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Abstract

In this paper, we complete the global qualitative analysis of the well-known Fitz-
Hugh–Nagumo neuronal model. In particular, studying global limit cycle bifurca-
tions and applying the Wintner–Perko termination principle for multiple limit cy-
cles, we prove that the corresponding dynamical system has at most two limit cycles.
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1 Introduction

We consider the well-known FitzHugh–Nagumo model in the form

V̇ = I −W − aV + (a+ 1)V 2 − V 3,

Ẇ = ε(V − δ W ),
(1.1)

where V is the membrane potential, W is a recovery variable, and I is the
magnitude of stimulus current, which is a two-dimensional simplification of
the classical Hodgkin–Huxley model of the spike dynamics in a biological neu-
ron [5], [14], [16], [19], [20]. This system was suggested by FitzHugh (1961) [5],
who called it “Bonhoeffer – van der Pol model”, and the equivalent circuit was
constructed by Nagumo et al. (1962) [16]. The motivation for the FitzHugh–
Nagumo model was to isolate conceptually the essentially mathematical pro-
perties of excitation and propagation from the electrochemical properties of
sodium and potassium ion flow. The model consists of a voltage-like variable
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having cubic nonlinearity that allows regenerative self-excitation via a posi-
tive feedback, and a recovery variable having a linear dynamics that provides
a slower negative feedback. While the Hodgkin–Huxley model is more real-
istic and biophysically sound, only projections of its four-dimensional phase
trajectories can be observed. The simplicity of the FitzHugh–Nagumo model
permits the entire solution to be viewed at once. This allows a geometrical ex-
planation of important biological phenomena related to neuronal excitability
and spike-generating mechanism [14].

The phase portrait of the FitzHugh–Nagumo model (1.1) depicts the V -null-
cline, which is the N -shaped curve obtained from the condition V̇ = 0, and
the W -nullcline, which is a straight line obtained from the condition Ẇ = 0.
The intersection of nullclines is an equilibrium (a singular point) of the system
(1.1), which may be unstable if it is on the middle branch of the V -nullcline,
i. e., when I is strong enough. In this case, the model exhibits periodic (tonic
spiking) activity.

The FitzHugh–Nagumo model explained the absence of all-or-none spikes in
the Hodgkin–Huxley model in response to stimuli, i. e., pulses of the injected
current I. Weak stimuli (small pulses of I) result in small-amplitude tra-
jectories that correspond to subthreshold responses; stronger stimuli result
in intermediate-amplitude trajectories that correspond to partial-amplitude
spikes; and strong stimuli result in large-amplitude trajectories that corre-
spond to suprathreshold response — firing a spike.

Similarly to the Hodgkin–Huxley model, the FitzHugh – Nagumo model does
not have a well-defined firing threshold in the absence of a saddle equilibrium.
This feature is the consequence of the absence of all-or-none responses. The ap-
parent illusion of threshold dynamics and all-or-none responses in both models
is due to the existence of the “quasi-threshold”, which is a canard trajectory
that follows the unstable (middle) branch of the N -shaped V -nullcline.

The FitzHugh–Nagumo model explains the excitation block phenomenon, i. e.,
the cessation of repetitive spiking as the amplitude of the stimulus current in-
creases. When I is weak or zero, the equilibrium (intersection of nullclines) is
on the left (stable) branch of V -nullcline, and the model is resting. Increas-
ing I shifts the nullcline upward and the equilibrium slides onto the middle
(unstable) branch of the nullcline. The model exhibits periodic spiking ac-
tivity in this case. Increasing the stimulus further shifts the equilibrium to
the right (stable) branch of the N -shaped nullcline, and the oscillations are
blocked (by excitation). The precise mathematical mechanism involves ap-
pearance and disappearance of a limit cycle attractor, and it is reviewed in
detail by Izhikevich (2007) [14].

This model explained also the phenomenon of post-inhibitory (rebound) spikes,
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called anodal break excitation at that time. As the stimulus I becomes neg-
ative (hyperpolarization), the resting state shifts to the left. As the system
is released from hyperpolarization (anodal break), the trajectory starts from
a point far below the resting state (outside the quasi-threshold), makes a
large-amplitude excursion, i. e., fires a transient spike, and then returns to the
resting state.

The FitzHugh–Nagumo model explained the dynamical mechanism of spike
accommodation in Hodgkin–Huxley-type models. When stimulation strength
increases slowly, the neuron remains quiescent. The resting equilibrium of (1.1)
shifts slowly to the right, and the state of the system follows it smoothly with-
out firing spikes. In contrast, when the stimulation is increased abruptly, even
by a smaller amount, the trajectory could not go directly to the new resting
state, but fires a transient spike; see figure. Geometrically, this phenomenon
is similar to the post-inhibitory (rebound) response.

The FitzHugh–Nagumo equations became a favorite model for reaction-diffusion
systems

V̇ = I −W − aV + (a+ 1)V 2 − V 3 + Vxx,

Ẇ = ε(V − δ W ),
(1.2)

which simulate propagation of waves in excitable media, such as heart tissue or
nerve fiber. Here, the diffusion term Vxx is the second derivative with respect
to the spatial variable x. Its success is mostly due to the fact that the model
is analytically tractable, and hence it allows derivation of many important
properties of traveling pulses without resort to computer simulations.

Without loss of generality, the system (1.1) can be written in the canonical
form

ẋ = (γ δ − 1) y + (γ − a)x+ b x2 − c x3 ≡ P (x, y),

ẏ = x− δ y ≡ Q(x, y).
(1.3)

Such a system was studied earlier, e. g., in [19]. However, its qualitative analy-
sis was incomplete, since the global bifurcations of multiple limit cycles could
not be studied properly by means of the methods and techniques which were
used earlier in the qualitative theory of dynamical systems. Applying new
bifurcation methods and geometric approaches developed in [4], [6]–[13], we
complete the qualitative analysis of the FitzHugh–Nagumo model and prove,
in particular, that the corresponding dynamical system (1.3) has at most two
limit cycles. In Sections 2 – 4 of this paper, we recall basic facts and results
from the global bifurcation theory of polynomial dynamical systems and its
applications. These results, together with the methods of [3], [4], [6]–[13], are
used in Sections 5, 6 for the study of singular point and limit cycle bifurcations
of the system (1.3).
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2 Preliminaries

In this paper, geometric aspects of Bifurcation and Catastrophe Theories are
used and developed [6], [15], [18]. First of all, the two-isocline method which
was developed by Erugin is used, see [6]. An isocline portrait is the most na-
tural construction for a polynomial equation. It is sufficient to have only two
nullclines (or isoclines of zero and infinity in our terminology) to obtain princi-
pal information on the original polynomial system, because these two isoclines
are right-hand sides of the system. Geometric properties of isoclines (conics,
cubics, quartics, etc.) are well-known, and all isocline portraits can be easily
constructed. By means of them, all topologically different qualitative pictures
of integral curves to within a number of limit cycles and distinguishing center
and focus can be obtained. Thus, it is possible to carry out a rough topological
classification of the phase portraits for the polynomial dynamical systems. It
is the first application of Erugin’s method. After studying contact and rota-
tion properties of the isoclines, the simplest (canonical) systems containing
limit cycles can be also constructed. Two groups of parameters can be dis-
tinguished in such systems: static and dynamic. Static parameters determine
the behavior of phase trajectories in principle, since they control the number,
position, and character of singular points in a finite part of the plane (finite
singularities). The parameters from the first group determine also a possible
behavior of separatrices and singular points at infinity (infinite singularities)
under variation of the parameters from the second group. The dynamic pa-
rameters are field rotation parameters, see [1], [6], [18]. They do not change
the number, position and index of the finite singularities, but only involve the
vector field in a directional rotation. The rotation parameters allow to control
the infinite singularities, the behavior of limit cycles and separatrices. The
cyclicity of singular points and separatrix cycles, the behavior of semi-stable
and other multiple limit cycles are controlled by these parameters as well.
Therefore, by means of the rotation parameters, it is possible to control all
limit cycle bifurcations and to solve the most complicated problems of the
qualitative theory of dynamical systems.

In [6], [7], [9], [10], [13], some complete results on quadratic systems have
been presented. In particular, it has been proved that for quadratic systems
four is really the maximum number of limit cycles and (3 : 1), i. e., three
limit cycles around one focus and the only limit cycle around another focus,
is their only possible distribution (this is a solution of Hilbert’s Sixteenth
Problem in the quadratic case of polynomial dynamical systems). In [8], some
preliminary results on generalizing new ideas and methods of [6] to cubic
dynamical systems have already been established. In particular, a canonical
cubic system of Kukles type has been constructed and the global qualitative
analysis of its special case corresponding to a generalized Liénard equation has
been carried out. It has been proved also that the foci of such a Liénard system
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can be at most of second order and that such system can have at most three
limit cycles on the whole phase plane. Moreover, unlike all previous works
on the Kukles-type systems, global bifurcations of limit and separatrix cycles
using arbitrary (including as large as possible) field rotation parameters of the
canonical system have been studied in [8]. As a result, the classification of all
possible types of separatrix cycles for the generalized Liénard system has been
obtained and all possible distributions of its limit cycles have been found. In
[11], [12], a solution of Smale’s Thirteenth Problem proving that the Liénard
system with a polynomial of degree 2k + 1 can have at most k limit cycles
has been presented. In [4], we have completed the global qualitative analysis
of a quartic ecological model. All of these methods and results can be applied
to the global qualitative analysis of the FitzHugh–Nagumo neuronal model
as well.

In [3], we have already carried out the global qualitative analysis of a poly-
nomial dynamical system as a learning model of neural networks [2], [17].
Learning models are algorithms, implementable as neural networks, that aim
to mimic an adaptive procedure. A neural network is a device consisting on
interconnected processing units, designated neurons. An input presented to
the network is translated as a numerical assignment to each neuron. This will
create a sequence of internal adjustments leading to a learning process. An
input vector, denoted by ξ, represents an n-dimensional random vector with
independent components. This means that the joint probability distribution
function is the product of n density functions. The output value, denoted by V,
is the outcome of the network’s action on ξ and is given by

∑n
j=1 ωjξj, where

ωj is the connecting weight for the synapse attached to the input neuron j.
Since new synapses may be created under a constant error rate, E, a synaptic
strength may capture nearby activity. This is done by the creation of tempo-
rary synapses from the closest neurons to the output one. The synaptic rate
of change is given by

ω̇i = V ((1− E)ξi + (E/2)(ξi+1 + ξi−1)− V ωi),

for i = 2, . . . , n− 1, or

ω̇i = V ((1− E)ξi + (E/2)ξi±1 − V ωi),

for i = 1 or n, respectively. Substituting the value of V in the expression of
ω̇i, we obtain

ω̇i =



(1−E)
∑n
j=1 ωjξjξi + (E/2)

∑n
j=1 ωjξj(ξi−1 + ξi+1)−

∑
j, k ωjωkξjξkωi,

i 6= 1 and n,

(1−E)
∑n
j=1 ωjξjξi + (E/2)

∑n
j=1 ωjξjξi±1−

∑
j, k ωjωkξjξkωi,

i = 1 or n,
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what can be reduced to the equation

dω

dt
= TCω − (ω,Cω)ω, (2.1)

with C = [〈ξiξj〉]ij = ξtξ, ξ = {ξ1, ξ2, . . . , ξn}, a correlation matrix of ex-
pected values, and T, a tridiagonal substochastic matrix given by tij = 0 if
|i−j| > 1, tij = E/2 if |i−j| = 1, and tii = 1−E, for all i and j = 1, . . . , n [2].

Desirable initial conditions are those with trajectories that converge to some
equilibrium (singular) point of (2.1). This will assume a natural weight assign-
ment as a result of the learning process. Knowledge on the stability of equilibria
provides information on the robustness of the learning process. Existence of
cycles might represent a different kind of learning where a whole continuum
of connecting weight vectors emerges instead of just a single vector. In [3], we
have restricted our attention to two dimensions.

For two input neurons, (2.1) can be written as a cubic dynamical system

ẋ = ((1−ε)a+(ε/2)b)x+((1−ε)b+(ε/2)c)y − x(ax2+2bxy+cy2),

ẏ = ((ε/2)a+(1−ε)b)x+((ε/2)b+(1−ε)c)y − y(ax2+2bxy+cy2),

(2.2)

where the parameters ε and a, b, c represent, respectively, the probability of
synaptic formation and the weight strengths for the synapses attached to the
input neurons [3]. Thus, we have got a four-parameter planar dynamical sys-
tem for investigation. Applying techniques based both on classical Poincaré
and Dulac methods and also on some methods developed in [6], we have stud-
ied the global bifurcations of singular points and limit cycles of the cubic
system (2.2), a learning model of planar neural networks [3].

Some of these techniques can be extended to higher-dimensional dynamical
systems [6], [15], [18]. So, for the global analysis of limit cycle bifurcations
(in particular, for solving the uniqueness problem) we have used the Perko
planar termination principle stating that the maximal one-parameter family
of multiple limit cycles terminates either at a singular point, which is typi-
cally of the same multiplicity, or on a separatrix cycle, which is also typically
of the same multiplicity [18]. This principle is a consequence of the Wintner
principle of natural termination, which was stated for higher-dimensional dy-
namical systems (see [6], [18]), where one-parameter families of periodic orbits
of the restricted three-body problem are studied and Puiseux series are used
to show that in the analytic case any one-parameter family of periodic orbits
can be uniquely continued through any bifurcation except a period-doubling
bifurcation. Thus, the Wintner–Perko termination principle and the method
developed in [3], [4], [6]–[13] can be applied to the further global qualitative
analysis of neural dynamical systems.
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3 Basic facts on limit cycles

Consider a polynomial dynamical system in the vector form

ẋ = f(x,µ), (3.1)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial vector function).

Let us recall some basic facts concerning limit cycles of (3.1). But first let us
state two fundamental theorems from the theory of analytic functions [6].

Theorem 3.1 (Weierstrass Preparation Theorem). Let F (w, z) be an
analytic in the neighborhood of the point (0, 0) function satisfying the following
conditions

F (0, 0) = 0,
∂F (0, 0)

∂w
= 0, . . . ,

∂k−1F (0, 0)

∂k−1w
= 0;

∂kF (0, 0)

∂kw
6= 0.

Then in some neighborhood |w| < ε, |z| < δ of the points (0, 0) the function
F (w, z) can be represented as

F (w, z) = (wk + A1(z)wk−1 + . . .+ Ak−1(z)w + Ak(z))Φ(w, z),

where Φ(w, z) is an analytic function not equal to zero in the chosen neigh-
borhood and A1(z), . . . , Ak(z) are analytic functions for |z| < δ.

From this theorem it follows that the equation F (w, z) = 0 in a sufficiently
small neighborhood of the point (0, 0) is equivalent to the equation

wk + A1(z)wk−1 + . . .+ Ak−1(z)w + Ak(z) = 0,

which left-hand side is a polynomial with respect to w. Thus, the Weierstrass
preparation theorem reduces the local study of the general case of implicit
function w(z), defined by the equation F (w, z) = 0, to the case of implicit
function, defined by the algebraic equation with respect to w.

Theorem 3.2 (Implicit Function Theorem). Let F (w, z) be an analytic
function in the neighborhood of the point (0, 0) and F (0, 0)=0, F ′w(0, 0) 6=0.

Then there exist δ > 0 and ε > 0 such that for any z satisfying the condition
|z| < δ the equation F (w, z) = 0 has the only solution w = f(z) satisfying the
condition |f(z)| < ε. The function f(z) is expanded into the series on positive
integer powers of z which converges for |z| < δ, i. e., it is a single-valued
analytic function of z which vanishes at z = 0.
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Assume that the system (3.1) has a limit cycle

L0 : x = ϕ0(t)

of minimal period T0 at some parameter value µ = µ0 ∈ Rn (Fig. 1).

FIG. 1. The Poincaré return map in the neighborhood of a multiple limit cycle.

Let l be the straight line normal to L0 at the point p0 = ϕ0(0) and s be
the coordinate along l with s positive exterior of L0. It then follows from the
implicit function theorem that there is a δ > 0 such that the Poincaré map
h(s,µ) is defined and analytic for |s| < δ and ‖µ − µ0‖ < δ. Besides, the
displacement function for the system (3.1) along the normal line l to L0 is
defined as the function

d(s,µ) = h(s,µ)− s.

In terms of the displacement function, a multiple limit cycle can be defined as
follows [6].

Definition 3.1. A limit cycle L0 of (3.1) is a multiple limit cycle iff d(0,µ0)=
dr(0,µ0) = 0 and it is a simple limit cycle (or hyperbolic limit cycle) if it is
not a multiple limit cycle; furthermore, L0 is a limit cycle of multiplicity m iff

d(0,µ0) = dr(0,µ0) = . . . = d(m−1)r (0,µ0) = 0, d(m)
r (0,µ0) 6= 0.

Note that the multiplicity of L0 is independent of the point p0 ∈ L0 through
which we take the normal line l.

Let us write down also the following formulas which have already become
classical ones and determine the derivatives of the displacement function in
terms of integrals of the vector field f along the periodic orbit ϕ0(t) [6]:

ds(0,µ0) = exp

T0∫
0

∇ · f(ϕ0(t),µ0) dt− 1 (3.2)

and
dµj(0,µ0) =
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−ω 0

‖f(ϕ0(0),µ0)‖

T0∫
0

exp

− t∫
0

∇ · f(ϕ0(τ),µ0) dτ

f ∧ fµj(ϕ0(t),µ0) dt (3.3)

for j = 1, . . . , n, where ω0 = ±1 according to whether L0 is positively or
negatively oriented, respectively, and where the wedge product of two vectors
x = (x1, x2) and y = (y1, y2) in R2 is defined as

x ∧ y = x1 y2 − x2 y1.

Similar formulas for dss(0,µ0) and dsµj(0,µ0) can be derived in terms of in-
tegrals of the vector field f and its first and second partial derivatives along
ϕ0(t). The hypotheses of theorems in the next section will be stated in terms
of conditions on the displacement function d(s,µ) and its partial derivatives
at (0,µ0) [6].

4 Bifurcation surfaces of multiple limit cycles

In this section, we restate Perko’s theorems on the local existence of (n−m+1)-
dimensional surfaces, Cm, of multiplicity-m limit cycles for the polynomial sys-
tem (3.1) with µ ∈ Rn and n ≥ m ≥ 2. These results describe the topological
structure of the codimension (m−1) bifurcation surfaces Cm. For m = 2, 3, 4,
C2, C3, and C4 are the familiar fold, cusp, and swallow-tail bifurcation sur-
faces; for m ≥ 5, the topological structure of the surfaces Cm is more complex.
For instance, C5 and C6 are the butterfly and wigwam bifurcation surfaces,
respectively [18]. Since the proofs of the theorems in this section, describing
the universal unfolding near a multiple limit cycles of (3.1), parallel the clas-
sical proofs of Catastrophe Theory, we will only state the theorems (see [18]
for more detail).

Definition 4.1. An (n−1)-dimensional analytic surface C2 ⊂ Rn is an (n−1)-
dimensional fold bifurcation surface of multiplicity-two limit cycles of (3.1)
through a point µ0 ∈ Rn, if for all ε > 0 there exists a δ > 0 such that for each
µ ∈ C2 with ‖µ − µ0‖ < δ, the system (3.1) has a unique multiplicity-two
limit cycle Lµ in an ε-neighborhood of L0 and the system (3.1) undergoes a
fold bifurcation at Lµ; i. e., for ‖µ − µ0‖ < δ, Lµ splits into a simple stable
and a simple unstable limit cycles in an ε-neighborhood of L0 for µ on one
side of C2 and Lµ vanishes for µ on the other side of C2. Cf. Fig. 2.

Theorem 4.1. Suppose that n ≥ 2, that for µ = µ0 ∈ Rn the system (3.1) has
a multiplicity-two limit cycle L0, and that dµ1(0,µ0) 6= 0. Then given ε > 0,

there is a δ > 0 and a unique function g(µ2, . . . , µn) with g(µ
(0)
2 , . . . , µ(0)

n ) =

9



FIG. 2. The fold bifurcation surface.

µ
(0)
1 , defined and analytic for |µ2 − µ(0)

2 | < δ, . . . , |µn − µ(0)
n | < δ, such that for

|µ2 − µ(0)
2 | < δ, . . . , |µn − µ(0)

n | < δ,

C2 : µ1 = g(µ2, . . . , µn)

is an (n− 1)-dimensional, analytic fold bifurcation surface of multiplicity-two
limit cycles of (3.1) through the point µ0.

Definition 4.2. An analytic surface C3 ⊂ Rn is an (n−2)-dimensional cusp
bifurcation surface of multiplicity-three limit cycles of (3.1) through a point
µ0 ∈ Rn, if for all ε > 0 there exists a δ > 0 such that for each µ ∈ C3 with
‖µ−µ0‖ < δ, the system (3.1) has a unique multiplicity-three limit cycle Lµ
in an ε-neighborhood of L0 and the system (3.1) undergoes a cusp bifurcation
at Lµ; i. e., C3 is the intersection of two (n−1)-dimensional fold bifurcation
surfaces of multiplicity-two limit cycles of (3.1), C±2 , which intersect in a cusp
along C3; for ‖µ − µ0‖ < δ and for µ in the cuspidal region between C+

2

and C−2 (shaded in Fig. 3), the system (3.1) has three simple limit cycles in
an ε-neighborhood of L0; and for ‖µ − µ0‖ < δ and µ outside the cuspidal
region, the system (3.1) has one simple limit cycle in an ε-neighborhood of L0.
Cf. Fig. 3.

Theorem 4.2. Suppose that n ≥ 3, that for µ = µ0 ∈ Rn the system (3.1)
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FIG. 3. The cusp bifurcation surface.

has a multiplicity-three limit cycle L0, that dµ1(0,µ0) 6= 0, drµ1(0,µ0) 6= 0 and
for j = 2, . . . , n,

∆j ≡
∂(d, dr)

∂(µ1, µj)
(0,µ0) 6= 0.

Then given ε > 0, there is a δ > 0 and constants ωj = ±1 for j = 2, . . . , n, and
there exist unique functions h1(µ2, . . . , µn), h2(µ2, . . . , µn) and g±(µ2, . . . , µn)

with h1(µ
(0)
2 , . . . , µ(0)

n ) = µ
(0)
1 , h2(µ

(0)
2 , . . . , µ(0)

n ) = µ
(0)
1 and g±(µ

(0)
2 , . . . , µ(0)

n ) =

µ
(0)
1 , where h1 and h2 are defined and analytic for |µj−µ(0)

j | < δ, j = 2, . . . , n,

and g± are defined and continuous for 0 ≤ σj(µj − µ(0)
j ) < δ and analytic for

0 < ωj(µj − µ(0)
j ) < δ, j = 2, . . . , n such that

C3 :

µ1 = h1(µ2, . . . , µn)

µ1 = h2(µ2, . . . , µn)

is an (n − 2)-dimensional, analytic, cusp bifurcation surface of multiplicity-
three limit cycles of (3.1) through the point µ0 and

C±2 : µ1 = g±(µ2, . . . , µn)

are two (n−1)-dimensional, analytic, fold bifurcation surfaces of multiplicity-
two limit cycles of (3.1) which intersect in a cusp along C3.
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Definition 4.3. An analytic surface C4 ⊂ Rn is an (n− 3)-dimensional
swallow-tail bifurcation surface of multiplicity-four limit cycles of (3.1) through
a point µ0 ∈ Rn, if for all ε > 0 there exists a δ > 0 such that for each µ ∈ C4

with ‖µ−µ0‖ < δ, the system (3.1) has a unique multiplicity-four limit cycle
Lµ in an ε-neighborhood of L0 and the system (3.1) undergoes a swallow-tail
bifurcation at Lµ; i. e., C4 is the intersection of two (n−2)-dimensional cusp
bifurcation surfaces of multiplicity-three limit cycles C±3 which intersect in a
cusp along C4; furthermore, there are three (n−1)-dimensional fold bifurcation

surfaces of multiplicity-two limit cycles of (3.1), C
(i)
2 , i = 0, 1, 2, such that C

(0)
2

and C
(1)
2 intersect in a cusp along C+

3 , C
(0)
2 and C

(2)
2 intersect in a cusp along

C−3 , and C
(1)
2 and C

(2)
2 intersect along an (n−2)-dimensional surface on which

(3.1) has two multiplicity-two limit cycles; finally, for ‖µ−µ0‖ < δ and for µ
in the swallow-tail region (shaded in Fig. 4), the system (3.1) has four simple
limit cycles in an ε-neighborhood of L0; for ‖µ − µ0‖ < δ and µ above the

surfaces C
(i)
2 , i = 0, 1, 2, the system (3.1) has two simple limit cycles in an

ε-neighborhood of L0; and for ‖µ−µ0‖ < δ and µ below the surfaces C
(i)
2 ,

i = 0, 1, 2, the system (3.1) has no limit cycles in an ε-neighborhood of L0.
Cf. Fig. 4.

FIG. 4. The swallow-tail bifurcation surface.

Theorem 4.3. Suppose that n ≥ 4, that for µ = µ0 ∈ Rn the system (3.1)
has a multiplicity-four limit cycle L0, that dµ1(0,µ0) 6= 0, drµ1(0,µ0) 6= 0,
drrµ1(0,µ0) 6= 0, and that for j = 2, . . . , n,

∂(d, dr)

∂(µ1, µj)
(0,µ0) 6= 0,

∂(d, drr)

∂(µ1, µj)
(0,µ0) 6= 0,

∂(dr, drr)

∂(µ1, µj)
(0,µ0) 6= 0.
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Then given ε > 0, there is a δ > 0 and constants ωjk = ±1 for j = 2, . . . , n,
k = 1, 2, and there exist unique functions gi(µ2, . . . , µn), h±k (µ2, . . . , µn) and

Fi(µ2, . . . , µn), with gi(µ
(0)
2 , . . . , µ(0)

n ) = h±k (µ
(0)
2 , . . . , µ(0)

n ) = Fi(µ
(0)
2 , . . . , µ(0)

n )=

µ
(0)
1 , for i = 0, 1, 2 and k = 1, 2, where Fi is defined and analytic for i =

0, 1, 2, and |µj − µ
(0)
j | < δ, j = 2, . . . , n, h±k are defined and continuous for

0 ≤ ωjk(µj − µ(0)
j ) < δ and analytic for 0 < ωjk(µj − µ(0)

j ) < δ, j = 2, . . . , n,
k = 1, 2, and for i = 0, 1, 2, gi is defined and analytic in the cuspidal region
between the surfaces µ1 = h±2 (µ2, . . . , µn), which intersect in a cusp, and gi is
continuous in the closure of that region, such that

C4 :


µ1 = F0(µ2, . . . , µn)

µ1 = F1(µ2, . . . , µn)

µ1 = F2(µ2, . . . , µn)

is an (n − 3)-dimensional, analytic, swallow-tail bifurcation surface of multi-
plicity-four limit cycles of (3.1) through the point µ0 which is the intersection
of two (n− 2)-dimensional, analytic, cusp bifurcation surfaces of multiplicity-
three limit cycles of (3.1),

C±3 :

µ1 = h±1 (µ2, . . . , µn)

µ1 = h±2 (µ2, . . . , µn)

which intersect in a cusp along C4; furthermore, C+
3 = C

(0)
2

⋂
C

(1)
2 and C−3 =

C
(0)
2

⋂
C

(2)
2 where for i = 0, 1, 2,

Ci
2 : µ1 = gi(µ2, . . . , µn)

are (n− 1)-dimensional, analytic, fold bifurcation surfaces of multiplicity-two
limit cycles of (3.1) which intersect in cusps along C±3 and in an (n − 2)-

dimensional, analytic surface C
(1)
2

⋂
C

(2)
2 on which (3.1) has two multiplicity-

two limit cycles (Fig. 4 and Fig. 5).

Based on Theorems 3.1, 3.2, the following generalization of Theorems 4.1 – 4.3
can be proved on induction [18].

Theorem 4.4. Given m ≥ 2. Suppose that n ≥ m, that for µ = µ0 ∈ Rn the
polynomial system (3.1) has a multiplicity-m limit cycle L0, that

∂d

∂µ1

(0,µ0) 6= 0,
∂dr
∂µ1

(0,µ0) 6= 0, . . . ,
∂d(m−2)r

∂µ1

(0,µ0) 6= 0,
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FIG. 5. The bifurcation curve (one-parameter family) of multiple limit cycles.

and that

∂(d(i)r , d
(j)
r )

∂(µ1, µk)
(0,µ0) 6= 0

for i, j = 0, . . . ,m− 2 with i 6= j and k = 2, . . . , n.

Then given ε > 0 there is a δ > 0 such that for ‖µ−µ0‖ < δ, the system (3.1)
has

(1) a unique (n −m + 1)-dimensional analytic surface Cm of multiplicity-m
limit cycles of (3.1) through the point µ0;

(2) two (n−m+2)-dimensional analytic surfaces Cm−1 of multiplicity-(m−1)
limit cycles of (3.1) through the point µ0 which intersect in a cusp along Cm;

. . .

(j) exactly j, (n−m+j)-dimensional analytic surfaces Cm−j+1 of multiplicity-
(m− j + 1) limit cycles of (3.1) through the point µ0 which intersect pairwise
in cusps along the bifurcation surfaces Cm−j+2;

. . .

(m−1) exactly (m−1), (n−1)-dimensional analytic fold bifurcation surfaces
C2 of multiplicity-two limit cycles of (3.1) through the point µ0 which intersect
pairwise in a cusp along the (n− 2)-dimensional cusp bifurcation surfaces C3.
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5 Singular points of the FitzHugh–Nagumo system

The study of singular point of the system (1.3) will use two index theorems
by H. Poincaré, see [1]. But first let us define the Poincaré index [1].

Definition 5.1. Let S be a simple closed curve in the phase plane not passing
through a singular point of the system

ẋ = P (x, y), ẏ = Q(x, y), (5.1)

where P (x, y) andQ(x, y) are continuous functions (for example, polynomials),
and M be some point on S. If the point M goes around the curve S in positive
direction (counterclockwise) one time, then the vector coinciding with the
direction of a tangent to the trajectory passing through the point M is rotated
through the angle 2πj (j = 0,±1,±2, . . .). The integer j is called the Poincaré
index of the closed curve S relative to the vector field of system (5.1) and has
the expression

j =
1

2π

∮
S

P dQ−Q dP

P 2 +Q2
.

According to this definition, the index of a node or a focus, or a center is equal
to +1 and the index of a saddle is −1.

Theorem 5.1 (First Poincaré Index Theorem). If N, Nf , Nc, and C are
respectively the number of nodes, foci, centers, and saddles in a finite part of
the phase plane and N ′ and C ′ are the number of nodes and saddles at infinity,
then it is valid the formula

N +Nf +Nc +N ′ = C + C ′ + 1.

Theorem 5.2 (Second Poincaré Index Theorem). If all singular points
are simple, then along an isocline without multiple points lying in a Poincaré
hemisphere which is obtained by a stereographic projection of the phase plane,
the singular points are distributed so that a saddle is followed by a node or a
focus, or a center and vice versa. If two points are separated by the equator
of the Poincaré sphere, then a saddle will be followed by a saddle again and a
node or a focus, or a center will be followed by a node or a focus, or a center.

Consider the system (1.3). Its finite singularities are determined by the alge-
braic system

(γ δ − 1) y + (γ − a)x+ b x2 − c x3 = 0,

x− δ y = 0 .
(5.2)
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From (5.2) [1], [6], [19], we will get a singular point (0, 0) of antisaddle-type
(i. e., a node, a focus, or a center) and at most two points (a saddle and an
antisaddle or, if one, a saddle-node) defined by the condition

c x2 − b x− γ δ − 1

δ
− γ + a = 0, y =

x

δ
. (5.3)

To get singular points at infinity, consider the corresponding differential equa-
tion

dy

dx
=

x− δ y
(γ δ − 1) y + (γ − a)x+ b x2 − c x3

. (5.4)

Dividing the numerator and denominator of the right-hand side of (5.4) first
by x3 (x 6= 0), denoting y/x by u, and then by y3 (y 6= 0), denoting x/y by v,
we will get two infinite singularities: u = 0 (a simple node in the direction of
the x-axis) and v3 = 0 (a triple saddle in the direction of the y-axis), see [1], [6].

6 Global limit cycle bifurcations in the system

To investigate global limit cycle bifurcations in the system (1.3), we will use
the results of the previous sections and will apply the method developed in [3],
[4], [6]–[13]. The sense of this method is to obtain the simplest (well-known)
system by vanishing some parameters (usually field rotation parameters) of
the original system and then to input these parameters successively one by
one studying the dynamics of limit cycles on the whole phase plane.

Let us study rotation properties of the parameters of (1.3). Applying the
definition of a field rotation parameter (i. e., a parameter which rotates the
field in one direction [1], [6], [18]), to the system (1.3) written in the form

ẋ = R(x, y) + γ Q(x, y) ≡ P (x, y), ẏ = Q(x, y), (6.1)

where R(x, y) = −y − a x + b x2 − c x3 and Q(x, y) = x − δ y, calculate the
corresponding determinant for the parameter γ :

∆γ = PQ′γ −QP ′γ = −Q2 ≤ 0. (6.2)

It follows from (6.2) that on increasing γ the vector field of (1.3) is rotated in
negative direction (clockwise) on the whole phase plane of (1.3).

For δ = 0, we will have a system

ẋ = −y + (γ − a)x+ b x2 − c x3 ≡ P (x, y),

ẏ = x ≡ Q(x, y).
(6.3)
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Applying the definition of a field rotation parameter to this system for the
parameters a and c, respectively, we will get the following determinants:

∆a = PQ′a −QP ′a = x2 ≥ 0, (6.4)

∆c = PQ′c −QP ′c = x4 ≥ 0. (6.5)

It follows from (6.4) and (6.5) that on increasing a or c the vector field of (6.3)
is rotated in positive direction (counterclockwise) on the whole phase plane
of (6.3).

For the study of multiple limit cycle bifurcations, we will use also two theorems
by L. Perko (see [18]) which are formulated for the polynomial system (3.1).

Theorem 6.1 (Wintner–Perko termination principle). Any one-para-
meter family of multiplicity-m limit cycles of the relatively prime polynomial
system (3.1) can be extended in a unique way to a maximal one-parameter
family of multiplicity-m limit cycles of (3.1) which is either open or cyclic.

If it is open, then it terminates either as the parameter or the limit cycles
become unbounded; or, the family terminates either at a singular point of (3.1),
which is typically a fine focus of multiplicity m, or on a (compound) separatrix
cycle of (3.1), which is also typically of multiplicity m.

The proof of this principle for the general polynomial system (3.1) with a vec-
tor parameter µ ∈ Rn parallels the proof of the planar termination principle
for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (6.6)

with a scalar parameter λ ∈ R, since there is no loss of generality in assuming
that system (3.1) is parameterized by a scalar parameter λ (see [6], [18]).

In particular, if λ is a field rotation parameter of (6.6), the following Perko’s
theorem on monotonic families of multiple limit cycles is valid [18].

Theorem 6.2. If L0 is a nonsingular multiple limit cycle of (6.6) for λ = λ 0,
then L0 belongs to a one-parameter family of limit cycles of (6.6); furthermore:

1) if the multiplicity of L0 is odd, then the family either expands or contracts
monotonically as λ increases through λ0;

2) if the multiplicity of L0 is even, then L0 bifurcates into a stable and an
unstable limit cycle as λ varies from λ0 in one sense and L0 disappears as λ
varies from λ0 in the opposite sense; i. e., there is a fold bifurcation at λ0.

Using these theorems and the results of the previous sections and applying
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the field rotation parameters of the systems (1.3) and (6.3), we will prove the
following theorem.

Theorem 6.3. The FitzHugh–Nagumo system (1.3) can have at most two
limit cycles.

Proof. First let us prove that system (1.3) can have at least two limit cycles
supposing that all of the parameters of (1.3) are nonnegative (in the natural
sense of the model). All other cases can be considered in a similar way.

Let the parameters a, c, γ, δ of (1.3) vanish and consider the quadratic system

ẋ = −y + b x2, ẏ = x. (6.7)

This is a reversible system. It has a center at the origan O and cannot have
limit cycles [6]. We will input the parameters γ, a, c, and δ successively one
by one into the system (6.7).

Inputting a positive parameter γ, we will get a system

ẋ = −y + γ x+ b x2, ẏ = x, (6.8)

the vector field of which is rotated in negative direction (clockwise) on the
whole phase plane of (6.8). The origin of (6.8) becomes an unstable focus (or
a node).

Inputting a positive parameter a into (6.8), the vector field of the system

ẋ = −y + (γ − a)x+ b x2, ẏ = x (6.9)

will be rotated in positive direction (counterclockwise). For a = γ, the origin
becomes weak and changes the character of stability on further increasing a.
The Andronov–Hopf bifurcation occurs for a = γ, and an unstable limit cycle,
Γ1, will appear from the origin [1], [6].

Inputting a positive parameter c into (6.9), we will get a cubic system

ẋ = −y + (γ − a)x+ b x2 − c x3, ẏ = x, (6.9)

the vector field of which is also rotated in positive direction on the whole phase
plane of (6.9). The structure and the character of stability of infinite singu-
larities will be changed, and a stable limit, Γ2, surrounding Γ1 will appear
immediately from infinity in this case. On further increasing the parameter c,
the limit cycles Γ1 and Γ2 combine a semi-stable limit, Γ12, which then disap-
pears in a “trajectory concentration” [1], [6].
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If to input a positive parameter δ into (6.9), we will have again the original
system (1.3). On further increasing δ, a saddle-node appears in the first quad-
rant of the phase plane. It splits then in two singular points: a saddle S and
an antisaddle A. Without loss of generality, we can fix the parameter δ, fixing
the positions of the finite singularities O, S, A, and consider the system (1.3)
with a positive parameter γ which rotates the vector field of (1.3) on the whole
phase plane.

So, consider the original system (1.3) with a positive parameter γ. On increas-
ing this parameter, the stable nodes O and A becomes first stable foci, then
they change the character of their stability, becoming unstable foci. At these
Andronov–Hopf bifurcations [1], [6], stable limit cycles will appear from the
foci O and A. On further increasing γ, the limit cycles will expand and will
disappear in small separatrix loops of the saddle S. If these loops are formed
simultaneously, we will have a so-called eight-loop separatrix cycle. In this
case, a big stable limit surrounding three singular points, O, S, and A, will
appear from the eight-loop separatrix cycle after its destruction, expanding to
infinity on increasing γ. If a small loop is formed earlier, for example, around
the point O (A), then, on increasing γ, a big loop formed by two lower (upper)
adjoining separatrices of the saddle S and surrounding the points O and A
will appear. After its destruction, we will have simultaneously a big limit cycle
surrounding three singular points, O, S, A, and a small limit cycle surrounding
the point A (O). Thus, we have proved that system (1.3) can have at least
two limit cycles, see also [19] for more detail.

Let us prove now that this system has at most two limit cycles. The proof
is carried out by contradiction applying Catastrophe Theory, see [6], [18].
Consider the system (1.3) with three field rotation parameters: a, c, and γ
(the parameters b and δ can be fixed, since they do not generate limit cycles).
Suppose that (1.3) has three limit cycles surrounding the only point, O, at the
origin. Then we get into some domain of the parameters a c, and γ being
restricted by definite conditions on two other parameters, b and δ. This domain
is bounded by two fold bifurcation surfaces forming a cusp bifurcation surface
of multiplicity-three limit cycles in the space of the parameters a, c, and γ
[6], [18].

The corresponding maximal one-parameter family of multiplicity-three limit
cycles cannot be cyclic, otherwise there will be at least one point corresponding
to the limit cycle of multiplicity four (or even higher) in the parameter space.
Extending the bifurcation curve of multiplicity-four limit cycles through this
point and parameterizing the corresponding maximal one-parameter family
of multiplicity-four limit cycles by a field rotation parameter, γ, according
to Theorem 6.2, we will obtain two monotonic curves of, respectively, multi-
plicity-three and one limit cycles which, by the Wintner–Perko termination
principle (Theorem 6.1), terminate either at the point O or on an infinite
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separatrix cycle surrounding this point. Since we know at least the cyclicity of
the singular point which is equal to two (see [19]), we have got a contradiction
with the termination principle stating that the multiplicity of limit cycles
cannot be higher than the multiplicity (cyclicity) of the singular point in
which they terminate.

If the maximal one-parameter family of multiplicity-four limit cycles is not
cyclic, using the same principle (Theorem 6.1), this again contradicts the
cyclicity of the origin (see [19]) not admitting the multiplicity of limit cy-
cles to be higher than two. This contradiction completes the proof in the case
of one singular point on the phase plane.

Suppose that the system (1.3) has three finite singularities, O, S, A, and two
small limit cycles around, e. g., the point O (the case when the limit cycles
surround the point A is considered in a similar way). Then we get into some
domain in the space of the parameters a, c, and γ which is bounded by a fold
bifurcation surface of multiplicity-two limit cycles [6], [18].

The corresponding maximal one-parameter family of multiplicity-two limit
cycles cannot be cyclic, otherwise there will be at least one point corresponding
to the limit cycle of multiplicity three (or even higher) in the parameter space.
Extending the bifurcation curve of multiplicity-three limit cycles through this
point and parameterizing the corresponding maximal one-parameter family
of multiplicity-three limit cycles by a field rotation parameter, γ, according
to Theorem 6.2, we will obtain a monotonic curve which, by the Wintner–
Perko termination principle (Theorem 6.1), terminates either at the point O
or on some separatrix cycle surrounding this point. Since we know at least the
cyclicity of the singular point which is equal to one in this case [19], we have
got a contradiction with the termination principle (Theorem 6.1).

If the maximal one-parameter family of multiplicity-two limit cycles is not
cyclic, using the same principle (Theorem 6.1), this again contradicts the
cyclicity of O (see [19]) not admitting the multiplicity of limit cycles higher
than one. Moreover, it also follows from the termination principle that either
an ordinary (small) separatrix loop or a big loop, or an eight-loop cannot have
the multiplicity (cyclicity) higher than one in this case. Therefore, according
to the same principle, there are no more than one limit cycle in the exterior
domain surrounding all three finite singularities, O, S, and A.

Thus, taking into account all other possibilities for limit cycle bifurcations (see
[19]), we conclude that system (1.3) cannot have either a multiplicity-three
limit cycle or more than two limit cycles in any configuration. The theorem is
proved. �
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