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HOLOMORPHIC AUTOMORPHISMS OF QUADRICS OF
CODIMENSION 2 '

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. In this paper we prove that the automorphisms of a nondegenerate
quadric of codimension 2 in £"*? ig a rational map of degree < 2 and give the
explicit formulas for such automorphisms.

1. INTRODUCTION

H. Poincaré [9] proved in 1907 that any holomorphic automorphism of the sphere
S = {(2,w) € C? : Imw = Zz} preserving the origin is a fractional linear transfor-
mation

(1) z = c(z +aw)(l - 2iaz — (r + iaa))™?
w = pw(l —2az — (r +ida))™!,
where a,c € C, r € R, and p = |c|*.
N. Tanaka [11] proved in 1962 the analogous result for any nondegenerate hyper-
quadric.

Nondegenerate hyperquadrics are the quadratic models of CR surfaces with non-
degenerate vector-valued Levi form in C*** [2]:

(2) Q= {(z,w) €C" x C* : Imw" = (z,2)", k = 1,...,k},
where (z,z)" are Hermitian forms in C* with the properties:
i) {(z,b)* =0forall« =1,...,k,z € C" implies b =0
i) (z,z)" are linearly independent k = 1,... k.
Beloshapka proved that these properties are necassary and sufficient for having a
finite dimensional automorphism group ([3]).
Since @ is a homogeneous manifold (Aut Q) acts transitively via the transformations
z2 p+ 2z, wr g+ w+ 2i(z,p) with (p,q) € Q) then Aut Q@ = @ x Auty Q, where
Auto @ is the isotropy group of a fixed point, say the origin.
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Using the reflection principle G.Henkin and A.Tumanov [8] proved that Aut, @
consists of rational transformations.

V. Beloshapka [4] gave a description of the Lie algebra of the infinitesimal auto-
morphisms of ) and he proved also that the quadrics of codimension k > 2 in general
position are rigid, 1.e. their isotropy groups consist of trivial automorphisms z — cz,
w — |c|*w for some complex number c (see [5]).

In the cases n = k = 2 and n = 3,k = 2 any quadric is equivalent to one of a
finite number of standard quadrics. The autors obtained in these cases the complete
description of the automorphisms [6, 7].

For k = 2 A.Abrosimov [1] discovered a sufficient condition for Aute §) to consist
of linear transformations: if in some coordinates the operator (H')™'H? (H’ - the
Hermitian matrix related to (z,2)?) has more than two different eigenvalues.

Recently, S. Shevchenko [10] has obtained a classification for quadrics of codi-
mension 2 with respect to the the linear action of G,; = GL(n,C) x GL(2,R) :
zm Czyw pw, z € C',we C, (C,p) € Gya-

Using this result we complete the description of the automorphisms of nondegen-
erate quadrics of codimension 2.

Since any autimorphism ® € Auty() can be represented as & = &, o ¥y,
where ®(¢,) € G, is a linear automorphism and ®;; has an identical projection
of the differential at 0 on the complex tangent space, it is sufficient to describe the
subgroup Autg ;g4 of automorphisms @ preserving 0 and with d®|z.ar = id.

We show below that any ® € Autg4(@Q) can be represented by a matrix analogue
of the Poincaré formula (1) or it is fractional linear.

2. A MATRIX POINCARE FORMULA FOR Autg;4(Q)

According to the result of S. Shevchenko cited above, nondegenerate quadrics of
codimension two have nonlinear automorphisms only in the following four cases:
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where ¢; € {—1,1}, 2’ = (2>*,...,2"), and det(\ H' + A H?) # 0.

Moreover, the dimension of the Lie algebras corresponding to Autg ;4 eaquals 2n42
in the hyperbolic, elliptic and parabolic cases, and 2s in the null-case.

In the elliptic, hyperbolic and parabolic cases the automorphisms are fractional
quadratic transformations, given by a matrix Poincaré formula in the following way:

in the elliptic case we set:
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in the hyperbolic case:
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and, in the parabolic case:
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Then the equation of () can be written

(7)

A complex n-vector a will be be represented as a 2 X n matrix like the corresponding
z, and a real 2-vector r as a 2 X 2 matrix like the corresponding w.

Then the Poincaré formula

Z — (Z+ AW)(id -2iAZ — (R +iAA)W)"!
W — W(@id—-2iAZ — (R +iAA)W)™!

describes Autg ;4.

In the null-case Autg ;4 consists of fractional linear transformations:
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3. LINEAR REPRESENTATION OF THE AUTOMORPHISM GROUPS

The construction from [6] and [7] can be used to give a linear representation of the
automorphism groups.

Let A be the 2-dimensional commutative algebra of 2 x 2 matrices of type W.
Then C"** can be equipped with a structure of an A-module: Let @ € A and
(6o, 8,,0;) € C* x C? x C", and, let {©y,0,,0;) be the 2 x 2 resp. n x 2 matrices
corresponding to (8,8;,6,). Then O acts on (O, ©;,0;) by matrix multiplication
(from the right).

By A* we denote the group /o_i;invertible elements of A and by €+ the factor
space under the action of 2A*. C**+? is a compact variety which can be considered as
a compactification of C*** by the embedding

(Z,W)~ (id, Z, W),

where Z, W are the matrices corresponding z, w.
Now, any automorphism of the quadrics from above can be represented as a linear
transformation of C"** in the following way:

90 — 00 - 211‘191 - (R + 1A/1)02,
0, — Co+ CAb,,
92 = p92a

where A is the the n x 2 matrix corresponding to the complex n-vector a, R is the
the 2 x 2 matrix corresponding to the real 2-vector r and (C, p) € G, 2.
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