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In classical Iwasawa theory ohe considers modules over the

completed group ring A = Zp[[G]] for G ~ ~ ,and one oftenp

studies these up to quasi-isomorphism, i.e., by neglecting finite

G-modules. In this paper we propose some methods for the study

of A-modules up to isomorphism, which at the same time work for

more general groups G (where a good structure theory in terms

of quasi-isomorphisms is missing anyway). A future application

we have'in mind is the investigation of Galois extensions defined

by torsion points of abelian varieties. Such extensions have

compact p-adic Lie groups as Galois groups, and we show at

several places that the theory works very nicely for these.

Abasie tool is the homotopy theory for A-modules, recalled

in § 1. It amounts to considering A-modules up to projective

factors (which is no serious restrietion in view of the Krull-

Schmidt theorem), and has a formalism quite analogous to the one

in topology: one has a loop space functor 0 _, a suspension E,

fibrations, cofibrations etc., and a certain analogue of homotopy

groups in form of the A-modules r
:= ExtA(M,A)

There is also an analogue of the Postnikov tower describing

howa module M is "g 1ued together" from the modules Er(M)

Instead of describing this in general, we have described the first

step in 1.9, and the result for G = X in § 3: in this ease a

p EO(M) ~_ ArankAM ,A-module M is determined up to isomorphism by --

E1 (M), E
2

(M) , and a elass in Ext~ (E 2 (M) ,E 1 (M)) . We then diseuss

the modules Er(M) in same detail. Für example, we express various

properties of M - like the existence of finite submodules or the

freeness cf M/TorAM - in terms of the Er(M) . We also give some
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formulae for the Er, in terms of inverse limits often encountered

in the applications.

These formulae are derived from a discussion for general

G in § 2, where we relate the Er to the IIdualizing modules"

D (A) = lim Hr(U,A)* (the limits running over the open subgroups
r

->
U of G) introduced by Tate for the study of duality theorems

for profinite groups.

In the last three sections we give some applications to Galois

theoretic Iwasawa modules. We start in § 4 with a general result

on profinite groups G of p-cohomologica1 dimension two. If

H ~ G is a closed normal subgroup and G = GIN , we show how to

describe the J\-module HI [H , H] (p) 'fn-·'terms of the dualizing mödule

E(P) (G) =
2

m
1im D

2
(Z/p )

->
m

of G .

In § 5 this is applied to study the A-module structure of

certain abelian Galois groups over K , for a Galois extension

K/k of number fields with Galois group G. The main results are:

Theorem. If k is loeal, then the J\-module X = Gal(M/K), M

the maximal abelian pro-p-extension of K, is determined by

~K(P) - the group of p-power roots of unity in K - and a canonical

class
2 v

X E H (G , II K (p)) ,( whe re
v

denotes the Pontrjagin dual) .

Theorem. If k is global, let S ~ {plp} be a finite set of

primes in k, let K/k be S-ramified, and let
S SK (resp. M )

be the maximal (resp. maximal abelian) S-ramified pro-p-extension

of K. Then the A-module Xs = Gal(MS/K) i5 determined by
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( ) Gal (KS/K)
W = E P - where E(P)

S 2 2

Gal(KS/k) - and a eanonieal class

15 the dualizing module of

2 vX E: H (G,Ws ) .

The loeal theorem in partieular gives a complete description
m

of the Galois module structure of lim K x /K x p for a finite
<--

rn
Galois extension K/k and contains all previous results on this

subject due to Iwasawa, Borevit, ... (see [J1] for references).

In the global case we show that Ws is closely related to

X' = Gal(L'/K) , where LI/K is the maximal unramified abelian

pro-p-extension in which every prime above p is completely

decomposed. For example, if k(~ 00) c K , then we get an exact
p

sequence

vo --> Xl (-1) --> Ws --> ~ Ind~· (Z (-1 ))
PES p. P

-> Z' (-1)
P

-> 0 ,

In § 6 we derive same exact sequences for

~where G p ~ G is a decomposition group at p and Ind
G

is the
v 1 ;JJ

compact induction. If K = k(~poo) , then WS.~· E (Xs ) , and by the
1 o~ 0

quasi-isomorphism TorA(XS ) ~ E (Xs ) (where M is M with the

newaction y·m = y-1 m for y E G and m E M ) we reobtain the

known relations between the characteristic invariants' of Xs and

Xl (see [W1] 7.10). The above result makes this precise up to

isomorphism and shows how to extend it to arbitrary G .

K = k(~ ) , which
. 00
p

were obtained by K. Wingberg.[w1] up to quasi-isomorphism. As

corollaries we qet results on the A-torsion of Xs for vary1ng

Sand on the Galois structure of the S-units.

I thank Kay Wingberg for several interesting discussions and

the MPI at Bonn for hospitality and financial support during the
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preparation of the final version of this paper. My investigations

on the homotopy theory and first versions of the theorems cited

above already go back to 1984, when I stayed at the Harvard

University, supported by a grant from the DFG. It is perhaps

not too late to thank both institutions warmly. Also, it is a

pleasure to thank Ted Chinburg for stimulating discussions during

that time.
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§ 1 Hornotopy of modules
,

A homotopy theory for modules over a ring was introduced by

Eckmann and Hilton [Hi], and it was further used and developed

by Auslander and Bridger [AB], and by the author [J2]. We recall

the basic definitions and results.

Let A be a noetherian ring with unit - not necessarily

commutative. An exarnple we have in mind is the completed group

ring Z [[G]] of a p-adic Lie group G [La] 2.2.4 •. AII
P

A-modules considered are assumed to be finitely generated.

1 . 1. Def ini tion A morphism f: M ~ N of i\-modules is homo-

topic to zero, if it factorizes

f:M~P~.N

through a projective module P. Two morphisms f, gare homo-

topic (f '.:::. g) , if f - g is homotopic to zero. Let [M I N] =

== HomA(M , N) / {f ~. O} be the group of homotopy classes of rnorphisms

from M to N, and let Ho(J\) be the category, whose objects

are (finitely generated) A-modules and whose morphism sets are

given by HOID
Hö

(}\) CM, N) == [M, N] , that i5, the category of

nA-modules up to homotopy".

1 .2. Proposition Let M, N be A-modules and let f: M ----+ N

be a i\-rnorphism.
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and i
R)

i
isa) f ,.... 0 if only if f* : Ext A (N , --.-J>- Ext1\ (M, R)

zero for all A-modules R and all i ~ 1 (it suffiees

to consider i = 1)

b) f is a homotopy equivalenee if and only if

i i
f* : ExtA(N , R) ~ ExtA.(M , R) is an isomorphism for all

A-modules Rand all i ~ 1 (it suffices to eonsider i = 1)

c) M,.... N (i.e., M and N are homotopy equivalent, i.e.,

isomorphie in Ho(A)) if and only if M @ P ~ N ~ Q with

projeetive A-modules P and Q. In particular, M

and only if M is projeetive.

o if

As a first application of the eoncept of homotopy, we get

the following generalization.of Sehanuel's lemma.

1 .3. Lemma Let f, g : M ~ N be surj ective 1\ -morphi'sms. If

f ~ g , then ker f ker g .

Proof Let f - g = TI 0 tP: M~ P 4 N with P projective, then

we get a eommutative· exact diagrarn

0 ~K M EB P
f+TI > N ~ 0~

1] 1] <P

O~L~NEB P
g+1T

N --.-J>- 0>



- 7 -

where 4>: (rn, p) ~ (rn, p + <.p (rn) ) is the rnapping cylinder of

<.P • But K ~ ker f e P by the cornrnutative exact diagram

o~ ker f M
f ) N -)0- 0~

f I 11

o~ k --? M (1)' P
f+TT

> N ---->- 0

1 1
p = p

and similarly L ~ P m ker g .

The following groups will become important in the sequel.

Their role is similar to that of the homotopy groups in topology.

1.4. Definition Let EO(M) = M+ = HomA(M, A) be the A-dual,

and more generally, let Ei(M) = ExtÄ(M, A) for i ~ 0 . If M

is a left A-module, say, these are right A-modules by

functoriality and the right A-structure of the bi-module A.

The following functors are well-defined (only) up to homo-

topy, i.e., as functors from Ho(A) to Ho(A) .

1.5. Definition and theorem

a) The loop space functor M~> ~M is defined as folIows:
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Ch j t ' P ~ M wl.'thoose a sur ec l.on ~ p projective.

ii) Let n = ker n •

Thus, SlM is characterized by an exact sequence

(1.5.1) o~nM~p~M~O

with P projective (i.e., SlM is 11 the 11 first syzygy-module).

b) Sl has a left adjoint L: (i.e., [EM, N] = [M, r2N] functo-

rially in M and N)

is defined as follows:

the suspension functor M ~> L:M which

i) Choose a surjection P ~ M+ with P projective

i1) Let
~M ++ rr+ + ++

L:M = Coker(M ~ M ~ P ) ,where ~M': M --+ M

is the canonical map into the bi-dual.

One has N ~ L:M if and_~nly if E
1

(N) = 0 and there is an

exact sequence

(1.5.2)

w1th ker ~ = Tl (M) = ker ~M •

c) The transpose DM 1s def1ned as follows

i) Choose exact with projectives
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and p ..
o

1i) Let DM

In other words, DM is defined by the exact sequence

(1.5.3) ~ DM ---->- 0 .

Then one has D
2 = Id and DQ = ID (hence also DE = ~D)

For the proofs one uses the defining properties of pro

jectives and the facts that for a projective P the module p+

++
is also projective and ~p: P --> P is an isomorphism. For

example, the last facts immediately imply D2 = Id , and the

functoriality of n is obtained by a commutative diagram

0 ~ QM ---->- P ----+- M ~ 0

I I

IS1f I [ f
I I, 'f

O~ rlN ~ Q ---->- N ~ 0

where the dotted lifting of f exists by the projectivity of

P , and S1f is the induced map.

The reader should be aware of the fact that D and the Ei
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interchange left and right A-action. In the- case of a group

ring there is a natural equivalence between left and right

modules, induced by the involution of the group ring given by

passing to the inverses of the group elements. Equivalently, we

may in this case use the two left A-module structures of A

to give the Ei(M) and hence DM left A-module structures

again, if M is a left A-module, say_ In general this is not

possible, but for the theory it is not necessary either, and in

the following we shall not specify, if we are talking of left or

right A-modules or if a functor interchanges left and right

A-action . This would only cause notational complications, and

it will always be clear where one had to insert "left" or

"right".

Recall that the projective dimension pdA(M) of a A-module

M is the infimum over the numbers n ~ 0 such that there exists

aresolution of length n

o~ Pn --+ Pn-1 --7 ••••. --+ P 1 --+ Po --7 M ~ 0

with projectives P
i

(with the usual convention that inf.r/J. = (0)

1.6. Theorem The functor M ~> E1 (M) induces an equivalence

of categories

M

{

A-modules

pdA(M) .:s. 1

with }

up to homotopy {

A-mOdules

with N+ =
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Proof One simply observes that D gives an essential inverse:

Namely, for a module M with pd A (M) < 1 one obviously has-

DM ::: E 1 (M) and hence DE 1 (M) '" DDM '" M . Moreover, one has

E 1 (M) + = 0 in view of 1.5.3. On the other hand, if N+ = 0 , then

pd A (DN) < 1 by 1 .5.3 and hence E1 (DN) '" DDN '" N by the above.- -
It remains to remark that for A-modules N, NI with N+ = 0

one obviously has Hom
A

(N , N') m [N, NI] .

1.7. Remark This theorem generalizes and sharpens theorem 2.1 in

[J1] (cf. 2.5 below) and should be compared with section VII § 3

in [Kun].

1.8. Lemma and Definition Let T1 (M) = ker ~M as above and

T2 (M) = eoker ~M ' so that

(1.8.1)

is exact. Then canonically T
1

(M) - E 1 (DM) and T
2

(M) - E2 (DM)

In view of this let

(1.8.2) i '= 1 •

(It is clear that Ei(N) only depends on N up to homotopy for

i '= 1) •

The proof is straightforward, compare [HS] IV "ex. 7.3. We"are

now ready to answer the following question. Suppose we know nM
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or EM for a A-module M. Obviously some information on M

is lost (e.g., nM ~ 0 if pdA(M) ~ 1) ; how can we recover M

itself? Theorem 1.6 teIls us that at least we have to invoke

E
1

(M) (or, dually, Tl (M)) ; the general answer is:

1.9. Theorem A A-module M is determined up to homotopy by

a) L:M , Tl (M) , and a class

b) nM , 111
E (M) , and a class VJ

M
E ExtJ\ (DEnM , E (M)) .

(Note that these Ext-groups in the first variable only depend on

modules up to homotopy) .

Proof

a) Let XM be the class of the extension

(1.9.1) o~ Tl (M) ~ M~ Im ~M --7 0 ,

via the canonical identification

(1.9.2) Im ~M

which is obvious from the definitions of E and n (let us

remark at this place that under this identification, the map

M~ Im ~M is the adjunction map M --7 nL:M) . Since M is
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1

(M)

the result follows.
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Im ~M and the extension class. of 1.9.1,

b) 1s obtained" by dualizing, i.e., by applying the above to

DM . Note that M is determined by DM up to hom~topy (this is

not true for M+ ! ) and that we have T1(DM) = E1 (M) and

r2EDM = DLr2M , so that we define ljJ = XDM
.

M

For the understanding of this theorem it should be added that

no information is lost in passing from nM (respectively, EM)

to EnM (respectively, nEM) , by the following result.

1.10. Theorem The functors E and. n induce quasiinverse equi-

valences of categories

{

A-modules 'M

up to homotopy

with

{

A-modUles N

. up to homotopy

with

Proof Note that for any A-module M we have E1 (EM) = 0 by

1.5 b), and hence T1 (nM) = E1
(DnM) = E1 (EDM) = 0 . The result now

•
easily follows from the characterization of EM in 1.5 b).

1.11. Corollary

a) The following' statements are equivalent:

1i) M is submodule of a free module.



- 14 -

1ii) M ~ ON for some A-module N.

iv) The adjunction map M~ nEM is a homotopy equivalence.

b) "The following statements are equivalent:

i) E 1 (N) = 0 •

1i) N IM for sorne A-module N.

iii) The adjunction rnap EnN ~ N 1s a homotopy equivalence.

1.12. Remark We have worked w1th finitely generated modules to

ensure that p+ is again projective and that ~p is an 1so

rnorphism for project1ve P. We have assumed A to be noetherian

to make sure that M+ QM etc. are finitely generated again.

For non-noetherian A one forrnally obtains the same results, if

one ensures that all considered modules are finitely generated.

For exarnple, D is defined for finitely presented A-modules.
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§ 2. Group rings of profinite groups

For a profinite group G define the completed group ring

over Z byp

A = A(G) =:1 [[G]]-= lim~ [G/U]
p , <-.- P

U<:.IG

where U runs over all open normal subgroups of G.

For a closed subgroup S S G and a discrete G-module A

Tate has defined the groups

o (S,A) = lim Hr(U,A)*
r ->

U;;;;S

(r ~ 0)

where B* = Horn(B,W/~) for an abelian group B, and where the
,

limit runs over all open subgroups U of G containing S, with

transition maps the transposes of the corestriction map

([81] 1-79 ff.). This i6 contravariant in A , and if S is a

normal subgroup, then D (S,A)
r

is a discrete GIS-module in a

natural way. In particular, one has the discrete G-module

(r ;;;; 0)

In the following assume that A is noetherian. For example,

G can be a profinite (= compact) Lie group over <D ([ La ] V 2. 2 • 4) •
P

Then a finitely generated A-module M has a natural compact

topology as a pseudo-compact module over the pseudo-compact

algebra A (cf. [Br]), and its Pontrjagin dual MV =

= .lim MU* (where U runs over the open subgroups of
->

U

Horn t(M,W Iz )con p p

G and Mu
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is the module of coinvariants) is a discrete G-module. The

functörs M~ MV and A~ AV
are quasi-5nverse equi

valences b~tween the category of ps~~do-compact A-modules a~~

the· category of discrete, Z -torsion G-modules ([Br]) .. Here A
V

p , ,

is the Pontrjagin dual of A, i.e. AV = A* , with-the topology

of pointwise convergence. FQr an abelian group Band n E ~

let B/n = B/nB and B = {b E Blnb = O} •
n

2.1 Theorem. Let M be a finitely generated A-module.

a) There are functorial exact sequences

for all r ~ 0 , where by definition D_
1

= 0 •

b) There is a long exact sequence

... ~ Er(M) v ~ lim D ( m(M
v»

_> r p
l1l

functorial in M and in G .

v m r-1 v
~ lim D 2(M /p ) ~ E (M) ~ ... ,

_> r-

In

Proof. We start by observing that M~ MV maps projectives

to injectives and that A~ A* carries injectives to projectives,

since A
V

~ IndG(W /~ ) (the induced module). Furthermore we havep p

canonically

lim HOmA(M'~p[G/U])
<-.-
U<JG

~ lirn HO~ [-G/U] (MU,:ltp[G/U])
<- p
U<JG
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- 1im HOrnz (MU'~ )
<- P P
U4G

where the limit is taken via the norms. Hence

(M+)V - lim HolTlz (~,Z )v
-> P P
U4G

- lim ~ @:I; W /Z
-.> p p P
U<JG

where we have used the relation

(lim HOmx (N/pm,Z/pml)V ~ 1im N/pm
<- p ->

m m

for a finitely generated Z -module N . We may rewrite this asp

(2.1.1)

(2.1.2)

or as

= 1 im (1 im ((: (M/pm) v) u) * \)
-> \_>

m U<1G

In other words, 2. 1 . 1 describes MI~ (M+) v as the composi tion

of the right exact functors M~ DO(M v ) and N~ N ~~ W /Z ,
. p p p

while 2.1.2 describes it as the composition of the right exact

functors M~ C (M) and (Mm)~ lim DO{Mm
v) , where C

-p -> -p

m
sends M to the inductive system (M/pm) , with transition maps

/ m M/prn+1M p -> induced by the p-rnultiplication. Now the r-th

is M~ ° (Mv) , and the
r
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first functors in the cornpositions rnap projectives to acyclics

for the second functors. Since
v

MI~ M and filtering direct

limits are exact, we get two Grothendieck spectral sequences of

hornological type

Z v
= Tor P(D (M ),m IZ )

r s P P
~ Er+s

= Er+s(M)v

= lim D (LsC (M)v)
r -P->

n

~ Er+s
= Er+s(M) v .

The exact sequences in a) and b) follow from this, since

N 0
Z

<D 17J. r ;;;; 0

:z P P P

Tor P(N,W Iz ) ;;;; Torz ~·fN) r = 1
r P P

P
0 r ;;: 2 ,

and the left derivatives of C are
-P

(MIpm) s = 0

L Sc (M) = ( M) s = 2
-p m

p

0 s ;;;: 2

since projective modules are torsion-free. In b) we also use the

fact that and ( M)v = Mv/pm
m

p

2.2 Remarks. a) The above can be extended to the case of an

arbitrary profinite group G, i.e., to non-noetherian A, as

follows. Call a A-module noetherian, if it has aresolution by

finitely projective A-modules. By looking at such'a resolution it

easily follows that 2.1 a) remains true for noetherian modules M
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and that 2.1 b) still holds, if Torz and
p

M/Torz (M) (and
p

hence M ) are noetherian. The other results of this section

extend similarly.

b) It is easy to see that the sequence in 2.1 b) can be identified

with the long exact sequence

r v r v
• •• ~ E (M) -+ E (M/Torz (M))

p

r-1 v r-1 v
-+ E (Torz (M)) -+ E (M) -+ ••••

p

2.3 Lemma. If U ~ G is an open subgroup of G, then the

restrietion induces a functorial isomorphism of Au-modules

E~(M)
r

: = Ex t A(G) (M, A(G) ) -->
r

ExtA(U) (M,A(U)) =:

for every A(G)-module M.

Proof. Since A(G) is projective as a heUl-module, this follows

from the obvious case r = 0 by looking at a free resolution of

M •

2.4 Corollary. Let n = vcdp(G) be the virtual p-cohomological

dimension of G, then Er(M) = 0 for r > n+1 .

Proof. Recall that vcd (G) ~ n means that there is an openp

subgroup U of G with p-cohomological dimension cd (U) ~ n .
p

This obviously implies Dr(A) = 0 for r > n , hence the result

by 2.1 a). One may also use 2.3 and [Br] 4.1.

2.5 Corollary. Let G be a finite group, then

1 v r
E (M) = Torz (M) , and E (M) = 0 for r ~ 2 .

P

HO~ (M,X ) ,
p p
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vcd (G) = 0 , 50 the result follows with 2.4
P

and 2.1 a). One may also use 2.3 and the isomorphisms

r Zp v
Ext: (M,Z ) ~ Tor (M,~ Iz )

-Zp P r P p

2.6 Corollary. Assume that G 1s virtually strict Cohen-Macaulay

at p (i.e., that an open subgroup has this property, see ·rS1]

V 4, 1), wi th vcd (G) = n . (Examples of such groups are p-Poincare
p

groups of dimension n, in particular, by a result of Lazard

[La] V 2.5.8, compact Lie groups of dimension

G = Zn ). Then
p

a) Er(~p) = 0 for r * n , and

dualizing module.

n over CDp , e.g.,

b) If N is a finite G-rnodule, then Er(N) = 0 for r * n+1 ,

and En + 1 (N)"v
Si H0Inz (NY E (p), (G) )

'" np
c) If M i5 a finitely generated, torsion-free ~ -module with

p

continuous action of G, then Er(M) = 0 for r * n and

En (M) v :; 1 im D
n

( (MI pm) v) :; M @ E (p) (G)Zn·
-> p

m

Proof c): By 2.1 b) we get

Er (M) v ;; lim D
r

( (MIpm) v) .
->

m

This is zero for r * n by the assumptions (cf. [81] V 3.1, 5) c)

and I annexe, theoreme 3), while for any finite G-module A we

have
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D (A) = lim Hn(U,A)*
n

->
U,::G,cor*

(2.6.1)

1im
->

U,::G,res

HO(U,H0IDx (A,E~P) (G)))
p

= HO~ (A,E~P) (G))
p

by dua1ity (see loc.cit). For M as in c) this implies

1 im D (( M/ pm) v )
n

->
m

= 1im Ho~ ((M/pm) v, E~P) (G) )
-> P

m

- M 0 E(P) (G)
Z n

p

hence the result. Part a) is a special case of c), whi1e for N

as in b) we may use 2.1 a) to obtain

hence the claim by the previous considerations.

2.7 Remarks. a) In the cited notes by Tate and Verdier the groups

are assumed to have finite p-cohom010gica1 dimension, but for our

app1ications we on1y had to assume

always pass to some open subgroup.

vcd (G) < 00 , since we could
p

b) Usua11y one considers 1eft discrete G-modu1es A and gives A*

a left G-modu1e structure by
-1

(af) (a) = f(a a) for f : A ~ ~/Z ,

a E G and a E A , simi1ar~y for compact G-modu1es M and MV •

If we do so, we have to give Er(M) the left G-module structure
o

in the statements above, cf. the discussion in § 1. Otherwise we

have to endow A* and MV with the canonical right G-structure

( (a f) (a) = f ( aa) e tc . ) .
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In this section let G = Z
P

so that A = A(X) is thep

classical Iwasawa algebra. Then G is a p-Poincare group·of

cohomological dimension 1 with dualizing module

E
1
(P) (G) ~ W /Z (compare [81] I 3.5 Exernples), and we can

p p

deduce several of the following results from this and the

results in the previous section. Instead we have preferred to

argue more directIy, by using weIl-known facts on A ,e.g.,· that

-lt is a noetherian Iocal ring with projective dimension pd(A) = 2

(recall that pd(A) = sup pdA(M) , where M runs over all finit~ly

generated A-modules). This implies that T, (M)
1

for

i ~ 3 . We now investigate these groups for i ~ 2

TO(M) be the maximal finite submodule of M.

for this let

3.1 Lemma. Let M be a noetherian A-module (as always).

a) T
1

(M) is the A-torsion submodule of M.

b) E
1 (M) is a A-torsion module. If M is A-torsion, then E1 (M)

is the Iwasawa adjoint a(M) of M ([lw] 1.3) and has no non-

zero finite submodule. Finally, E1 (N) = 0 for a finite module N •

c) T2 (M) is finite. One has T
2

(M) = 0 if and only if M/T 1 (M)

is free, i.e., if and only if M l:i T1 (M) m Ar for sorne r '= 0

In particular, T
2

(M) ::::: 0 for A-torsion modules.

d) E
2

(M) is finite, one has E
2

(M) <::i E
2

(Ta (M) ) ri T0 (M)Y , and the

following properties are equivalent:

,i) E
2

(M)::::: 0,

ii) pdA(M) S 1 ,

iii) TO(M) - 0 ,

iv) M is a submodule of an elementary A-rnodule.
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Proof. a) is clear by tensoring with the field of fractions

of A. The first statement in b) follows from a) since

E 1 (M) = T
1

(DM) . For the second statement see [P-R] l.2.2 and

[Bi] 1.2 and remarque, and TO(a(M» = 0 follows from Iwasawals

first description of a(M) in [lw] 1.3.

By the exact sequence 0 ~ A y-1> A ~·Z ~ 0 , where y is
p

a topological generator of G, we immediately deduce E1 (Z) ~ Z
P P

(this always denotes the module Z with trivial action of G).p

The exact sequence

now shows E1 (Z/p) = 0 and hence E1 (N) = 0 for every finite

module N, since such N possesses a composition series with

quotients isomorphie to Z/p .

d): By the structure theory for Iwasawa modules there exists

an exact sequenee

f
o ~ A ~ M ---> E ~ C ~ 0 ,

where E is elementary and A and C are finite. One has

pdA(E) ~ 1 and TO(E) = 0 . The last property irnplies A = TO(M)

the first one implies E2 (Im f) = 0 , since this is a quotient of

2 2 ~ 2E (E) = 0 , hence we get E (M) ---> E (A) . The isomorphism

E
2

(A) - Hom(A,W /X )
p p

now follows from the local duality for the regular loeal ring A

of dimension 2 with residue field Z/p (cf. [Bi] 1.2). The rest is
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clear: f is injective if and only if TO(M) = 0 , i.e., if and

v 2 2only if TO(M) ::: E (TO(M)) ~ E (M) is zero, i.e., if and only

if pdA(M) S 1 : look at aresolution

/10

if
2E (M) ::: 0 , then has a left inverse.

c) now easily follow~ from the relation T
2

(M) ::: E2 (DM) ,

the exact sequence 1.8.1 and the well-known fact that
++

M is

projective for cd(A) ~ 2 (whieh can be dedueed from the exaet

sequence 1.5.3), and that projective modules are free for loeal

rings.

We now use theorem 1.9 to deseribe, howa A-module M is

determined by the above invariants. This result is valid more

generally for rings A with pd(A) ~ 2 .

3.2 Theorem. A A-module M is determined up to homotopy by

a) T1 (M) , T2 (M) and a class
2

byXM E Ext
A

(T 2 (M) ,T 1 (M)), or

b) E1 (M) , E2
(M) and a class ~M E Ext ~ (E 2 (M) , E1 (M) ) .

Proof. In our case
++

M is projective, so from the exaet

Ext-sequence.associated to the exact sequence

we obtain an isomorphism
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If by abuse of notation we denote the image of XM under this

isomorphism (which is the class of the 2-extension 1.8.1) again

by ~M' a) immediately follows from 1.9 a). Note that 3.2.1 implies

Im <t>'M ~ 51 T2 (M) so that Im ep M is determined by T 2 (M) up to

homotopy, and in fact, 1.10 implies T2 (M) ~ E Im ~~ ~ E 51 E M ~ E M ,

since E 1 (T
2

(M)) ::: 0' by 3.1 b) ~

Part b) follows by dualizing, i.e., applying everything to

DM , letting ~M::: XDM under the identifications Tl (DM) ::: E1 (M)

and T2 (DM) ::: E2 (M) .

We now further investigate E1 and Tl .

3.3 Lemma. a) One has E1 (M) <--- E1 (M/TO(M)) , and equivalence of

the following statements:

i) E 1 (M) ::: 0 •

ii) M/TO(M) .... ( ris free, i.e., M = TO M) e A for some r '= 0 .

b) the following statements are equivalent:

i) Tl (M) ::: 0 .

ii) There is an exact sequence 0 ~ M ~ P ~ C ~ 0 with P

projective (::: free) and C finite.

Proof. a) The first claim follows from the exact sequence

But by 3.1 d) we have pdA(M/TO(M)) ~ 1 , hence M/TO(M) ~ 0 if
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and only if E1 (M/TO(M)) = 0 by 1.6.

b) The implication ii) q i) is clear (cf. also 1.11). For the

converse we may take the sequence 3.2.1.

3.4 Lemma. If 0 ~ M ~ P ~ C ~ 0 is exact with P projective

and C finite, then there is a cornmutative diagram

O-->M-->P-->C-->0

11

o --> M -> M++

-fIß
111

~ T
2

(M) -> 0

with canonical isomorphisms a and ß.

Proof. The map i": M --> P induces an isomorphism

diagram

,...... +
--> M , since c+ = 0 = E 1 (C) . The commutative

iQ-->M-->P-->C-->0

4iMl fl~p
.++

++ 1 ++o ->"M -> P,......

shows that we rnay take

induced map.

Cl = (1,++.)-1 d fo 4>p , an or ß the

3.5 By 1.2 c) and the Krull-Schmidt theorem for A , a A-module

is determined by its homotopy type and its rank. Hence by the

above discussion the investigation of A-modules up to isomorphism

can be reduced to the following three types of A-modules
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~~

A) free modules,
J

(3.5.1) B) A-torsion modules with pdA(M) $ 1 ,

C) finite modules,

and two extension classes. For a A-module M the modules in

question are J

(3.5.2)
++

A) M C) T O(M), T
2

(M)

with the extension classes XM and the one describing the extension

0 ..... TO(M) ..... T1 (M) ..... T1 (M)/TO(M) .... 0 . In the "dual pictl,lre" we have

~M and another class described below. The three types of

A-modules are characterized by the properties

A) E 1 (M) = 0 = E
2

(M)

B) E
O

(M) = 0 = E
2

(M)

C) E
O

(M) = 0 = E 1 (M)

i.e., they have only one non-vanishing Ei .

For the categories of A-modules given by A)-, B) and C) one

has self-dualities given by

A) EO ,

B) E 1 ,

C) E
2

•

This is clear for A), while for a finite module N we have

E2 (E2 (N» ~ E2 (N
v

) ~ N
VV

~ N by 3.1 d). The duality for modules

of type B) has been treated in [P-R] I 2.4, it also follows from

1.6 by restricting to modules of type B) on both sides. Of course,

all three 'cases follow from the general duality theory for
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Cohen-Macaulay modules (cf. [Gr]) or from the simple remark that

canonically

A-modules.

...., ++
P. --> P. for a complex P. of projective

3.6 Remarks. a) The modules in 3.5.2 and 3.5.3 are related to the

spherical filtration and approximation theorems of [AB] 2 § 6, cf.

also the "Postnikov tower" of M in [J2].

b) In [Jak] Jakovlev has initiated an interesting classification

theory for modules of type B) in terms of cohomology. This has been

continued and extended in [Ro] and [~e].

We now show that the sets of invariants in 3.5.2 and 3.5.3

are in fact the same.

3.7 Lemma. a) There is an exact sequence

inducing isomorphisms

, i) E
2

(T 2 (M) ) - E1
(MIT 1 (M) ) - TO(E 1 (M))

ii) E 1 (T
1

(M)) - E1
(M) IT0 (E 1 (M) )

b) There are canonical isomorphisms

i) E 1 (E 1 (M).) - T 1 (M) IT O (M)

ii) E2 (E 1
(M)) - T 2 (M)

iii) E
2

(E
2

(M) ) ::: Ta (M)

Proof. a): By splitting the sequence
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into two short exact sequences containing B = Im ~M = MIT, (M)

we obtain exact sequences

o = E
O

(T, (M)) -+ E' (B) -+ E' (M) -+ E' (T, (M)) -+ E
2

(B) = 0

and hence the result - note that TO(E' (T,(M))) = 0 by 3.' b)

and that E
2

(T2 (M)) is finite by 3.' d).

b): From 3.3 a) we have E' (E' (M)) ~ E' (E 1 (M)/T
O

E 1 (M))

;;:; E' (E' (T 1 (M))) - E' (E' (T, (M)/TO(M))) == T, (M)/TO(M) , since

T, (M)/TO(M) is of type B). With a) we conclude

E
2

(E ' (M)) ~ E
2

(T OE ' (M)) ;;:; E
2

(E
2

(T 2 (M) )) E: T 2 (M) ,

since T2 (M) is of type c). The third isomorphism is clear from

3.' d).

3.8 Corollary. E 1 (M) is finite ~ T, (M) is finite

~ E' (E' (M)) = 0 •

From § 2 we deduce the following formulae for the Er-groups,

which should be compared with [Wßl '.1.

3.9 Lemma. Let M be a finitely generated A-module, let Gn be

n MO
G

the subgroup of index p in G , and let = U M n be the
n

maximal subrnodule of M on which G acts discretely. Then
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G
"n

:::; lim m (M v)
<- P
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is free of the same rank as M ,

n,m

1
b) E (Torz (M))

p

G
n

;; lim (M v Ipm)
<-
n,m

1
e) E (M/Torz (M)) -

p

v
lim ( m(M ))G
<- P n
n,m

v
lim m ((M ) G
<- P n

cS
- HoI'llz (M ,~ )

P P
n,m

G
n

<; lim ((Mv) )/pm
<-
n,m

f) ~2(M) ;; v m
lim ~M Ip )G
<- n
n,m

;; lim (M v) G Ipm
<- n
n,m

where the transition maps are the obvious ones.

G-module

Proof.
o G 1 ~

Sinee H (Gn,A) :::; A n and H (Gn,A) = AG for a diserete
n

A , a),b),e) and f) irnrnediately follow with 2.1 b) and

remark 2.2 b). From 2.1 a) we get an exaet sequenee

G
n

o ---> lim (Mv) Ipm ---> E 1 (M)
<-
n,m

V
--> 1 im In ( (M ) G

<- P n
n,m

--> 0 .

cSThe eokernel obviously is isomorphie to H0Inz (M ,~) while the
p p

kernel vanishes for M:::; MO • On the other hand one has an exaet

sequenee

o -> E 1 (M/Mo) -> E 1 (M) --> E
1

-(M°) ---.> 0 ,

beeause (MO) + :::; 0 :::; E2
(M/MO) (ef. 3. 1 d)). Sinee the first exaet

sequenee is funetorial in M, we eonelude together that it must

be isomorphie to the seeond one.
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§ 4. Profinite groups of cohomological dimension two

4.1 We shall encounter the following situation for global as

weIl as for loeal fields. Let G be a finitely generated

profinite group with p-cohomological dimension cd (G) ~ 2
P

for a fixed prime p. Let H be a closed normal subgroup and

let G = G/H . We are interested in the strueture of

X -- H(p)ab Hab(p) d 1 th 1 d= as a mo u e over e comp ete group

algebra A = Zp[[G]] , where Hab = H/[H,Hl is the maximal

abelian and H(p) is the maximal pro-p quotient of a profinite

group H.

Let n: F ~ G be a surjection, where F is a free profinite

group on finitely rnany generators Xl' ... ,Xd . We obtain a

cornrnutative exact diagram

1 --> H --> G --> G --> 1
A A

(4.1.1) i in
1 --> R --> F --> G --> 1

J J
N = N

and it follows easily with the methods of Fox and Lyndon that one

has an exact sequence of A-modules

0
ab Ad

A
auq'

--> R(p) -> --> --> 7.l -> 0
P

(4.1.2)

e. r--> x -1
~ i
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d
is the usual augmentation, {e i }i=1 is a basis of

-x. is the image of x. in G c A (cf. [W1] for the
1 1

case of a finite p-group).

In [NQD] Nguyen-Quang-Oo has (for pro-p-groups) defined"a

canonical A-module Y which is very useful for our purposes:

4.2 Definition. Let Y = I(G)H ' where" I(G) is the augmentation

ideal of Zp [ [G]] = A(G) •

4.3 Lemma (cf. [NQD] 1 .7) a) There is a commutative exact diagrarn

of A-modules
0 0

i i
I = I

i i
0 _>". H~.·(H,Wp/Z

p
) v N/[N,R] (p)

. -
A

d
Y -> 0-> --> -->

11 11 i .~ i
o --.> H2 (H (D /Z )v -> N/[N,R] (p) -> Rab(p) -> X -> 0, P P

i i
0 0 ,

where I is the augmentation ideal of A.

b) N/[N/R] (p) is a projective A-module.

Proof. a) follows as in [NQD] 1.7, by taking the H-hornology of

the two exact sequences

(4.3.1)

(4.3.2)

o ---> I(G) -> ~ [[G]] --> ~ -> 0
P P

o ---> Nab(p) -> Z [[G]]d -> I(G) -> 0
P
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coming fram the Lyndan resolution for G (cf. 4.1.2 for G = G ),

noting that

HO(H,I(G» = I(G)H = Y ,

H1 (H , I (G» = H2 (H , Z ) = H
2

(H , CD' /71 ) v •p p p

b): Nab(p) 1s a prajective A(G)-module, since cd (G) S 2 , see
p

[Br] 5.2. Hence Nab(p)H = N/[N,R] (p) 15 a projective A-module.

We now show how to determine X and y in terms of the

dualizing module of G (Strictly speaking, E(P) is only the
2

dualizing module in the (most interesting) case cd (G) = 2
P

for cd (G) = 1 we have E(P) = 0 ) .
P 2

as in § 2, let W = (E(P»H and Z
2

is a finitely generated A(G)-module.

4.5 Theorem. Let E(P) = E(P) (G) =
2 2

1im H2 (U,Z/pffi)* be defined as
->
m, U

= WV
, and assume that Nab(p)

a) One -has Y ~ DZ , in particular, Y 1s determined by Z up to

projective summands.

b) Up to projective summands, X is determined by Wand a class

XE H2 (G,W)* = H2 (G,Z) ~ [Y,I] , via lemma 1.3 and the exact

sequence

fo-->X-->Y--> 1-->0

( X corresponds to the homotopy class of f). As an alternative

description, there is an exact sequence
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ab do --> R(p) --> x ~ A --> Y --> 0 ,

whose extension is the image of X under the injection

. 1 ab
[Y,1] C---> ExtA(Y,R(p) ) .

c) Let X-O E H
2

(G, Eip ) ) * be the canonical class: this is the

class corresponding to the identity map under the canonical

isomorphism (cf. [S 1] 1-8. 1 )

~ Horn (E(P) E(P))
G 2 ' 2

Then X is the image of X0 under the map

which is the transpose of the inflation.

d) The modules X and Y are determined up to isomorphism by

the above invariants and the isomorphism class of N/[N,R](p) •

Proof. a) By the projectivity of Nab(p) , 4.3.2 induces an

exact sequence

(4.5.1)
d + ab + 1

(n(G) ) ---> (N (p)) ---> EG(1(G)) ----> 0 •

v
= (E(P))

2

By assumption, Zp is a noetherian A(G)-module (2.2), so by 4.3.1

and 2.1 b) we get

v
m- (lim D2 (:I /p ))

-->
In

hence, by taking H-coinvariants, an exact sequence

(4.5.2) d + +
(A) ---> (N/[N,R] (p)) ----> Z ---> 0 ,
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where we have used the canonical isomorphisms

for every finitely generated A(G)-module M. The result now

follows by comparing 4.5.2 with the exact sequence from 4.3 a)

N/[N/R](p) ----> Ad ----> Y ----> 0 .

b) The first isomorphism is clear since
v

Z = W , and the second

one is proved in lemma 4.6 b) below. Then the first claim irnrnediately

follows fram 1.3. For the second claim note that the exact sequence

ab do --> R (p) --> A --> I --> 0

by 4.6 a) below induces an exact sequence

o --> [Y,I] o 1 ab 1 d
----> ExtA(Y,R (p)) ----> E (Y) .

Now by definition 0 maps the class of f to the class of the

pull-back extension

ab
A

d
--> 0o ----> R (p)-> --> I

A A

I I
ab Xl --> 0o --> R (p)--> --> Y

J J
X = X
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and obviously XI ~ X e A
d

.

c) This follows from the functionality in 4.6 c) below: the

above discussion is also valid for G = G , and the class of

f : Y ---> I is the image of the identity map under

[ I (G) , I (G)] -> [I (G) H ' I (G) H] ~> [ Y, I ] •

It remains to show that the identity map corresponds to Xo via

the isomorphism 4.6 b) for G and M = E~(~p) , via the identifi

cation DM = DE~(Zp) = DE~(1(G)) = 1(G) . Looking at the diagram

A(G)+ ->

1 11

--->

--->

(Nab (p) ) +

I1

(Nab(p))+

--->

--->

with exact bottom row, one easily checks that both classes

correspond to the class of the natural inclusion I (G) ~> A(G)

2 + ((A(G)d)+)G)in H2 (G,EG (Zp)) = Ker ( (I (G) ) G -->

d) has only to be shown for Y , by (the proof of) 1 .3 and the

Krull-Schmidt theorem for A. For Y it suffices to show the

following: if

Ad --.9:....-> P ---> Z ---> 0

Ad ~> Q ---> Z ---> 0

are two exact sequences of A-modules. with finitely generated

projectives P and Q, then P = Q implies

+ +
Coker(p+ ~> (Ad )+) = Coker(Q+ ~> (Ad

)+) •
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This easily follows with the same techniques as in the proof

of 1.3, together with the Krull-Schmidt theorem.

4.6 Lemma. a) Let 0 -> R ~> P l> N --> 0 be an exact

sequence of A-modules, with P finitely generated projective,

and let M be another finitely generated A-rnodule. In the long

exact Ext-sequence

1
Extl\(M,P)

one has Ker a* ~ eoker ß* ~ [M,N] .

b) Let M be a finitely presented A = A(G) - module, then there

is a canonical, functorial, isomorphism

H2 (G,M) - [DM,I] .

c) This isomorphism is functorial in G, in the following sense:

if H is a closed normal subgroup of G, then the diagram

---> [DM,I(G)]

is commutative, where the left arrow is the deflation and the

right arrows are obtained by the obvious functoriality of [ , ],

the canonical identification (DM)H ~ D(~) , and the map

I(G)H --> I(G/H)
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Proof. a) Obviously for f: M --> None has fEIm ß* ~ f '"-J 0 •

For the converse implication note that every map Q ---> N , with

Q projective, factorizes through ß.

b) Choose an exact sequence (of right A-modules, say)

1o -> N -> F 1 -> Fa -> M -> 0 ,

with finitely generated free modules Fa, F
1

' so that DM is

defined by exactness of

+ +
Fa --> F 1 --> DM --> 0 •

Then we have a canonical isomorphism

diagram

o --> N --> F 1 --> Fa

,~ ~
- F '-F

1 0
VI VI VI

o -->-DM+ -> F;+ -> F;+

On the other hand we have

+N ~ (DM) , by the commutative

Now it is readily checked that

+
- HomA(F 1 ,:1)

and so we may identify
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On the other hand the exact sequence

d Horni\.(DM,I) [DM, I] --> 0HOIni\. (DM, i\.. ) --> -->

11 nl
d

Homi\.(DM,A)Horn
A

(DM,A) -->

d
(h 1 ' · · · ,hd ) ~> L h.(}c.-1)

. 1 1. 11=

corning frorn a) and 4.1.2 shows

NI = Harni\. (DM,i\.) I = {f E Horn
A

(DM, I) If '" O} •

Together we obtain the result, the functoriality in M being clear

by the existence of cornpatible resolutions.

c) The deflation being the canonical extension of the isomorphisrn·

to the higher hornolagy groups, this follows immediately by gaing

through the steps of the above construction. The identification

(DM)H ~ D(~) is deduced fram forrnula 4.5.3.

4.7 Remarks. a) Obviously, 4.6 a) halds for any ring A, while

4.6 b) and c) remain true for any profinite group G with finitely

rnany topological generators. More generally, ane can show isornor

phisms

[Im ,niM] - H. 1(G,M), i ~ 0,P 1+

under the assumption that niM is finitely generated. This irnplies

4.6 b) by an isornorphisrn [DZ ,nM] ~ [DM,I] , which for finitely
p
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t d Rab(p)genera e coincides with

[ DZ , r2M] ~ [E DZ , M] .. [ DnZ , M] ~ [ DM , nz ] •
p p p p

b) From 4.5.2 and 4.3 we obtain an isomorphism

c) Assurne that H2 (H,W /x ) = 0 . Then pdA(Y) ;;;,; 1 " and wep p

can compare 4.5 with the general method 1.9 b) as follows: Choosing

a surjection P --» Rab(p) with P projective we get a commutative

exact diagram

o ---> N/[N,R](p) ---> Rab(p) --> X --> 0

A A

r I
P = P

J. J
o -> nRab(p) --> QX -> N/[N,R] (p) --> 0 ,

, nx ~ nRab(p) n2r F th h h'1.e., H~' ~~,. ur ermore we ave morp 1sms

with a induced by the Ext-sequence for

(Q projective), and ß by the adjunction of ~ and E • One

easily checks that under the composition ~x (from 1.9 b)) is
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mapped to the same class as X = ~,(X) (from 4.5 b)) under

[Y,I] l: [DI,DY] = [DI,E 1 (Y)] ....::f.-.> [DI,E 1 (X)]

•
If E 1 (Rab (p) ) ;;:; E

2
(I) - E 3 (Z ) vanishes, then EnRab(p) ~ Rab(p)

p

by 1 . 10 and thus a is an isomorphism. If both E 3 (I; ) and
p

E 1 (I) - E
2

(Zp) vanish (e.g. , if G is virtually strict

p-Cohen-Macaulay with vcdp(G) = n * 2,3) , then L:2n2I·~ I and

so ß is an isomorphism, and y is an isomorphism by the exact

sequence fram 4.3
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§ 5 Applieations to number theory

We apply the results of the previous seetion to the

following number theoretie situation. Fix a prime p and let

k be a finite extension of W or w • In-the ease of ap p-

adie field let n/k be a p-elosed Galois extension,'i.e., an

extension which haS no non~t~~v~~l \~-e~tension. Fot ~ global

field k let S be a finite set of plaees containing those

obove p. co , and let n/k be a (p, 8) - closed Galois ex-

tension, i.e., n/k is unramified outside 8 (8 - ramified)

and n has no non-trivial 8 - ramified p-extension. Let

K/k be a Galois subextension and set G = Gal(n/k)

H = Gal(n/K) , and G = Gal(K/k) . Für any field L denote

by ~L(P) the group of p-power roets of unity.

As in § 4, we want to study the A = A(G) - module
(

5.1. Theorem Let k be a finite extension of mp ' n = [k ffipl .

a) There is an isomorphism of A-modules

x = lim A(L)
~

L

L/k , L c n , and
l(

Lp-completion ofis the

where L runs over all finite extensions
x' m

A(L) = lim L -/(Lx,)P



b) One has cd (G) ~ 2 ,
P

morphism of G-modules
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H
2 (H , (D / ~ ) =

p p
o , and an i80-

E(P) (G)2 -

c) G is generated by d = n + 2 elements as a profini te group.

Let
TfF~ G , N , R , Y etc. be as in § 4, then

:I [[G]] •
P

d) Let 01'

a. E .z
J.. p

••• ,0. 2 be topological generators of
n+ a.

with .oi (l;) = s J.. for all l; E ~~(p)

G , and let

i = 1, ••• , n + 2 • Then there is an exact sequence

(5.1.1)

e) X is determined up to isomorphism by ~K(P) and the image of

2 inf* 2 *
H (G, ~Q(p))* ----,.. H (G, ~K'(P)) •

Proof

a) is clear from class field theory.

b) If A is a p-torsion G-module, then the inflation
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H (G ,A) ~ H (k , A)

is an isomorphism for all r 2; 0 , since ed (Gal(k/n)) ~ 1
p

for an algebraic elosure k of k (s:arne argument as in [S 1 ]

II 5.6). The first two claims thus follow from the faet that

scd (Gal(k/k)) = 2 (loe. cit. 5.3). Applying 5.1.2 to a finite
p

extension L/k, L c ~ , we get an isomorphism

l.l rn
L,p

with the group of mp -th roots of unity in L , by Tateis Ioeal

duality theorem (loe. eit. 5.2). By passing to the limit over rn

and L we obtain the last claim.

c) This follows from [J1] 3.1 and 3.2. Note that it suffices to

prove N/[N ,'R] (p) ~ :.I [G] in the ease of finite G , sinee two. p

pseudoeompact ~ [[G]] - modules M and MI ,with M finitely
p

I

generated, are isomorphie if MH ~ MH for every open normal

subgroup H of G (use that an inverse limit of non-emty cornpaet

sets is non-ernpty). By Swanls theorem (see [53] 16.1 Cor. 2) and

the projeetivity of Nab(p) it suffices to show the above iso-

morphism after tensoring with W ,which follows from [J1] 3.1
p

and 4. 3 above, together wi th the vanishing of H
2 (H , W / 7.t ) •

P P

d) With the n&tations of § 4 we have W = fl
K

(p) and

Z v 5ince H
2 (H , (D / ~ )= l.lK(P) • Y - DZ and = 0 we irnmediately

p P
,

get 5 . 1 . 1 from transposing the exaet sequenee
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n+2 p v
A -+- A ~ ~ (p) ~ 0

(5.1.3)

where { }n+2
e i 1=1 is a basis of An +2 and p sends 1 to a generator

vof l.J
K

(p) (given the left action of G) , once we have shown

v + v
that (~K(P)) = 0 · This i5 clear, because (~K(P))U is

finite for every open normal 5ubgroup 'U of G.

e) This i5 clear from 4.5 b) and d), 5ince Xc generate5 the

pro-cyclic group and any two generators

differ by multiplication with an element

5.2. Examples

a E ~ x
P

a) If G is finite cyclic, then there is a commutative diagram

2 inf 2 H2 (G , QX')H (G, l.J
K

(p) ) ~ H (G, lln(P)) c

I! l
ul inf

it° (G , PK(p))
"0 x H2 (G , K x)~ H (G, K ) D

so the Galois module A(K) is det~rmined by the order of the

group ~K(P) n NK/k(K
x

) , and one easily reobtains the results in

[Ger].
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b) If cd (G) ~ 1 ,then I is projective (cf. [Br] 5.1),
P

vhence y ~ X ~ I , and in particular, X ~ D(~K(P) ) has pro-

jective dimension < 1 and i8 determined by E1 (X) ~ ~K(P)v.

For example, assume that G;;" ~ x 6. with a finite group 6.,
P

pl(~ : 1) , then with 2.6 we obtain the following. If ~K(P)

is infinite, then

X - An ~7L (1)
P

and if ~K(P) is finite, then X is determined by an exact se-

quence

2 ' 1 2 v
(Note that E (X) = 0 and E ~X) ~ E (~K(P));; ~K(P) in the last

case). This regives results of Iwasawa [lw] theorem 21 and Dummit

[Du], cf .. also [J1] 4.3.

c) If G has an open subgroup U ~ z2 ,with P l (G: U) , and
p

if \.I K (p) is infinite, then H
2

(G , \.I K (p) ) * ~ Hom
G

(\.IK (p) ,lJl
p

/ 7l
p

)

O d '1 h Rab(p) = Ad - 1 . Thus= ,an one eas~ y s ows -

X ED A iE Y

by the second description of 4.5 b). For example, if G g ~2 ,
P

then X;; M' ED f\n-1 , where M' i5 given by the exact sequence
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2o~ A ---.,... A --+ M t ---+ 0

1~ (a - X,(0) , T - X (T) )

with o , T generators of G and
)( ,

X : G~ l2 the cyclotomicp

character.

that

d) If G is a p-adic Lie group, then the methods of [S2] show

2H (G, ~K(P)) is always finite. Hence there is always an in-

jection

with cokernel of finite exponent.

Now let k be a finite extension of W , and let n be as

above. Let ks be the maximal S-ramified extension of k , and

ab
set Gs = Gal(ks/k) Hs = Gal(kS/K) . Then X = Xs = H (p)

= H~b(p) is the Galois group over K of the maximal abelian

S-ramified pro-p-extension of K.

5.3. Lemma

a) If P * 2 or if p = 2 and k is totally imaginary, then

cd (G) ~ 2 .
P -

b) If an open subgroup of G is a pro-p-group, then G is
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finitely generated as a profinite group.

Proof

a} For a p-torsion G-module A the inflation

{S.3.1} inf r
> H {GS ' A}

is an isomorphism for all r ~ 0 , and this implies the claim

{see [NeuJh.

b} This follows, e.g., from [J1] 3.2 b}.

In the following we shall assume that cd {G} :;;; 2
p and that

G has finitely many topological generators. Let - for a suitable

d - F Rand N be chosen as in § 4, and let y = Ys = I{G}H

as in 4.2. It is easy to s~e that Y ~ I{GS}H ' in particular this
S

A-module only depends on K and S-, and by 4.3 we have a diagram

of A-modules

{5.4.1} I = I

1\ 1\

i i
O~ H2 {H s , Z } ~ N/[N/R] {p} ~ Ad

~ Ys ~Op

11 1I J J
o ----7 H2 (Hs ' ~ } N/[N,R] (p) ----+ ab o ,~ R (p) -----:'>- Xs ----+p
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Z v Z /since HZ (H s I Zp) = H (H s I IJl
p

/ tZ p ) ;;:; H (H I Wp Zp) by the

abargument of 5.3 a). Here land R, (p) only depend on the

structure of G as an abstract group and Xs and Y
S

on the

invariants described in theorem 4.5. It is conjectured that

HZ(H s I Wp / Zp) vanishes; for a finite extension K/k this is

equivalent to the Leopoldt conjecture for K and p (compare

5.4 a) below) I on the ether hand this vanishing is known, .if

K contains the cyclotemic ZZp-extension of k (cf. [Seh] 4. 7) •

Let Xz = Gal(L/K) and X
3

= Gal(L'/K) where L is the

maximal abelian unramified pro-p-extension of K and L'/K is

the maximal subextension in which every prime above S is eom-

pletely decomposed. For K/k finite let Sf(K) be the set of

finite primes in K lying above' S , and for P E Sf(K) let

Kp be the completion of K at P • Then define

A = A
S

= TI A
PES (K) ,p

f

U = Us - rr U:,
P'ESf(K)

where Ap (resp. Up 1s the p-complection of

of the group of units in Rp ) . Let °K (resp. Os

ring of integers (resp. S-integers) in K and set

x
Kp (resp.

be the
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For arbitrary K/k define the groups Ar·' Up , A, U, E

and ES as the inverse limits - via the norms - of the above

groups for all finite intermediate layers L/k, L ~ K .

The next theorem extends results of Kuz'min [Kuz-], Nguyen-

Quang-Do [NQD] and the author [J1].

5.4. Theorem

a) With the notations as above, there is a commutative exact

diagram of A-modules

o --+- 2 7l )'V ~ Us X2 ~OH (Hs,Wpl ~ E ~ Xs --..
p

"1 1 11 I
O~

2 :I ) v'~ ~ X3 ~ 0 •H (I-LS ' W I ES ~ AS ~
XsI P P

b) If d ~ r 1+ r 2 + 1 , there is an isomorphism

d-rl-r -1
NI[N,R](p) - Ea A(G) Ea A 1 2

vES' v
00

Here Si is the set of real places of k which ramify (i.e. ,
00

become complex) in K , r' is the cardinality.of SI , and r 21 00

is the number of complex places of k . For each v E SI
00

G = <0. > is a chosen decomposition group at v in G , andv v

A(G ) = AI A(cv - 1) is the module of coinvariants for the right
v
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G -module structure of A, regarded as a left A-module.
v

c) Let E (p) (G)
2

be the dualizing module of G . If ~'P erz,

then there is an exact sequence

o ----+ l.l (p)
GED IndG (l.l(p))

PES f 1-1

E(P) (G) --.,... 0
2

where, for each, p E Sf = Sf (k) G is a decomposition group
P

at in G G
induction from Gp to G ~ (p)p. , IndG means ,

p

is the G-module of p-power roots of unity in an algebraic

closure <D of <D , and 1 is the natural map.

d) Let W = W = E(P) (G)H and Z = Z = WV as in § 4 - so
S 2 S S H

that YS
i"J DZ by 4.5 a) . Then Ws - E(P)(G) S , in particular,
- S 2 S

Ws and Zs only d~pend on K . and S . There is an exact sequence

where, fur each p E Sf , Gp is the image of G
p in G , K

p

is the completion of K at the prime p/p belonging to G
p

and is induced by 2 l.l (p) ) inf 2res H (H S " -.-.,... H (K, l.l (p) ) ----+

H1 (K , l.l (p) ) . In particular, if ~K(P) is infinite, then there
p

is an exact sequence



where Z (1) = lim ~ , and
p -E-- pm

m
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x3 ( - 1) = X3 <i)Z Z (- 1)
P P

for

x (- 1) = Honlz ( Z (1) , Z) is the usual Tate twist of X3p P P P

Proof

a) This is clear from the cited references; we only remark that

for K/k finite the lower sequence by Kummer theory can be iden-

tified with the exact sequence

2
, <D

p
/ z )v H1

(H ,:1 (1))
1o~ H (H s ~ ~ E9 H (Kp-" Z (1))

p S P PESf (K) P
(5.4.2)

~ H1 (H , Wp / X )v ~ Gal(L'/K) ~O
S P

coming from Tate's duality theorem ([Ta] 3.1, compare [Sch] 2.5)

2 1and the fact that H (K", <0/ ~ ) = 0 , here H (-, 7l (1)) =
~ P P

1= lim H (-, ~ m) . The upper sequence is an easy consequence by
-E-- P

class field theory, and the general case follows by passing to

the limit over the intermediate finite layers, since this limit

for H2
(H s , <0 / z )v is taken via the duals of the restrietion

p p

maps (cf. [Mi] I 4.19).

b) We al ready know that N/[N ,'R] (p) 1s a projective A-module,

and for its description it suffices to consider the case of finite

G (same argument as for 5.1 c)). For finite G the claim follows

with the arguments in [J1] 3.3: By Swan's theorem it suffices to

consider N/[N, R] (p) <i)~ <0 • From a) we get the equality
p p
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[N/[N,R] (p) ~(D ]
p

= [Rab (p) ~ (D] +

in the Grothendieck group Ko(~p[G]) of finitely generated

(Dp[G]-modules , [A] denoting the class of such a module A. From

a) we have

[U ~ (0" ] ..; [E ~ <D ] ,
p p

and we may proceed as in [J,].

c) From Tate's duality theorem we get an exact sequence for

finite K/k, K =k s :

(5.4.3)

o --,. ~K(P) --,. G} ~ (p)
PESf(K) K p

H2 (H Z) v
5' p.

H' (H , ~(p)) ---...,... Ei) H' (K , ~(p)) •
5 PES

f
(K) P

By passing to the direct limit over all finite layers K/k con

tained i~ r2/k we obtain the result, since for H
2

(H s ' Zp) v =
= 11m H2 (H S ,~/pffi)V = 11m H2 (H , Z/pffi) V the limit is taken via
~ ~

m m

the duals of the corestrictions, while for H'(H ,~(p)) Si
S,

;; H (H, \..1.( p)) and the last group i t 1s taken via the restrietions .

The first exact sequence in d) now fo~lows either by only

passing to the limit over all finite layers in K/k , or by taking

the Hs-cohomology of a similar sequence for E~P) (Gs ) as the one

for EJP) (G) in c). The second sequence is obtained by taking
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the Pontrjagin dual of the first one. Finally we immediatly

E
(p) (G) (p) Gal (ks/Q)

obtain 2 - E2 (Gs ) from 5.3.1.

5.5. Examples (valid for the global and the local case)

a) If G ~ 7h , it is well-known that I(G) - A . Hence
P

y - X EB A , and in particular, X t"'J DZ is completely determined

by Z (compare [J 1 ] p. 123, 124, where this was proved under

too restrictive assumptions - and where the 7h (1) 's in (43)p

have to be replaced by 7l (- 1) 's). A similar discussion holds
p

for cd (G) ~ 1 (cf. 5.2 b».p

pdA (X) ~ 1 (since

o ~ nRab(p) ~ nx ,

b) Assurne that H2
(H , W / 7h ) = 0 If cd (G) ~ 3 , thenp p p

ab
~ 1 cf. [Br] 4 .4, and hencepd A (R (p) ) ,

cf. 4.7 cl). Thus X DE 1 (X) by theorem

1.6, and by the arguments in 4.5 d) X 1s determined up to'iso

rnorphism by E1 (X) . By 4.3 we have an exact sequence

111

E
2

(71 )
P

l1l

Z

111

E
3

(7h )
P

If cd (G) = 2 , then E1 (X) is the cokernel of E(P\G)v"=
P 2

= E
2

( 7h ) --r Z , and, in fact this rnap is just the elementp
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X E H2 (G , W) v ;: HOm
G

(W , E~P) (G» ;: HOmG (E 2 ( ~p) , Z) . For

example, if G;: z2 , then E2
( ~ ) ;: Z , and the map corres-p p p

ponds to an element in zG;: Hom
G

(W , W / Z) If k is globalp p

and ~K(P) is infinite, then the second exact sequence in 5.4

d) shows zG;: X
3

( - 1) G •

If cd (G) ; 3 and G i5 strict p-Cohen-Macaulay, then
p

we obtain an exact sequence

whose extension class now is given by the element X E

H
2 (G , W) v;: 1 ( «P) ( »),... 1 ( ( 3 ( 177) } )H t G , Hom W, E3 G = H t G, Hom E UJ , Z .con con p

c) The invariant X E H2 (G , W) v is zero if and only if every

p-embedding problem is solvable for K/k and G, i.e., if every

diagram with exact row

G

TI

v
y

O~A--+E-4G--+1 ,

with finite abelian p-group A, can be completed by a homo-

morphism s: G ---+- E wi th ps; TI • This follows wi th the injection
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with the same arguments as in [JW].

5.6. Remark In this and the following section it is convenient

to give all modules the left Galois module structures. In view

of the discussion in 2.7 b) this means that CV = Horn t(C,W /Z )con p p
-1

H0Inz (C, D) etc. have the action given by (af) (c) = of(o c)
p

only then Tateis sequences 5.4.2, 5.4.3 are Galois equivarient.

In particular, the action on'the lwasawa adjoint E1 (X) is the

one of [W2] and different from the one in [lw].



- 57 -

§ 6. Seme results for the cyclotomic Z -extensionsp

We consider a situation as in the previous section, with

k a global field and K = k(~(p)) . Since there are only finitely

many primes in K over every prime of k, the sequence ef 5.4 d)

becomes

(6 • 1 )

The following result was proved by K. Wingberg in [W2] up to

quasi-isomorphisms.

6.2 Theorem. The sequence 6.1 can be identified with an exact

sequence

induced from the exact sequence

o ---> ES ---> A ---> 'X
S

---> X 3 ---> 0 •

Proof. Splitting the latter sequence into two short ones

o --> ES ---> A ---> B.:· --> 0

o ---> B ---> Xs --> X3 ---> 0 ,

we get a comrrü.ltative exact :diagram
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1 E1 (XS) E1
(B) E2 (X 3)E (X 3) --> --> -->

11

E1
(X

S
) _6_> E 1 (A)

(6.2.1) 1
E1 (ES)

1
0

where we have used that E
2

(8') vanishes as quotient of E
2

(X
S

) = 0 •

Now by the considerations in 4.5 and example 5.5 a), 6 ean be

identified with the map a
2

in 6.1. On the other hand, by the

weII-known Ioeal theory (compare 5.2 b)) we have

A Ci T (A) EIl A[k:W]
1

EIl Ind~ (:I (1))
PESf .p P

Henee we get a cornmutative diagram

__6 > E 1 (A)

~o
eoker ß

~~ 5.2.1

~E1(ES)

~v
1

> E (T 1 (ES))

J

1
v

E1 (Zl (1))
P

IJ
"I

a 1 G °3
-----> EIl IndG (Zl ( -1 )) ---> Z (-1 )-----> 0 ,

PP'P ES f P.

J
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1 1
in which E (ES) --> E (T 1 (ES)) and

surjective, since E2 (M/T 1 (M») = 0

E2(ES/~p(1») = 0 , since ES/Zp (1)

submodule.

E
1

(ES) -> E
1

(Zp ( 1 ) )

for any A-rnodule and

has no non-zero finite

are

Hence the suijections on the right are all isomorphisms

which proves the claim.

The next consequence has also been obtained by K. Wingberg

·(unpublished) by somewhat different means.

6.3 Corollary. ES -

archirnedean places of

e A (G ) ED Z (1) , where
vES v p

00

k and G , for eachv

S
00

v E S
00

is the set of

, is the

decomposition group of v in G. In particular, T
1

(E S) = Zp(1)

Proof. The exact sequence

o = Z (1)+
P

--> --> ""--> E 1 (z (1))p

shows E
1

(ES/Zp (1)) = 0 . Since on the other hand pdA(ES/~p(1» ~ 1 ,

because this module does not contain any non-trivial finite sub-

module, we deduce from theorem 1.6 that ES/Z p (1) is projective.

Its isomorphism class is easily cornputed by the methods already

used in the proof of 5.4 b), by computing ES 0 Wp

intermediate layers.

6.4 Corollary. There is an exact sequence

for finite
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in particular, "for T ~ S a finite set of primes one has an

exact sequence

Proof. Define Zs by the exact sequence

0-·>~(1)
,p

Splitting this sequence into two short exact sequences as indicated,

we obtain a commutative exact diagram

--> --> E
1

(R)

1
--> E

2
(Z I) --> 0

S

(6.4.1) E
1

(T 1 (XS)) -> E
1

(T 1 (A)) -+ E
1

(71P ( 1 )) -> 0

1
v

E 1 (Z (1))
P

+ +where we have used the facts that R·;;;; 0 ;;;; 7L (1) (since these
p

2 2are A-torsion modules) and 0;;;; E (T 1 (Xs )) --» E (R) . The

exactness of the second row follows from the proof of 6.3 since

E
1

(T 1 (XS )) ;;;; E1(Xs)/TO(E1(Xs)) by 3.6 ii). Since

E
1

(A) ~> E 1 (T
1

(A)) is torsion-free, a comparison of 6.4.1 with

6.2 now shows.

E
1

(ZS) - X
3

(-1)/T
O

(X
3

(-1))

E
2

(ZS) ;;;; 0 •
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In particular, pdA(ZS) ~ 1 , and Zs ~ E1 (E
1

(ZS)) by theorem

1.6, since (Zs)+ = 0 (cf. also the statement about the self

duality for modules of'type B) in § 3). We ~onclud~

cf. 3.3 a), hence the first claim. The obtained sequence is

functorial in S, hence the second claim is an obvious consequence,

by the exact sequence

°--> --> ° .

We finish by calculating for Xs the A-modules associated

to it by the general discussion in § 3.

6.5 Corollary. a) EO(X S) = mCA(G )' ~her~ s~ is the set of
v E: Sv'"

00

1 2
complex archimedean places af k I E (Xs ) = zs' E (Xs ) = ° .

b) TO(X S) = 0, T1 (X S ) = E
1

(ZS)' T2 (XS ) = TO(X 3 (-1))v

1
- lim H (Gn/Es(K)) I where

<-
n

Gn = Gal(K/k(~ n+1))
p

ES(K) = Ox~ is the group of S-units in K ,and the limit is
S,R

taken via the corestrictions.

Proof. All formulae are clear fram the previous discussion and

the fact that X !::::: DZ S
, except for the claim in c) . For thisS

let k = k(lJ n+1) and let Cl S (kn ) (re s p. CIS (K) ) be the S-classn
p

group of k (resp. K ) . There is a well-known cornrnutative diagram
n

of finite groups
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o -->

G
--->ClS(K) n ,

where.- .:cor is the corestriction, N the norm, and tr the trace

of Gn /Gn +
1

.;By passing to the inverse limit over n we· obtain an

exact sequence of G-modules

G
o --> 1im H 1 (G

n
, Es (K)) --> X

3
--> 1im C l

s
(K) n

<- <-
n n

Now lim H
1

(Gn,Es(K)) is finite, since the order of H
1 (Gn ,Es {K))

<-
n

is bounded independently of n [lw] 5.2. Hence it suffices to show

that the last group has no non-trivial finite G-subrnodule. It

suffices to show the same for the fixed module under the pro-p-group
GO

GO ' since for a finite GO-module A * 0 one has A * 0 . But

.- G G

(~imCls (K) n) 0 =

n

G
limcls (K) 0
<-

n

where the inverse limit is taken via the p-multiplication, so this

group is uniquely p-divisible.

6.6 Example. There ·is an exact sequence

-> Horn ~im H
1

(Gn , ES (K) ) , II (p) ) -> 0 •

n

This should be compared with Iwasawa's results in [lw] 8.3.
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