Yl+’72)°°+(C1+(l—)\)’
rexy

where the numbers ¢ (I, I,) are defined in Proposition 3.8.7.

Proof: 1t is clear that the product will have the same summands as given in the state-
ment of the lemma, and we just need to determine the coeflicients. The coeflicient at
Ty +42)00+(¢c1+¢1—a) 18 the product gh of two factors. The first factor g can be defined as
follows. Take two thin vertices wy, w3 of B on distance (y; + y2)00 + (1 + {1 — A). Then
u is the number of wq such that d(wi,w2) = v100 + ¢1 and d(wa, w3) = y200 + (2. The
factor h is the change in the normalization of the measure produced by any such wz. We
claim that

(4.10.3) g = C('\) (Il’ I2)’ Il e q'(71$’\)_

To see the first of these equalities, note that the microscopic building where such a w;
can lie, is uniquely defined, so the number of possibilities for w; is governed entirely
by the geometry of this building. More precisely, the double apartments A(wi,ws2) and
A (ws,w3) can have some finite parts in common (cf. [Ko] for the discussion of PGLj).
But this geometry will be identical to what happens when we just multiply two finite Hecke
operators TC—IT(:—2 where each (, is far enough in the cone of structly I,-dominant coweights
and see how many times T =, enters. This proves the first equality in (4.10.3). The
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second equality follows by repeatedly applying Proposition 3.9.2 to edge paths in the
building Br joining the relevant vertices.

Lemma (4.10.2) implies that for any fixed 71,2 the product of any 7%, o4, with any
Ty,00+¢, Will have the coefficients at T(y, +4;)00+(¢; +¢,~2) 8IVIDg rise to a rational function
of the form g“CVR,,, .;,(2) where R,, ., depends only on the 7, but not on the ¢, and L is
a linear form depending on ;. This implies that #(G)[% - H(G)5* C H(G)L%,.,,, proving
Proposition 4.10.1.

(4.11) The rational Heisenberg algebra A(G)™t. For a € XV let ¥(a) € X be
the image of ¢ under ¥ considered as a map XV — XYV = X. Note that X serves as
the lattice of 1-parameter subgroups for the torus XV. For £ € X we will denote ¢ the
value of the corresponding 1-parameter subgroup on ¢ € C. Consider the homomorphism
XV — TV taking a — ¢, Note that the Heisenberg algebra A(G) can be written as
the cross-product of the algebra of Laurent polynomials on TV with the group algebra of
XV, ie., as algebra of polynomials 3 ¢,(2)w® where each ¢,(2) is a Laurent polynomial,
with the commutation law w®@(z) = ¢(¢¥(®z2). Let A(G)™ be the extension of A(G)
obtained by allowing each ¢,(z) to be an arbitrary rational function. Let A(G)™* be

< rat
the subalgebra in A(g)m obtained by requiring each ¢,(z) to be symmetric with respect

to W,, the subgroup in the Weyl group preserving a. Here we use the W-action on T
appearing in the Satake isomorphism. As before, we use the notations A™* for the special
case G = G4,

Now we can formulate the second main result of this paper.

(4.12) Theorem. The algebra H"*(G) is isomorphic to A™(G).

The statement for a general G is deduced from the case G = G%. So we assume
that this is the case. The is based on the following fact describing the space H'(G)4 as a
bimodule over the finite Hecke algebra H(G)o. Recall that Spec(M(G)o) = TV /W, so each
bimodule gives a coherent sheaf on (TV/W) x (TV/W). Let also p: TV — TV /W be the
projection.

(4.12.1) Proposition. The coherent sheafon (TV /W) x(T" /W) corresponding to H'(G),,
is the structure sheaf of the subvariety C(v) = (p x p)(C(y)) where C(y) C TV x TV is
the shifted diagonal {(z,q¥™ - 2)}.

As in §2, there is a natural algebra structure on @76){1 LTV /W) x (T /W), Oc(yy)
and this algebra is nothing but A(G). But the multiplication in H(G) differs from that in
A(G) because of the presense of lower order terms in Ty, cot¢, Ty—2004¢,- However, these
lower order terms are explicitly controlled by Lemma 4.10.2. In particular, they follow a
pattern depending only on the sets I{v,) of simple roots such that (¢, ,) = 0. Recalling
the rational functions Ry(2) from (3.8.6), we find that the linear bijection x : H(G)™** —
A(G)"®* defined by

Thootrt = Rj_(lv)zcw"’,
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is an algebra isomorphism. Theorem 4.12 is proved.
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