# Holomorphic Automorphisms Of Quadrics Of Codimension 2 

Vladimir V. Ežov<br>Gerd Schmalz **

Oklahoma State University
Max-Planck-Institut für Mathematik
Department of Mathematics
Gottfried-Claren-StraBe 26
College of Arts and Sciences
Stillwater, Oklahoma 74078-0613
D-5300 Bonn 3

Germany

## U.S.A

**
Mathematisches Institut der
Universitát Bonn
Wegelerstrabe 10
5300 Bonn 1

Germany

# HOLOMORPHIC AUTOMORPHISMS OF QUADRICS OF CODIMENSION 2 

VLADIMIR V. EŽOV AND GERD SCHMALZ


#### Abstract

In this paper we prove that the automorphisms of a nondegenerate quadric of codimension 2 in $\mathbb{C}^{n+2}$ is a rational map of degree $\leq 2$ and give the explicit formulas for such automorphisms.


## 1. Introduction

H. Poincaré [9] proved in 1907 that any holomorphic automorphism of the sphere $S=\left\{(z, w) \in \mathbb{C}^{2}: \operatorname{Im} w=\bar{z} z\right\}$ preserving the origin is a fractional linear transformation

$$
\begin{align*}
z & \mapsto c(z+a w)(1-2 i \bar{a} z-(r+i \bar{a} a))^{-1}  \tag{1}\\
w & \mapsto \rho w(1-2 i \bar{a} z-(r+i \bar{a} a))^{-1},
\end{align*}
$$

where $a, c \in \mathbb{C}, r \in \mathbf{R}$, and $\rho=|c|^{2}$.
N. Tanaka [11] proved in 1962 the analogous result for any nondegenerate hyperquadric.

Nondegenerate hyperquadrics are the quadratic models of CR surfaces with nondegenerate vector-valued Levi form in $\mathbb{C}^{n+k}$ [2]:

$$
\begin{equation*}
Q=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{k}: \operatorname{Im} w^{\kappa}=\langle z, z\rangle^{\kappa}, \kappa=1, \ldots, k\right\} \tag{2}
\end{equation*}
$$

where $\langle z, z\rangle^{\kappa}$ are Hermitian forms in $\mathbb{C}^{n}$ with the properties:
i) $\langle z, b\rangle^{\kappa}=0$ for all $\kappa=1, \ldots, k, z \in \mathbb{C}^{n}$ implies $b=0$
ii) $\langle z, z\rangle^{\kappa}$ are linearly independent $\kappa=1, \ldots, k$.

Beloshapka proved that these properties are necassary and sufficient for having a finite dimensional automorphism group ([3]).

Since $Q$ is a homogeneous manifold (Aut $Q$ acts transitively via the transformations $z \mapsto p+z, w \mapsto q+w+2 i(z, p\rangle$ with $(p, q) \in Q)$ then Aut $Q \cong Q \times \operatorname{Aut}_{0} Q$, where Aut $_{0} Q$ is the isotropy group of a fixed point, say the origin.

Research of the first author was supported by Max-Planck-Institut Bonn.
Research of the second author was supported by Deutsche Forschungsgemeinschaft.

Using the reflection principle G.Henkin and A.Tumanov [8] proved that Aut ${ }_{0} Q$ consists of rational transformations.
V. Beloshapka [4] gave a description of the Lie algebra of the infinitesimal automorphisms of $Q$ and he proved also that the quadrics of codimension $k>2$ in general position are rigid, i.e. their isotropy groups consist of trivial automorphisms $z \mapsto c z$, $w \mapsto|c|^{2} w$ for some complex number $c$ (see [5]).

In the cases $n=k=2$ and $n=3, k=2$ any quadric is equivalent to one of a finite number of standard quadrics. The autors obtained in these cases the complete description of the automorphisms [6, 7].

For $k=2$ A.Abrosimov [1] discovered a sufficient condition for $\mathrm{Aut}_{0} Q$ to consist of linear transformations: if in some coordinates the operator $\left(H^{1}\right)^{-1} H^{2}\left(H^{j}\right.$ - the Hermitian matrix related to $\left.(z, z\rangle^{j}\right)$ has more than two different eigenvalues.

Recently, S. Shevchenko [10] has obtained a classification for quadrics of codimension 2 with respect to the the linear action of $G_{n, 2}=\operatorname{GL}(n, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{R})$ : $z \mapsto C z, w \mapsto \rho w, z \in \mathbb{C}^{n}, w \in \mathbb{C}^{2},(C, \rho) \in G_{2, n}$.

Using this result we complete the description of the automorphisms of nondegenerate quadrics of codimension 2 .

Since any autimorphism $\Phi \in \mathrm{Aut}_{0} Q$ can be represented as $\Phi=\Phi_{(C, \rho)} \circ \Phi_{i d}$, where $\Phi_{(C, \rho)} \in G_{n, 2}$ is a linear automorphism and $\Phi_{i d}$ has an identical projection of the differential at 0 on the complex tangent space, it is sufficient to describe the subgroup Aut ${ }_{0, i d}$ of automorphisms $\Phi$ preserving 0 and with $\left.d \Phi\right|_{T_{\mathbf{C}} M}=\mathrm{id}$.

We show below that any $\Phi \in \operatorname{Aut}_{0, i d}(Q)$ can be represented by a matrix analogue of the Poincaré formula (1) or it is fractional linear.

## 2. A Matrix Poincaré formula for $\mathrm{Aut}_{0, i d}(Q)$

According to the result of S . Shevchenko cited above, nondegenerate quadrics of codimension two have nonlinear automorphisms only in the following four cases:
(6)

$$
\begin{align*}
& H^{1}=\sum_{i=1}^{r} \epsilon_{i}\left|z^{i}\right|^{2}  \tag{3}\\
& H^{2}=\sum_{i=r+1}^{n} \epsilon_{i}\left|z^{i}\right|^{2} \text { (hyperbolic case) } \\
& H^{1}=\sum_{i=1}^{s} \epsilon_{i}\left|z^{2 i}\right|^{2}  \tag{4}\\
& H^{2}=\sum_{i=1}^{s} 2 \operatorname{Re} z^{2 i-1} \bar{z}^{2 i}+\sum_{i=2 s+1}^{n} \epsilon_{i}\left|z^{i}\right|^{2} \text { (parabolic case), } \\
& H^{1}=\sum_{i=1}^{n / 2} \operatorname{Re} z^{2 i-1} \bar{z}^{2 i}  \tag{5}\\
& H^{2}=\sum_{i=1}^{n / 2} \operatorname{Im} z^{2 i-1} \bar{z}^{2 i}(\text { elliptic case) }, \\
& H^{1}=\sum_{i=1}^{s} \operatorname{Re} z^{3 i-2} \bar{z}^{3 i-1}+\tilde{H}^{1}\left(z^{\prime}\right), \\
& H^{2}=\sum_{i=1}^{s} \operatorname{Re} z^{3 i-2} \bar{z}^{3 i}+\tilde{H}^{2}\left(z^{\prime}\right)(\text { null-case) },
\end{align*}
$$

where $\epsilon_{i} \in\{-1,1\}, z^{\prime}=\left(z^{3 s+1}, \ldots, z^{n}\right)$, and $\operatorname{det}\left(\lambda_{1} \tilde{H}^{1}+\lambda_{2} \tilde{H}^{2}\right) \not \equiv 0$.
Moreover, the dimension of the Lie algebras corresponding to Aut $\mathrm{o}_{0, i d}$ eaquals $2 n+2$ in the hyperbolic, elliptic and parabolic cases, and $2 s$ in the null-case.

In the elliptic, hyperbolic and parabolic cases the automorphisms are fractional quadratic transformations, given by a matrix Poincaré formula in the following way:
in the elliptic case we set:

$$
\begin{aligned}
Z & =\left(\begin{array}{cc}
z^{1} & -z^{2} \\
z^{2} & z^{1} \\
\cdots & \ldots \\
z^{n / 2-1} & -z^{n / 2} \\
z^{n / 2} & z^{n / 2-1}
\end{array}\right) \\
\bar{Z} & =\left(\begin{array}{cccc}
\bar{z}^{1} & -\bar{z}^{2} & \ldots & \bar{z}^{n / 2-1} \\
\bar{z}^{2} & \bar{z}^{1} & \ldots & -\bar{z}^{n / 2} \\
z^{n / 2} & \bar{z}^{n / 2-1}
\end{array}\right) \\
W & =\left(\begin{array}{cc}
w^{1} & -w^{2} \\
w^{2} & w^{1}
\end{array}\right) \\
\bar{W} & =\left(\begin{array}{cc}
\bar{w}^{1} & -\bar{w}^{2} \\
\bar{w}^{2} & \bar{w}^{1}
\end{array}\right)
\end{aligned}
$$

in the hyperbolic case:

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
z^{1} & 0 \\
\cdots & \ldots \\
z^{s} & 0 \\
0 & z^{s+1} \\
\cdots & \cdots \\
0 & z^{n}
\end{array}\right) \\
& \bar{Z}=\left(\begin{array}{cccccc}
\epsilon_{1} \bar{z}^{1} & \ldots & \epsilon_{s} \bar{z}^{s} & 0 & & 0 \\
0 & \ldots & 0 & \epsilon_{s+1} \bar{z}^{s+1} & \ldots & \epsilon_{n} \bar{z}^{n}
\end{array}\right) \\
& W=\left(\begin{array}{cc}
w^{1} & 0 \\
0 & w^{2}
\end{array}\right) \\
& \bar{W}=\left(\begin{array}{cc}
\bar{w}^{1} & 0 \\
0 & \bar{w}^{2}
\end{array}\right),
\end{aligned}
$$

and, in the parabolic case:

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
z^{1} & 0 \\
z^{2} & z^{1} \\
\cdots & \cdots \\
z^{2 s-1} & 0 \\
z^{2 s} & z^{2 s-1} \\
z^{2 s+1} & 0 \\
\cdots & \cdots \\
z^{n} & 0
\end{array}\right) \\
& \bar{Z}=\left(\begin{array}{cccccccc}
\epsilon_{1} \bar{z}^{1} & 0 & \ldots & \epsilon_{s} \bar{z}^{2 s-1} & 0 & 0 & \ldots & 0 \\
\bar{z}^{2} & \bar{z}^{1} & \ldots & \bar{z}^{2 s} & \bar{z}^{2 s-1} & \epsilon_{2 s+1} \bar{z}^{2 s+1} & \ldots & \epsilon_{n} \bar{z}^{n}
\end{array}\right) \\
& W=\left(\begin{array}{cc}
w^{1} & 0 \\
w^{2} & w^{1}
\end{array}\right) \\
& \bar{W}=\left(\begin{array}{cc}
\bar{w}^{1} & 0 \\
\bar{w}^{2} & \bar{w}^{1}
\end{array}\right) .
\end{aligned}
$$

Then the equation of $Q$ can be written

$$
\begin{equation*}
\frac{W-\bar{W}}{2 i}=\bar{Z} Z \tag{7}
\end{equation*}
$$

A complex n-vector $a$ will be be represented as a $2 \times n$ matrix like the corresponding $z$, and a real 2 -vector $r$ as a $2 \times 2$ matrix like the corresponding $w$.

Then the Poincare formula

$$
\begin{aligned}
Z & \mapsto(Z+A W)(\mathrm{id}-2 i \bar{A} Z-(R+i \bar{A} A) W)^{-1} \\
W & \mapsto W(\mathrm{id}-2 i \bar{A} Z-(R+i \bar{A} A) W)^{-1}
\end{aligned}
$$

describes Aut ${ }_{0, i d}$.
In the null-case Aut $_{0, \text { id }}$ consists of fractional linear transformations:

$$
\begin{aligned}
z^{3 k-2} & \mapsto \frac{z^{3 k-2}}{1-2 i \sum_{j=1}^{\&} a^{j} z^{3 j-2}} \\
z^{3 k-1} & \mapsto \frac{z^{3 k-1}+a^{k} w^{1}}{1-2 i \sum_{j=1}^{s} a^{j} z^{3 j-2}} \\
z^{3 k} & \mapsto \frac{z^{3 k}+a^{k} w^{2}}{1-2 i \sum_{j=1}^{s} a^{j} z^{3 j-2}} \text { for } k=1, \ldots, s \\
z^{k} & \mapsto \frac{z^{k}}{1-2 i \sum_{j=1}^{s} a^{j} z^{3 j-2}} \text { for } k=3 s+1, \ldots, n \\
w^{1} & \mapsto \frac{w^{1}}{1-2 i \sum_{j=1}^{!} a^{j} z^{3 j-2}} \\
w^{2} & \mapsto \frac{w^{2}}{1-2 i \sum_{j=1}^{s} a^{j} z^{3 j-2}}
\end{aligned}
$$

## 3. Linear representation of the automorphism groups

The construction from [6] and [7] can be used to give a linear representation of the automorphism groups.

Let $\mathfrak{A}$ be the 2 -dimensional commutative algebra of $2 \times 2$ matrices of type $W$. Then $\mathbb{C}^{n+4}$ can be equipped with a structure of an $\mathfrak{A}$-module: Let $\Theta \in \mathfrak{A}$ and $\left(\theta_{0}, \theta_{1}, \theta_{2}\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2} \times \mathbb{C}^{n}$, and, let $\left(\Theta_{0}, \Theta_{1}, \Theta_{2}\right)$ be the $2 \times 2$ resp. $n \times 2$ matrices corresponding to $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$. Then $\Theta$ acts on $\left(\Theta_{0}, \Theta_{1}, \Theta_{2}\right)$ by matrix multiplication (from the right).

By $\mathfrak{A}^{*}$ we denote the group of invertible elements of $\mathfrak{A}$ and by $\widehat{\mathbb{C}^{n+2}}$ the factor space under the action of $\mathfrak{A}^{*}$. $\widehat{\mathbb{C}^{n+2}}$ is a compact variety which can be considered as a compactification of $\mathbb{C}^{n+4}$ by the embedding

$$
(Z, W) \mapsto(\mathrm{id}, Z, W)
$$

where $Z, W$ are the matrices corresponding $z, w$.
Now, any automorphism of the quadrics from above can be represented as a linear transformation of $\mathbb{C}^{n+4}$ in the following way:

$$
\begin{aligned}
& \theta_{0} \mapsto \theta_{0}-2 i \bar{A} \theta_{1}-(R+i A \bar{A}) \theta_{2}, \\
& \theta_{1} \mapsto C \theta_{1}+C A \theta_{2}, \\
& \theta_{2} \mapsto \rho \theta_{2},
\end{aligned}
$$

where $A$ is the the $n \times 2$ matrix corresponding to the complex $n$-vector $a, R$ is the the $2 \times 2$ matrix corresponding to the real 2 -vector $r$ and $(C, \rho) \in G_{n, 2}$.

## References

1. A.B. Abrosimov, On local automorphisms of certain quadrics of codimension two (Russian), Mat. Zametki 52 (1992), no. 1, 9-14.
2. S. Baouendi, H. Jacobowitz, and F. Tréves, On the analyticity of CR mappings, Annals of Math. 122 (1985), no. 2, 365-4.
3. V.K. Beloshapka, Finite-dimensionality of the group of automorphisms of a real analytic surface, USSR Izvestiya 32 (1989), no. 2, 437-442.
4. $\qquad$ A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space, Math. Notes 47 (1990), 239-242.
5. $\qquad$ , Automorphisms of real quadrics of high codimension and normal forms of CR manifolds (Russian), Ph.D. thesis, Steklov Mathematical Institute Moscow, 1991.
6. V.V. Ežov and G. Schmalz, Biholomorphic automorphisms of Siegel domains in $\mathbb{C}^{4}$, preprint, Max-Planck-Institut für Mathematik Bonn, 1992.
7. , Holomorphic automorphisms of quadrics of codimension 2 in $\mathbb{C}^{5}$, preprint, Max-PlanckInstitut für Mathematik Bonn, 1993.
8. G.M. Henkin and A.E. Tumanov, Local characterization of holomorphic automorphisms of Siegel domains, Funkt. Analysis 17 (1983), no. 4, 49-61.
9. H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Math. Palermo (1907), 185-220.
10. S. Shevchenko, Description of the algebra of infinitesimal automorphisms of a $C R$ quadric of codimension two (Russian), Mat. Sbornik to appear (1993).
11. N.J. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J.Math.Soc.Japan 14 (1962), 397-429.
(V.V. Eżov) Oklahoma State University, Department of Mathematics, College of Arts and Sciences, Stillwater, Oklahoma 74078-0613

E-mail address: ezhov@hardy.math.okstate.edu
(G. Schmalz) Mathematisches Institut der Universität Bonn, Wegelerstrasse 10, D-5300 Bonn-1

E-mail address: schmalz@mpim-bonn.mpg.de

