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Abstract

Let 7(F),c.{F), c;(F) be rank and Chern classes of an algebraic
coherent sheaf F' on a Del Pezzo surface X. We will call a tuple
(F)y = (r(F),c\(F),c(F)) the Chern datum for the sheaf F. In
the paper we writc down several necessary conditions on the Chern
datum of a non-exceptional stable sheaf on a Del Pezzo surface which
generalize the conditions found by Drezet and Le Potier for sheaves
on P? and we use them to define a sct Dy. After that we prove that if
¢(F) € Dx and F can be included in a smooth restricted versal family
of sheaves on X then there are stable sheaves in the family so F can be
deformed into a stable sheaf with the same Chern datum. We provide
a way to construct such families and as an application we prove that
for any ¢ € Dy it exists a stable sheaf F' such that ¢(F) = ¢ provided
X is P(:’l) - a Del Pezzo surface which arises by blowing up a point in
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1 Introduction

Originally the notion of stability belongs to the geometric invariant the-
ory and it was used in algebraic geometry since 60-s, when {Mu] appeared, in
order to construct moduli varieties. Later it was discovered that stability of
a vector bundle is not only related with the construction of moduli varieties
but also with the existence of Kéahler-Einstein metrics in the bundle ([LT])
and with other properties as well. It is good to know whether one could find
a stable algebraic structure in a given topological vector bundle and this is
what we work on in the paper.

More precisely let X be a Del Pezzo surface over an algebraically closed
field k and Kx canonical class of X. It is known that the divisor — K x defines
an embedding of X into a projective space and we choose this embedding to
define stabity so we work in the following with semistability and stability in
respect to the anticanonical polarization.

Let ¢(F) = (r(F),c1(F),co(F)) be a tuple which consists of rank and
Chern classes of an algebraic coherent sheaf /. We consider the tuple as an
element from My = Z x PicX x Z and we call this element a Chern datum
for the sheaf F' . To fix Chern datum of a vector bundle (or a coherent sheaf)
on a Del Pezzo surface is the same as to fix topological type of the bundle
or to fix its image in the Grothendieck group of algebraic coherent sheaves
category.

It is know that exceptional sheaves on a Del Pezzo surface are stable
([Go],[KO]) and let Exx be a set of Chern data for non torsion exceptional
sheaves on X.

We define below a subset Dy in M} and show that it contains Chern data
of nonexceptional stable sheaves on X with a discriminant greater than 1/2
and we prove that if a Chern datum for a sheaf F' belongs to Dy and F
can be included into a smooth restricted versal family of sheaves on X, then
there are stable sheaves with the same Chern datum in the family. We know
that the discriminant of nonexceptional stable sheaf on X is always greater
or equal to 1/2 and for the latter case we prove the existence of semistable
sheaves in the family.

Futher in this article we present a way to construct such families and as
an application we prove that it exists a stable sheaf F' with a Chern datum ¢
for any ¢ € Dx when X is P(zl) - a Del Pezzo surface which arises by blowing
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up a point in P2. Similar results when X is a projective plane or quadric
surface were proven before ([DL], [R2]). The same methods are used in [R5]
to study vector bundles on other Del Pezzo surfaces.

Exact statements of the results one could find in the body of the article.

I would like to express my gratitute to S.A.Kuleshov, A.L.Gorodentsev
and S.Yu.Zuzina with whom I have several helpful discussions, to Mahtemati-
cal department of University of Tokyo where part of this article was made and
to prof.E.Horikawa for encouragement and hospitality, and to Max-Planck-
Institute where the last version of the text was prepared.

2 Preliminaries

We will work with algebraic coherent sheaves on a smooth projective
Del Pezzo surface X over an algebraically closed field k. Let us denote
the canonical class (or canonical sheaf) of X as Kx. Del Pezzo surfaces are
those surfaces, where anticanonical class — Ky is ample. It is well known
that over an algebraically closed field they are either projective plane P2 or
quadric surface @) or surfaces which are made by blowing up ¢ < 9 points in
general position on P?, ([Ma]).

We use the name " vector bundle” both for a geometrically defined vector
bundle and for the sheaf of sections of a geometric vector bundle which is
the same as any locally free coherent sheaf.

As usual PicX denotes the Picard group of X and 7(F) (or rr ), a1 (F),
c2(F') are rank and Chern classes of a sheaf F.

We use notations :

My = Z x PicX x Z,

Mt = N x PicX x Z.
An element ¢ = (7, ¢, ¢;) € My is said to be the Chern datum for a sheaf F,

c=(r,c1,¢) = Chd(F), when 7 =rk(F), ¢ =c(F).

It is convenient to consider the Chern data set My as an abelian group in a
way that
Chd(F, ® Fy) = Chd(Fy) + Chd(F3).



This means according to standard Chern class properties that
(r,a, )+, ab)=(+r,a+d, b+V +a d)

where - denotes the intersection pairing on PicX.

So the function Chd is an additive function on sheaves. And this resulted
in an isomorphism
My = Ko(CSh X)

of the Chern data group and the Grothendieck group for algebraic coherent
sheaves on a Del Pezzo surface.

We will keep the following notations from [R1], [R2]:
x(A, B) = 3 (~1) dim Ext'(4, B),

_ _ CI(F) s v
vp=v(F} = (F) € PicX ® Q,
'ITL(F) = Cl(F) - (—I{X) S Z,
m(F)
r(F)’
p(F) = (ch - cg) (F) e %Z,
_ o)
F(F) - T(F)’

Ap= (-}(cz - )) (F).

The Riemann-Roch theorem states that for sheaves on a Del Pezzo sur-
face:

= p(Fy=v(F) (-Kyx) =

€Q,

T_l ]
5

1
X(A, B) = narp + 5 (1am(B) — ram(A)) + 12ap(B) + 7pp(A) — er(4) - e1(B),
orifry #0, rg # 0 then:

Va,B - (VA,B - K,\')
2

x(A, B) =n7p ( +1-A - AB) ,



where v4 p = vp — V4.

It is important to mention that the functions v, u, p, 7, A and y depend
only on Chern data of sheaves which are their arguments so we will consider
those functions as functions on My.

The Serry duality theorem for sheaves on a smooth surface can be stated
in a form ([DL]):

Ext'(A, B)" = Ext* (B, A® Ky).

We will often use it throughout the text.

We are to use exceptional sheaves and let us recall the definition.

Definition 2.1 A sheaf E is called exceptional if Hom(E,E) =k and
Ext'(E,E) =0 fori > 0.

We say that F is a family of sheaves on X with a base (or parameters)
Z when F — X is a flat sheaf over X = X x Z. Sheaves F{,) = F|xx, are
members of the family. We suppose if it is not mentioned the opposite that
Z is connected.

An element ¢ € M} is said to be a Chern datum for the family F if for
any z € Z there is Chd(F(,)) =c.

Let us recall some properties of cohomologies Ext‘},«) +(+) and Exty _(,)
for sheaves or complexes of sheaves with decreasing filtrations ([DL]). (It
is important to mention that we use decreasing filtrations while they use
increasing filtrations in [DL]}):

Proposition 2.2 Let K be a sheaf or a complez (bounded on the left) of
sheaves with a finite decreasing filtration

K=FK>FK>..oF'K>F'"K =0
and let G K be factors of the filtration in K.

1. There 1s an exact sequence

— oty (K, K) = Ext'(K,K) — Esty (K, K) — Bzt (K, K) —



8. There is a spectral sequence abutting to Extp (K, K) such that

B HEqu(G,-K, GiipK) forp >0,
1 0 for p < 0.

3. There is a spectral sequence abutting to Eztp (K, K) such that

0 fOT P 2 0:
EP? = HEztp+q(fof, GippK) forp <0.

4. Let FNK be the last member of the filtration F in K, K = K/FNK,
and the filtration in K be induced from IC. Then there exist an cract
sequence

— Bate (K, K) — Exth (K, K) - Bzt (FVK,K) - Ezti (K, K) —

3 Around stability

We use two kinds of stability in the sequel so it is practical for us to describe
in the beginning the stability for algebraic coherent sheaves on a variety X
in general terms.

As it is usual, the stability matters are discussed in the following only for
sheaves without torsion.

Definition 3.1 Let it be defined for nontorsion sheaves on X a map A — y(A)
inte a totally ordered set I' such that:

(a) v depends only on the Chern datum of an argument which means if
images of A and B in Ko(Csh X) coincide then y(A) = ~v(B);

(b) if B is a subsheaf in A such that factor A/B is a nonzero torsion sheaf
then v(B) < v(A);

(c) if A, B,C are nonzero sheaves unthout torsion and there is an exract
sequence
0—B—A—C—0



then v(B) < y(A) is equivalent to y(A) < v(C) and y(B) = v(A) is
equivalent to y(A) = v(C).

A sheaf A (without torsion) is called stable (relative to the order defined
by the map «v) if for a subsheaf B in A with a nontorsion factor-sheaf we
have v(B) < v(A).

A sheaf A (without torsion) is called semistable if for o subsheaf B we
have v(B) < v(4).

In the following we write A <, B instead of y(A) < v(B) and call an
order on sheaves which we get this way the stability order.

A general property of stability is the following.

Proposition 3.2 Let A, B be semi-stable sheaves and B <, A. Then
Hom(A,B) = 0.

Let it be a morphism 3 : A — B and let us consider its splitting into
short exact sequences:

0 K—>A->1-50 051 ->B->C-0

If K =0 then I = A and this contradicts semi-stability of B. Therefore if
P # 0, then K # 0, I # 0, and hence K <, A, A <, I. But I <, B so
A <, I < B, which is impossible by assumptions.O

The following is a kind of the Schur lemma in our context.

Lemma 3.3 Let A, B be stable sheaves such that B <, A then either
Hom(A, B) =0 or A= B and Hom(A, B) = k.

By the proposition above only the case when B =, A are to be proven.
The arguments which were used to prove the proposition also show that
a nonzero morphism from Hom(A, B) should be a monomorphism onto a
subsheaf in B with a torsion factorsheaf. But such a subsheaf coincides with
B because of the property (b) of Definition 3.1.

Now Hom(A, B) = Hom(B, B) is a finite-dimensional division algebra
over k and it coincides with k as soon as the field is algebraically closed
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which is we need.O

S.Kuleshov pointed out to us the importance of property (b) and the fact
that conditions (a-c) imply the existence of a ”Harder-Narasimhan filtration”
for a sheaf without torsion.

Theorem 3.1 For a sheaf A without torsion there exists o filtration:
A=FADFA> .. DF"4=0
such that tts factors G;(A) are semistable and
Go(A) <; G1(A) <, ... <4 Gn(A)

and
FA<, FlA<, ... <, FNA.

This filtration is unique (having the stability chosen} and it is uniquely
defined by the above properties of its factors; we call it Harder-Narasimhan
filtration of A (with respect to the stability).

The proof is quite standard. It relies on some lemmas.
Lemma 3.4 There is no infinitely increasing chain of subsheaves in A.

It is well know "noetherian” property of an algebraic coherent sheaf cat-
egory.

Lemma 3.5 There is no infinitely decreasing chain
ByD>ByD...
of subsheaves of nonzero rank in A such that By <, By <, ...

Because of (b) the sequence of ranks {r(B;)} is strictly decreasing, hence
the chain should be finite.

Lemma 3.6 There is a unique subsheaf Ao tn A such that B <, Apaz
for any subsheaf B in A of nonzero rank (for B = A also) and that B C A
whenever B =, Az



Proof of the lemma. . Let us mention first that any subsheaf in A could
be included into a subsheaf with nontorsion factor such that it has the same
rank and whence is greater with respect to the order the order because of

(b).

So in searching for A,,,; we shall look only at nonzero subsheaves B with
nontorsion factors, let us call them nontrivial subsheaves. If A,,,, exists it
is necessary nontrivial or equal to A itself.

Let us suppose that F'is a counterexample to the lemma with a minimal
rank. Then for any nontrivial subsheaf C in F there exist C,,,, but there
is also a nontrivial subsheaf B in F' such that Cp.; <, B (thus B is not a
subsheaf in C).

But BN C is either a sheaf of nonzero rank or zero. In the latter case
C < (B + C) = C' because of an exact sequence

0—C—>B+C— B —0,

In the former one
BN C <s Cnm:c <s B

and an exact sequence
0— BNC —B— B/BNC —0

show us that B <, B/BNC so C <, B/BNC. Now taking into account
an exact sequence

0—C-—B+C—B/BNC—0

we conclude that

C<,(B+C)=C.

where C” strictly include C because B is not a subsheaf of C.

Thus we could make an infinite increasing chain
ccc cc...

which provide us with a contradiction.D



Now turning to the proof of the theorem, A, is surely semistable and
if A# Aper then
A/Amaa: <S A <S AHHICE

which permits us to prove the theorem by indiction.d

There are also filtrations in semistable sheaves, which are not in general
uniquelly defined by their properties.

Proposition 3.7 For a (s)-semistable sheaf A (without torsion) there exists
a filtration:
A=FADFAD.. .DF"™A=0

such that its factors G;(A) are (s)-stable and
GO(A) =s GI(A) =g s GN(A) =, A

Any filtration in A of this type is called Jordan-Holder filtration in A.

For the proof of the proposition onc should take a subsheaf A# that is a
minimal one among subsheaves

{B|B= A},

as the last member F¥A of the filtration; then proceed by induction.

There are two stability orders which we need for our work with sheaves
on Del Pezzo surfaces. The first one corresponds to Giesecker stability. It
could be described as follows.

Definition 3.8 Let us consider a map which assigns to ¢ nontorsion sheaf
A a tuple
(1(A), 7w (4))
and define an order in a way that
A <4 B = (u(A), m(A)) <tex (11{B), 7(B)),
and "=, & =i ", where <o means "lecicographically less” .

The second stability we will name the extended stability. 1t is defined by
an order which is constructed as follows.
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Definition 3.9 Let us fiz a system of ample divisor classes
D=—-Kx,Dy,...,D;€ PicX

such that they form a base for PicX ® Q and denote:
wi(F) = %I%;)B‘l

To make the extended stability map we assign to a nontorsion sheaf A a tuple
(1(A), w(A), 1 (A), ..., 1u(A))

and we define the order in a way that A <, B means

(1(A), m(A), pa{A), ..., m(A)) <tex (1(B), 7(B), (B}, - .., 1u(B))

n

and "=, & =, "

= U(F)Dl

To prove condition (b} for our Gieseker and extended stabilities one
should remember that we are on a surface and the slope p is defined
with respect to an ample divisor so if support of A/B is one-dimensional
then pup < p4 and if the support is zero-dimensional then pg = @4 but
p(B) < p(A). This results in B < A for both stability orders.

We leave it to the reader to check that properties (a), (¢) are also valid.

For the extended stability there is a following property, which is stronger
than the condition (a):

Lemma 3.10 A =, B if and only if A and B have proportional Chern data.
This is a direct consequence of the e-stability definition.
It is important to have in mind that if A is g-stable then it is e-stable
and if A is e-semi-stable then it is g-semi-stable.
Lemma 3.11 Suppose A, B are g-semi-stable (or e-semi-stable) and
w(A) < u(B) + K3,
or A, B are g-stable, A® Kx # B and
#(A) < u(B) + K,
then Ext*(A, B) = 0.
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One can notice that even Mumford-Takemoto stability is enough for the
first statement here but we choose to rectrict our considerations only to
g-stability and e-stability through the paper.

Proof of the lemma. . By the Serre duality Ext*(4, B) = Hom(B, A ® Kx)*
and
w(B) > p(A) — K = (A ® Kx).

Thus B >, A®@ Kx and it is clear that shcaves B and A® Ky are semi-stable
so there is no morphisms by Proposition 3.2. Sitilarly the second statement
follows via Serre duality from Lemma 3.3.0

Lemma 3.10 is crucial to prove the following proposition, which is the
main reason why we need the extended stability.

Proposition 3.12 If x(B,B) > 0 for a e-semistable sheaf B then B is
1isomorphic to E@ E @ -+ @ E where E is exceplional.

Proof of the proposition. . Looking at, an e-Jordan-Hélder filtration for B
we see that the factors G are e-stable and their Chern data are proportional
by Lemma 3.10.

Let us denote £ one of them. Then Chd(B) = « Chd(E) and it follows
that

x(B,B) = a*x(E,E), thus x(E, E)>0.

(
But dim Hom(E, £} = 1 by Lemma 3.3 and Ext*(E, E) = 0 by Lemma 3.11.
Hence the condition x(E, E) > 0 implies that Ext' (E, E) = 0, so we conclude
that E is exceptional and x (&, F) = 1.
Now a is uniquelly defined by the equation

x(B, B) = d®,

so all the Chern data are equal and the factors are exceptional hence they
are isomorphic as exceptional sheaves are uniquelly defined by their Chern
data ([Go]).
Then
Eth(G,‘, GJ) = Eth (E, E) = 0,

so the filtration splitsand B=E® EF® . --o £ .0
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4 Families with stable sheaves

We state our main results in this section. The stability in the following
means Gieseker stability relative to anticanonical polarization.

Definition 4.1 We call a coherent sheaf F on a Del Pezzo surface X a
restricted sheaf if it has no torsion and

r“’(GmazF) - J“‘(Gmi"F) S 1(1\2”

where GuinF and G F are the first and the last factors of a Harder-
Narasimham filtration in F'.

We will say that a family of sheaves is restricted if all its members are
restricted sheaves.

Definition 4.2 Let F be a family of sheaves on X with base Z. We call it a
smooth versal family if Z is smooth and the following condition is satisfied:

KS For each z € Z the Kodaira-Spencer morphism
w: T,Z — Ert' (F,y, Fiz))
1§ surjective,
(we denote by T,Z the tangent space of Z at a point z).

Let us remember that Exy denotes the set of Chern data for nontorsion
exceptional sheaves on X.

Definition 4.3 We will say that an element ¢ € M}; satisfy DL-condition
(Drezet-Le Potier condition) if:

DL1. ¢ is not in Ezy,

DL2. x(c,e) <0 for any e € Ezx such that v(e) < r(c) and
pule) 2 ple) 2 ule) - K¢,
DL3. x{(e,c) <0 for any e € Ezy such that r(e) < r(c) and

p(e) < ple) < ple) + K3,

13



DL4. Ac) >

1
5
Let us denote by Dy the set of elements in Mi; satisfying the DL-condition.

The conditions above are not independent. The Riemann-Roch formula
shows that Exx belongs to the subset {c € M | A(c) < 3} so DL4 implies
DL1. Also one could notice that DL2 and DL3 are equivalent. Really it
follows from Serre duality that x(e,¢) = x(c,e ® Kx), but as e® Kx € Exy
so we get what needed.

We would like to keep DL1 and DL3 in the definition anyway as it looks
more symmetric and it would be more convenient for future references.

Drezet and Le Potier have proved ([DL]) that for X = P? the condition
DL4 follows from DL2 but an example in [R2] shows that this is not so for
a general Del Pezzo surface.

It is possible to prove that DL2, DL3 imply A(c) > % for any Del Pezzo
surface. On the other hand it was shown in [R5] that A(c) > 1 implies DL2,
DL3 so as a result it implies the DL-condition.

Proposition 4.4 If ¢ = Chd(F) for a nonexceptional stable sheaf F then
DL1, DL2 and DLS are valid.

As F is not exceptional DL1 is valid. To prove DL2 let us remember
that nontorsion exceptional sheaves are torsion free and stable ([Go], [KO]).
Suppose ¢ = Chd(E) and F <, F <, F'® Ky, then Lemmas 3.3, 3.11 give
us that what is needed. Of course

ple) < ule) < pulc) — K.

implies that F' <, £ <, FF ® Kx so need to check DL2 only for e such
that u(e) = p(c) or p(e) = p(c) — K%. As the reasonings are similar we will
consider only the first possibility.

The Riemann-Roch formula shows that x(e,¢) = x(c¢,e) in this case.
On the other hand either E >, F and then x(e,¢) = 0, or E <, F and
then x(c,e) = 0, or E =, F. But the latter case implies that ¢ = ae by
Lemma 3.10 so

X(F:F) = x(¢,¢) = 02X(e:e) >0

14



and Proposition 3.12 shows that F' = E as it is e-stable which means a
contradiction.O

Main results of the paper are the following theorems which show that
under certain conditions the converse of the above is also true:

Theorem 4.1 Let X be a Del Pezzo surface. Let F be a restricted smooth
versal family of sheaves on X with a parameter space Z. Suppose that its
Chern datum ¢ = Chd(F) satisfies DL-condition.

Then it exists a nonemply open set U C Z such that sheaves Fi,) are stable
forueU.

Theorem 4.2 Let X be a Del Pezzo surface. Let F be a restricted smooth
versal family of sheaves on X with a paremeter space Z. Suppose that ils
Chern datum ¢ = Chd(F) satisfies DL1, DL2, DLS.

Then sheaves F,y are e-semi-stable for u in a nonempty open set U C Z.

Let us mention that sheaves of rank 1 without torsion are always stable
and they are exceptional as soon as they are localy free. The discriminant
in this case is nonnegative integer and it is greater than % if and only if the
sheaf is nonexceptional.

Thus the question of the existence of stable sheaves in a family when
r(c) = 1 becomes trivial so

while proving Theorems 4.2, 4.1 we suppose that r{c) > 2.

We prove Theorem 4.2 in the following section. Now we derive Theo-
rem 4.1 from it.

Proof of Theorem 4.1. We could substitute the base Z of the family in
question by its open subset which exists by Theorem 4.2, so let us suppose
that sheaves F(,y are e-semi-stable for any z € Z.

As a first step we shall prove a similar result about e-stability namely the
following.

Lemma 4.5 There exist a nonempty open set U C Z such that sheaves Fiy
are e-stable for uw € U.

15



If a sheaf is e-semi-stable but not e-stable, then there exists (at least
one nontrivial) e-Jordan-Holder filtration in it whose factors are e-stable and
equivalent in respect to e-stability order.

There is a possibility to control filtrations having N factors with fixed
Hilbert polynomials Hy,..., Hy for the sheaves of a family with the help of
a generalized flag variety which is a projective variety over the base Z:

Sy, tin Drap/i-H~ (F) — Z

and which represents the functor ”set of the filtrations” (see [DL, p.202] or
(Gr)).

Thus a point z € Z belongs to Im(8y,,. g, ) if and only if there exists a
filtration in F{,) having factors with these Hilbert polynomials.

Propositions (1.5), (1.7) from [DL] give us a way to evaluate Im{6y, ).
We restate them as the following lemma.

Lemma 4.6 Let F be a family of sheaves on X with parameters Z, z € Z,
and

fe Drap”“'"’””(’f).

Then f induces a filtration in F(,y and there is an exact sequence
0 — Exty  (Fioy, Foy) = Ty Drap™="¥(F) = T,Z =5 Bty (Fio), Fioy),

where the last morphism w,. s a composition of a Kodaira-Spencer morphism
and a morphism from the ezxact sequence of Proposition 2.2

T.72 — E{Btl(F(z), F(z)) — E$i};~,+(F(z),F(z)).
Provided that the family is smooth versal and
Ext%,_(F(z), F(z)) =0,

the morphism w, is epimorphism, the variety Drap™ ¥ (F) is smooth at
the point f, and the codimension of its image in Z 1is equal to

dim Batp , (Fo), Fla)-

In order to use this in our situation let us prove the following.

16



Lemma 4.7 Let A be a e-semi-stable sheaf such that A = A(A) > 1 and
let A=F°AD FAD...D> FNY'4A =0 he an e-Jordan-Hélder ﬁltmtzon in
A with factors G;. Then for this filtration

Bty (A,A)=0 and Bty (A, A) # 0.

To prove the first statement we can use the spectral sequence from Propo-
sition 2.2 in order to evaluate Extfg.j_(/l, A). As sheaves G; are e-stable and
1#(Gi) = 1(G;), so we have

Extz(G,-, G7) =10
and we get what needed.

Proving the second statement we need to establish first that in our special
situation we have A(G;) = A(G;) = A. By the definition of the discriminant
we have for a sheaf G

A(G) = S - (6.

We know that the factors of the filtration in question are equivalent in respect
to the e-stability order. Hence we have

m(Gi) =m(G;) =7(4),  wGi) = 1(Gy) = n(A)

and
1s(Gi) = ps(G) = ps(A)  for s=1,...,¢
As a result »(G;) are uniquelly defined in PicX ® Q and have to be equal to
v(A). Thus A(G;) = A(A) = A as we stated.

Now let us look at Euler characteristic in the spectral sequence for
Extr (A, A):

S (-1) d1mExtF+ (A,A) => x(Gi,G;) = 7(Gi)r(G;) (1 —2A) <0

i i>j i>g

(we have used the Riemann-Roch theorem here).
This implies that Extj (A4, A) # 0 as it was needed.O
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To finish the proof of Lemma 4.5 let us have in mind that a system
of Hilbert polynomials for factors of a e-Jordan-Holder filtration in Fi;) is
defined by ranks ry,...,ry of the factors (because their slopes and discrim-
inants are uniquelly defined by the Chern datum of the family in question).
And we have

T=Ty 4 ...+ TN

so there are only finite number of possibilities for these systems of Hilbert
polynomials. Hence all the points z for which sheaves F;y could have a
nontrivial e-Jordan-Hélder filtration belong to a finite union of subvarieties
of nonzero codimension. Therefore the subset I/ which is a complement to
this union gives us what was needed for the lemma.O

Moving forward in our proof of the theorem we can without loss of gen-
erality suppose that sheaves Fi,y of the family are e-stable.

And even more so: we can suppose that they are e-stable for several
different e-stabilities resulted in the different choices of divisors Dy, ..., D
in the definition of an e-stability order.

But from relatively simple geometrical considerations for PicX ® @ it
follows that there exists such a system of e-stabilities that if a sheaf F' is
e-stable in respect to all of them then it is g-stable. This finishes the proof
of the theorem.O

5 Families and filtrations

In this section we shall prove Theorem 4.2 after some preliminary consider-
ations.

In the definition of stable sheaf there is a condition on slopes of its sub-
sheaves. One could generalize this to a condition on systems of subsheaves
or filtrations. It was done in the paper [DL] in respect to Gieseker stability.
There it was defined the weight for a filtration in a sheaf and the properties of
the weight are extablished. We deneralize this here to the extended stability
along the guidelines from [R2].
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Let us recall that for a sheaf F' of nonzero rank we have
m(F) = rp u(F), mi(F) = rpu:(F).
Deﬁﬁition 5.1 In order to define g-weight of a filtration
FA: A=FA>FA> .. . D F¥4 =0,
that has no factors of zero rank let us consider points
(r(FA), m(F'A), p(FA))
as vertices for the graph of a piecewise linear mapping
gra: [0,7] — R,

where v = rp. This mapping is called weight of the filtration with respect to
Gieseker stability or g-weight of the filtration.

Definition 5.2 In order to define e-weight of a filtration
FA: A=FADFAD> .. DFV"'4=0
that has no factors of zero rank let us consider points
(r(F4), m(F*A), p(F*A), mi(F*A),...,m(F*4))
as vertices for the graph of a piecewise linear mapping
gra: [0,7] » R¥,

where r = 7p.
This mapping is called weight of the filtration with respect to the extended
stability or e-weight of the filtration.

We will omit the reference to a stability if it is clear from the contezt
which stability is considered.
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A mapping 7 : [0,7] = R is called convez if for a,b € [0, 7]
n((a +)/2) 2tez (R(a) +7(b))/2

(here "lex” stands for lexicographic order).
For mappings 171, 7y we say iy < 17y if my(a) <jeq 1%2(a) for any a € [0,7].

Here and below ” (s)-" refers either to Gieseker or to the extended stability.

Definition 5.3 A filtration is called (s)-convezr if corresponding (s)-weight
mapping is conver.

Proposition 5.4 Let F' be a sheaf on X.
1. An (s)-Harder-Narasimhan filtration in F is (s)-convex.

2. The weight of a (s)-Harder-Narasimhan filtration dominates the (s)-
weight of any other filtration in F.

8. There is a finite number of weights for (s)-convez filtrations in F.

4. Let F be a flat family of sheaves on X with a base Z. Consider for any
z € Z the (s)-weight for an-(s)-Harder-Narasimhan filtration in o sheaf
Fizy. Then while z varies in Z these weights belong to a finite set.

The first two statements follow immediately from the basic properties of
Harder-Narasimhan filtrations.

To prove the third statement it is sufficient to show that there is a finite
number of possibilities for the image of the stability map for any member of
the filtration. For this it is sufficient to notice that slopes y, j; of subsheaves
in a sheaf F are upper bounded and that p is upper bounded on subsheaves
in F having p is bounded below. (As a consequence p, p; are bounded on a
set of subsheaves where p is bounded below). This could be checked easily
for a sheaf of rank one and general case follows by induction on rank F.

For the last statement it is also sufficient to establish that slopes p, u; of
subsheaves in sheaves Fi; are upper bounded and that p is upper bounded
provided that j is bounded below on the subsheaves. One could prove this
by induction on rank of F.
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Let it be fized for the following that F is a family from Theorem 4.2.

We will denote by wyn(;) the weight of e-Harder-Narasimhan filtration
in F;y and let
SeZ(n) = {z|lwyn() = 1},

QEZ(T—L) = {ZI’HJ”N(;) < 'I_?,}.
Proposition 5.5 1. Subsets S*Z(n) constitute a stratification of Z.
2. Subsets Q°Z(7) are open.

3. S¢Z(n) is a smooth close subvariety in Q°Z(7) having its normal space
at a point z isomorphic to

E:l:t};-,_{_(F(z), F(z)),

where the filtration in Fi,y is chosen to be its e-Harder-Narasimhan
filtration.

The similar result for Gieseker stability was proved in [DL]. As the proof
for the extended stability uses the samme arguments we only briefly present
it here stressing those moments where some specific properties of e-stability
are needed.

Lemma 5.6 Let A be a restricted sheof provided with its e-Harder-Narasim-
han filtration. Then for this filtration

Ext) (A, A)=0 and Exty_(A,A)=0.

Let G; denote factors of the filtration in A. By definition of a Harder-
Narasimhan filtration they are e-semistable and G; <, G for ¢ < j so

EXtO(GJ’, G;) =0.

Looking at the spectral sequence from Proposition 2.2 for Extr (A, A)
we conclude that the entries ET for p + ¢ = 0 are equal to zero. Thus

Ext} (A, A) = 0.
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As A is restricted whence
Eth(Gj,Gi) =0

for any pair 1, by Lemma 3.11 .
Applying this to the computation of E? in the spectral sequence of
Proposition 2.2 for Ext_(A, A) we conclude that

Exti«',(A, AY=0
and this finishes the proof.O

Proof of Proposition 5.5. The first statement is clear so let us prove the
second one. Let z € Q°Z(7) and f be a point in a generalized flag variety
Drap-#~(F) which corresponds to the Harder-Narasimhan filtration in
F(z). From Lemmas 5.6 and 4.6 we conclude that Drap!"='%(F) is smooth
at f and that there is an exact sequence:

0 = TyDrap" N (F) = T,Z = Extp , (F), Fzy) = 0.

Let us denote by D an irreducible component of Drap/t»-¥ (F) contain-
ing f. It is clear that if 2’ belongs to the image of D by the canonical proper
morphism

Drapv¥(F)y — Z

then the sheaf F{,/) has a filtration with the same e-weight as f. Hence the
weight of e-Harder-Narasimhan filtration in F{,/ is no less than the weight

of f. Thus the set
N S'Z(m)
MR

is closed because it is the union of a finite number of such images.
So Q¢Z(7n) is open.

Now we are to prove the third statement in the proposition.
Let = Q¢Z(n) and S = S¢Z(7). Clearly S C Q and if 2 € S then the
e-weight of the Harder-Narsimhan filtration in I, is equal to 7. Moreover
if F{;) has a filtration of weight equal to 7 then it is a Harder-Narasimhan
filtration and z € S.
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Suppose z € S and H,,..., Hy are Hilbert polynomials of the factors of
an e-Harder-Narasimhan filtration in I,y . It is clear that S belongs to the
image of a canonical morphism

Drap™H¥(Flg) — Q

and coincides with a component of it.

Hence from Lemma 4.6 (or Propositions (1.5),{1.7) in [DL]} and from
Lemma 5.6 it follows that the normal space to S at z can be computed by
an exact sequence

0— TfDI‘B.])"l""’HN(f) = Tud — Ext;?|+(F(zl)’ F(zl)) — 0
and thus it is isomorphic to Ext}-'+ (Fzy, Fay) -0
Proof of Theorem 4.2. We work with e-stability through the proof.

The first step of the proof is to consider the stratification of Proposi-
tion 5.5 for Z. As the semi-stability is equivalent to triviality of a Harder-
Narasimhan filtration or to linearity of the corresponding weight, hence by
the proposition the set of parameters for semistable sheaves is open. The
task is now to prove that it is not empty.

In order to prove that the stratum correspounding to semistable sheaves
exists it is sufficient. to prove that all the strata related to nontrivial Harder-
Narasimhan filtrations (with nonlinear weight functions) have nonzero codi-
mensions. This would be done if we show that their normal spaces are
nonzero.

So by the same proposition 5.5 it is enough to prove the "key lemma”:
Lemma 5.7 Suppose for a restricted sheaf A:

1. Chd(A) = c satisfies DL-condition,

2. an e-Harder-Narasimhan filtration in A 1is nontrivial,

Then for this filtration Ext};’+(A, A) #0.
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Proof of the lemma. . Let us suppose the contrary that Ext};, L(A,A)=0
for A in respect to the filtration. Let G; denote factors of the filtration in A
and 2 =1,..., N. The factors are e-semistable and G; <. G, for i < j so

EXtO(Gj, G,) =0.

As A is restricted hence
Ext*(G;,G:) =0

for any pair 7,7 by Lemma 3.11 .

Looking at the spectral sequence for Exty (A, A) we conclude that it
degenerates at F, and that the terms E7? for p 4+ ¢ = 1, p > 0 are equal to
Zero.

That means

X(Gj,Gi) =0 fori<j.

The additivity of the Euler characteristic permits us to derive from this the
equalities:

x(Gn, A) = x(Gn,Gw), (1)

x(A4, Gi) = x(G,Gy), (2)

X(GN1 Gl) = 0. (3)
Lemma 5.8 Provided (1),(2),(8) either x(G,,G ) > 0 or x(Gn,Gn) > 0.

Suppose that Lemma 5.8 has been proved. Then from Proposition 3.12
we conclude that either Gy or Gy is isomorphic to a direct sum EQE®---&F
where F is an exceptional sheaf.

Then from (1) and (2) it follows that

either x(E,4)>0 or x(A,E)>0
But because A is restricted we have
0> w(Gn) — n(A) > K3,

and
02 p(A) = w(Go) > K%

so there is a contradiction to DL-condition.
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Thus to finish the proof we need only to establish Lemma 5.8. This can
be made through some calculations as follows.

By the second form of the Riemann-Roch theorem we have
1
(G, G1) = r(GN)r(Gy) (5(,/ ~Kx) v+l-A - A”) (4)
where v = vg, — v, A = Ag,, A" = Ag,,.
Let us denote
1
p= -51(,\-, v=ap-+e
where € - p = 0. Then as A is restricted so
—KZ<v-(-Kyx)<O0.

Hence
-2<a<0

and it is important to mention that if @« = 0 then € # 0. Therefore we can
conclude that

(v=Kx) v=w+pt-pi=(a+1) -1)p?+£?<0

By Hodge index theorem €2 < 0 and if £ # 0 then €% < 0; so

(v—Kyx) -v<o.
Then it follows from (3) and (4) that

1-A"—A">0.
We can rewrite this as

| — A= A" = %(1 — A" + %(1 ~2A") > 0.
Hence we conlude that
either 1-2A">0 or 1-2A">0

and as a result either x(G1,G1) >0 or x(Gn,Gn) >0 by the Riemann-
Roch theorem and this proves the lemma.
So we have finished the proof of the theorem 4.2.0
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6 Restricted families

In this section we will discuss the more constructive appoach to the task to
determine weither a family of sheaves on a Del Pezzo surface is restricted or
not.

Definition 6.1 Let us say that there is given a splitting of the anticanonical
divisor into lines if there is a set of lines {Ps} such that

-Kx=YP.

It is easy to construct a splitting when K¢ > 1 (or ¢ < 8). But if K% =1
when we cannot find a splitting (at least if the lines in question are supposed
to be smooth). This is because we have P,- (—Ky) > 1 as — Ky is ample, so

(—Kx)? = ZP - (—=Kyx) > number of lines > 2.

Proposition 6.2 Given a splitting of —I(x into lines { P} suppose that for
a sheaf F' restrictions F\p, are rigid. Then the sheaf F is restricted.

We need two lemmas.

Lemma 6.3 Let
0 —m A—FF—B—710

be exact and B have no torsion. Then for a line P the sequence

0o Alp o F

P = Blp — 0
15 exact also.

Proof of the lemma. . Clearly there are exact sequences:
Tor1(O|p,B) — Alp — F|lp — Blp — 0
and
- 0= Tor (O|p,B) 2 O(-P)® B> 0QB—0O|p®B =0,

where a is a multiplication on a section of O(F) hence it has no kernel when
B has no torsion. So Tor,(O|p, B) is zero and this proves the lemma.O
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Lemma 6.4 Let P be a line and F be a sheaf on X such that its restriction
F|p on P has no torsion. Suppose the restriction Flp is rigid. Then there
ezists a number k such that for any subsheaf A of F' and for any factorsheaf
without torsion B of F' we have

v(A)-P<k+1 and v(B) P>k

It is important to mention that the sheaf F'|p on a projective line is rigid
if and only if for some k € Z

F |p2’ Tlo(k) & 7'20(k + 1)

This means that a Harder-Narasimhan filtration in F|p (with respect to
Giesecker stability on P) has two factors ryO(k) and roO(k + 1) with slopes
k and k + 1 respectively. Therefore the slope of a subsheaf in F|p is less or
equal to k£ + 1 and the slope of a factorsheaf is greater or equal to k.

Now in order to prove the lemma let us suppose that we have an exact
sequence
0 —A—>F—B—0

and B has no torsion. This implies that
0> Alp = Flp o Blp 20

is exact.
Then the slope of a subsheaf A|p (which is equal to #(A) - P) has to be
< k+1 and the slope of a factorsheaf B|p (which is equal to v(B)-P) is > £.0

Let us again denote by GinF' and G, F' the first and the last factors
of the Harder-Narasimhan filtration in F.

Proof of the proposition. . We can apply the previous lemma to
A = G F and B = Gy F and P = P;. Then for v = v(A) — v(B) we get

v-P, <1,
But as —Kx is ample so

V'PsS]»SPs'(_I(X)-
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Thus we can make the following calculation
(G oz F) — (GuinF) = v - (- Ky) Z v-P < Z P, (-Kx)=K3.

This provide us with what is needed to conclude that F is restricted.D

Proposition 6.5 Let us suppose that we have a smooth versal family F of
sheaves without torsion on X with parameters Z and there is a splitting of
—Kx into lines {Ps} such that for any z € Z and P = P,

E.’EtQ(F(Z), F(z)(—P)) = 0.

Then there ezists a nonempty open subset U C Z such that the family F|y
is restricted.

Proof of the proposition. . We follow here the reasoning of Drezet and
Le Potier [DL, p.231].
Consider for z € Z a moduli space M of deformations for Fi,)|p. M is a
smooth variety with a tangent space isomorphic to Ext'(Fi,)|p, Fiz)|p)-
Therefore we have a morphism for some neighborhood Z’ of z

p:Z' — M,
with a corresponding morphism of tangent spaces
T.Z' — Ext'(Fiy|p, Fiylp)-
But T,Z' = T,Z and the above morphism fits into a commutative diagram

T.Z —  Bxt'(Fu), Fy)
[ +
T.2" — EXtI(F(z)lP:F{z)IP)

where the upper horizontal arrow is a I{odaira-Spencer morphism and the
right vertical arrow is a morphism from the following exact sequence related
to the restriction onto P:

EXtI(F(z), F{z)) — Ext](F{,)|p, F{z)|p) — E}(tz(F(z), F(z)(—P))
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and it is surjective by our presuppositions. This implies that p is a sub-
mersion in some neighborhood of z, hence there is a nonempty open set
in Z', which is mapped by p onto nonempty open subset in M of points
corresponding to rigid sheaves on P.

As we have a finite number of lines in question, so there is a nonempty
open set U such that for z € U all the restrictions Fi,)|p, are rigid. Then
from the proposition above we conclude that Fi,y is restricted.O

7 Versal families

There is a general way to construct families of sheaves which could be con-
sidered as a variant of the monad technique related to exceptional systems.
We will use it here to produce smooth restricted versal families.

Let us recall the definition of exceptional systems ([Go},[KO],[R4]).

Definition 7.1 Sheaves Ey,. .., E,, are called exceptional system if they are

exceptional and for i < j
Ext*(E;, E;) =0

for all k.

An exceptional system is called complete if it generates the derived cate-
gory; then its image in the Grothendieck group of sheaves provides a base for
the group. It follows from results of Orlov ([Or],[KO]}) that for a Del Pezzo
surface X over an algebraically closed field an exceptional system Fy, ..., F,,
is complete if and only if m =1¢ + 2.

Proposition 7.2 Suppose that there are given:

a complete exceptional system Fy, ..., B, of vector bundles on X,
sets It I~, where ITUI~ ={0,...,m} and I*" NI~ =10,
and nonnegative tnteger numbers ny, +1=20,...,m

such that they satisfy the following conditions:
Hm Ext'(E;,E;) =0 fori < j and g #0;
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Gls sheaves Hom(E;, E;) for i € I™ and j € IT are generated by global
sections,

Rk ZiE]+ n;T(E;) —_ Eie]— niT(Ei) > 1.

Then there ezists a nonempty open set U,

U C Hom(@P nE;, @ niky),
iel- iel+

which consists of monomorphisms and such that for inverse images &; of E;
onto X x U there is an exact sequence

0— @n,—& i) @ T'L,'(c:,' — F —0 (5)

ief~ ielt

where:
(a) the morphism ® is defined so that for w € U the restriction ® to X x u
coincides with a morphism:

U EB n By — @ ni

iel- iel+
(b) F 1s a smooth versal family of sheaves on X with the base U.
Suppose in addition that it is given a splitting of —Kx into lines
-Kx=3_P,
and that for any line P = Py:
R1 Ezt'(E,,E;j(—P)) =0 forie I andj €I,
R2 Ezt*(E;,E;(—P)) =0 for eitheri,j € I~ ori,j € I,

Then it 1s possible to find the set U above such that the family F happens to
" be a restricted smooth versal famaly.

Combining Theorem 4.2 and the proposition we conclude that there is a
way to find stable sheaves on X with given Chern data. Let us write down
this conclusion as a theorem.
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Theorem 7.1 Let X be a Del Pezzo surface and —Kx = 5 P, be a splitting
of —Kx into lines . Suppose that there are given: a complete exceptional
system Ey, ..., E,, on X and an element ¢ € M that satisfies D L-condition.
Suppose that sets IT, I~ and numbers n;, 1 =0,...,m are defined in a way
that

c= ZaiChd(Ei) anda;=n; >0 forielt, a=-n; <0 foriecl,

If for the system Fy,...,E, and for IT, I=, {n;} constructed above the
conditions: Hm , Gls, Rk, R1, R2 are valid, then there exist a stable sheaf
F on X with Chd(F) = c.

All that we need is to prove the proposition.
Proof of Proposition 7.2. Let it be

S = Hom(EP niE;, @ nE:)

el eIt

and let us consider a set Y of points (z, s) € X x § such that the restriction
s(z) of s is on the fiber at a point z of the vector bundles is not a monomor-
phism. Clearly Y is an algebraic subset in X' x S and because of Gls. its
codimension could be calculated as

z nir(E,-) — z TLiT(Ei) + 1.
el igl-
So it is bigger than 2 by assumption Rk.

Hence the projection of Y on &, which coincides with the set of non-
monomorphisms, has positive codimension. Thus there is nonempty open
set U of monomorphisms in S.

The construction of @ is fairly standard and the exact sequence (5) pro-
vides us with a flat family F. To check that F is smooth versal we should
first prove that

Extk(F(u),F(u)) =0fork=2anduel

But F{,y is quasi-isomorphic to a complex R,

R(u)= —"—)0—>®R,E,—H+®TL,E;—)O—}
icl— iclt
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and it is well known that the cohomologies Extk(F(u),F(u)) coincides the
hyperhomology of Ry, and the latter can be evaluated via the following
spectral sequence.

Lemma 7.3 Let A, B be bounded complezes and suppose that A™ are lo-
cally free then there is a spectral sequence abutting to hypercohomology

H*(Hom (A, BY)),
(here Hom' is a complez of sheaves of local homomorphisms) and such that

EPY = EB Ext!(A*, B*P).

In our situation higher cohomologies between £; and E; are trivial hence -
we conclude that the above spectral sequence degenerates at E; and

Ext*(Flu), Fluy) = H*(Hom (R, Rew))

(here Hom’ is a complex of global homomorphisms).

This way we get at once that ExtQ(F(u),F(u)) = 0 and that the natural
morphism
Hom(@ n; E;, EB nE) — Extl(F(u),F(u))
iel- el
which arise in this computation is an epimorphism. Then Lemma (1.6) in
[DL} states that this morphism coincides with a Kodaira-Spencer morphism
so we have got proved the property KS.

According to Proposition 6.5 in order to get a restricted family it is suf-
ficient to check the cohomological conditions:

Ext*(Flu), Fly(-P)) =0,

but these cohomologies could also be computed as hypercohomologies and
we can apply the above lemma.
Conditions R1 and R2 imply that for the corresponding spectral
sequence we have got
EP?=0for p+q =2,

hence Extk(F(,‘), Fuy(—L)) = 0 for k = 2 and this is what needed.D
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8 Stable sheaves with given Chern data

Here we prove that it is possible to find a stable sheaf with a given Chern
datum for some Del Pezzo surfaces.

Theorem 8.1 Let X = P(zl) (a Del Pezzo surface arising by blowing up a
point in P?). '

If c € M} satisfies the DL-condition, then there ezist a stable sheaf F on
X with Chd(F) = c.

If ¢ € M satisfies the conditions DL1, DL2, DLS3, then there exist a
semi-stable sheaf F on X with Chd(F) = c.

Corollary 8.1 If X = P(21), c € Mx, r(c) 2 1 and A(c) > 1 then there exist
a stable sheaf F' on X with Chd(F) = c.

The same result was proved for X = P? in [DL] and for X = @ in [R2).!
Proof of the theorem. . As it was mentioned after Theorem 4.2 the
existence of stable sheaves for 7(c) = 1 is trivial so we will suppose that
7{(c) > 1 for the rest of the proof.
Because of Theorem 7.1 all we have to do is to find an appropriate ex-
ceptional system. For this we need to make some calculations so let us first
fix notations.

Let L be the blown up line in X = P}y and H be a preimage in X of
a general line in P2, Then H, L is a base for PicA” with the following
intersection numbers:

H- H=1 H-L=0, L-L=-1,

The canonical divisor Kx is equal to Ky = -3 H + L, and K2 =8.
In order to fix a splitting for =Ky weput A =H — L, P, =P; = H.
We can chose the exceptional system £y, ..., F4 as

O(-2H+ L+ D), O(-H+ D), O(-H+ L+ D), O(D)

where the choice of a divisor D depends on ¢ and it is specified in the following
lemma.

1The had announced in [R3] that it is true for any Del Pezzo surface but the proof
happened to be incomplete.
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Lemma 8.2 For any c¢ from the theorem there exist D € PicX and nonneg-
ative numbers {n;|i = 1,...,4} such that

> n; Chd(E;) — ny Chd(F)) = ¢
i>1

It follows from here that I~ = {1}, It = {2, 3, 4}.

We postpone the proof of the lemma for a little while and continue with
the theorem. Let us first check the conditions on an exceptional system ac-
cording to Theorem 7.1 The homomorphism and Ext spaces between E; do
not depend on the shift by D, whence it is sufficient to prove the conditions
providing D = 0.

Condition Hm:
As it was proven in [Go] for an exceptional pair A, B on X the property

Ext*(A,B) =0 for k > 0

is equivalent to p(A) < p(B).
Therefore we need to calculate values of p for the elements of the system.
The result is
p(O(-2H + L) = =5, pu(O(—H) = -3,
wO(-H+L)=-2, p(O)

From this it follows that Hm is valid.

Condition Gls:
It is clear that sheaves

Hom(E,, Ey) = O(H — L),
Hom(E, E3) = O(H),
7{OTH(131,£%) ==C)(2}¥'—.L)

are generated by global sections.

Condition Rk:
It follows from Lemma 8.2 that

Yo () = Y nr(E;) = 7(c)

ief+ icl-
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but as r(c) > 1, we conclude that Rk is valid.

Condition R2:
Is is proved in [G] that exceptional sheaves on X are stable, whence by
Proposition 3.11 in order to prove that

Ext?(E;, B;(—=P)) =0 for P = P,
it is sufficient to check that p(E;) — 3 > ju(E;) — 8 or that
u(Ei) — pu(E5) < 5.
But the above calculations show that if 7,7 € I* or 4,5 € I~ then
p(E) — p(E;) <3 <5

thus we have got what is needed here.

Condition R1:
We are to check that Ext'(Fy, E;(=P)) = 0 for j = 2, 3, 4. This amounts to
show that 1-cohomology for the following sheaves are equal to zero:

0, O(L), O(H),
o(-L), 0, OH-L)

This is just an elementary computation.

So we get the needed conditions checked and in order to finish the proof
all we are to do is to prove Lemma 8.2.

Proof of Lemma 8.2. There is a way to compute {n;} by means of the
right dual exceptional system ([Go])

E;, E;, E;, E]
which is an exceptional system having the property:
x(E!, E;) = €:8; wherc g; =+1or — 1.
For our case one can easily check that the dual system is:

O(D), O(H — L+ D), O(L + D), O(H + D),
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and
£ = +1, Eq = —1, £y = —1 €4 = +1.

So we get the following:

x(O(H + D), c),
712 = —x(O(L + D), ¢},
Y(O(H — L+ D),0),
+X(O(D), c),

and now our task is to show that it is possible to find D such that n; are
nonnegative. It is the same as to find a solution for the system of inequalities:

X(O(H), O(c-D)) <0

X(O(L), Ole=D)) <0 @)
x(O(H - L), O(c-D))<0
X(©, O(c-D))20

By means of the Riemann-Roch formula it is possible to rewrite the sys-
tem in more explicite form as follows. Let us denote

v=uv(c), A=A(c), p= %K,\;,

and Z =p+v-H—-D=zH+yL.
Then

X(O(N), ¢ = D) = r(¢) (%(z _N)? o %[)'2 +1- A)

As we have $p? =1 so system (6) is equivalent to

(Z - H)? < ¢
(Z - L)* < ¢ .
(Z-H+L)? < ¢ (™)
(2)? > ¢
where £ = 2A.
In a coordinate form this means
(z-1? - ¢ <
272 - (U - 1)2 S € (8)
(-1 — (y+1)® <e
.’]'32 _ y2 2 €
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It is sufficient to prove that for any 2’ € R? one could find n € Z2 such that
z = z' +n is a solution for the system (8).

Let S be the set of solutions for (8) in R It is cnough to prove that
there are M C R? and {m,} C Z? with a property:

for any 2z’ € R? there exists n € Z? such that

z=z4+nelJ(SNM —my) (S - my).
P r

For the following we take
M={(z,y)|0<z+y <1}

and we leave to the reader to check that § N A coincides with the set of
solutions for the following system:

(=17 — +1)? <e
z? - > e (9)
O<az+y<l1

Let us put m, = (p, —p,0,0) for p € Z. It is clear from the inequalities (9)
that

UsnM —m,)=M.

p
But for any 2’ € R? therc exists n € Z? such that z = 2’ +n € M, and we
have got what was needed.O

References

[DL] Drezet, J.M., Le Potier, J.: Fibres stables et fibres exceptionnels sur
P,. Ann.scient. ENS 18 (1985), 193-243.

[Go] Gorodentsev, A.L.: Exceptional vector bundles on a surface with mov-

ing anticanonical class.
Izv.Akad.Nauk SSSR, Ser. Matem. 52 (1988), N4, 740-757.

37



(Gr]

[KO]

(LT]

[Ma]

[Mul]

[Or]

[R1]

[R2]

[R3]

[Rd]

[RS]

Grothendieck, A.: Techniques de construction en geometrie algebrique
(Sem.Bourbaki, vol.221, 1961).

Kuleshov, S.A., Orlov, D.O.: Exceptional sheaves on Del Pezzo sur-
faces. Izv.Ross.Akad.Nauk, Ser. Matem. 58 (1994), N1, 59-93.

Liibke, M., Teleman, A.: The Kobayashi-Hitchin correspondence.
World Scientific, Singapur-London (1995), pp. viii+254.

Manin, Yu.: Cubic forms: Algebra, Geometry, Arithmetic.
North-Holland, Amsterdam (1974), xii+262 pp.

Mumford, D.: Geometric Invariant Theory.
Springer-Verlag, Heidelberg (1965), vi+146 pp.

Orlov, D.O.: Projective bundles, monoidal transformations and derived
categories of coherent sheaves.
Izv.Akad.Nauk SSSR, Ser. Matem. 56 (1992}, N4, 852-862.

Rudakov, A.N.: Exceptional vector bundles on a quadric.
Izv.Akad.Nauk SSSR, Ser. Matem. 52 (1988), N4, 788-812.

In English: Mathematics of The USSR, IZVESTIYA, 33 (1989), 115-
138.

Rudakov, A.N.: A description of Chern classes of semistable sheaves
on a quadric surface. J.Reine Angew.Math. 453 (1994), 113-135.

Rudakov, A.N.: Exceptional vector bundles on a Del Pezzo Surface.
In: Algebric Geimetry and its applications: Proc. 8th Alg.Geom.Conf,
Yaroslavl’1992; A.Tikhomirov, A.Tyurin {(ed.);

Aspects of Mathematics vol.E25, Vieveg, 1994, p.177-182.

Rudakov, A.N.. Rigid and Exceptional Vector Bundles and Sheaves
on a Fano Variety. In: Proc. Intern. Congress of Math., Ziirich 1994,
Birkhduser Verlag, Basel (1995), 697-705.

Rudakov, A.N.: Discriminant and the existence of Hermite-Einstein
metrics in vector bundles on a Del Pezzo surface (preprint MPIM)

38



Address (permanent) : (for the year 96/97):

Paustovskogo 8-3-485, Dept of Math. Brandeis Univ.
Moscow 117463 RUSSIA Waltham, MA 02254 USA
rudal@tim.sherna.msk.su rudakov@math.brandeis.edu

39



ALGEBRAIC STABILITY: SCHUR LEMMA
AND CANONICAL FILTRATIONS.

ALEXEI RUDAKOV

Moscow Independent University, Moscow, Russia;

Russian Academy of Science Research
Institute NIISI RAN, Moscow, Russia

June 15, 1996

ABSTRACT.

The main goal of the article is to give the general dcfinition of algebraic stability that
would permit to consider stalility not only for algebraic vector bundles or torsion-free coherent
sheaves but for the whole category of coherent sheaves in an unified way.

We present an axiomatic description of the algebraic stability on an abelian category and
prove some general results. Then the stability for coherent sheaves on a projective variety
is constructed which generalizes Gieseker stability. Stabilities for graded modules and for
quiver representations are also discussed. The constructions could be used for other abelian
categories as well.

The idea to generalize stability has appealed to the author because it is quite incon-
venient when stability considerations were restricted to the torsion-free sheaf subcategory
that is not abelian (see for example [OSS], ch.2). Here in the section 2 we present the
definition of stability for coherent sheaves in general.?

The section 1 is devoted to the definition and basic properties of a general algebraic
stability. Then we discuss possible ways to construct stabilities.

The author would like to thank E.Schrodinger International Institute where the first
version of the text was written.?
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[M] about the moduli spaces for stable coherent sheaves are valid for stable sheaves in our sense as well.
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2 ALEXEI RUDAKOV

1. General algebraic stability.
Let A be an abelian category.

Remark. We will discuss later the cases when A is the category of algebraic coherent
sheaves on a projective variety over a field k, the category finitely generated graded
R-modules over a polynomial k-algebra R, and the category of representations of a quiver.

The main ingredient needed to define stability in A is a stability order on the objects

of A.

Definition 1.1. An order on nonzero objects on A is called a stability order if:
Given an exact sequence of nonzero objects

0—mA—B—C—00

we have

(SS): (seesaw property)
A<B & A<C & B<C,
A-B o A-C & B> C,
AxB & AxC & BxC

-

Remark. We imply that for A, B € Obj A either A < B, or A > B, or A x B is valid and
that it is possible to have A =< B even when A # B.

One can also deduce from the definition the following property.
Lemma 1.2. Given an exact sequence of nonzero objects
0—A—B—C—0
and an object D we have
(CM): (center of mass property)
A<DandC<D = B<D,

A-Dand C>D = B» D,
AxDand C=<D = B=D.

We leave it to the reader to prove the lemma.

Definition 1.3. Let us call B stable when B is nonzero and for a nontrivial subobject
A C B we have A < B.

Definition 1.4. Let us B call semi-stable when B is nonzero and for a nontrivial subobject
A C B we have A < B.

Because of the seesaw property of the order one can use factorobjects in the above
definitions as well:
B is stable if and only if B < C for a nontrivial factorobject C,
B is semi-stable means B < C for a nontrivial factorobject C.

In a sense stable objects are similar to irreducible ones and we have a general Schur
lemma type result.
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Theorem 1. Let A, B be semi-stable objects from A such that A »= B and suppose there
is a nonzero morphism ¢ : A — B. Then:

(a) Ax B,

(b) if B is stable then ¢ is an epimorphism,

(c) if A is stable then ¢ is a monomorphism,

(d) if both A, B are stable then ¢ is an isomorphism.

Corollary (Schur lemma). Suppose that Hom(A, B) are finite dimensional vector
spaces over a field k and that k is algebraically closed. Let A, B be stable objects such
that A »= B. Then

if Hom(A, B)# 0 then A~ B and Hom(A, B) = Hom(A4, 4) =k.

Remark. For our examples of coherent sheaves and graded R-modules Hom-s are finite
dimensional vector spaces so the Schur lemma is valid.

To derive Corollary from the theorem we need only to mention the classical fact that
a finite dimensional associative algebra, where a nonzero element is invertible, over an
algebraically closed field is necessary the field itself.

Proof of Theorem 1. Let us consider the usual ker-im and im-coker exact sequences for ¢
0—K—>A—01—0, 0—1—>B—C—0.
As ¢ # 0 so I # 0. By the definition of semi-stability
IgxB, and A<I s0o AXB.

But A » B, so A x I x B, thus (a) is proved.
For (b) we need to mention that I # B implies I < B (because B is stable) in contra-
diction with 7 < B that we have got above. We proceed similarly with (c¢) and (d). O

We can also generalize the Harder-Narasimhan theorem for algebraic vector bundles in
the following way.

Let us use in the following the convenient shorthand notations like A C; < B instead of
writing A C B and A < B (with obvious variations).

As usual we call B noctherian if an ascending chain in B stabilizes and say A is noe-
therian when any object of A is noetherian.

Definition 1.5. Let us call B quasi-noetherian (or g-noctherian) if a chain
A CGACGK. ..

in B has to stabilize.

Of course the condition of being g-noetherian is weaker than being noetherian.
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Definition 1.6. Let us call B weakly artinian (or w-artinian) if
(wal): a chain
A; D;< Ay Dy < ...

in B has to be finite;
(wa2): a chain
A1 Dy Ay Dy ..

in B has to stabilize.
We call 4 w-artinian if any object A in A is w-artinian.

Theorem 2. Suppose A is w-artinian and noetherian and B is an object of A. Then B
has a filtration

B=FODFID"'DF7n3Fm+1=0

such that:

(i) factors G* = F*/F**t! are semistable,
(i) G°=<Gl'=<..-<G™,

and the filtration is uniquelly defined by the properties (i),(ii).
We need to prove some propositions to get the theorem.

Proposition 1.7. Let B be g-noctherian and w-artinian then it exist a subobject B¥ in
B such that:

(a) if AC B is a subobject in B then A < B¥,
(b) if AC B and A < B¥ then A C B,

and it is defined uniquelly by these properties.
Clearly B# would be semi-stable and B is semi-stable iff B = B#.
Let B be under conditions of Proposition 1.7 further on.

Lemma 1.8. Let A C B. Then either A is semi-stable or there is a semi-stable A’ C B
such that A’ » A.

Proof of the lemma. Let A; = A. If Ay is not semi-stable then there is A2 such that
A D;< A,

The same is valid for A; and so on. We have to come to a semi-stable subobject after a
finite number of steps because the infinite chain

Ay D;< Ay D5 ...

does not exist in the w-artinian B.
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Lemma 1.9. Let C be a subobject in B. If there is A C B satisfying A = C then it exists
C' ¢ B such that C' D; > C.

Proof of the lemma. By Lemma 1.8 we can suppose that A is semi-stable. Now we have
two standard exact sequences

0— ANC— A —U—0,
0— C — A+C—U—>0.

Because A is semistable, ANC < A. Thus A < U by the seesaw property applied to the
first sequence. But C' < A so C < U. Hence the second sequence implies that C < (A+C)
because of the seesaw property. '

We see that C' = A + C satisfies the lemma.

Proof of Proposition 1.7. The uniqueness of B¥ is clear.

To prove the existence suppose to the contrary that for any subobject B# in B either
(a) or (b) is wrong. '

Let Bg be a subobject in B. If (a) is wrong for By then by Lemma 1.9 it exists
By D; > Bp and B is strictly larger then By.

If (a) is valid for By but (b) is wrong then it exists A, A < By, A is not a subobject in
By and we can suppose that A is semi-stable by Lemma 1.8. Let B; = By + A. Again it
is easy to show that By = By and B is also strictly large than By.

So we have got By C; < By anyway with B; is strictly larger then By. Repeating these
arguments we find Bj, Bs,..., such that

~

By G B1 G By

with strict inclusion on every step. This is iinpossible becausc B is g-noetherian. O
Suppose that A satisfies the conditions of Theoremn 2.

Proposition 1.10. Let B have a filtration with the properties (i),(ii) from Theorem 2.
Then B¥* = F™.

Proof of the proposition. We can proceed by induction on m. For m = 0 the statement is
trivial. So let us consider the general case.
Let A be a subobject in B. By induction F™~1/F™ = (A/F™)# thus

A/(Fﬂ"l n A) _\< F'H’l—l/FTn — Gﬂ'!.—lv

But G™! < G™ so A/(F™NA) < F™.
Notice that (F™ N A) g F™ because F™ is semi-stable. Then by the property (CM)
we have
A< Fm}

so F™ satisfies the condition (a) from Proposition 1.7.
To prove that F™ satisfies (b) consider A < F™. Now we have (F™ N A) x F™ < A.
By (SS)-property this implies
A/(FP N A) = A,

1y A
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provided that A/(F™ N A)#0. But Ax F™ = G™ = G™~1, hence
A/(F™NA) = G™

which is impossible by induction. Whence A/(F™" N A) =0 and F* N A = A. Thus we
conclude that A < F™ so F™ satisfies (b), and the uniqueness statement from Proposition
1.7 gives us exactly what is needed. [

Proof of Theorem 2. To construct the filtration let us define
F° =0, F71=B#¥ and F~(FY = preimage (B/F~")#.

Clearly a factor G=0+1) = (B/F~")# is semi-stable and G~(+2) < G=**1 by (SS)-property
applied to the sequence

0 — G™F2 — FiH2 =iy gt

Since B is noetherian so F~(™*1} = B for some m and we have only to shift the indices
to get the filtration as it is needed for the theorem.

To prove the uniqueness let us notice first that the last term of a filtration is uniquely
defined by Proposition 1.10. From this it is easy to get the result by induction. O

One can also constract a Jordan-Holder filtration in a semi-stable object.

Theorem 3. Suppose A is w-artinian and noctherian and B is a semi-stable object of A.
Then B has a filtration

B=F'>F'>-..>F™" > F"' =0
such that:
(i) factors G* = F*/F**! are stable,
i) G'=<xG'=-.-x@G™,
and the set {G;} of factors is uniquelly defined by the properties (i),(ii).
Proof of the theorem. Clearly the subobjects X in B such that X x B satisfy the ascend-

ing and descending chain conditions. So the result becomes the standard fact of basic
algebra. O

2. Polynomial stability.

It is well known that the category of algebraic coherent sheaves on a projective variety
is noetherian. The same is the category of finitcly generated graded R-modules where the
algebra R is commutative and finitely generated over a field k. We would like to construct
a natural stability order for these categories.

In both cases an object of a category has ”a characteristic function”. For a sheaf A on
a variety X it is:
Piay(n) = dimy H(X, A(n)).

For a graded module A = @4z 4,4 let it be the Hilbert-Samuel function:
P[A] (ﬂ.) = dimk @qsn Aq.

q>—00
This justifies the following definition.
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Definition 2.1. We say that a category A has a characteristic function if for any object
A a function P4 : Z — Z is defined with the properties:

a) given an exact sequence 0 =+ A — B — C — 0 we have
Pg(n) = Pa(n) + Pcy(n)  for n>>0;
b) Pa=0iff A=0;
¢) for n >> 0 the function Py 4) becomes a polynomial which has a positive highest

coefficient when A # 0.

Remark. The functions discussed above for coherent sheaves and R-modules have these
properties.

It follows from the definition that if A C B then
P[A](n) < P[B] (n) for n>>0.

Without loss of generality we can suppose from now on that P4 denotes the polynomial
obtained via condition c¢) of the definition.

Definition 2.2. Let A, B be nonzero objects of A and

Pray(n) = Z a;n’, Pigy(n) = Z hint

=0 i=0

be the corresponding polynomials (m being unspecified large number). Denote

a;  a;
Nes= | % i
*aJ b; bj
and let
AaBy = Mmme1, Amim=2y -+ s Am 0y Am—1,m—2; -+ - , A2,1)
be the line of 2x2-minors of the matrix [am, Um—1y oo Q0
bm, bm—la ey b()

The polynomial order is define by conditions:

AxB & A(A,B) =0 ‘
A< B & the first nonzero term in A4 py is positive.

We have to check transitivity and the (SS) property.
Lemma 2.3. Ifdeg P4) > deg Pp) then A < B.

Clearly the first nonzero minor in A¢4 p) will be equal to the product of the highest
cofficients of P 4; and ) which are positive.
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Lemma 2.4. If deg P4 = deg Pip) = d then A < B if and only if

ad—1 Qd—2 ag ba-1 ba—2 bo
y ey <lez \ 57— 51005
g agq Id bd b,[ bd

(where ”<y.;” is used for ”lexicographically less”).

This amounts to the straight checking according to the definition.
It follows from Lemmas 2.3, 2.4 that the order is transitive.
Lemma 2.5. The polynomial order is a stability order.

Proof of the proposition. Let 0 = A — B — C — 0 be an exact sequence. Then
P[B] (n) = P[A](TL) + P[C] (n).

Hence

a; a4
b b

a 5 (1
Cj Ci

a;+c; a;+¢
Cy Cq

b; b
C; G

aj a; .
a; +c¢; a;+¢

and this implies the seesaw property. U

Proposition 2.6. If the characteristic function with the properties a)-c) is defined for A,
then A is w-artinian.

Proof of the proposition. By the contrary let us have an infinite chain

Ay D= A2 D5 ...,

P = Z (LEr] 't

be the corresponding polynomials. As A, D A, strictly so

with strict inclusions and let

P.(n) > Prya(n)  for n>>0.

Hence deg P, > deg Pr1 and therefore deg P, = deg P43y = ... = d for large enough 7.
Since the polynomials have positive integer values for n >> 0 so their highest coefficients

1 r r T
ag] belong to a—!N and aEir] > aL +1l by the same reason so ‘11[1] = aEi Hl_ = q for some
large r.
Then the property P.(n) > P.yi1(n) for n >> 0 is equivalent to
r r 1 1 1
((b a‘Eill) a‘!ilzs v :a'([)r]) _>IEE ((I; ﬂgjl ]5 “'([ir_+2 ]) sy a([)f"f' ])

and this is the same as

r r r r+1 r+1 r
('151-]-1 aEilZ i]) > (“L—ll ”Ei_+2] GB“})

q q q q q q

Because of Lemma 2.4 this means A, > A,,; which contradicts to the presupposition that
Ar = Ar+1- 0
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3. Ratio of additive functions stability.

Another, perhaps more usual way to define a stability order ([F],[K],{LT],[OSS]) is via
a ratio of two additive functions in a way that we are going to discuss in this section.

Definition 3.1. Let ¢ and r be two additive functions on A and let 7(A) > 0 for any
nonzero object A of A. We call the ratio

c(A)
wA) = (A)

the (c:7)-slope of A and define the slope order by conditions:
A< B & p(A) < pu(B),
Ax B & p(A) = p(B).
This way stability for algebraic vector bundles is usually defined ([OSS],[M],[LT]).
Lemma 3.2. The (c:7)-slope order is a stability order.
Proof of the lemma. Let us notice that

c(4) <(B) _ 1
r(A)  r(B) r(A)r(B)

r(B) <(B)
r(A) c(A) |’

So the ordering between A and B is determined by the positivity, negativity or nullity of
the determinant

r(B) ¢(B)
r(A) c(A) ]

Now it is easy to see that the same transformations of determinants that were used in the
proof of Lemma 2.5 also work here. We leave details to the reader. 0O

Remark. The function ¢ is not obliged to take values in Z. For example, Q, C or an ordered
Z-module could be the target set as well. The latter one was the case for the stability used

in ([R]).

A.D.King, [K] has used the notion of stability to construst moduli spaces of the rep-
resentations of a quiver. In his case stability is discussed only for representations with a
fixed Ky-image a and it depends on a choice of an additive function € such that 6(«) = 0.
This approach makes it possible to construct a moduli space but at the same moment it
does not allow to compare stable representations with different « as their stabilities often
have to be defined with respect to different functions 6.

In order to relate the King’s definition with ours let us first remind the definition from
the King’s paper.

Definition 3.3. ([K],p.516) Let A be an abelian category and 6 : Ko(A) = R an additive
function on the Grothendieck group. An object M € A is called -semistable if (M) =0
and every subobject M’ C M satisfies §(M’) > 0. Such an M is called §-stable if the only
subobjects M’ with 8(M') = 0 are M and 0.
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Proposition 3.4. Given a stability for an abelian category A that is defined via the
(c:r)-slope order and M € A let us consider an additive function 8 such that

c(M)

= et

7.

Then 6(M) = 0 and M is stable by the (c:r)-stability if and only if it is -stable in the
sense Definition 3.3.

Proof. Let us notice that .

GM)Y>0 & —c(M)+

So the King’s results about moduli spaces §-stable objects are relevant to our stabil-
ity. The existence theorems from ([K]) for moduli spaces of @-stable representations of a
finite dimensional algebra imply the existence theorems for moduli spaces of (c:r)-stable
representations.

Remark. The filtration of Theorem 2 depends on the stability. This is easy to check with
the following example.
Let (1) — (2) — (3) be a quiver of type Az and

VZ{V]_——)%—)Vg}

be the representation of the quiver (for the definitions consult for example [K]).

We take 7(V) = Y dimV;, ¢(V) = > a;dimV;. Let V' be the rcpresentation where
dim V/ =1 and the maps are isomorphisms.

The subobjects of V' are the following two:

V[I] = {VI[I] = 0’ V2[1] = 0, ‘/3[1] = 1/3':},
vl = vl o, v = vj, v = vy},

As a result we conclude that if @y = 3, ag = 2, a3 = 1 then V' is stable. But if a¢; = ¢
then V' is not stable and
vioviEsvllsg

is the Harder-Narasimhan filtration in V.
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