Holomorphic Automorphisms Of Quadrics Of Codimension 2

Vladimir V. Ežov *
Gerd Schmalz **

Oklahoma State University
Department of Mathematics
College of Arts and Sciences
Stillwater, Oklahoma 74078-0613

U.S.A

Mathematisches Institut der Universität Bonn Wegelerstraße 10 5300 Bonn 1

Germany

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

		,	

HOLOMORPHIC AUTOMORPHISMS OF QUADRICS OF CODIMENSION 2

VLADIMIR V. EŽOV AND GERD SCHMALZ

ABSTRACT. In this paper we prove that the automorphisms of a nondegenerate quadric of codimension 2 in \mathbb{C}^{n+2} is a rational map of degree ≤ 2 and give the explicit formulas for such automorphisms.

1. Introduction

H. Poincaré [9] proved in 1907 that any holomorphic automorphism of the sphere $S = \{(z, w) \in \mathbb{C}^2 : \text{Im } w = \bar{z}z\}$ preserving the origin is a fractional linear transformation

(1)
$$z \mapsto c(z+aw)(1-2i\bar{a}z-(r+i\bar{a}a))^{-1}$$
$$w \mapsto \rho w(1-2i\bar{a}z-(r+i\bar{a}a))^{-1},$$

where $a, c \in \mathbb{C}$, $r \in \mathbb{R}$, and $\rho = |c|^2$.

N. Tanaka [11] proved in 1962 the analogous result for any nondegenerate hyperquadric.

Nondegenerate hyperquadrics are the quadratic models of CR surfaces with non-degenerate vector-valued Levi form in \mathbb{C}^{n+k} [2]:

(2)
$$Q = \{(z, w) \in \mathbb{C}^n \times \mathbb{C}^k : \operatorname{Im} w^{\kappa} = \langle z, z \rangle^{\kappa}, \ \kappa = 1, \dots, k\},\$$

where $(z, z)^n$ are Hermitian forms in \mathbb{C}^n with the properties:

i)
$$(z,b)^{\kappa} = 0$$
 for all $\kappa = 1, \ldots, k, z \in \mathbb{C}^n$ implies $b = 0$

ii)
$$(z,z)^{\kappa}$$
 are linearly independent $\kappa=1,\ldots,k$.

Beloshapka proved that these properties are necassary and sufficient for having a finite dimensional automorphism group ([3]).

Since Q is a homogeneous manifold (Aut Q acts transitively via the transformations $z \mapsto p + z$, $w \mapsto q + w + 2i\langle z, p \rangle$ with $(p,q) \in Q$) then Aut $Q \cong Q \times \text{Aut}_0 Q$, where Aut₀ Q is the isotropy group of a fixed point, say the origin.

Research of the first author was supported by Max-Planck-Institut Bonn.

Research of the second author was supported by Deutsche Forschungsgemeinschaft.

Using the reflection principle G.Henkin and A.Tumanov [8] proved that Aut₀ Q consists of rational transformations.

V. Beloshapka [4] gave a description of the Lie algebra of the infinitesimal automorphisms of Q and he proved also that the quadrics of codimension k > 2 in general position are rigid, i.e. their isotropy groups consist of trivial automorphisms $z \mapsto cz$, $w \mapsto |c|^2 w$ for some complex number c (see [5]).

In the cases n = k = 2 and n = 3, k = 2 any quadric is equivalent to one of a finite number of standard quadrics. The autors obtained in these cases the complete description of the automorphisms [6, 7].

For k=2 A.Abrosimov [1] discovered a sufficient condition for $\operatorname{Aut}_0 Q$ to consist of linear transformations: if in some coordinates the operator $(H^1)^{-1}H^2$ $(H^j$ - the Hermitian matrix related to $(z,z)^j$) has more than two different eigenvalues.

Recently, S. Shevchenko [10] has obtained a classification for quadrics of codimension 2 with respect to the linear action of $G_{n,2} = GL(n,\mathbb{C}) \times GL(2,\mathbb{R})$: $z \mapsto Cz, w \mapsto \rho w, z \in \mathbb{C}^n, w \in \mathbb{C}^2, (C,\rho) \in G_{2,n}$.

Using this result we complete the description of the automorphisms of nondegenerate quadrics of codimension 2.

Since any autimorphism $\Phi \in \operatorname{Aut}_0 Q$ can be represented as $\Phi = \Phi_{(C,\rho)} \circ \Phi_{id}$, where $\Phi_{(C,\rho)} \in G_{n,2}$ is a linear automorphism and Φ_{id} has an identical projection of the differential at 0 on the complex tangent space, it is sufficient to describe the subgroup $\operatorname{Aut}_{0,id}$ of automorphisms Φ preserving 0 and with $d\Phi|_{T_{\mathbb{C}M}} = \operatorname{id}$.

We show below that any $\Phi \in \operatorname{Aut}_{0,id}(Q)$ can be represented by a matrix analogue of the Poincaré formula (1) or it is fractional linear.

2. A Matrix Poincaré formula for $Aut_{0,id}(Q)$

According to the result of S. Shevchenko cited above, nondegenerate quadrics of codimension two have nonlinear automorphisms only in the following four cases:

(3)
$$H^{1} = \sum_{i=1}^{r} \epsilon_{i} |z^{i}|^{2},$$

$$H^{2} = \sum_{i=r+1}^{n} \epsilon_{i} |z^{i}|^{2} \text{ (hyperbolic case)},$$

$$(4) \qquad H^{1} = \sum_{i=1}^{s} \epsilon_{i} |z^{2i}|^{2},$$

$$H^{2} = \sum_{i=1}^{s} 2 \operatorname{Re} z^{2i-1} \bar{z}^{2i} + \sum_{i=2s+1}^{n} \epsilon_{i} |z^{i}|^{2} \text{ (parabolic case)},$$

$$(5) \qquad H^{1} = \sum_{i=1}^{n/2} \operatorname{Re} z^{2i-1} \bar{z}^{2i},$$

$$H^{2} = \sum_{i=1}^{n/2} \operatorname{Im} z^{2i-1} \bar{z}^{2i} \text{ (elliptic case)},$$

$$(6) \qquad H^{1} = \sum_{i=1}^{s} \operatorname{Re} z^{3i-2} \bar{z}^{3i-1} + \tilde{H}^{1}(z'),$$

$$H^{2} = \sum_{i=1}^{s} \operatorname{Re} z^{3i-2} \bar{z}^{3i} + \tilde{H}^{2}(z') \text{ (null-case)},$$

where
$$\epsilon_i \in \{-1,1\}, z' = (z^{3s+1},\ldots,z^n)$$
, and $\det(\lambda_1 \tilde{H}^1 + \lambda_2 \tilde{H}^2) \not\equiv 0$.

Moreover, the dimension of the Lie algebras corresponding to $Aut_{0,id}$ eaquals 2n+2 in the hyperbolic, elliptic and parabolic cases, and 2s in the null-case.

In the elliptic, hyperbolic and parabolic cases the automorphisms are fractional quadratic transformations, given by a matrix Poincaré formula in the following way:

in the elliptic case we set:

$$Z = \begin{pmatrix} z^{1} & -z^{2} \\ z^{2} & z^{1} \\ \dots & \dots \\ z^{n/2-1} & -z^{n/2} \\ z^{n/2} & z^{n/2-1} \end{pmatrix}$$

$$\bar{Z} = \begin{pmatrix} \bar{z}^{1} & -\bar{z}^{2} & \dots & \bar{z}^{n/2-1} & -\bar{z}^{n/2} \\ \bar{z}^{2} & \bar{z}^{1} & \dots & \bar{z}^{n/2} & \bar{z}^{n/2-1} \end{pmatrix}$$

$$W = \begin{pmatrix} w^{1} & -w^{2} \\ w^{2} & w^{1} \end{pmatrix}$$

$$\tilde{W} = \begin{pmatrix} \bar{w}^{1} & -\bar{w}^{2} \\ \bar{w}^{2} & \bar{w}^{1} \end{pmatrix},$$

in the hyperbolic case:

$$Z = \begin{pmatrix} z^{1} & 0 \\ \dots & \dots \\ z^{s} & 0 \\ 0 & z^{s+1} \\ \dots & \dots \\ 0 & z^{n} \end{pmatrix}$$

$$\bar{Z} = \begin{pmatrix} \epsilon_{1}\bar{z}^{1} & \dots & \epsilon_{s}\bar{z}^{s} & 0 & \dots & 0 \\ 0 & \dots & 0 & \epsilon_{s+1}\bar{z}^{s+1} & \dots & \epsilon_{n}\bar{z}^{n} \end{pmatrix}$$

$$W = \begin{pmatrix} w^{1} & 0 \\ 0 & w^{2} \end{pmatrix}$$

$$\bar{W} = \begin{pmatrix} \bar{w}^{1} & 0 \\ 0 & \bar{w}^{2} \end{pmatrix},$$

and, in the parabolic case:

$$Z = \begin{pmatrix} z^{1} & 0 \\ z^{2} & z^{1} \\ \dots & \dots \\ z^{2s-1} & 0 \\ z^{2s} & z^{2s-1} \\ z^{2s+1} & 0 \\ \dots & \dots \\ z^{n} & 0 \end{pmatrix}$$

$$\bar{Z} = \begin{pmatrix} \epsilon_{1}\bar{z}^{1} & 0 & \dots & \epsilon_{s}\bar{z}^{2s-1} & 0 & 0 & \dots & 0 \\ \bar{z}^{2} & \bar{z}^{1} & \dots & \bar{z}^{2s} & \bar{z}^{2s-1} & \epsilon_{2s+1}\bar{z}^{2s+1} & \dots & \epsilon_{n}\bar{z}^{n} \end{pmatrix}$$

$$W = \begin{pmatrix} w^{1} & 0 \\ w^{2} & w^{1} \end{pmatrix}$$

$$\bar{W} = \begin{pmatrix} \bar{w}^{1} & 0 \\ w^{2} & \bar{w}^{1} \end{pmatrix}.$$

Then the equation of Q can be written

$$\frac{W - \bar{W}}{2i} = \bar{Z}Z$$

A complex n-vector a will be be represented as a $2 \times n$ matrix like the corresponding z, and a real 2-vector r as a 2×2 matrix like the corresponding w.

Then the Poincaré formula

$$Z \mapsto (Z + AW)(\mathrm{id} - 2i\bar{A}Z - (R + i\bar{A}A)W)^{-1}$$

$$W \mapsto W(\mathrm{id} - 2i\bar{A}Z - (R + i\bar{A}A)W)^{-1}$$

describes Auto,id.

In the null-case Aut_{0,id} consists of fractional linear transformations:

$$z^{3k-2} \mapsto \frac{z^{3k-2}}{1 - 2i \sum_{j=1}^{s} a^{j} z^{3j-2}}$$

$$z^{3k-1} \mapsto \frac{z^{3k-1} + a^{k} w^{1}}{1 - 2i \sum_{j=1}^{s} a^{j} z^{3j-2}}$$

$$z^{3k} \mapsto \frac{z^{3k} + a^{k} w^{2}}{1 - 2i \sum_{j=1}^{s} a^{j} z^{3j-2}} \text{ for } k = 1, \dots, s$$

$$z^{k} \mapsto \frac{z^{k}}{1 - 2i \sum_{j=1}^{s} a^{j} z^{3j-2}} \text{ for } k = 3s + 1, \dots, n$$

$$w^{1} \mapsto \frac{w^{1}}{1 - 2i \sum_{j=1}^{s} a^{j} z^{3j-2}}$$

$$w^{2} \mapsto \frac{w^{2}}{1 - 2i \sum_{j=1}^{s} a^{j} z^{3j-2}}.$$

3. Linear representation of the automorphism groups

The construction from [6] and [7] can be used to give a linear representation of the automorphism groups.

Let \mathfrak{A} be the 2-dimensional commutative algebra of 2×2 matrices of type W. Then \mathbb{C}^{n+4} can be equipped with a structure of an \mathfrak{A} -module: Let $\Theta \in \mathfrak{A}$ and $(\theta_0, \theta_1, \theta_2) \in \mathbb{C}^2 \times \mathbb{C}^2 \times \mathbb{C}^n$, and, let $(\Theta_0, \Theta_1, \Theta_2)$ be the 2×2 resp. $n \times 2$ matrices corresponding to $(\theta_0, \theta_1, \theta_2)$. Then Θ acts on $(\Theta_0, \Theta_1, \Theta_2)$ by matrix multiplication (from the right).

By \mathfrak{A}^* we denote the group of invertible elements of \mathfrak{A} and by $\widehat{\mathbb{C}^{n+2}}$ the factor space under the action of \mathfrak{A}^* . $\widehat{\mathbb{C}^{n+2}}$ is a compact variety which can be considered as a compactification of \mathbb{C}^{n+4} by the embedding

$$(Z, W) \mapsto (\mathrm{id}, Z, W),$$

where Z, W are the matrices corresponding z, w.

Now, any automorphism of the quadrics from above can be represented as a linear transformation of \mathbb{C}^{n+4} in the following way:

$$\begin{array}{lll} \theta_0 & \mapsto & \theta_0 - 2i\bar{A}\theta_1 - (R + iA\bar{A})\theta_2, \\ \theta_1 & \mapsto & C\theta_1 + CA\theta_2, \\ \theta_2 & \mapsto & \rho\theta_2, \end{array}$$

where A is the the $n \times 2$ matrix corresponding to the complex n-vector a, R is the the 2×2 matrix corresponding to the real 2-vector r and $(C, \rho) \in G_{n,2}$.

REFERENCES

- 1. A.B. Abrosimov, On local automorphisms of certain quadrics of codimension two (Russian), Mat. Zametki 52 (1992), no. 1, 9-14.
- 2. S. Baouendi, H. Jacobowitz, and F. Tréves, On the analyticity of CR mappings, Annals of Math. 122 (1985), no. 2, 365-4.
- 3. V.K. Beloshapka, Finite-dimensionality of the group of automorphisms of a real analytic surface, USSR Izvestiya 32 (1989), no. 2, 437-442.
- 4. _____, A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space, Math. Notes 47 (1990), 239-242.
- 5. _____, Automorphisms of real quadrics of high codimension and normal forms of CR manifolds (Russian), Ph.D. thesis, Steklov Mathematical Institute Moscow, 1991.
- 6. V.V. Ežov and G. Schmalz, Biholomorphic automorphisms of Siegel domains in \mathbb{C}^4 , preprint, Max-Planck-Institut für Mathematik Bonn, 1992.
- Holomorphic automorphisms of quadrics of codimension 2 in C⁵, preprint, Max-Planck-Institut für Mathematik Bonn, 1993.
- 8. G.M. Henkin and A.E. Tumanov, Local characterization of holomorphic automorphisms of Siegel domains, Funkt. Analysis 17 (1983), no. 4, 49-61.
- 9. H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Math. Palermo (1907), 185-220.
- 10. S. Shevchenko, Description of the algebra of infinitesimal automorphisms of a CR quadric of codimension two (Russian), Mat. Shornik to appear (1993).
- 11. N.J. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J.Math.Soc.Japan 14 (1962), 397-429.
- (V.V. Ežov) OKLAHOMA STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCES, STILLWATER, OKLAHOMA 74078-0613

 E-mail address: ezhov@hardy.math.okstate.edu
- (G. Schmalz) Mathematisches Institut der Universität Bonn, Wegelerstrasse 10,

E-mail address: schmalz@mpim-bonn.mpg.de

D-5300 Bonn-1