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1. Introduction

Let €2 be a bounded open set in R™, n > 1, Qr = @ x(0,T}, ST = 02 x(0,T), I'r
is a parabolic boundary of @7, i.e., 't = STU[Q x (¢ = 0)]. Consider in Q7 equation

| (1.1) Flu] = 0u/ot — diva(u, yu) = f(z,t)

where a = (a*,...,a"), Yu = (8u/dz,,... ,0u/dz,). Assume that a'(u,p), i =
1,...,n, are continuouson R xR™ and let for a.e. (z,t) € Qrandanyu € R, p € R®

a(uvp) ‘P 2 V0|u|l|p|m - “0('“'6 + 1)1 vg > Oa Ho 2 Os
de2m+l) if m4+1>2,6=2 if m+1<2;

la(u,p)| < malul'lpI™ " + p(lul), u1 2 0, u(s) 2 0, p(s)  is nondecreasing;

(1.2)

OSf(x:t)Su23#2201m>11120

Equations of the type (1.1), (1.2) are known as doubly nonlinear parabolic equa-
tions (DNPE) (see [1]-[5]). The aim of this paper is to obtain the maximum modulus
estimates for generalized solutions of DNPE with the best possible condition

(1.3)

(m,l)ED\w,D#{m)l,lzo},w${(m,l)GD:o+1

1 1 {
<— -2 o= ,
g+2 " m n m—1

Other results concerning L -estimates for DNPE were obtained in particular in

(6], [7].

For the sake of breavity we limit ourselves by obtaining only the global estimates
of the maximum modulus of generalized solutions. On the other hand from the point
of view of the theory of existence of regular solutions for DNPE it is important to
have such estimates for solutions of regularized Cauchy-Dirichlet problems. Taking
into account this circumstance we obtain in this paper the global L -estimates for
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generalized solutions of the regularized Cauchy-Dirichlet problems of the type (see
(6], [8])
(1.4) Fe nlu) = 0u/0t —diva(x(u),vu) = f(z,t) in Qr,u=®+¢ on Irp

where

x(u) = max(e, min(x, N)), e > 0, N > ¢,
(1.5) Y EWL(QT)NCP(QT), $ 20 in Qr,
and a(u,p) and f(z,t) are like as in condition (1.2).

Definition 1.1. Function u is a generalized solution of (1.4), (1.5) if u € C ({0, TT; L2(2))N
Wh(Qr), u = +eon'r and for any ¢t € (0,T] and ¢ € W (Qr)

(1.6) fudsdwlé +/ [~uge + alx{u), Tu) - T — foldzdt = 0.
Q Qr

It should be said at once that conditions (1.2) imply the following estimate
Lemma 1.1. (/8]) For any generalized solution of (1.4), (1.5) we have

(1.7) inf(u,Qr) > ¢
We say that some constant c depends only on the data if ¢ depends on n,m, [, o, vo, po, p1, p2,
and sup (¥, @1). The main result of this paper is

Theorem 1.1. Let conditions (1.2), (1.3) be fulfilled. Let u be a generalized so-
lution of Cauchy-Dirichlet problem (1.4), (1.5) with any ¢ > 0, N > ¢. Then

(1.8) sup(x(u), Q1) < e

where constant ¢, depends only on the data.

Remark 1.1. From (1.7), (1.8) it follows that x(u) = v a.e. in @7 if N > ¢;. Hence
we have

Corollary 1.1. Let conditions (1.2), (1.3) be fulfilled and let u be a generalized
solution of Cauchy-Dirichlet problem (1.4), (1.5) with any e >0 and N > c; where
constant c; is defined by Theorem 1.1. Then

(1.9) sup (4, Qr) < c1.
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Using Theorem 1.1 and our results on Holder estimates for DNPE (see [9]-[11])
we can derive existence of Holder continuous weak solutions of Cauchy-Dirichlet
problem for appropriate class of equations (1.1)-(1.3).

Similar results can be obtained in the same way for more general DNPE of the
type

(1.10) OufOt — diva(z,t,u, Ju) = ag(z,t,u, Ju)

satisfying conditions

a(z,t,u,p) - p 2 wolul'lp|™ = polful® + 1),

la(z,t,4,p)| < palul'p|™ " + p(]ul),
(1.11) lao(z, t,u, p)| < pa{(Jul'lp|™ )% + [ul*~' +1],0 < 8 < 1,
with the same m, [, 4, vo, pio, 1, 2 and p(ju|) as in (1.2), (1.3).

At the end of this paper we give some counterexample which shows that in the
case (see (1.3)) '

(1.12) (m,1) € w

generalized subsolutions of the model equation

(1.13) Ou/ot —div(|ul'| 7 u|™? gu]=0 in By(0)x[0,1)

can be unbounded as £ — 0. From here it follows that it is impossible to obtain at
least local L, -estimates for generalized solutions of (1.13) in the case (1.12). In
this sense condition (1.3) is sharp.

We would like to thank the Max-Planck-Institut fiir Mathematik and Professor
Hirzebruch for support and hospitality.

2. Some auxiliary propositions

Proposition 2.1. Let function g(u) satisfies a Lipschitz condition uniformly on R
and its derivative g'(u) be continuous everywhere on R with the possible exception
of finitely many points at which ¢'(u) has a discontinuity of the first order. Let
function u € C([0,T]; L2(2)) U WLO(Qr) satisfies for all t € (0,T] and any ¢ €

WL (Qr) the integral identity

(2.1) /u¢dm|6 + /][—uqﬁt + figz; + fod|dzdt =0
Qr

Q
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where fi € Ly (Q7),1=10,1,...,n,1/m+1/m' =1, m > 1. Assume that u = ¢
on St for some ¢ € WL (Qr). Then for any t € (0, T) we have

[ (G(u) — ug(e)ldelo+

// [ug(9)pe + Filg (wiz, — o' (@)pee) + folgu) = glg))drdt = 0

where G( u) fo g(&)d¢.

Proposition 2.1 is well-known (see, for example, [6]). We shall use the following
inequality (the close inequality was proved in [6]).

Proposition 2.2. Let function u satisfy conditions

u € C([0,T]; Lo(Q)), (|ul’u) € Lm(Q7), s = (¢ -2+

—)/m,

o+ 2 _ !

q__ 10_ ]
c+1 m—1
Assume that u =0 on St. Then

(2.4) //|u|’3da:dt < c//| v (|u|’w)|™dzdt | sup /|u]"da:
. Qr Gr elig

where f = (1 + Tt)g+m — 2+ 257 and constant ¢ depends only on n,m, and ! (in
particular ¢ independent of g).

m2>1,1>0.

Proof. For any v € W1 (Q)NL.(Q), m > 1, r > 0, we have (see, for example, [12])

1/8 A/m (1=X)/r
(2.5) ( lv|Bdm) <t ( | 7 v]mdm) ( |v|rda:)
/ / I

where A = m/B, 8= (n + rjym/n, ¢ depends only on n,m, and r. Set

B=B/(s+1),r=0q/(s+1),v=ulu
where ¢ and s are such like in (2.3) (in particular 7 = ¢/(s + 1) may be estimated

from above by some constant depending only on n,m, and {). Then for a.e. t € [0, T)
we derive from (2.5) inequality

m

(2.6) fIUIBdw <c™ /I  (lul*w)|dz (/lul"dz) " -

Q Q
Integrating (2.6) with respect to t we obtain (2.4). Proposition 2.2 is proved.
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3. The proof of Theorem 1.1

In the case m+1 > 2 estimate (1.8) can be derived directly from [6]. The novelty
of Theorem 1.1 is concerned with the case of equations of the type of fast diffusion,
i.e., with the case m + [ < 2. Therefore we prove Theorem 1.1 here assuming that
m + [ < 2. Our proof in this case is appropriate development of the Moser method
of obtaining L., -estimates.

Apply Proposition 2.1 in the case

(3.1) g(€) = DD ¢ = sup(0,x(€) = \), e S AN, p>2, p=ce

Then
/G(u)dx|6 + //(0 + 1)(p - 1)aletVP=U-Y5 G o - i + aly (v), &), Vu) - ildzdt
Q Qr :

(3.2) = / / Falot D=1 dpdt

Qr

where G(u) = [ gle+D=1d¢  In particular we have taken into account that
@ =sup(0,e — \) =0, g = g(¢) =0 for ¢ = e. Using that

di
d%:sign[)\SugN]

where sign A denotes the characteristic function of set A we have

glotidp-1)+1

(c+Dp—-1)+1

(33) wu=signA Su<N|gu |Tul2|vi], Glu) 2

Denote v = @°*+!. Then

(3.4) | 7o <@t g a™, vt gl <Al v alm

Using also the trivial inequalities

(3.5) () 2 8, (x(v))? < 2(a? + A7)
we derive from (1.2) and (3.2)-(3.4) that

Jorremant+ [[ors g uprasar < [ Q=+
Q. “

Q

(3.6) + cpf/(v”‘”?h + 0?7 T 4oP Y dadt.
Q
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Denote

o o +2
3.7 - > ,
(3.7) P=at 42
Then
o 1 2 1
1+ =g, p—2=q—2+ p—1— =g- p—1=g- .
I s+ P T T ? =

Obviously that for any ¢ > -Z—H- we have

(3.8)  vITF < (qﬁv" + q"’) v <S¢ (q"T;qu + q"’)

with some constant ¢ = ¢(¢) > 1. Then choosing A = e +sup(¢, @ x [t =0]) < N
we derive from (3.6)-(3.8) that

(3.9) ts%p /qum + /]vq—2+ﬁf| 7 v|"dzdt < ¢q° (//uqd:cdt + q_q)
<0Tg Qr Qr

where constant ¢ > 1 is independent of ¢. From (3.9) it follows obviously that

Ex ‘ b
( sup /qum) //vq_2+3cr?| v v|"dzdt < cq° (/qud:ndt + q_q)
te[0,7]
Qr Qr

Q

where b = 1+ 2. Then using Proposition 2.2 we obtain

b
a

3.10 V201 dedt < cq° videdt+q7 %) ,k=m—-2+ :
1 o+1
Qr Qr

Obviously that x < 0. Really we have

2—m—1 (m+!1-2)(m-1)

[
= — —_— ) =m+l-2+1 = 0.
k =m+l! 2+(m+l-—1 1) m+ +m+[—1 F—— ] <
Remark that
|| n|x| c o+ 2
. <2—-m-—1 —_— < — < -, Vg —.
(3.11) 0< |k £2-m <1’0<bq+n<mq . 92



Finally it is easy to see that for all ¢ > g}f— ‘we have

(3.12)

bg+ K o o+1 1 o+1
>b m—2 =1 o et 1=z
q +(m +o+1)o'+‘2 +[m(n+a+2> H=k>1

because the square braces in (3.12) are strictly positive in view of condition (1.3)
which is equivalent to condition

n(o + 2)

Nl > = >0,
(3.13) m n(a+1)+cr+2’a m_1,m>1,l_0
In particular in view of (3.12), (3.13) we have

o+ 2
(3.14) bg+r>kgk>1,q2 .
o+1
Denote
(3.15) loi= [[lopdsasiant. p>o.
Qr
Then from (3.10), (3.15) it follows that
bt 2
(3.16) (1 v llbgn) B0 < Vage (v llg +¢7) g2 Rty
c+1
and hence in view of (3.13)-(3.16) we have )
I+
(3.17) 10 Neg I lsgew [00/2(0 v llg +471)] 7
Denote
o+ 2 n - —
(3.18) qn—a_l_lk yyn = v lga, n=10,1,...
Then from (3.17) it follows that
b k" S TreT
(3.19) %ﬁlg[&“(fﬂ(%f+ukﬂ] T on=0,1,...

where constant ¢ > 1 is independent of ¢, ¥V and number n. Set
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(3.20) 2, = max(e,yn), n =0,1,...
Then from (3.11), (3.19), (3.20) and taking into account that

1/k™ nfk" 1+ q:+~
e < ¢ c z,,] .n=01,...

we derive inequalities

(3.21) Tt < et u/e? (zp + c/k’")l'i":/""rl ,n=0,1,...
Using the Lagrange formulae we can estimate for all n = 0,1, ...

zn +e/k™ < 2 PR = o 4 O (2 e /R, 0 < 6 < 1,

because Inz, > 1, z}.+gc/kn > 1. Then we can rewrite (3.21) as

(3.22) Zng < APEDRTH/ET 201,
because (1 + ¢/k")(1 + ¢/k") < 1+ ¢;/k™ for appropriate constant ¢,. We prove
that
(3.23)  supyn < sup zn < M = ¢ Telot(w+1)/E) Lo he/kY) 1 TZLol1+e/k%)

neN neN
where the infinite product [[J ,(1+c¢/k¥) and series > . (v +1)/k" are obviously
convergent. To prove (3.23) it suffices to convince ourselves that for any n = 1,2,...

(3.24) 2, < ¢ Zomo(wAD /K TI 2o (ke /) o TIDZ0(14e/k).

We prove this assertion by mathematical induction. For n = 1 inequality (3.24) is
obvious in view of (3.22) in the case n = 0. To complete the proof, it suffices to
show that if (3.24) holds for some n > 1, then

(3.25) st < ¢ Toaol /R ol 1+/8) 1 Tmol1he/k")
Indeed, from (3.24) it follows that

n—1 n—1 n—1
(3.26) Inz, < Z((u + 1)/k") (H(l +c/k")) Inc+ (H(l + c/k”)) In zg

v=0 v=0 v=0

while (3.22) yields



(3.27) Inznpr S ((n+ 1)/kM)nc+ (1 +c/k™)inz
Substituting (3.26) in (3.27), we find that

Inzngr < ((n+ 1)/k™) (H(l+c/k")) Inc+ Z( v+ 1)) (H l+c/k")) Inc+
v=0

v=0 v=0
(3.28)
+ H(l +c/k¥)inz = Z((v + 1)/k%) (H(l +c/k) ) Inc+ H (1+c/k¥)inz
v=0 v=0 v=0 v=0

from which (3.25) follows. Thus (3.24) holds for all n = 0,1,... , consequently, so
does (3.23). Because

sup(t, @) = hrn Un < sugyn
ng

we have in view of (3.23) and definition of i

(3.29) sup(u, @Qr) < M7

where M is defined by the right hand side of (3.23) with

i

oc42

+

(3.30) 2p = max (e, || v ||$) | v | 2= (// ~a+2dq:dl‘/lQTl)

To complete the proof of estimate (1.8) we have to estimate now [[ @7 "?dzdt where
Qr

@ = sup(0, x(u) — A), A = e+ sup(¢, x [t = 0]). Consider now (3.1) in the case

p =2, A = e. Then in view of (3.6)-(3.8) (in the case ¢ = 0’+1’ A = ¢) and taking

into account that function ¥ is bounded on Q x [t = 0] (see (1.5)) we obtain for

any t € (0,T) inequalities

(3.31) /a"+2dz|‘ + ]fﬁ‘”"l v a|™dzdt < ¢ (]/ﬁ““dzdt + 1)
Q Qr Qr

where @ = sup(0, x(u) — €). Using the Gronwall inequality we derive from (3.31)
that

(3.32) /fﬁ”“dzdt < sup fﬁ””d:cdt + V//ii‘""[ 7 u|"dzdt < ¢
te[o,T]
Qr Q Qr



with some constant ¢ independent of ¢ and N. Because @ < @ we obatin estimate

(3.33) ffﬁ"“dxdt <c
Qr

and hence (see (3.29), (3.23), (3.30))

(3.34) sup(w, @r) < c

with some constant ¢ independent of € and N. Finally in view of (3.1) and (3.34)
we have

(3.35) sup(x(u), @r) < V2[sup(@, Qr) + A < 1

with ¢; = V2 (c+ 1 +sup(s,Q x [t = 0])) if € € (0,1). Theorem 1.1 is proved.

In proving existence of Holder continuous weak solutions for DNPE of the type
(1.1)-(1.3) useful the following

Theorem 1.2. Let conditions (1.2), (1.3) are fulfilled and let u be a generalized
solution of Cauchy-Dirichlet problem (1.4), (1.5) with any € > 0 and N > ¢; where
constant ¢, is defined by Theorem 1.1. Then

(3.36) /fu‘t T U™ < e
Qr

where constant c; depends on the data.

Proof. Apply Proposition 2.1 in the case

(3.37) 9(&) = sup(0,x(§) —€), p=¢.

Then using Remark 1.1 we have ¢'(u) = 1 a.e. in @7 and hence
(3.38) / u)dz|d + // ), Ju) - Judzdt = [ fudzdt
where (again in view of Remark 1.1) we have

(3.39) G(u) > =(u—e)?, alx(u), Vu)- Tu 2 vou'| 7 u[™ ~ po([u* + 1) ae. in Qr.

—_— N

Using estimate (3.8) we derive from (3.38), (3.39) estimate (3.36) with some con-
stant ¢; depending on ¢y, v ", o and pg. Theorem 1.2 is proved.
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4. A counterexample

In this section we show that if condition (1.3) is violated then at least local
boundedness of generalized solution cannot be proved. We use constructions of an
counterexample by DiBenedetto ({13], p. 130-133) who showed similar necessity of
condition (1.3) in the case | = o = 0.

Let r > g—i‘—f and a € (0, 1) be given constants and consider the function

. (a® — jo|*)?
4]_ T za+l, = —
(4-1) Y |z|+ In?|z|?

Let B, denote the ball of radius @ in R™ centered at the origin. Obviously z €
L.(B,) and z ¢ L.4(B,), Ve € (0,1).

Introduce also the function

(4.2) w=(1-ht)yy

where h > 1 is to be chosen, and consider the Cauchy-Dirichlet problem

(4.3)

Ou/ot — div[fu|'l T ul™?gu]=0 in Q=B,x(0,1],m>1,1>0,
©u=0 on Sr,u=y on B, x[t=0]

Lemma 4.1. Assume that

o+2 o+2 [
a+1)+rm=0,r20+1,o‘=m_1,m>1,l20.

(4.4) Ar =n(m -

The constants a € (0,1) and h > 1 can be determined a priori so that function
w defined by (4.2) is a non-negative generalized subsolution of (4.3) such that

w € C([0,1); Lrg41)(Ba)), w” € W(Q), but w ¢ Loo(Qr).
Proof. Denote a = e™*, k > 1. In [13] it is proved that

div(| 7 2|™~ 2g2)>0 on E(l) = [

(4.5) mot .
div(| g 2™ 2 g z2) > ~ o £P = (jz|* <

3 -2k < Ix|2 < e—'lk]

—'2&

with some constant v = v(m,n,r) > 0. Then with w given by (4.2}, (4.1) we
compute in [0 < |z| < a]

d -
L{w) = Qv _ div[w!| 7 w|™? g w| = = - div[| g wt Mg w

a+1] —
ot ot
(4.6)

= —hz#T — (1 = )TV div]| 7 2™ v 2.

11



From (4.5), (4.6) it follows that Lw < 0 on 51(__1) while on SLZ) we have

(4.7) L{w) < PEzoy (—h +73m_l—a—h) )

|_,E]m
: (2)
By calculation on &

zm—l—#f

m—1=—io); (AL .
e Sat = 2T < 5 (k)

(4.8) ¥

where we have used the fact that A, = 0. Therefore

L{w) < 2(=h +~7(k)).
Choosing h = 4*(k) proves that

(4.9) Liw)<0 on [0<|z|<aq]x[0,1]

Using (4.9) it is easy to prove (exactly in the same way as in [13]). that indeed
w is a weak solution of (4.3) in the whole B, x [0,1]. Obviously that from (4.1),

(4.2), and (4.4) it follows that w € C([0,1); L, (p41)(Ba)), w*! € P?/'},;O(QT) while
w & Lyos1)+¢(QT), Y€ € (0,1). In particular w € C([0,1]; Ly42(B,)) and w ¢
Leo(QT), Ve € (0,1). Lemma 4.1 is proved.

Remark 4.1. Obviously that conditions (4.4) and (1.12) are equivalent. Really (4.4)
is equivalent to inequalities

o+2 o+ 2
4.10 < 1.1 <
( ) m(n+0+1)_no+l,m> A <0

which can be rewritten as (1.12) and on the contrary from (4.10) it follows, that
(4.4) hold with some r > ;—‘E Lemma 4.1 shows that for generalized solutions of

(1.13) (and hence of (1.1), (1.2)) the local L, -estimate can not be established in
the case (4.10).
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