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§8.0. Foreword.
Let
|z| > 1, =37/2 < arg(z) < 7/2,log(z) = In(|z|) + i arg(z).

Then log(—z) = log(z) — im, if £(z) > 0 and log(z) = log(—z) — im, if
R(z) < 0.
Let

(1) i) = ) = §<—1><”+k>l<z>k () ()

where [ =0, 1, 2, v € [0, +00) N Z. Let

ﬁ[l(t —J)
(2) R(t,v) =% :
ljo(t +J)

where v € [0, +00) N Z,



—+o00

(3) fia(zv) = fialz,v) = Z 2 H(R(t,v))*,

t=14v

where [ =0, 1, 2 and v € [0, +00) N Z, and since (R(t,v))*" for v € N has

in the points t =1, ..., v, the zeros of the order 2 + [, it follows that
“+oo

(4) fiazv) =) 2T H(R(tv))*,
t=1

for i =0, 1,2 and v € [0,400) N Z. Let

(5) fz\,/3(z> v) = fiz(z,v) = (log(2)) fiz(z, ) + fia(z,v),
where
+o0 o
_ —t (O po+i
) ) == Y = (50 o)
t=1+v
[ =0,1,2and v € [0,+00) NZ, and since (R(t,v))*" for v € N has in the
points t =1, ..., v, the zeros of the order 2 + [, it follows that
+o0 o
7 - _ -t 2 R2+l ¢
) e ==X (U ) 6.0
for i =0, 1,2 and v € [0,400) N Z. Let
(8) fis(z,v) = =i fis(z,v) + fis(z,v),
with [ =1, 2, v € [0,+00) N Z and
(9) fis(z,v) =

2_1(10g(z))2fl,2(z, v) + (log(2)) fia(z,v) + fie(z,v) =
= —2_1(10g(z))2fl,2(z, v) + (log(2)) fis(z,v) + fie(z,v),

where
_ o1 [ (9 2+
(10) fis(zy) =273 2 ((at) (R )) (t,v),
t=14v
and since (R(t,v))?*! for v € N has in the points t = 1, ... , v, the zeros of

the order 2 + [, and [ = 1, 2 now, it follows that

(11) Jrs(z,v) =27 Z zt ((%) (R2+l)) (t,v)

t=1+v

for i =1, 2 and v € [0,400) N Z. Let



(12) fz,v7(z> v) = fir(z,v) + (27°/3) fis(z,v).

with | =2, v € [0,4+00) N Z and
(13) fia(zv) =

—37Ylog(2))? fra(z,v) + 27 (log(2))? fis(z,v) + fis(z,v)+
(log(2))(fus(2,v) + 27" (log(2))* fia(2, v) — (log(2)) fia(z,v)) =
6 (log(2))% fia(z,v) — 27 (log(2))? fis(z, v) + (log(2)) fis(2,v) + fis(z,v) =
(1/6)(log(2))’ fia(z, v) + (1/2)(log(2))* fua(z, v)+
(log(2)) fi,6(2,v) + fis(z,v),

where
14 — -1 —t e 241
1) S =6 Y s ((at) (B ) (1.0),
t=v+1
and, since (R(t,v))?* for v € N have in the points t = 1, ..., v, the zeros

of the order 2 4 [, and [ = 2 now, it follows that

(15) fis(z,v) = —6~ 1§:z_t <<—)3 R2+l)) (t,v).

Let
Ro=11,2,3} R =1{1,2,3,5}, R = {1, 2, 3,5, T}.

Let A be a variable. We denote by T, , the diagonal n x n-matrix, i-th
diagonal element of which is equal to A1 for i = 1, ..., n. We denote by
0 the operator zd%. Let further I = 0, 1,2,k € &, |2|] > 1,v € N, and
let Y, x(2z;v) be the columnn with 4 + 2[ elements, i-th of which is equal to
(o) iz ) fori=1, ..., 44 2L

Theorem 1. The following equalities hold

(16) AT (5 0)Yik(zv) = Tipar 1 Yig(z0 = 1),

(17) Yir(z;v) = Tagpor, -1 A7 (25 —v) Tugor,— 14001 Yig(23 v — 1),

where | =0, 1,2, k€ R, |z] > 1, v e N,v>2

1+1
(18) AT (zv) = S5 42 ) v V)
i=0
with
1 -4 8 -—-12
- o 1 -4 8
(19) S0 = 0 O 1 -4
0 0 0 1



(20)

(21)

-1 6 —18 38 —66 10

2

0 -1 6 —18 38 —66
e o 0 16 s s
=10 0o 0 -1 6 -18 |’

0 0 0 0 -1 6

0 0 0 0 0 -1
1 -8 32 —88 102 —360 608 —952
0 1 -8 32 -8 102 —360 608
0 0 1 -8 32 -8 192 —360

e oo 0 1 s w8 19

=10 0 0o 0 1 -8 32 _s88
00 0 0 0 1 -8 32
o0 0 0 o0 o0 1 -8
o0 0 0 0 o0 0 1

A -5 —2 3
R B SV R T
192 1 ¢
3 6 3 0
24 20
oW =41 1 5 1 o|-
0 0 0 0
146 108 —180 268 66 —102
102 146 108 —180 —38 66
o | 66 —102 -2 108 18 38
VIO =1 35 6 12 -5 -6 18
18 38 12 12 2 -6
6 18 20 12 -6 2
210 —516 108 372 —204 0
160 348 -84 —236 132 0
|9 212 60 132 —76 0
VImTW =1 48 108 -36 —60 36 0
6 36 12 20 —12 0
0 -4 12 —12 4 0
102 —306 306 —102 0 0
66 198 —198 66 0 0
o 138 14 14 38 0 0
Vi@ =115 51 _s4 18 00|
6 —18 18 -6 0 0
2 6 -6 2 00




176 —249 —-364 545 280 —431 —-76 119
—-119 176 227 =364 —-169 280 45 76
7% —119 —-128 227 92 —-169 —24 45
—45 76 61 —128 —43 92 11 =24

RO)=81 5y 45 20 61 16 43 4 11 |
1124 -1 -20 -5 16 1 -4
4 11 8 -1 4 -5 0 1
14 -7 8 -1 4 -1 0
455 —1020 —113 1552 —603 —628 357 0
300 682 44  —996 404 394 —228 O
185 —428 -3 502 —253 —228 135 O
» 104 246 —16 —316 144 118 —72 0
V(1) =8 51 —124 19 144 —71 =52 33 0|’
20 50 12 -52 28 18 —12 0
5  —12 1 16 -9 -4 3 0
0 -2 8 -—12 8 -2 0 0
100 —1243 972 542 —1028 357 0 0
250 808 —642 —332 653 —228 0 0
156 —489 396 186 —384 135 0 0
» 85 268 —222 —92 203 -T2 0 0
iT2)=81 40 197 108 38 -92 33 0 0]
15 48 —42 —12 33 —12 0 0
4 13 12 2 -8 3 00
14 =6 4 -1 0 00
119 —476 714 —476 119 0 0 0
76 304 —456 304 —76 0 0 0
45 —180 270 —180 45 0 0 0
» 24 96 —144 96 -24 0 0 0
iTB)=81 1 44 66 44 11 0 0 0
4 16 -24 16 -4 0 0 0
1 -4 6 -4 1 000

0 0 0 0 0 000
The above matices Ay (z;v), Sy and V,™*(i) have the following properties:

(22) A (2 —v)Tagor, 1 Ay (250) = Tyyor, -1,
(23) Sy Tagor—1 = (S] Tagor,—1) ™"

(24) Sy Ty, 1V (i) = —(=1)' V" () Tayor, 157,
(25) V™ (@) Tayor, 1 V™" (k) = 0T yq 9,1,
where

1=0,1,2,i€[0,1+]NZ kel0,1+I]NZ

Proof. Full proof can be found in [[56]] — [[60]]. In [60] I had promised to
give arithmetical applications of the Theorem 1. In [62] I had given short



deduction of the Apéry’s equation from the Theorem 1. In Part 7 of this
work I begin the proof of the Theorem 2, which joins the Apéry’s Theorem
and my result in [23], [43] in one Theorem. Now I complete this proof. Let
me to formulate the Theorem 2 again. Let

2€Q,|z| > 1, z=1/z,beNa=0bz € Z,

0 () = (z \/\/MM(—UZ‘)) _
2| + (=1)" + 2\/|z\ + ( V2l

fori =0,1,

(27) ii2(z) = V12l + VI + 1+

SOVVIEE T+ (~1)F ] =

VI A VI F 14 2(VE T T + |2)) =
r4+vVr2+1+4+ \/2(\/7’4 + 724+ 1r2),

where r = \/|z|.

In (72172 (2))*€’D)
In((7x(2))?/€%b)

(28) Bi(z) =
where k£ =0, 1, 2

(1 — (=1)*)(n(ijo(2) /i (2)

. W= TG G

(30) Dy (b) =
fy € R: (—1)2y > (VeSb+ 1)*/(% + 1)) /166%},
where k=0, 1, 2,

(31) Lis(z) = (i/z+ (— Zx”/n

where it =0, 1, s e N |z| <1, |x — 1| + s > 1,
L171(1) :O,

T € ]Ru To € @7 |x1‘ + ‘372‘ > 07

(32) Wi = ¢i(xlax2ax) = @i(zvxl7x2) =



1 Lo i(x) +izoLo_; 41 (x) =
JflLQ_Z"Z‘(l/Z) + Z'.TQLQ_Z"H_l(l/Z),
where ¢ = 1, 2. Let further,

(33) @3(1‘1,1‘271') - @3(2,1‘1,1‘2,1’) = Iy, OA‘O(‘T) - aO(Z)J

a;(x) = ay(z) fori=1, 2

ap(z) = as(z), € > 0, and |[[1|| denotes the distance from v to Z.
Theorem 2. There exsist effective positive

Yi(w1, 02, 2, €) = 75 (2, 71, 126),

where 1 =1, 2,
’3/0(3775) = 70(275)7

’3/1(1’,6) = 71(275)7 &0(1"75) = 72('275)?

such that,

if

z € Dy(b), z1 =1In(2), o =1,

then
(34) Jnax lgoil| g™ * > o(z,€)
for any q € N;

ifk=1, 2,

A Dk(b), 1 €L, x5 € L, T 7é 0,

then
(35) 'I_Illa2X3 ’|q¢i||qb6tak(Z)+E Z ’YZ (Zv Ty, T, 6)
for any q € N,
(36) mas [6(z, 1, 2)[ (] + 22O > (2. )

for any x1 € Z,x9 € 7, for which
‘1’1‘ + ‘1’2‘ > 0.
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§8.1. Properties of the roots of characteristic
polynomial in the case [ = 0.



The considered in the §7.3 of [63] difference equation

(37) D —1/(16(4z — 1) (v + 1/2)")ao (2 v)y(z; v + k) =0,

K=—2

where |z| > 1, v € Ny, is a difference equution of Poincaré type, and charac-
teristic polynomial of this equation is equal to

(38) To(zA) =
1 —4(82 4 1)\ + (25627 — 192z + 6)A% — 4(8z + 1)A\* + A4,
When 7 runs trough the roots of the polynomial
(39) D"(zim) = (n+1)* = 2%2* =
n* +4n® + (6 — 162)n + 4n + 1,
then A = n? runs trough the roots of the polynomial Ty(z; \) If
(40) r>1,pcl0,], z=r?exp(i2yp),

then we can represent polynomial D”(z;7) in the form

(41) DNz =[] 0+ 1)+ 4]zl expi(p — w7)n.

k=0,1

So, we must study the roots of the polynomial
(42) Dy (r,4in) = (n+1)* + 4rexp iy =

n? +2(142rexpit)n + 1= (n+ 1+ 2rexpit)?® — drexp(i)) (1 + rexp(i)),

where 7 = y/]z[ > 1 and ¥ € [—m,7]. If ¢ = 0 in (41) then we must consider
for ¢ two values ¢ = 0 and ¢ = 7. If ¢ = 7/2 in (41) then we must consider
for ¢ two values ¢ = —% and ¢ = 7.

In the case r = 1 the roots n of the polynomial DY (r,1;n) are studied in

§2 of [43]. Let

1+ rcos(v)
1+ 2rcos(¢) + r2

r > 1, ¢1(r, 1) = arccos <

where ¢ € [0, 7]. If ¥ € [—m, 0], then we let (7, 1) = —p1(r, —1). Clearly,

B 1 + rcos(v))
(43) cos(pr(r ) = g LB
(44) sin(pr (r, 1)) rsin(v)

B V14 2rcos(¢) + 12’

If we consider the circumference with radius equal to r» and center in the
point (1,0), and consider the triangle with the apixes 1+ rexp(it)), 0 and 1



then we find easily that the value 0 < @y(r,9) < 9, if ¢ € (0, 7), and the
value ¢4 (r, 1) increases in (0, 7) with increasing of ¢ in (0, 7). Let

@) el = LEAEE gy oY) T
Then, clearly,
(46) 0 S 902(7’7¢) S Q/}; 0 S 903(T7 ¢) < 7T/27 lf w S [07 7]7

the value ¢y(r, ) increases in (0, 7) with increasing of ¢ in (0, 7),

@Q(Tv O) = SOS(Tv O) = 303(7’, 71—) =0, @2(7“7 77) = T.

Clearly,
cos(2ps3(r, ¥)) = cos(v) —vardy(r,v))) =
r + cos(v) >0
V/1+2rcos(y) +r2
Therefore
(47) 25 (r, 1)) < g and (1, ) < %

Clearly, the roots n of the polynomial DY (r,v;n) are
(48) n=n(r,¥) =—1-2rexpiy) —

(—=1)"2v/rexp(i(pa(9)) (1 + 12 + 2rcos(4))/*,
where ¢ € [—m, 7|, k =0, 1. Therefore

(49) e(r, =) = ni(r, ) for ¢ € [=7, 7],
In view of (48),

(50) 1n(r, )2 = 1+ 4r? + 4r(1 4 1% + 2rcos(¥)) Y2 +

4r cos(1h) + (—1)F4v/r(1 + 12 + 2r cos(10)) /4 cos(p2 (1)) +
(=1)"8r¥2(1 4 1% + 2r cos(1))/* cos(¢3(1))) =
(2r — 1) 4+ 8rcos® (¢ /2) + 4r((r — 1)? + 4r cos? (1 /2)) 2+
(=1 4y/r((r = 1)* + 4r cos®(1/2)) /) x
(2r cos(ps(1))) + cos(pa(1)))
where ¢ € [—m, 7|, k=0, 1. In view of (47),

(51) A(r,¢) =
ANT(1 4+ 12 4 21 cos(¥)) Y4 cos(a (1)) +
8r%/2(1 + 17 + 2r cos(¢))/* cos(s(¢)) =

412 (1 1% 4 2r cos(1)) V) (21 cos(i3(1) + cos(pa (1)) >
4rY2(1 4 72 4 27 cos(¥)) V) (rvV2 + cos(pa (1)) > 0,



if r > 1, ¢ € [—pi/2,7/2]. It follows from (50) that
(52) L= [ (r, ) lmo(r, ) [* =

(1+ 4% +4r(1+ 1% + 2r cos(v))'/? + 4r cos(v))* — (A(r,¥))*.

Since
(2r — 1)? + 8r cos®(1/2) + 4r((r — 1)? + 4r cos® (1 /2)) /2

decreases together with increasing ¢ € [0, 7], when r is fixed in [1,400), it
follows from (52), (51), that A(r,¢) decreases with increasing ¢ € [0, ].
Therefore, in view of (50), if r is fixed in [1,400)), then the value |ny(r,1)|?
decreases with increasing of ¢ € (0,7), and |n;(r,%)]* = 1/|no(r,¥)[* in-
creases with increasing of ¢ € [0, 4+7]. Since

(2r — 1)% + 8rcos®(¢/2) 4 4r((r — 1)? + 4r cos®(1/2)) 1/

increases with increasing r € [0, +00), when ¢ is fixed in [0, +7], it follows
from (52), (51), that A(r, 1) decreases with increasing r € [1,400). There-
fore, in view of (50), if ¢ is fixed in [0, 7], then |ng(r,)|> decreases with
increasing of r € [1,+00), and | (r,¥)]* = 1/|ne(r,1)|? increases with in-
creasing of r € (1, +00). Therefore

(53)
1< |no(r,m)> = (2r = 1)* +4r(r — 1) +44/r(r — 1)(2r — 1) <
[0 (7, ) [* < o (r, 0)* =

(2r + 1) +4r(r+1) +42r + 1)y/r(r + 1)

and
1
(54) m(r,0) = (. 0) < Im(r,¢)l = 0 0] <
(2r — 12 4 4r(r — 1) — /7 = D) (2r — 1) =y (r, 7) = no(i S <1,

if € [-m,0)U (0, 7], r > 1.

§8.2. Comparison of the functions fy2(z;v) and fy3(z;v).

Lemma 8.1.1. Let z > 1,\; € (0,1/2) Then

(55) fos(z;v) = foolz, y)y"\lO(l),

where v € N, and O(1) depends only from z.
Proof. Since |z| = z now it follows that r = \/z > 1. Let

fO = fO(T77]> - D1V(7’77T>77) = (77 + 1)2 - 4T7]7

ne = Me(r) = ne(r,7) = 2r — 1 + (=1)*2v/r2 — r where k = 0, 1.
Then

(56) folrm(r) =0, %—f}( m(r) = —AViE T,



(57 S =2
(58) 0 < m(r) = 1/m(r) < 1 Fo o) <,
ifr > 1,

ml) =m(1) =1, 20(1,1) = 0.
Let
(59) P = (14 m)/(1 - ) where 0 <y < 1,

In view of (58), let
(60) r=7(r)=1+m(r)/(1—mn(r)) where r > 1,
Clearly, 7 (r) € (1, 400), if r > 1. In view of (232) in [63], let

g(z,7) =7"/((1* = 1)%2) — 1, where z > 1,1 < 7

(61) h(z,n) = (D"(2;1))/(162°%) =

Fo(Wzm)((n +1)* + 4y/zn) /(16217°),

where z > 1,0 < n < 1. Clearly,

(62) h(z,m) =g(z,(1+n)/(1 —n)) where z > 1,0 <n < 1.
Let further

(63) u(z,7) =2In((t —1)/7+ 1)) + 7In(1 + g(2, 7)),
where z > 1,7 > 1,

(64) w(z,n) = u(z, (1+n)/(1-n) = 2In(n)) +

(In(1+ A(z,n)(1+n)/(1 —n), where 2> 1,0 <n < 1,

(65) wi(z) = w(z,m(Vz)) =2 (Vz) +
(In(1 + Az, m (V2)) (L + m(2))/(1 = m(2)),

where z > 1. Since 19(y/z) > 1, it follows that
(66) h(z,m(Vz)) =0, h(z,n)(n—m(vz)) <0,
if z>1,0<n<1,n%#n(yz). Therefore in view of (59), (62),

(67) 9(2,m1(Vz)) =0, g(z,7)(1 = (V) <0,



if z>1,1<7, 7%# m(v2). In view of (56) and (61),

oh

(68) 6_17(2’771(\/2)) =

C(m(V2) + 1)+ 4/zm(V2) v
4em(v/z) ’

where z > 1,

10h

(69) go(z) = —58—77(2’,171(\/2)) >0, ifz > 1.

In view of (68), §(1,1) = 0; therefore, in view of (56), (57) and (61),

0?h

In view of (63), (64),

(70) %(2,7) =4/(T* = 1) +4—47/(7* - 1) +
In(1+g(z,7)) =In(1 + g(z,7)),
(71) ) =

(21— ) ez, (L) (1 = ) =
(2/(1 = 0)?) (1 + b)),
where 2z > 1,0 < n < 1,
0w

(72) i (z,m) =

(2/(1 - n>2>§—z<z,n>/<1 Tzt

(4/(1 =m)*) In(L + h(z,n)).
where z > 1, 0 < n < 1. Therefore, if z > 1, then, in view of (64) — (72),

1) GV =0 —a) =~ (V) -
(=2/(1 - m(V)) > 0
If z =1, then, in view of (65), (61), (66), (64) — (72),

(74) wi(1) = lim wy(2) =

z—1+40

lim (In(1+ A(z,m(V2))/h(z,m(Vz)) %

z—140



lim (A=, m(vZ) (L +m(2)) /(L = m(2)) = 2

z—140

i (h(z,m(vz2))/(1 = m(2)) =0,

(75) w(l,1):= lim (w(l,n))= lim (2In(n)) +

n—1-0 n—1-0

nggrlo(ln(l + h(1,n)/h(1,n)x
i (A(1L)(1+1)/(1 = ) = 2
o (A1) /(1= n) = 2x

(Jim, ((n+ 1) +4v/Z0) /(16217 x

lim ((n—1)?/(1=7))=0

So, wi(1) = w(1,m (1)) = w(l,1) = 0. Further we have
(76) LD = lim w1/ 1)) =

i (21n(n))/ (g = 1)) = 2x
lim (In(1+ h(1,5)/h(1,7)x

n—i=

lim (h(1,9)/(n—1)* =

2= 2( Tim (7 1) +4v0)/(16202)) =2 =1 = 1.

In view of (61), (71), (66),

() i () -

(o, ()

(e (§1)) =

I use below the results of [39] with

d'=d" =1, m=n=1.

We represent (R(t,v))?, where R(t,v) is defined in (2) in the form

(78) (R(t,v))* = Ra(t,v) Ba(t, v),
where

[Tt - J)
(79) Ri(t,v) =2 =

AN

I1 1+ )

<



It follows from (79) that

S (T(t)* -
(80) Ry(t,v)z"" = T V)Q(F(t—l—y))QZ :

In view of (3), (6), we can take t > v + 1 in further calculations and use
Stirlings formula in the form

(81) InT(z) = (z — %)logx—x—i—O(l).

with 2 > 1 and O(1) = 0(x)C, where |#(x)| < 1 and C'is appropriate absolute
constant. Below O(1) will be depend only from z > 1. We put ¢t = v7 now.
Then

(82) (Ri(t+1,v))z " = (Ry(t,v) 7" = t*/2(t* —v*)? =

(Rl(t’ V))(l + g(Z,T)) = (Rl(ta V))(l + h(%n)%
where
teN,veN, 7=t/nu, eta=(r—1)/(7 —1).

In view of (80), (81),
(83) In(Ry(t,v)z7") = 4(t — 1/2) In(t) — 4t —

2t —v—1/2)In(t —v) + 2t — 2v—
2(t+v —1/2)In(t +v) 4+ 2t + 2v — tin(z) + O(1) =
vrIn(14+g(1+g(z,7))+2vIn((t —1)/(t+1))—

%ln(74/(72 —1)*)+0(1) =

—_

u(z, )y — = In(7*/(72 = 1)) + O(1) =

[\]

1
w(zmy - L In(r (7~ 1)) + O(1),
where v € N, t € [v + 1, 4+00] N N. Therefore

(84) In(Ry (7, v)2 ) — In(Ry (v (v/2), v)z V3 =

vu(z, 1) —u(z, m(vVz) — %111(7’4/(7'2 — 1))+

S I((n (V) /(n(Va)) ~ 1))~

v(T — 11 (vV2) In(2) + O(1).
In view of (67), (83), (64),

(85) max  (Ry(t,v)z7") =

te|v+1,+00)NZ



R (n(V2) +8(z0) )i )z 000
Ri(vr,v)z™""
with 7 = 71 (1/2) +0(z;v) /v, where 0 < 0(z;v) < 1. In view (84) — (85), (64),
(66), (83),

(86) max (R (t,v)z"") = (m(v/2))* eV,

te[v+1,+00)NZ

where z > 1. If z > 1, then all summands in (3) are positive, and its
sum, which is equal to fa(z;v), is bigger, than a single summands with
t = v(n(v/z) + 0(z; v)/nu); therefore, in view of (78), (79), (86),

(87) v (m(V2)" exp(0(1)) < foa(zv).
On the other hand, if z > 1, then, in view of (78), (79), (86),

(88) foa(zv) s( max  (Ry(t, V)z_t)) 3 Ru(t,v) =

te[v+1,+00)NZ
€lv+1,400) Mo

v (m(v2))" exp(O(1)).
Since (t —1—k)/(t+ k) increases, when £ is fixed in [0, v — 1] and ¢ increases

in (v +1,00), it follows from (79) and (74) that

(89) sup  (Ry(t,v)z ) =1=eurW),
te[v+1,+00)NZ

In view of (78), (79), (83), (89),

(90) v eOW < R?(20% —vw) < (1) <

(sup (Ry(t, ,,))) f Ro(t;v) = 100,

tev+N t=1tv
In view of (71), (72), (76), (77), there exists d;1(z) € (0,7m1(y/z)) such that

' ow ow

(01) ) - a—n(z,m(\/?))‘ <172

for » Z 17 ’77_771(\/2” < 51(2)7 0< n < 17

‘ oh oh

(92) a—n(zm) - a—n(zml(ﬁ)) < &o(2)

for z > 17 |77 - 771(\/2” < 51(2)7 0< n < 17

9*w ow

(93) W(Z’") - a—n(zml(ﬁ)) < e1(z)

for z > 1, [n —m(V/2)| < d1(2), 0 <n < 1. In view of (73) and (93),

(94) %ﬁu,n) < —eo(2)



for z > 1, |n — m(V2)| < d1(2), n < 1. In view of (69) and (92),

(95) ") < —eo(2)

a
for z > 1, [n —m(v/2)| < 61(2), n < 1. In view of (76) and (91),
ow 1
- > — )
(96) o (1,n) > 5 for1—01(1) <n<1

If n > n1(yv/z — 61(2) then

s 1+ m(Vz = 0:(2)
T 1-m(Vz+a(z)

and 1 In(7*/(7? — 1)?) = O(1); therefore, in view of (83), (94, (73), (96), if

2>L0<n=0-v)/t+v) <1 In—mVz)| <do(2),

(97) In(Ri(t,v)z™") = wz v+ O(1) =
w(z, m(Vz)v + (wz,n) —wlz,m(vVz)v+0(1) <
(2~ gerln —m (V2w +O(),
and, if 0<n=(t—v)/(t+v) <1, 1—-5(1) <n<1,then
(98) In(R;(t,v)) =w(l,n)r+ O(1) =
wl, v+ (wl,n) —wd, 1)r+0(1) < —(1 —n)r/2+ O(1).
We fix A\; € (0,1/2), and let Ay = 2);. Clearly, if z > 1, then

L+m(vz) —01(2)
(99) 7'1(\/5) 11— m(vz +61(2)) N

2(51(2)
(1 =m(V2) +6(2) (1 = m (V=)

Let v1(z) is fixed in ((3/6,(2))Y*, +00) NZ for z > 1. If 2 > 1, then each of
the sets

> 201(2).

My (z;v) = (v (Vz) — 1v261(2), v (Vz) — vd1(2)) N Z,
My(z;v) = (v (V2) + v1(2), v (Vz) + 2061 (2)) N Z
is not empty for v € [v1(z), +00) N Z. Clearly, the set
Ms(v) = (v = 1), v(20*M —1),NZ,

is not empty for v € [11(1),4+00) N Z. Let ti(z;v) is fixed in M(z,v) for
z>1, k=12 v € [1(z),+00) NZ, and let t3(v) is fixed in Ms(v) for
v € [11(z),+00) NZ. Then

(100) 1+ m(yv/z) —61(2)

v<v <

1 —m(Vz)+61(z)




vri(Vz) —1201(2) < ti(z;v) <
v (Vz) — 20N <
v (Vz) + N < ty(zv) <
v (V2) + 200N < w(r(V2) + 01(2)),

where z > 1, v € v € [11(2), +0) N Z,
(101) v4+1<dv < v —1) < tz(v) < (2N — 1),
where nu € v € [11(1), +00) N Z. In view of (100),
(102) v (n(Vz) 4+ 6(2) +1)72 <
)y () _
(t2(2;0) fv +1)?

ti(z;v) /v —1
W —m(Vz)| =
t(ziv)/v =1 n(Vz) - 1'
t(z;v)/v+1  7n(Vz)+1
lt(z;0) /v — T (Vz] <207 < 6,(2)
where z > 1, v € [11(2), +00) N Z. In view of (101),

(103) -2~ < lslv) = v <1l—p™M
ts(v) +v

where v € v € [14(1),400) N Z. In view of (97), (102), if

z2>1,veEnz),+oo)NZandt € [v+1, ti(z;v)| U [ta(2;v), +00),

then

(104) 0< Ri(t,v)z ' < max Ri(ty(z,v),v)z ) =
exp(w (=) — £5(=)r')O(1),

where

o(2) = 521 (&) ((VE) +61(z) + 1)
In view of (103),

ts(v)/v —1

—2\
ts(v)/v+1

M o] - < 2v

Therefore, if t € [v + 1, t3(v)], then

(105)
0 < Ryi(t,v) < Ri(ts(v),v) < exp(—v'72M /24 0(1)) =

exp(wy (1)v — v'721/2)0(1).



In view of (2),

(106) (it 2B

2n(t2 /(2 — %)) + O(1/(t — v) = O(In(v)),
where v € [2, +o0)NZ, t € [v+ 1, +00) N Z,

(107) ((R(t. y))%—t)—l%”t))%_t _

() + (R(t.) 2B
—In(2) +2In(2/(* —v*) +O(1/(t —v) = In(1 4+ g(2,7)) + O(1/(t —v) =

In(1+ h(z,n))+ 01/t —v)=0(In(v)),

where
veE2 +oo)NZ, te[v+1, +o0)NZ,

-1
> 1.
+1a2’_

T=t/v,n= :—_
In view of (107), (104), (65), (66), (87),

t1(z,v)
(108) ( >

R(t,v))*2 "In(z) — —8((R(§; V) )z_t

+
t=v+1

“+00

O((R(t,v))*)

> RtV () - e =
t=ta(z,v)
t1(z,v) 9 Rt,y 22—15
(Z o) >)+
| A((R(E )2 Y|
_Z N ot =
t=ta(z,v)
t1(z,v)
(O(In(v))) (Z (R(t, ,,))2Zt) N
(On())) > (R(t,v))*=" =
t=ta(z,v)

exp(wi(2)v — ex(z)r' M) (O(In(v))) x

t1(z,v)
(Z Rt u)) -

t=v+1

exp(wy (2)v — e2(2)v 7)) (O(In(v))) x



+oo

> Ry(tw) =

t=ta(z,v)

exp(w ()0 — £x(2)p =) (0 (lnl(j”))) _

(1 (VZ)> exp(—ex(:)'" ”1)(0 (“1(”) ):

(Z v) exp(—e2(2)v' 1) (O(In(v))v)
for z > 1, v € [11(2), +00) N Z. In view of (107), (105), (66), (90),

t3(z V)

(109)

t= I/-‘rl

F2(13v) exp(—ea(2)'72M) (O(In(v))?).

If2z>1,2>1,v € [n(z),+0)NZ, and t1(z;v) < t < ty(z;v), then, in
view of (102),

BN R CLO L SR P LY

tl(ZQV)—i—V =i+
% —m(vz) <a(2),

ie, forn=(r—1)/(t+1) = (t—v)/(t+v) the inequality |n—n1(v/2)| < 01(2)
holds; therefore, in view of (95)

(110) Jdln(1 g—nh(z, n) < —%50(z)

and, in view of (107),

1 O(R(t, v)?2

(111) (R(t,v))?z ")~ (t,v) = O(v™™).

ot
If t3(2z; v) <t then, in view of (103),
_ t3(v) — v
—01(1) < 27N < 1) =
1( ) v tg(l/) 771( )
t3(’/)_y—1<t_y—1<<t1(zy> — 1< - <0

ts(v) +v T t+v ti(z;v) +v



in view of (95),

dln(1+h(l,n) _ 1
< _Z
(112) n < ng(z),

and, in view of (107),

(13 (Rt 2L o)
In of view of (111),
(114) Z —W{t +1In(2)(R(t,v))*z " =

te(t1(z,v),t2(z,v)NZ

O(w™) > (R(t,v))%".
te(t1(z,v),t2(z,0)NZ
In of view of (113),
O(R(t, v))?

te(ts(v), +00)NZ

O(v™) Z (R(t,v))*z".

te(ts(v),+o00)NZ
The equality (55) follows from (108), (114), (109), (115), (4), (5), (6). W

§8.3 To what absolute values of roots of charactristic
polynomial (38) correspond the obtained solutions of
the equation (37).

According to well-known classical Perron’s theorem, if y(v) is non-zero
solution of difference equation of Poincar’e type, then the following equality
holds

(116) lim sup |y(v)['/* = p,

v—+00
where p = |n|, and 7 is a root of characterisic polynomial of this equation.
If (116) holds, then we will say that the solution y(v) corresponds to p. It
follows from (87) ,(88) and (90) that solution y(v) = fy2(z;v) corresponds
to (1(v2))? = (m(vz )% if 2 > 1.

Lemma 8.3.1. Let s € Ng,n € N,

a; € C, a;(v) € C,

(117) a,(v) =1, a;(v) —ay =0(1/(v+1))
forv e Ny andi =0, ..., n. Let us consider the following difference equation
(118) S a)ylv + k) =0

k=0



where v € Ny. For any m* € Nq let V,,« denotes the linear over C space of
solutions y = y(v) of the equation

(119) Zak y(v+k)=0,

where v € [m*, +00) NZ. Let the absolute values of all the roots of the char-
acteristical polynomial

(120) T(z) = Za,:zk

are among the numbers {p;: 1 <i <1+ s} such that ps11 =0 and p; < p;
for1 < i< j < s+ 1. Let e; and k; denote respectively the sum and the
mazximum of the multiplicities of those roots, whose absolute value is equal to

the number p;, where v =1, ..., s+ 1, and let k* = ks 1. We suppose that,
if s >0, then
(121) e; >0

fori=1...,s. For given y = y(v) in CI""+)NZ_ et

wny(v) = max(|y(W)],..., ly(v +n = 1))).

a) Then there exist A > 0, m* € N, a"(v) > 0 with v € [m*, +00) N Z and
the subspaces V,y. 1, ..., V. ..y such that

Vir = Voo 1@ .o @V dime (V) ) = e, 1 <0< s+ 1,
and, if y € VY. o for some 0 € {1,..., s}, then
(122) exp(—A(In(v) + v 7)) (pg) "wn(y) (M) < wn,y(v)
for v € [m*,+00) N Z; moreover, the spaces
Vi i =Vioag; ® . @Vl (11,

where 7 =1 ..., s+ 1, have the folloving properties:
if y € Vg for some 0 € {1,...,s}, then

(123) Wny (V) < exp(AIn(v) + v 7Y50)) (pg) wpy (m");
if
(124) k™ >0,

andy € V. .1 (= V) 1), then
(125) [y ()] < (A/0)" ¥ wny (m"),

where v € m+ N — 1.



b) If V be an arbitrary linear subspace of linear spaceV,,« such that
V ﬂ Vm*ﬂ_’_l — {O},

where 0 € {1 ..., s}, then for this V there exists a constant A* = A*(V) >0
such that

(126) exp(—A*(In(v) + ') (po) wn(y) (") < wyy(v)

where y € V, k = max(ky, ... ks) and v € [m*, +00) N Z.

Proof. The proof can be found in [49] — [53].

Remark 1. It follows from the Lemma 8.3.1 that the linear space V. o,
where # =1, ..., s+1, does not depend from the construction and is defined
uniquelly by means of the equality

Vg =1{y € Vit limsup [y(v)[""* < py}.

Lemma 8.3.2. Let V' be a r-dimensional linear subspace of the linear
space Vi, letr > 1 and let VNV, . = {0}. Let further {y1(v), ..., y.(v)}
is a basis of the space V. Let

ks(V)=max{k € Z: 1 <k <s, VCV,}

and
(V) =min{k € Z: 1 <k <s, VNV, = {0}}.

For X € C",

x1
X p—
Ly
let
(127) Goo(X) = maz{|z1], ..., |z},
(128) y=vy"(X,v) =my/(v) +... + 2,9 (v).

Then for every € € (0, 1) there exist C3(e) > 0 and Cy(e) > 0 such that
(129) Ca(€) (pry (1 = €)oo (X) < wny(v) <

C3(e)(Prs + €)oo (X).

Proof. Any y € V has an unique representaition in the form (128) with
column X = X(y). Let ¢oo(¥) = ¢oo(X(y)). Then go(y) and wy,«(y) are
two norms on finite-dimensional linear over C space V. Therefore there exist
constants C > 0 and Cy > 0 such that

C2Go0(Y) < Win=(¥) < C1Goo(y)-

Hence, according to the Lemma 8.3.1, for every € € (0, 1) there exist con-
stants Cs(g) > 0 and Cg(¢) > 0 such that

Co(e)(Prs (1 — €)) Wiy < wiy (V) < C5() (g + €)' wins -



Then (129) holds with C3(¢) = C1C5(e) and Cy(e) = C2Cs(e). A
We apply the Lemma 8.3.1 to our case [ = 0. We have n = 4 for the
equation (37). Let z > 1. Then it follows from (53) — (54) that

1< py=no(r,m)> = (2r = 1) +4r(r — 1) +4m(27" —1) <
p1=Ino(r,0)* = (2r + 1)° + 4r((r + 1) + 4/r(r + 1)(2r + 1),

pa=1/p1 <p3=1/py <1,
8:4,61:62:63:64:]€1:]{32:]€3:]€4:1.

We note that, in view of (26),
(7:(2))* =
(2r + (1) + 2¢/r2 + (—=1)ir)* =

(2r + (1)) +4r(r + (=1)") + 42r + (=1D))V7r(r + (1)) = pina

fori = 0, 1. Let is fixed the number m*, which is specified in the Lemma 8.3.1.
Then V-5 = {0}, and V;}. , = V.. ;. Since the solution y(v) = fo2(z;v)
corresponds to ps, it belongs to V7. s\V,). 4. Let y4(2;v) is non-zero solution
in V,i. ;. Then y(v) = fo2(z;v) and y4(z;v) compose the basis of V. ;. In

view of (55), the solution y(v) = fo3(2;v) belongs to V. 5. Hence,

fos(z;v) = afoa(z;v) + Bya(z; v),
where v € C, § € C. In view of (87) and (123),

fos(z:v) = foa(zv)(a + Bys(z;v)/ foo(zv)) =
foa(z:v) (e + OV (ps/ps)”).

Hence, in view of (55), a = 0 and fy3(2;v) belongs to V., and, if it is
non-zero solution of the equation (37, then it corresponds to p4 in this case.
Let z = 1. Then it follows from (53) — (54) that

8:3, 61:63:]€1:]{33:1,€2:]{52:2
pr = [mo(r,0)* = 17+ 12v2 > py = [no(r, m)|? =

m(r,m)[> =1 > ps = [m(r,0)]> = 1/p1.

Let is fixed m*, which is specified in the Lemma 8.3.1. Then V,,« 5 = {0},
and V. ; = V.. ;. The solution y(v) = fo2(1;v) corresponds to p, = 1 in
this case. It is proved in the §7.4 of [63], that our difference equation has also
solution y(v) = 1, which, clearly, corresponds to py = 1; it is proved there
also that the solutions y(v) = fo2(1l;7) and y(v) = 1, compose a linearly
independent system over C; since each of these solutios correspond to p2, it
follows that they are contained in V7. ,\\V,). 3. Let y3(v) is non-zero solution
in V.. 5. Let
0= afoa(l;v) + Byw) +7,

where a € C, f € C and v € [m,+00)NZ Then, in view of 123 for y = y3(v)
and (90), v = 0. Then, in view of 123 for y = y3(v) and (90),

0= foo(Liv)(a+ Bys(L;v)/ fo2(liv)) =



afoa(L;v) (o 4+ O(M)rOW (ps/pa)”),

and therefore a = § = 0. Then y(v) = fo2(1;v), y(v) = 1 and ys3(v) compose
the linearly independent system over C; according to the assertions of the
Lemma 8.3.1, dim¢(V,). 5) = 3; hence, y(v) = fo2(1;v), y(v) =1 and y3(v)
compose the basis of V. ,. In view of (55), the solution y(v) = fos(1;v)
belongs to V). ,. Therefore

fos(1;v) = afoa(l;v) + Byw) + 1,

where aw € C, 8 € C and v € C. It follows from (87) ,(88), (90) and (55),
that v = 0; therefore

fos(Liv) = foo(liv)(a+ Bys(L;v)/ fo2(l;v)) =

foo(L;v)(a+ O(l)yo(l)(pg/pg)”.

Hence, in view of (55), a = 0 and fo3(1;v) belongs to V. 5 and, if it is
non-zero solution of the equation (37, then it corresponds to p3 in this case.

Let, finally, z < —1. Then ¢ = 7/2 in (40), and, as it has been mentioned
already in §8.1, we must consider for ¢ in (42) two values 1) = —5 and ) = .
In view of (49), (53), (54),

s=2,e1=€y=k; =ky =2,
(130) VT)’/Q*,2 - VT>L/*,27 VT)’/Q*,S - V’I;L/*,S - {O}, dim(c VT;L/*,Q - 27

(131) p1 = |no(r,w/2)|* = |no(r, —m/2)* >
no(r, )* > I (r, ) [? >

p2=1/pr = |m(r,7/2)],
where r = \/—z > 1. Clearly,

cos(p1(m/2)) = sin(2p3(7/2)) = 1/vVr2 + 1,
cos(2p3(m/2)) = sin(p1(7/2)) = r/Vr2 +1,
cos(2po(m/2)) = —sin(p1(7/2)) = —r/Vr? 4+ 1,
cos(pa(m/2)) = /(1 = r/ViTF1)/2,

cos(ps(m/2)) = \/(1 +r/vVr24+1)/2.

Therefore, in view of (50),

ok = [ (r, 7 /2)> = 14+ 4% + 4rV/ T+ 724
(12VEr (VAT T+ VR T -

1+ 4r° + 4rv1 4 12+
(—1)'*2v2r (4r2 + VI T T+ (402 + 3,




where k = 1,2, r = /—2z > 1. We note that, in view of (27),

(132) (2(2))? = 4r® + 14+ 4r°Vr2 + 1 +

22r r+vVr2+1)3 =
4% + 14+ 4r°Vr? + 1+
2@\/¢(4T2 +3)+ 4r2+1)vr2 4+ 1= py,

in this case. Since |fo2(2z;v)| < fo2(]z]; ), and the solution y(v) = fo2(|2]; V)
correspond to |n;(r, 7)|?, it follows from (38) that fo2(2; ) cannot correspond
to p; and, hence, if it is non-zero solution of the equation (37), then it
corresponds to po. If t > v + 1 then, in view of (2),

()60 () )

where [ =0, 1, 2, |z| > 1. is sum of (2v + 1) summands, which are O(1),
where O(1) depends only from z. Therefore in view of (6),

fra(z,v) = fia(lz],v)(2v + HO(),

where [ = 0, 1, 2, |z| > 1 and O(1), depends only from z. Consequently,
when y(v) = foa(z;v) is non-zero solution of the equation (37), then it
corresponds to ps. In view of (5), if y(v) = fo3(z;v) is non-zero solution of
the equation (37), then it corresponds to ps. Moreover, if

rr € R, for k=1, 2,

2
y($l7x2a Z, V) = Zxkak(Z7 V)
k=1

and y(zq,xe, z,v) is non-zero solution of the equation (37), then it corre-
sponds to ps.

§8.4. Properties of some sequences.

Here we prove, as a generalization of the Lemma 3.2.1 in [43], the following
Lemma 8.4.1. Let

2€Q, |z|>1, z#1,beNa=bz € Z,
Then the four sequences
(133) {ag(z 6+ B) 12D, {65, (25 6+ B) 12D,

where i = 1,2, 7 = 0,1, compose a linearly independent system over C for
any Kk € N.

Proof. The proof for |z| > 1 can be found in [39] (Lemma 14) in more
general situation. The proof for z = —1 can be found in [43] (Lemma 3.2.1).
Making use of the simplicity of the situation, which we consider now, I give



here more short proof. Let O, = {u € Q: ord,(u) > 0}. According to (101)
and (102) in [62] (see §8.6 below), the polynomials (133) have a form

(134) (2 V) Zaolk,,z

with ok, € Qfori=1,2 ke [0,v]NZ, v € [0,+00)NZ,

(135) ﬂaj(z; v) =

ZZ; (g <2 +‘§ a 1) ()~ (i ao,i7k,yz’f—t>)

for j =0, 1, v € [0,400) NZ. Let p be an arbitrary prime greater than 3. In
view of (70) (80) in (23),

(136) Qpik2p € piDp

fori=1,2ke[1,2p— 1] NZ\{p},

(137) @202 = 1, o102 € —6/p + Dp
(138) Q0,2.p,2p € 36 +pr, ap,2,2p,2p € 36 —|—pr,
(139) ap1p2p € —60/p + Dp, Q,1,2p,2p € 66/]7) + 9

Therefore if the prime p isn’t a divisor of 2ab then

(140) o 5(72p) € 36(2 + 2%) + 1) + p°O,,

(141) ordy(ag,(2;2p) € 6622 /p — 60z/p — 6/p + O,.
In view of (135) — (141),

(142) B (2:2p) €

k=pr

p 'O, C

2 2
—1 o ,
Z <<Z (Z i j )(pT)_Z_] < E OéO,i,pn,2pr(R_T)>> +pZDp) +p_153p =
=1 T=1 =T

i((Z (Zﬂ_l) pr) i (Zaozmgpz o >>) 4O, C

i=1 =1



(77 on om0+ (27T om0+ 0,04

(2 +‘; N 1) (pT) 277 (36 + pO,) (2 + pO,)+

(1 e 1) (v2)"7(66/p + O,)+

(2 e 1) (b2)2(36 + pD,) + 1, —

6(p2) 277 x
(11 — 28710 + (1 4 5)9(1 + 2%7) + 211711 + (1 + 5)9(221)2)+
p 79O,
where 7 =0, 1. Let
F = 6ab(36a* + 36ab + b*)(66a> — 60ab — 6b?)(58a + 36b)(188a + 133b).

Clearly, if a € Z, b € N, |a| > b, a # b, then F' # 0. Therefore, if p > |F|,
then

(143) ordy(ag,;(2;2p)) = =2 + 1,
where 7 = 1, 2, and
(144) ordy,(35,;(22p)) = =2 — j,

where j = 0,1. As it was mentioned in §7.4 of [63], z — 1 is a divisor of the
polynomial g, (z;v); let

aj(z; v
(145) Ri(ziv) = 15 g )
o
then
(146) Py(1;v) = 1061 1, )
o\LV) = ?( v
Let
(147) Pi(zv) = ag,(2;v), Py (2;v) i= g, (25 v),
(148) Py i(zv) =G (zv)forj =0, 1.
Then, in view of (143) — (144)
(149) ord,(FPy;(z;2p) =1 —i

where 1 = 1, 2, 3, 4. We must prove that for any x € N four sequences

(150) {P/ (2 5+ k) 12



where 1 = 1, 2, 3, 4, compose a linearly independent system over C.

First we prove that for each k € N four sequences (150) compose a linearly
independent system over Q. Suppose the contrary. Then there exist k € N
and a; € Z, where i = 1, ..., 4, such that

4
> ail >0
=1

and
4

(151) o= Z a; P’ (z;v) =0,
i=1

where v € Ny v > k. Let &k = max{i € {1, 2, 3, 4}: a; # 0} Let p be
4
any prime such that p > F 4+ > |a;|. Then ord,(c) = 1 — k, an we obtain

=1
a contradiction. So four sequenses (150) compose a linearly independent

system over Q. Hence, the composed by these sequences infinite 4 x N-matrix
contain an invertible 4 x 4-submatrix. Hl
Lemma 8.4.2. Let

2€Q, |z| >1, beNa=bz €Z,
Then the four sequences
(152) {Pi(z 5+ k) H=,

where i = 0, 1, 3, 4 compose a linearly independent system over C for any
number k € N.

Proof. If z # 1 the assertion of the Lemma is direct Corollary of the
Lemma 8.4.1. If z = 1 the assertion of the Lemma is Corollary of the Lemma

7.4.11in [63]. A

If v € [2,400) N Z, we let D, denote the smallest number in N with
property that the following inequality holds for every k£ = 1, ..., 2v and for
every prime p,1 <p<vwv:

ord,(k™'D,) > 0.
It is clear that for any € > 0

(153) D, = Hp(ln(2nu))/ln(p) _

p<v

exp((In(2v))(v/In(v) + O(v/(In(v))*) = exp(v(1 + O(1)/ In(v))).
Lemma 8.4.3. Let

(154) PMNzv) = P (zv)(D,)’°
where i =1, 2, 3, 4. Then

(155) PNz v) € Z[2]



fori=0,1,2,3,4 and v € [2,+00) N Z.

Proof. For ¢ =1, 2, 3, 4 the proof can be found in [23], page 48. Since
assertion of the Lemma holds for ¢ = 1, it follows from (145) and Horner rule
that it holds for ¢ = 0 also. B

Lemma 8.4.4. For any k € N four sequences

(156) {P/z; 5+ k) }2S,

where i =0, 1, 3, 4 compose a linearly independent system over C.

Proof. The infinite 4 x N-matrix produced by the sequences (152), con-
tains 4 columns, which composed an invertible 4 x 4-matrix M*; we suppose
that ki, ko, ks, k4 are the numbers of these columns. Let further M” be the
corresponding matrix, composed by the columns with numbers ky, ko, k3, k4
in the 4 x N-matrix, produced by the sequenses (156). Then

’:]»u

det(M") = det(M™)

n—i—k
=1

H
§8.5. Proof of the Theorem 2.
Let {m, n} C N,
Qi) € R
fori=1,...,m, k=1,...,n,
o) (v) € Z
where j = 1,... ,m+n and v € N. Let there are 75, > 1, ..., r0 > 1
such that
(157) ()] < v (r])”
where i =1,... ,m and v € N. Let y(v) = —a), . (v) + > a;ira; (v), where
i=1
k=1,... ,nand v € N. If
Z
(158) xX=|:|erm
Zn
then let
(159) doo(X) = max((Za] .., Za]),
yNX) =y N Xov) =D b (v)Z

k=1

for v € N, let

X) = Z ai,ka
k=1



fori=1,...,m, and let

ag (X, v) E U1, (v

for v € N. Clearly,

VX v) = —ag(X,v) + ) ol (v)di(X)
i=1
for X € R™ and v € N,
ay(X,v) €Z

for X € Z™ and v € N.
Lemma 8.5.1. Let {I¥, n} CN,v{ >0, >3, Ri > Ry > 1,

(160) a; = (log(r] R1/Ry))/ log(Rz),
where i =1,...,m, let X € Z"\{0},

-1
Vs = 1 (Ry) (" osneflos(lie) oy = o2 (Z% )o@/ k’g(R”“v)

=1

and let for each v € N — 1 hold the inequalities

(161)
YR qoo(X) < sup{|y (X, k)|: k=v, ..., v+1Y =1},
(162) [y (X, )] < 75 (Ra) ™" qoo(X)
Then
(163) sup{[|¢; (X)[[(goo (X)) i =1, ..., m} > 77

Proof. Proof may be found in [42], Theorem 2.3.1. W
Let now z = a/b > 1, where a € N, b € N. In fiew of (5), (145) — (148),
(32), (33) above and (99) in [62] (see §8.6 below),

(164) fis(zv) = fis(z,v) = (I0(2) fia(z,v) + fralz,v) =

By (zv)((In(2)) L1 (1/2) 4 1Ly 5(1/2))+

P (z;v)((In(2)) Loa(1/2) + 2Los(1/2)) =
By (zv)(In(2)) = Pi(zv) =
By (zv)¢1(2,In(2), 1)+
Pi(2v)@2(2,In(z2), 1) =

Py (zv)ps(z,In(2), 1) — Pi(zv)
According to the Lemma 8.4.2, y(v) = f3(2;v) iz non-zero solution of the

equation (37), and, according to results of the §8.4, if r = \/z > 1, then it
corresponds to

pa = |no(r,0)| 2 =



1/((2r + )2 +dr(r+ 1) +4(2r + 1)y/r(r + 1)),
and, if r = /2 = 1, then it corresponds to
ps = mo(1,0)[ % = 1/(17+12v2).

So, if 2 > 1, then y(v) = f3(2;v) corresponds to |ny(y/z, 0)] 2
We take in the Lemma 8.5.1 n =1, m = 3,
0,171 = (IH(Z))LLl(l/Z) + L172(1/Z),
as1 = (In(2))Lo2(1/2) +2Lo3(1/2), as; = In(z),
af(v) = b"(D, ) Py (z;v), a5 (v) = b (D,) P (2 v),
ag(v) = =0"(D,)° Py (ziv), af (v) = b (D,) P (2 v).

For any k = 0, 1, 3, 4 the solution y(v) = P;(z;v), of the equation (37)
corresponds to
pr < pr=lno(r, 0)[* =

(=1 =2r —2/r(r+1))7

where r = /2. Therfore, in view of (153), for any £; € (0, 1) there exists a
constant v = 74 (1) such that with

(165) ri = (pibe®) e = (|no(r, 0)[be”)?HFe,
where 1 = 1, 2, 3, 4, the following inequality holds:
(166) [l (V)] <07y =75 (prbe®)

where i = 1, 2, 3 and v € N. Since n = 1 now, it follows that

(167) n(v) = fs(zv), X = (q) € R, go(X) = |l
yNX) =y (X, v) = qfs(zv),
©1(X) = qp1(2,In(2), 1)
©2(X) = qPa(z,In(2), 1)

©3(X) = qPs(z,In(2),1).

Since the solution y(v) = f3(z;v) corresponds to |ny(1/z, 0)| 72, it follows from
the Lemma 8.3.1 that there exist constants

T =7(% €1) >0, 72 = 7a(z, €1) > 1/2

such that

(168) Y1(R1) g < supflgfs(z;v +K)| 1 k=0, ..., 3},
(169) {afs(z v+ k)| < gre(R2)™

if

(170) Ry = (pr/be) 9 = (Jn(r,0)/Jbe) 2041 >



Ry = (p1/be*)' = (Imo(r, 0)/be)* =1 > 1, v € N,
The condition Ry > 1 will be fulfilled, if

(171) p1/(be?) = (Ino(r, 0)[)/ (be”) =

(=1 —=2r —24/r(r +1))?/(be*) > 1.

The condition (171) is equivalent to the condition

(172) Vbed <1+ 2r +2y/r(r +1).

Since (Vbe3 > 1> 14+2r—2+/r(r+1)=1/(1+2r+2/r(r + 1)), it follows
that the condition (171) is equivalent to the condition

(Vbe3 — 1)? — 4y/2Vbe3 < 0.
The last inequality is equivalent to the condition
2= (=) > (Vbed — 1)*/(16be®) =

(Vbed — (=1)")"x
(€262 + (—=1)%)*/(e’b + 1))1"/2 /(16€°b)
with k = 0, i.e. to the condition z € Dq(b).
So, if z € Dy(b), then in view of (163),
(173) ¢ <

max([lgp (2, In(z), |, lgp2(z, n(2), DI, [la@s(z, In(2), DI]),

where 7' is a positive constant, which depends from z and 1, and where
a=a(e) =

(1 + 1) In(pi(be?)) + 2e1) In(pi /(be?))
(1 —e1)In(p1/(be?)) a
(1 + 1) In((70(2))* (be?) + +2¢e1) In((7i0(2))?/ (be?)
(1 —e1) In((70(2))?/ (be?)) ‘
Since a(0) = Fy(z), where the value fy(z) is specified in (28), it follows that
for any € > 0 the inequality a(e1) < By(2) + ¢ holds for sufficiently small ;

and, when z € Dq(b), then, according to (29), (26), the inequality (34) holds
with 70(z,¢) equal to 74 in (173). Let

2
z, €R, for k=1, Q,Z\xk\>0,

k=1

2
(174) y(w1, 22, 2,v) = Zxkf%('z; v) =
k=1

Pi(zv)(x1Ly1(1/2) + 2oLy 2(1/2))+



Pr(z;v)(x1Lo2(1/2) + 229L0 5(1/2))—
Pi(z;v)zy — Py (z;v) =
Py (z;v)p1(z, 21, x2)+
Pi(zv)@2(z, x1, 22)—
Pi(z;v)xy — Py (z;v)zs.

IfaeN,beN, a>b 2= —a/b, then, as it follows from the assertion of the

Lemma 8.4.2, y(z1, x9, z, V) is non-zero solution of the equation (37); in view

of (132) and according to results of the §8.3, it corresponds to (7j2(2)) 2.

IlfaeN, beN, a>b z=a/b> 1, then, in view of (5),
y(@1, 22, 2,v) = 21 fo(zv) + 22(f3(21v) — (In(2)) fa(z5v) =

(1 — 22 In(2)) fo(2; V) + 22 f3(25v);

according to the results of the §8.3, if 7 # x31n(z), then y(zq,zs,2,v)
corresponds to |no(r,7)| ™2 and, if x; = z5In(z), then y(v) = y(z1, 22, 2,v)
corresponds to |no(r, 0)| 72, where r = \/|z]. We want to consider first the
case, when z; € R, xy € Z\{0} and z; # 22 In(2) now.

We apply Lemma 8.5.1 with n =1, m = 3,

CL171 = l’lLl,l(l/Z) -+ .TQLLQ(]_/Z)) = @1(2,%’1, .732),

as1 = x1Lo2(1/2) + 2w9L0 5(1/2) = ¢1(2, 21, x2),
as1 = 1 = 903(275171,932),
o (v) = (D) P (5 w), 0 (v) = /(D) Py (55 ),
04(0) =~V (D) P (2 ), (v) = ol (D, PPy (25).

As above, for any e; € (0, 1) there exists a constant 7' = 7{'(¢1) such that
with r; from (165) the inequality (166) holds. Since n = 1 in Lemma 8.5.1
now, it follows that

(175) y1(v) = y(a1,22,2,v), X = (q) € R!, goo(X) =
lql, yN(X) =y (X, v) = qy(z1, 22, 2; V),
01(X) = qp1(z, 21, 22)
©2(X) = qPa(z, 21, 22)
903(X) = %53(27551, 932) =T

Since the solution y;(v) = y(z1, T2, z,v) corresponds to |no(y/z, )| 72, it fol-
lows from Lemma 8.3.1 that there exist constants

T =7(% €1) >0, 72 = 7a(z, €1) > 1/2
such that

(176) ryl(Rl)_V|q S Sup{|qy(l’1,x2, 224 + ’i)| R = 07 s} 3}7



(177) {lay(z1, 22,2, )| < lgy2(Ra2)™,
if
(178) Ry = (Ino(v/z, m)?/be?) et >
Ry = (Ino(V/z,m)|72/be®) ™" > 1, v € N.
The condition Ry > 1 will be fulfilled, if

(179) (Imo(r, 0)[)/ (be?) =

(2r — 1+ 2+/r(r — 1))?/(be*) > 1.

The condition (179) is equivalent to the condition

(180) Vbed < 2r —142+/r(r—1).
Since (Vbe? >1>2r—1—-24/r(r—1)=1/(2r—14+2/r(r — 1)), it follows

that the condition (179) is equivalent to the condition
(Vbe3 +1)? — 4y/2Vbe3 < 0.
The last inequality is equivalent to the condition
2= (=DFAy > (Vbed +1)*/(16be?) =
(Vbe? — (=1)F)*x
(2012 + (=1)")*/(e*b + 1))/ /(16€°D)
with k£ = 1, i.e. to the condition z € Dy (b).
So, if z € Dy(b), then in view of (163),
(181) ¢ <

max([lgp(z, 21, 22) |, [la@2(z, 21, 22) ||, lq@s(z, 1, 22) 1),

where ~} is a positive constant, which depends from z and e, and where

a=ale) =

(1 em(2r =1+ 27T = D)0 + +2) n (22007

(1 —e1)In((2r — 14 24/7(r —1))%/(be?))
(14 e1) In((71(2))*(be?) + +2e1) In((71(2))?/ (be?)
(1 —e1) In((71(2))?/(be?))
Since ap = [1(z), where the value (3(2) is specified in (28), it follows that
for any € > 0 the inequality a(e1) < (1(z) + € holds for sufficiently small &,

and, when z € D;(b), then, according to (29), (26) the inequality (35) holds
with k = 1, 7{(z, 21, 22, €) equal to 74 in (181). Since

(1(2))* = (Ino(v/z, m)*) < (Im0(Vz,0)[*) = (i70(2))*,




where z > 1, it follows from (28), (29), that ag(2) = Bo(z) < (1(2); on the
other hand, in view of (30), D1(b) C Dy(b). Consequently, (35) is a corollary
of (34), if z1 = x9In(2), 25 € Z\{0}.

Let a € N,bEN, 2= —a/b=—r? r > 1. In view of (43) — (45)

(182) cos(p1(r,m/2)) = sin(2¢py(r, m/2)) =
. 1
sin(2p3(r,m/2)) = A
(183) sin(py(r,7/2))) = — cos(2ps(r,7/2)) =
cos(2p3(r,m/2)) = et
Therefore, in view (50),
(184) e (r, 7/2))? = 4r? 4+ 1+ 4r(r? 4+ 1)V2 +

(=1)*4/r <2r\/(m+ r)/2+ \/(m - r)/2) ,

where r > 1, kK =0, 1. First I want to check this equality directly. In view
of (42),

(185) DY (r,m/2;n) = (n+1)* + 4rexpin/n =

n? +2(1+2ri)n + 1= (n+ 14 2ri)* +4r(r —1).

Therefore the roots n of this polynomial are

—1—2ri — 2/re Wm_m/HMmH)/g),

where €2 = 1, and the squares of their absolute values are

1+ 472 +4rvVr2 + 1+

A (VT T = 1)/2+ 2V £ 1+ 7)/2).

Since |y (r, m/2)* < |no(r, 7/2)|? it follows that e for ng(r, 7/2)|? is equal to
(—1)*. So, (184) is checked. In view of (27),

(186) (e(2))2 =2r2 + 1420V + 1+ 272 + 2rVr2 + 1+

2(r+vVr?2 + 1)\/2(7’\/7’2 +1472) =
4r? + 1+ 4drVr2 + 1+ 2(r + V12 + 1)\/2(r\/r2+ 1+ 1r2),

(187) (2t VTN 20V T 4 >) _

8r(r 4+ Vr2 +1)% = 8r(4r® +3r? + (4r* + DVr2 + 1),



2

(188)

11,2 1+ 72 —
i 2T\/¢T2r+r+\/¢T2r ,

16r(2r°V1+ 12+ 2r° + (V1+12) /2 —r/2 4 2r =
8r(4r® + 3r + (4r° + 1)V1 + 2.
In view of (187) , (188), (186) and (184),

(189) (712(2))* = [mo(r, 7/2)],

where z = —r?, 7 > 1. The function po(r) = |ner,7/2)% is a continuous
increasing function which maps [0, 4+00) onto [1,4+00). We want to find the
inverse map r = ro(p) of [1, +00) onto [0, +00). In view of (184),

mo(r,m/2)] > 1 >

= m = |m(r,7/2)|%,

and
|77k’(r7 7T/2)|2, k= 07 1

are roots p of the trinomial
p? =24 + 14+ 4r(r* + 1)V?)p + 1,

moreover p = po(r) > 1. Hence, for r = rq(p) we have

) 1 (p—1)?
rit Vit =glp+1/rho) 1= 0
p
4, .2 _ .4 (p—1)* 2 (p—1)?
Pt =t e

(2= P~ 1)*/(64p%) _
L+ (p— 1)2/(4p)

(p=1)*/(16p(p + 1)),

and, finally,

(190) ro(p) = (p = 1)*/(4(p +1)v/p).

We apply the Lemma 8.5.1 to the function y;(v) = y(z1, 29, 2, ¥) again, but
now for z = —r? with r > 1. The inequality (166) holds with

(191) ri = [io(r, w/2) e,

where i = 1, 2, 3, 4. Since y(z1,x2, 2, v corresponds to |no(v/—z, pi/2)| 72, it
follows from Lemma 8.3.1 that there exist constants

T =7(z €1) >0, 72 = 7a(z, €1) > 1/2
such that (176) — (177) hold with
(192) Ry = (Ino(V=2z,7/2)* /be’)+ >



Ry = (Ino(vV/—z,m/2)|*/be*)'* > 1, v €N,
In view of (190) with p = €3b, the condition Ry > 1 will be fulfilled, if

(193) —z=(-1)FAy =2 >
(ro(€?b))? = (b — 1)*/(16e*b(e*b + 1)* =
(63/2[)1/2 ( ) )4
(€212 + (—1)")*/(e%b + 1)) %2/ (16€°D),
where k = 2, i.e. if z € Dy(b). So, if z € Dy(b), then in view of (163),

(194) ¢ <

max([lgpr(z, 21, 22) |, [la@2(z, 21, 22) ||, lg@s(z, 1, 22) 1),

where ;' is a positive constant, which depends from z and ¢, and where, in
view of (189),

(195) a=a(e)=

(1 + &1) In((772(2))*(be?) + +2¢1) In ((772(2))?/ (be?))
(1 —e1) In((72(2))?/ (be?)) '
Since a(0) = (a(z), where the value betay(z) is specified in (28), it follows
that for any € > 0 the inequality a(e1) < B2(2) +¢ holds for sufficiently small
g1 and, when z € Ds(b), then, according to (29), (26) the inequality (35)
holds with k = 2, v3(z, x1, 20, € ) equal to 4 in (181).
In previous results x; and x5 were fixed. Let we consider the case when x;
and xy change. Let a € N, b €N, 2 = —a/b= —r? r > 1, and let 2 € Dy(b).
We apply Lemma 8.5.1 with n = 2, m = 2,

arn = L11(1/2), a1 = L12(1/2)),
asy = Lo2(1/2), ass = 2Lo3(1/ %),
oy (v) = V(D) By (2 v), a3 (v) = '(D,)* P (2 v),
az(v) = b"(D,) P (21v), ag (v) = 220" (D)) Py (% v),
yi(v) = (Dy)° fola(2,v) = V/(D,)* Fy (2 v) Laa (1/2)+
v (D,)* P} (z;v)Lo2(1/2) — b (D,)* Py (2, v) =
af (V)ays + a5 (V)az: — az(v),
y2(v) = b (Dy)* fou(z,v) = 0"(Dy)° By (23v) Li2(1/2) +
V(D,)* P} (z;v)2Lo3(1/2) — b/(D,)* Pi(z;v) =

o) (V)arg + ah (V)azs — ay (v),

(196) X = (x2)) e R?,

1
197)  Slzf+fz2]) < goo(X) := max(|za], |22]) < faa] + |2



(198) y (X)) =y"(X,zv) =

Y (21,2, 2,v) = 2191 (V) + T290(v)
with z € Dy(b), v € N,
(199) 0i(X) = a; 171 + a; 2%,
where 1 =1, 2,
(200) ao(X, v) = af (V)1 + af (V) zs.

According to the Lemma 8.4.2, y(v) = {P(z;nu)*}, where i = 0, 1, 3, 4 is
non-zero solution of the equation (37); hence, in view of (184) it correspond
to some pi* < (72(2))? = |no(r,7/2)|?. Therefore the inequality (166) holds
with 7; specified in (191).

In view of (31), if 2 < —1, k=0, 1, s > 0 then

+oo

(201) (1) La(1/2) > 0= (=kz + 1) > (1/2)"/n* < 0.
n=1

Therefore, according to the Lemma 8.4.2,

(202) foalz,v) = Py (2v) L (1/2) +

Pl (z;v)Loa(1/2) — P5(z;v),

(203) foulz,v) = Py (2 v)L1a(1/2) +
Pl (z;v)2L03(1/2) — Py (z;v)

compose the basis of the space V' = V., = VJ., from the Lemma 8.3.1.
Let

(204)
Y (X) =y (X, 2,v) = y(21, 22, 2,v) = 21 fo(2, V) + 22fa(z,V)

with z € Dy(b), v € N and X in (196). We apply Lemma 8.3.2 now. Then
we have r = 2, k3(V) = ky(V) = 2. Therefore, according to the Lemma 8.3.2,
for any €; € (0,1) there exist C7 = Cr7(z,¢1) > 0 and Cg = Cs(z,e1) > 0
such that

(205) Cs(R1be®) ™ goo (X)) <

sup{|y*(X,z,v+ k)| : k=0, ..., 3},

(206) {ly"(X, 2, v)| < lgoo(X)Cr(Robe®) ™

with Ry and Ry in (192). In view of (198), and (204),
yN(X, 2, v) = (D)’ (X, 2,v).

Therefore, in view of (153), there exist constants

7= 71(27 51) > 0,72 = 72(% 51) > 1/2



such that

(207)
N(Ribe®) ¥ (X) < sup{ly" (X, 2,0+ R, : £ =0, ..., 3},

(208) {verty*(X, z,v)| < |qoo(X)(R2b63)_”
with Ry and Ry in (192). So, if z € Dy(b), then in view of (163),
(209) max(|[P1(2, 21, 22) ||, [|P2(2; 21, 22) ) (J21] + |21])* >

max([|@1(z, 21, 22) ], [ P2(2, 1, 22) [N 9o (X) > 72

where 74 is a positive constant, which depends from z and e1, and o =
a(z, e is specified in (195). In view of (28) and (29), a(0) = [B2(2) = aa(2);
where betas(z) is specified in (28); therefore it follows that for any € > 0 the
inequality a(e1) < as(2) + € holds for sufficiently small £; and, if z € Dy (b),
then (36) holds with k£ = 2, 74(z, ) equal to 74 in (207).

Let, finally, Let a € N, b €N, 2 =a/b=r? r > 1, and let z € Dy(b). We
apply Lemma 8.5.1 with n = 2, m = 2 again. Then the inequality (166) holds
with 7; in (165). If z > 1, then fy,(z,v) and fy/,(2, ) compose the basis of
the space V =V 3 = V. ;@& V.. , from the Lemma 8.3.1; dim¢(V,. ) =1
for k = 1,2, k3(V) = 3, ka(V) = 4 If 2z = 1, then f5(z,v) and f4(z,v)
compose the basis of the subspace V of V., = V\., @ V.. 5 from the
Lemma 8.3.1; dimc(V,). 5) = 2, dimc(V,,. 5) = 1, k3(V) = 2, ky(V) = 3. In
both cases

Prs(V) = (770(\/5’ 71—)_27 Phs(v) = (770(\/5’ O)_2>

the inequalities (205) and (207) hold with R; in (170) and Rs in (178). Hence,
if z € Dy(b), then (209) holds with a positive constant «;, which depends
from z and e, and with

(210) a=ale) =

~ 21,3
(1 + El) ln((%(z)) (be )(1 . €1> ln((ﬁl(z))z/(beg’))—k

(1 + e1) In((7lo(2))?/(be?) + —(1 — 1) In (71 (2))?/ (be?))

(1 —£1) In((711(2))?/ (be?)) '
In view of (29), we have the equality a(0) = a4 (z); therefore for any £ > 0 the
inequality a(e;) < aq(z) + € holds for sufficiently small £, and, if z € D (b),
then (36) holds with k = 1, 7§(z, €) equal to 7 in (207). B
The Theorem 2 is proved.

§8.6. Corrections in the previous my papers.
The last equation in §6.5 of Part 6 must have the form
v+ 1% (Lv+ 1) +Py(v — 1) = (1TV° + 5107 + 27v + 5)y(v).
instead of

(v+1D3y(Lv+ 1)+ Pyr — 1) = (1702 + 5102 + 27v + 5)y(v) (341 + 8512



On the page 6 in [63] must stand

= VIl + VITF T+ 3y VI T + (1T =

VI + VETF T+ 2V RE TR +12)),
instead of what is written there. On the page 8 in [63] must stand
ﬁg = Qg = 1+
6
2In (1+v2+VVZ+1+VV2-1) -3

instead of what is written there. On the page 6 in [63] must stand

= (Z VIR + k(m)z =

2Tl + (~1) 4 2y/2] + (-1 V]
for © = 0, 1, instead of what is written there.
In the formulation of the the Theorem 2 in the [63] must stand a = bz € Z

instead of bz € Z.
The equality (99) in [62] must have the form

= 106, 00187...

fl,2+2j(27 V) =

2_+ <Z (Zalzkuzk _t'f(H] 1)t+k )):
(e )
%if (i: Pk ((Z +?_ 1) Liy;(1/2) = gz‘t (Z +§_ 1) (ﬂ-i—j)) _
<§ (2 v) (Z +§— 1) Liﬂ-(l/z)) — Bz ) =

<§: oz v) (”‘ e 1) Lmu/z)) G (5v),

1=—00

instead of what is written there. The equality (102) in [62] must have the
form



The expression for aj on the page 6 in [63] must have a form

(1 = (=1)*")(n(ijo(2) /7 (2))
In((71(2))?/€b) ’

a = B +
instead of what is written there.
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