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1. Introduction

Let n be a bounded open set in lRn, n 2:: 1, QT =nx (0, Tl, ST = an x (0, Tl, fT

is a parabolic boundary of QT, i.e., f T = STU[f2 x (t = 0)]. Consider in QT equation

(1.1) F[uJ ~ au/at - diva(u, \7u) = f(x, t)

where a = (al, ... ,an), \JU = (au/aXt, ... ,aufBxn). Assume that a i (u, p), i =
1, ... ,n, are continuous on IR. x]Rn and let for a.e. (x, t) E QT and any u E IR, p E ]Rn

a(u,p) . p 2:: volul'lplm - J.lonul 6 + 1), Vo > 0, J.lo 2:: 0,

J E (2, m + l) if m + l > 2, [) = 2 if m + l ::; 2;

la(u,p)1 ::; J.Lllul'lplm-1 + J.l(juIL J.lI 2:: 0, j.l(s) 2:: 0, J.l(s) is nondecreasing;

(1.2)
0:::; f(x,t) ::; J.l2, J.l2 2:: 0; m> 1, l2:: 0.

Equations of the type (1.1), (1.2) are known as doubly nonlinear parabolic equa
tions (DNPE) (see [1]-[5]). The aim ofthis paper is to obtain the maximum modulus
estimates for generalized solutions of DNPE with the best possible condition

(1.3)

{
a+l 1 1 l}

(m,l)ED\w,D-;'{m>1,12::0},w~ (m,l)ED:--
2

:S---,a= .
a+ m n rn-l

Other results concerning L oo -estimates for DNPE were obtained in particular in
[6], [7].

For the sake of breavity we limit ourselves by obtaining only the global estimates
of the maximum modulus of generalized solutions. On the other hand from the point
of view of the theory of existence of regular solutions for DNPE it is impor-tant to
have such estimates for solutions of regularized Cauchy-Dirichlet problems. Taking
into account this circumstance we obtain in this paper the global L oo -estimates for
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generalized solutions of the regularized Cauchy-Diriehlet problems of the type (see
(6], (8])

(1.4) Ft,N[U] ~ Bu/Ot - diva(x(u), \7u) = j(x,t) In Qr, u = 'tP + € on fT

where

x(u) = max(€, min(ll, LV)), € > 0, LV > €,

(1.5)
o

1,b E IV;n (QT) n C OO
( Qr), 'tP ;:::: ° in Qr,

and a(u, p) and f( x, t) are like as in condition (1.2).

Definition 1.1. Function u is a generalized solution of (1.4), (1.5) if u E C([O, T]; L 2 (0))n
o

W~,a(QT), U = 7/J + € on fT and for any t E (0, T] and <P E VV~l (QT)

(1.6) Ju<pdxl~ +JJ[-u<p, +a(x(u), 'Vu) . 'V</> - J<P]dxdt = 0

() QT

It should be said at onee that conditions (1.2) inlply the following estinlate

Lemma 1.1. ([B}) For any generalized solution oE (1.4), (1.5) we have

(1.7) inE(u, QT) ;:::: €.

We say that same constant C depends only on the data if C depends on 71., m, I, G, Va, }Ja, J.ll, J1.2,
and sup ('ljJ, QT). The main result of this paper is

Theorem 1.1. Let conditions (1.2), (1.3) be fulfilled. Let 'll be a generalized so
lution of Cauchy-Diricblet problem (1.4), (1.5) with any € > 0, LV > €. Then

(1.8) sup(x(u),Qr) ~ Cl

wbere constant Cl depends only on tbe data.

Remark 1.1. From (1. 7), (1.8) it follows that X(1l) = U a.e. in Qr if lv ;:::: Cl' Hence
we have

Corollary 1.1. Let conditions (1.2), (1.3) be ful:fi.lled and let u be a generalized
solution of Caucby-Dirichlet problem (1.4), (1.5) witb any € > 0 and lV ~ Cl where
constant Cl is defined by Theorem 1.1. Then

(1.9) sup(u,Qr) ~ Cl·
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Using Theorem 1.1 and our results on Hölder estimates for DNPE (see [9]-[11])
we ean derive existenee of Hölder eontinuous weak solutions of Cauehy-Diriehlet
problem for appropriate dass of equations (1.1 )-( 1.3).

Similar results ean be obtained in the same way for more general DNPE of the
type

(1.10) ou/&t - div a(x, t, 1.t, \7u) = ao(x, t, u, \7u)

satisfying eondi tions

(1.11)

a(x, t, u,p) . p 2:: volul1jplm - ,uo(jujJ + 1),

la(x, t, u,p)1 :s; ,ullu!llp/m-l + ,u(lul),
lao(x,t,u,p)1 ~ 1l2{(luI 1Iplm-l)8 + lul J - 1 + 1], 0 < () < 1:

with the same m, l, 8, Vo '/),0, J.ll ,J.L2 and J.L (lu Das in (1.2), (1.3).

At the end of this paper we give same counterexample which shows that in the
case (see (1.3)) .

(1.12) (m,l) E w

generalized subsolutions of the model equation

(1.13) 8u/Ot - div [Iul 11\7 ul m
-

2 \l u] = 0 In BdO) x [0, I)

can be unbounded as x --+ O. From here it follows that it is impossible to obtain at
leas t loeal L 00 -estimates for generalized solutions of (1.13) in the ease (1.12). In
this sense eondition (1.3) is sharp.

We would like to thank the Max-Planck-Institut für Nlathematik and Professor
Hirzebrueh for support and hospitality.

2. Some auxiliary propositions

Proposition 2.1. Let function g(u) satisfies a Lipschitz condition uniformlyon IR
and its derivative g'(u) be continuous everywhere on IR witb the possible exception
of finitely many points at which g'(u) has a discontinuity of the first order. Let
function u E C([0,T]jL2 (f2)) U vV~,O(QT) satisfies far all tE (O,T] anel any<p E
o

yV~ (Qr) the integral identity

(2.1) !u</>dxl~+ !![-u</>t+f;</>x; +fo</>]dxdt = 0

n QT

3

"



where fi E Lml(Qr), i = 0,1, ... ln, l/m+'l/ln' = 1, rn > 1. .A.ssunle that u = <p

011 Sr for same <p E yV~ (Qr). Then for any t E (0, Tl we have

j[G(u) - ug(cp)ldxl~+
n

(2.2)

+ j j [ug'( cP )cpt + J;(g'( u )ux; - g' (cp )CPxJ + Jo(g(u) - g( 'P ll]d3,dt = 0
QT '

where G( u) = laU g( ~)d~.

Proposition 2.1 is we11-known (see, for example, [61). vVe sha11 use the fo11owing
inequality (the elose inequality was proved in [6]).

Proposition 2.2. Let function lt satisfy conditions

u E C([O, T]; Lq(!1)), v(lul 8 u) E Lm(Qr), s = (q - 2 + _(7_)/1"n,
0"+1

(2.3)
(7+2 1

q 2: a + 1 ' (7 = m _ l' rn 2: 1, 1 2: 0.

Assume that 'U = °on ST. Then

(2.4) j j1ulßdxdt ~ c j jl 'V (lul'u)lffidxdt (t~~~tJIUlqdX) !f!
QT QT n

where ß = (1 + r;:)q + n1, - 2 + u~l and consta,nt c depends only on H,m, and I (in
particula.r c independent of q).

o

Proof. For any v E W:n(!1) n L r (!1), m ~ 1, r > 0, we have (see, for example, [12])

where A = m/[3, /3 = (n + r)m/n, c depends only on n, m, and 'r. Set.

/3 = ß/(s + 1), r = q/(s + 1), v = lul 8 u
where q and s are such like in (2.3) (in particular r = q/(s + 1) may be estimated
from above by some constant depending only on n, m, and I). Then for a.e. t E [0 , Tl
we derive from (2.5) inequality

m

(2.6) j1ulßdx ~ cffi jl 'V (lul'u)lffidx (j1u1qdX) n

n n n
Integrating (2.6) with respect to t we obtain (2.4). Proposition 2.2 is proved.
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3. The proof of Theorem 1.1

In the case m+l 2: 2 estimate (1.8) can be derived directly from [6]. The novelty
of Theorem 1.1 is concerned with the case of equations of the type of fast diffusion,
i.e., with the case 'm + I < 2. Therefore we prove Theorem 1.1 here assuming that
1n + I < 2. Dur proof in this case is appropriate development of the rdoser luethod
of obtaining L oo -estimates.

Apply Proposition 2.1 in the case

(3.1) 9(~) = t(U+l)(P-l), t ~ sup{O,X{~) - /\), €::; /\ ::; IV, P 2:: 2, tp = €.

Then

JG(u)dxlh + JJ((7 + l)(p - l)ii(u+l)(P-l)-l[O 'V u . 'V'-' + a(x (u), u), 'Vu ) . 'Vii]dxdt

n QT -

(3.2) = JJjii(U+l)(P-I)dxdt

QT

where G(u) = fau
€(U+l)(p-l)d~. In particular we have taken into account that

0= sup(O,€ - /\) = 0, 9 = 9(0) = 0 for <p = €. Using that

d1.L . [' N]-d = slgn A ::; U ::;
·u

where sign Adenotes the characteristic function of set A we have

'Ü (u+ 1)(p-l )+1

(3.3) \lü = sign[.-\ ::; 1.l ::; N] \l 1.l, I \l ul 2:: I\l ul, G(u) 2: (0- + l)(p _ 1) + 1

Denote v = Üu+ 1. Then

(3.4)

Using also the trivial inequalities

(3.5) X(u) 2: u, (X(u)? ::; 2(u 2 + ,\2)

we derive from (1.2) and (3.2)-(3.4) that

JvP-I+ä"hdxl t + 11vp
-

2
1 'V vlmdxdt ~1G(u)dxlt=O+

n Qt n

(3.6) + cp11(vP-I+ä"h + vP-1-ä"h + vp
-

1)dxdt.

Qt
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Denote

(3.7)

Then

0" 0"+2
p=q+ 0"+1' q?:. 0"+1'

1 0" 1 2 1
p-1+ a+1 =q,p-2=q-2+ a+1,p-l- a+l =q- a+1,p-1=q- a+1'

Obviously that for any q ?:. :ti we have

with some constant c = c(a) > 1. Then choosing ,\ = € + sUPCtI', n x (t = 0]) :::; N
we derive from (3.6)-(3.8) that

where constant c > 1 is independent of q. From (3.9) it follows obviously that

where b : 1 + r;:. Then using Proposition 2.2 we obtain

(3.10)

Obviously that K < O. Really we have

(
I) 2-m-1 (m+I-2)(rn-1)

K=m+I-2+ I -I ='1n+I-2+1 1 1 = I 1 <0.
m + - 1 m + - 1n + -

Remark that

(3.11)
IKI nlKI c 0" +2o< JK:I :::; 2 - m - I < 1, 0 < b < - < -, \:Iq ?:. --1'

q + K: mq q er +
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Finally it is easy to see that for all q ~ ~ti 'we have

bq + K ( er ) er + 1 ( 1 er + 1)(3.12) ~b+m-2+-- --=l+{,n -+-- -l]~k>l
q er+1 er+2 11. er+2

because the square braces in (3.12) are strict1y positive in viev,,' of conclition (1.3)
which is equivalent to condition

(3.13)
n(er+2) l

m > () , a = --, n~ > 1, l > O.
ner+1 +a+2 m-1 -

In particular in view of (3.12), (3.13) we have

(3.14)

Denote

(3.15)

a+2
bq + K ~ kq, k > 1, q ~ a + 1.

11 v II~~ j jlvIPdxdt/IQTI, p > O.
QT -

Then from (3.10), (3.15) it follows that

(3.16)

and hence in view of (3.13)-(3.16) we have

(3.17)

Denote

(3.18)

Then from (3.17) it follows that

[
I/k" n/k" n ] l+bq~~K

(3.19) Yn+l ~ C C (Yn + l/k ) , n = 0,1, ...

where constant c > 1 is independent of €, lV and number n. Set
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(3.20) Zn = max(e, Yn), n = 0,1, ...

Then from (3.11), (3.19), (3.20) and taking into account that

1+ l..cl

[
l/k" u/k" ] ~e::; c C Zn ,n=O,l, ... ,

we derive inequalities

(3.21 ) (n+l)/k" ( Ik")l+c/k"Zn+l ::; C Zn + C ~ , n = 0, 1, ...

Using the Lagrange formulae we can estimate for all n = 0,1, ...

Zn + clkn :::; z~+c/k" = Zn + z~+9c/k" (Ln zn)clk n
, °< e< 1,

l+(}c/k" .because in Zn 2: 1, Zn 2: 1. Then we can rewnte (3.21) as

(3.22) < (n+l)/k" l+c/k" 0 1zn+ I _ C Zn , n = , ,...

because (1 + clk n )( 1 + clk n ) ::; 1 + Cl I k n for appropriate constant Cl. \Ve prove
that

(3.23) sup Yn ::; sup Zn ::; M -:- c E:=:o«v+l)/kV
) rr~=o(I+c/kV) Zo rr~o( l+c/kV)

nEN nEN

where the infini te product rr~o(1 +clkLl) and series I:~o (v +1)I k LI are obviously
convergent. To prove (3.23) it suffices to convince ourselves that for any n = 1,2, ...

(3.24) Z < C E~:6«v+I)/kV) n~:6(I+c/kV)_ n~:6(I+c/kV)n _ ~o·

We prove this assertion by mathematical induction. For n = 1 inequality (3.24) is
obvious in view of (3.22) in the case n = O. To complete the proof, it suffices to
show that if (3.24) holds for some n 2: 1, then

(3.25)

Indeed, from (3.24) it follows that

while (3.22) yields

8



(3.27)

Substituting (3.26) in (3.27), we find that

In ZnH ~ ((n + 1)/kn) (g(1 + C/kV
)) In c + ~((V + 1W) (g(1 + C/k V

)) In C+

(3.28)

+ 11(1+ c/k")ln Zo = ~((v + 1)fk") (11(1 + C/k")) In C+11(1 +c/k")ln Zo .

from which (3.25) follows. Thus (3.24) holds for all n = 0,1, ... ~ consequently~ so
does (3.23). Because

sup(u, QT) = Ern Yn S; sup Yn
n~co nEN

we have in view of (3.23) and definition of CL

(3.29) sup(ii, QT) S; M;tr

where A1 is defined by the right hand side of (3.23) wi th

(3.30) Zo = max (e, 11 v 11m)' 11 v Ilm= (Jj lY+2dXdi/IQTI) ~

To complete the proof of estimate (1.8) we have to estimate now JJ llu+2dxdt where
QT

Ü = sup(O, X( u) - A), A = f + sup( 7P, n x [t = 0]). Consider now (3.1) in the case
p = 2, A = f. Then in view of (3.6)-(3.8) (in the case q = ~ti, /\ = f) and taking
into account that function 7P is hounded on n x [t = 0] (see (1.5)) we obtain for
any t E (0, T] inequalities

where u = sup(O,X(u) - f). Using the Gronwall inequality we derive from (3.31)
that
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with same constant C independent of € and lV. Because ü S; Ti we obatin estinlate

(3.33) JJü"+2dxdt ~ c

Qr

and hence (see (3.29), (3.23), (3.30))

(3.34)

with same constaut c independent of € and lV. Finally in view of (3.1) and (3.34)
we have

(3.35) SUp(X(U),QT)::; h(sUp('Ü,QT) +.A] ::; Cl

with Cl = V2 (c + 1 + sup(1./;, n x [t = 0])) if € E (0,1). Theorem 1.1 is proved.

In proving existence of Holder continuous weak solutions for DNPE of the type
(1.1 )- (1.3) useful the following

Theorem 1.2. Let conditions (1.2), (1.3) are fulfilled and let u be a generalized
solution oE Cauchy-Dirichlet problem (1.4), (1.5) witb any € > 0 and lV 2: Cl where
constant Cl is defined by Theorem 1.1. Then

(3.36)

where constant C2 depends on the data.

Proof. Apply Proposition 2.1 in the case

(3.37) g(~) = sup(O, X(~) - €), r.p = €.

Then using Remark 1.1 we have g' (u) = 1 a.e. in Qr and hence

(3.38) JG(u)dxla +JJa(x(u), \lu) . \lu dxdt =JJfu dxdt

n QT QT

where (again in view of Remark 1.1) we have

(3.39) G(u) ~ ~(u - E)2, a(x(u), \lu), \lu ~ vou'l \l ul m
- 1-'0 (lu 12 + 1) a.e. in QT.

Using estimate (3.8) we derive from (3.38), (3.39) estimate (3.36) with some con
starrt C2 depending on Cl, VÖ

I , J.lo and J.l2. Theorem 1.2 is proved.
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(4.1 )

4. A counterexanlple

In this section we show that if condition (1.3) is violated thell at least local
boundedness of generalized solution cannot be proved. \Ve use cOllstructions of an
counterexample by DiBenedetto ([13], p. 130-133) who showed silnilar necessity of
condition (1.3) in the case I = er = O.

Let r ~ ~$i and a E (0, 1) be given constants and consider the function

-.L (a 2 -lxI 2?
y = Z<1+1, Z = IxJ-;-ln2 IxI 2 '

Let Ba denote the ball of radius a in Rn centered at the origin. Obviously Z E
Lr(Ba) and z t/:. Lr+E(Ba), 'V€ E (0,1).

Introduce also the function

(4.2) w=(I-ht)+y

where h > 1 is to be chosen, and consider the Cauchy-Dirichlet problem

(4.3)
au/at - div[lul11 \J ul m- 2 \J u] =° in Q: Ba X (0,1], rn > 1, 1~ o,}
u = 0 on ST, u = Y on Ba X [t = 0].

Lemma 4.1. Assume that

(4.4)
u+2 u+2 1

Ar -;.. n(m - --) +rm = 0, r ~ --, u = ,rn> 1,1 ~ 0.
0'+1 u+l m-l

(4.5)

The constants a E (0,1) and h > 1 can be determined apriori so that function
w denned by (4.2) is a non-negative generalized subsolution oE (4.3) such that

o

w E C([O, 1]; L r(o-+l)(Ba )), wo-+ 1 E W~O(Q), but w t/:. Loo(Qr).

Proof. Denote a = e- k , k > 1. In [13] it is proved that

div(1 'V zlm-2 'V z) 2:: 0 on Eil) : [~e-2k ~ Ixl2 < e-2k ],)

... m-l . ')
div(1 'V zlm-2 'V z) 2:: -"{ Ixl

m
on Ei2) ~ [lx1 2 < ~e-2k]

with same canstaut , = ,(rn, n, r) > 0. Then with w given by (4.2), (4.1) we
compute in [0 < lxi< a]

L(w) : 0; -div[wll 'V wl m
-

2 'V w] = 0; -div[l 'V w 17+ 1Im -
2 'V w17+I] =

(4.6)
= -hzm - (1 - ht)~+l)(m-l)div[l \J zlm-2 \J z].
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From (4.5), (4.6) it follows that Lw ::::; 0 on t"k l
) while on t"i2

) \Ve have

(4.7)

By calculation on t"l2)

(4.8)

where we have used the fact that Ar = o. Therefore

L(w) ::::; z( -h + ,*(k)).

Choosing h = ,*(k) proves that

(4.9) L(w) ::::; 0 on [0 < lxi< a] X [0,1].

Using (4.9) it is easy to prove (exactly in the same way as in [13]) that indeed
w is a weak solution of (4.3) in the whole Ba X [0,1]. Obviously that from (4.1),

o

(4.2), and (4.4) it follows that w E C([O,l); L r (C1+1)(Ba )), w C1+1 E tV~O(QT) while
w f$ L r (C1+l)+f( QT), V€ E (0,1). In partieular w E C([O, 1]; L 17+2 (B a )) and w ~

Loo(Qr), 'VE E (0,1). Lemma 4.1 is proved.

Remark 4.1. Obviously that eonditions (4.4) and (1.12) are equivalent. Really (4.4)
is equivalent to inequalities

(4.10) (
0" + 2)m n+--
0"+1

0"+2
:=;nO"+1' m> l,l::::;O

whieh can be rewrit ten as (1.12) and on the contrary from (4.10) it follows, that
(4.4) hold with some r ~ ~ti. Lemma 4.1 shows that for generalized solutions of
(1.13) (and hence of (1.1), (1.2)) the loeal Loo -estimate can not be established in
the ease (4.10).
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