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Abstract

Let r(F), Cl (F), C2(F) be rank a.nel Chern cla..sses of an algebraic
coherent sheaf F on aDel Pczzo surface X. We will call a tuple
c(F) = (r(F), CI (F), c2(F)) the Chern dat,l11n for thc sheaf F. In
the paper we write down sevcral necessary conditions on the Chern
clatulll of a non-exceptiollal stable sheaf on a. Dei Pezzo surface which
generalize the conditions found by Drezet. auel Le Potier for sheaves
on p2 and we use thCln to dcfine a set. Dx . After that we prove that if
c(F) E Ox anel F can be included in a. slllooth restrictecl versal family
of sheavcs on X then there are stahle sheaves in the family so F cau be
defornled into a stable sheaf with thc samc Chern datuln. We provide
a way to construct such families and a..S an application we prove that
for allY c E Ox it exists a stable shcaf F such that. c(F) = c provided
X is p(2l ) - a Dcl Pczzo surface which arises by blowing up a point in
p'J.

*The research describecl in the paper was partially supported by ISF grant MKUOOO
and by INTAS grant.

talso Independent University of Moscow anel Institute for System Analysis, Russian
Academy of Scicncc, Moscow.

1



1 Introduction

Originally the notion of stability belongs to the geometrie invariant the
ory and it was used in algebraic geometry since 60-s, when [Mu} appeared, in
order to construct moduli varieties. Later it was discovered that stability of
a vector bundle is not only related with the construction of moduli varieties
but also with the existence of Kähler-Einstein metrics in the bundle ([LT])
and with other properties as weH. It is good to know whether one could find
a stable algebraie structure in a given topological vector bundle and this is
what we work on in the paper.

More precisely let X be aDel Pezzo surface over an algebraical1y closed
field k and Kx canonical class of X. It is known that the divisor - Kx defines
an embedding of X into a projective space and we choose this embedding to
define stabity so we work in the following with sernistability and stability in
respect to the anticanonical polarization.

Let c(F) = (r(F), cl(F), c2(F)) be a tuple whieh consists of rank and
Chern classes of an algebraic coherent sheaf F. Vve consider the tuple as an
element from Mx = Z x PicX x Z and we caU this element aChern datum
for the sheaf F . To fix ehern datum of a vectar bundle (ar a coherent sheaf)
on aDel Pezzo surface is the same as to fix topological type of the bundle
or to fix its image in the Grothenelieck group of algebraic coherent sheaves
category.

It is know that exceptional sheaves on a Del Pezzo surface are stable
([Go],[KO]) anel let Exx be a set of ehern data for non torsion exceptional
sheaves on X.

We define below a subset Dx in Mt and show that it contains ehern data
of nonexceptional stable sheaves on X with a discriminant greater than 1/2
and we prove that if aChern datum for a sheaf F belongs to Dx and F
can be included into a smooth restrictcd versal family of sheaves on X, then
there are stable sheaves with the same ehern datum in the family. We know
that the discriminant of nonexceptional stable sheaf on X is always greater
or equal to 1/2 and for the latter case we prove the existence of semistable
sheaves in the family.

Futher in this article we present a way to construct such families anel as
an application we prove that it exists a stable sheaf F with a ehern datum c
for any c E Dx when X is p(~) - aDel Pezzo surface which arises by blowing
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up a point in p2. 8irnilar results when X is a projcctivc plane 01' quadric
surface we1'e proven before ([OL), [R2]). Thc s:-une rnethods are useel in [R5]
to study vector bundles on other DeI Pezzo surfaees.

Exact statements of the results one could find in the body of the article.

I would like to express rny gratitute to 8.A.K111eshov, A.L.Gorodentsev
and 8.Yu.Zuzina with whom I have several helpful discussions, to 11ahtemati
cal department of Ulliversity of Tokyo where pa,rt of this article was made anel
to prof.E.Horikawa for cncouragement anel hospitality, anel to Max-Planck
Institute where the last version of thc text was prepared.

2 Preliminaries

V\Te will work with algebraic coherent sheavcs on a srllooth projective
DeI Pezzo surface ..-\ over an algebraically closecl fielcl k. Let us denote
the canonical class (or canonical sheaf) of X as J(,. DeI Pezzo surfaces are
those surfaces, where anticanonical class -1(x is alllpie. It is well known
that over an algebraically closed field they are either projective plane p2 or
quadric surface Q 01' surfaces which are llladc by blowing up t < 9 points in
general position on p2, ([Ma]).

We use the nanlC "vccto1' bunelle" both for a gCOIllctrically defined vector
bundle and for thc sheaf of sections of a geolllctric vector bundle which is
the satne as any locally free coherent sheaf.

As usual Pic.X" cIenotes the Picard group of )( anel 1'(F) ( 01' rF ), cl(F),
c2(F) are rank anel ehern classes of a sheaf F.

\Ve use notations :
Mx = Z X Pic..-Y x Z,

Mk = N x Pie..-\ x Z.

An element c = (1', Cl, C2) E Mx is said to be thc ehern datum for a sheaf F,

c= (T,Cl,C2) =Chd(F), when r=1'k(F), c;=Ci(F).

It is convenient to consider the ehern data set Mx as an abelian group in a

way that
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This rneans accorcling to standard Chern dass properties that

(1', a, &) + (T', a' , b' ) = (1' + 1", a + a', &+ &' + a· a' )

where . denotes thc intersection pairing on Pic...Y.

So the function Clul is an additive function on sheaves. Alld this resulted
in an isomorphisIll

Mx = Ko(Csh X)

of the Chern data group and the Grothendieck group for aigebraic coherent
shcaves on aDel Pezzo surface.

vVe will keep the following notations [rom [Rl], [R2]:

X(A, B) = L(_1)i dirn Exti(A, B),

(F) Cl (F) p' ",. Q
VF = V = 1'(F) E JC,,\. ® ,

1n(F) = cl(F)· (-1<x) E Z,

1n(F)
ILF = tL(F) = v(F) . (-1(\) = T(F) ,

p(F) = GCj2 - C2) (F) E ~Z,

p(F)
7r(F) = 1'(F) , E Q,

(
1 l' - 1 .2 )

ßF = -(C2 - --Cl) (F).
l' 21'

The Riernann-Roch theorem states that for sheaves on aDel Pezzo sur
face:

01' if TA =P 0, 1'B =I=- 0 then:

x(A, B) = rATß (VA'ß' (VA2ß - f{x) + 1 - ßA - ßß) ,
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where VA,B = VB - VA.

It is important to mention that the fUllctiolls V, 11" p, 1r, ~ and X depend
only on ehern data of shcaves which are their arguments so wc will consider
those functions as functions on Mx.

The Serry duality theoreln for sheaves on Cl srnooth surface can be stated
in a form ([DL]):

We will often use it throughout the text.

We are to tlse exceptional sheaves and let HS recall the definition.

Definition 2.1 A sheaf E is called exceptional if Hom(E, E) = k and
Exti(E, E) = 0 for i > O.

Wc say that F is a family of sheaves on )( with a base (or parameters)
Z whcn F -t X is a flat sheaf over X = J'Y x Z. Shcaves p(z) = Flxxz are
membcrs cf the falnily. We suppose if it is not Inentioned the opposite that
Z is connected.

An elelnent c E Mt is said to be a ehern datum for the family F if for
any z E Z there is Chd(F(z)) = c.

Let us recall some properties of cohümologies Ext~,+ ( ,) anel Ext~,_ ( , )
für sheaves cr cümplexes of sheaves with clecrcasing filtrations ([DL]). (It
is important to mentiün that we use clecreasing filtrations while they use
increasing filtrations in [DL]):

Proposition 2.2 Let !( be a sheaf or a cornplex (bounded on the lejt) of
sheaves with a finite decreasing filtration

K = p O!( ~ F 1]< :) ... :) F N!( ~ F N +1]< = 0

and let Gil< be factors of the filtration in l<.

1. There is an exaet sequence
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2. There is a spectral sequence abutting to ExtF,_ (](, ]() such that

3. There is a spectral sequence abutting to Exti",+(](, ]() such that

{ ° for p ~ 0,
Ei,q = IIExf+q (GJ{, Gi+pf{) JOT P < O.

4. Let pNK be the last member 01 the filtration P in K, k = K/pNK,
and the filtration in j'( be induced front ](. Then there exist an exact
sequence

. - _. . N - '+1 - -
-t Ext!p,+(](, ]() -t Ext~,+(](, ]() -t Ext1 (F ](, ]() -t Ext~,+(]{,!() -t

3 Around stability

Vve usc two kinds of stability in the sequel so it is practical for us to dcscribe
in thc bcginning the stability for algcbraic cüherent sheaves on a variety X
in general terms.

As it is usual, tbe stability lnatters are discllssed in the following only for
sheaves without torsion.

Definition 3.1 Let it be definedlor nontorsion shcaves on X a map A --> ,(A)
into a totally ordered set r such that:

(a) , depends only on the ehern datum 01 an argument which means i/
images 0/ A and B in ](o(Csh X) coincide then ,(A) = ,(B);

(b) if B is a subshea/ in A such that factor A / B is a nonzero torsion sheaf
then ,(B) < ,(A);

(c) ij A, B, C are nonzero sheaves without t07'sion and there zs an exact
sequence

O-->B-->A-->C-tO
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then ')'(B) < ')'(A) is equivalent to ')'(A) < ')'(0) and ,(B) = ,(A) is
equivalent to ,(A) = ')'(C).

A sheaf A (without torsion) is called stable (relative to the order defined
by the map ,) if for a subsheaf B in A with a nontorsion facior-sheaf wc
have ,(B) < ,(A).

A sILeaf A (without torsion) is called semistable if for (L subsheaf B we
have ,(B) ::; ,(A).

In thc following we write A <8 B instead of ')'(A) < ,(B) and call an
order on sheaves which we get this way the stability order.

A general property of stability is thc following.

Proposition 3.2 Let A, B be sClni-stable sheaves and B <8 A. Then
Hom(A, B) = 0.

Let it be a Inorphism 7j; : A ----7 Band let 11S consider its splitting into
short exact sequences:

o-+ J( -+ A -+ ! -+ 0, 0 -+ I -+ B -+ 0 -+ O.

If ]( = 0 then ! = A and this coutradicts selni-stability of B. Therefore if
7j; =j:. 0, then ]( =j:. 0, I =j:. 0, and hence !( <,~ A, A <s I. Eut I <8 B so
A <8 I <8 B, which is impossible by assulnptions.D

The following is a kind of thc Schur lelnlna in our context.

Lemma 3.3 Let A, B be stable sheaves such that B ::;8 Athen either
Hom(A, B) = °or A = Band HOln(A , B) = k.

By thc proposition above only the case when B =8 Aare to be proven.
The argulnents which were llsed to prove the proposition also show that
a nonzero Illorphislll from Hom(A, B) should bc a IllouOIllorphism onto a
subsheaf in B with a torsion factorsheaf. Eut such a subsheaf coincides with
B because of the property (b) of Definition 3.1.

Now HOIn(A, B) = Hom(B, B) is a finite-dilncnsional division algebra
over k anel it coincides with k as soon as the field is algcbraically closcd
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which is we need.D

S.Kuleshov pointed out to us the iInportancc of propcrty (b) and the fact
that conditions (a-c) imply the existence of a "Harclcr-NarasiInhan filtration"
for a sheaf without torsion.

Theorem 3.1 For a sheaf A without tOTBion thcrc cxists n filtration:

such that its factors Gi(A) are semistablc and

and

This filtration is unique (having the stability chosen) and it is uniquely
defined by the above properties of its factors; we caU it HardeT-Narasimhan
filtration 0/ A (with respect to the stability).

The proof is quite standard. It reHes on SOlne leInmas.

Lemma 3.4 There is no infinitely incrensing chnin 01 snbsheaves in A.

It is weU know "noetherian" property of an algebraic coherent sheaf cat
egory.

Lemma 3.5 There is no infinitely dec7'casing chain

01 subsheaves 01 nonzero rank in A such that Ba <8 BI <8 ...

Because of (b) the sequence of ranks {r(B i )} is strictly decreasing, hence
thc chain should be finite.

Lemma 3.6 There is a unique subshea/ A max in A such that B :Ss A max

for any subshea/ B in A of nonzero rank (for B = Aalso) and that B c A
whenever B =s A max .
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PrüoE oE the lelnma. . Let us rnention first that any sllbsheaf in A eould
be included into a subsheaf with nontorsion factor such that it bas tbe same
rank and whence is greater with respect to the order thc oreIer because of
(b).

So in searching for Amax we shalllook only at nonzero subsheaves B with
nontorsion factors, let us eall them Ilontrivial sllbsheavcs. If Amax exists it
is necessary nontrivial or equal to A itself.

Let us suppose that F is a countcrexarnple to thc lenlIlla with a minimal
rank. Then for any nontrivial subsheaf C in F there exist Cmax hut there
is also a nontrivial subsheaf B in F such that Cmax <8 B (thus B is not a
subsheaf in C).

But B n C is either a sheaf of nOllzero rank or zero. In the latter case
C <8 (B + C) = C' because of an exact sequence

o ---+ C ---+ B + C ---+ B ---+ 0,

In the fonner olle
B n C <8 Cmax <s B

and an cxact sequence

o ---+ B n C ---+ B ---+ BIB n C ---+ 0

show 11S that B <8 BIB n C so C <8 BIB n C. Now taking into aecount
an exact sequence

o---+ C ---+ B + C ---+ BIB n C ---+ 0

we eoncludc that
C <8 (B + C) = Cl.

where C/ strictly include C becausc B is not a sllbshcaf of C.

Thus we could make an infinite inereasing chain

Ccc/cclI

•••

whieh provicle us with a contradiction.D



Now turning to the proof of the thcorcnl, Amax is surely semistable and
if A #- Amax then

which pennits us to prove thc thcorcln by induction.D

There are also filtrations in selnistable sheavcs, which arc not in general
uniquelly defined by their properties.

Proposition 3.7 For a {s)-semistable shcaf A (without torsion) there exists
a filtration:

A = pDA :::> FIA ~ ... :) FN+IA = 0

such that its factors Gi(A) are (s)-stable and

Go(A) =8 GI (A) =8 •.• =8 GN (A) =8 A.

Any filtration in A of this type is callecl Jonlan-Hölder filtration in A.

For thc proof of the proposition Olle shollid take a sllbsheaf A# that is a
lninilnal one alnong subsheaves

{B I B =.~ A},

as thc last member pNA of thc filtration; thcn proceed by induction.

There are two stability orders whieh wc neecl for OUf work with sheaves
Oll DeI Pezzo surfaces. The first olle corresponcls to Giesecker stability. It
could be described as folIows.

Definition 3.8 Let 118 consider a map which assigns to a nontorsion sheaf
A a tuple

(tt(A),7r(A))

and define an order in a way that

A <g B {==} (rt(A),7r(A)) <lex (/t(B),7r(B)),

and "=g {:::} =lex "J where <lex mcans "lcxicogrophically less" .

The second stability we willnamc thc extcruled stability. It is defined by
an order which is constructed as fo11o\"s.
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Definition 3.9 Let us fix a system of arnple divisor classes

D = -Kx , D 1, .•. , D t E Pic..-\

such that they form a base for PicX ® Q and denote:

.(F) = cdF) . D i = (F)· D·
J-lt r(F) v l'

To rnake the extended stability map we as,';ign to (J, nontorsion sILeaf A a tuple

(J-l(A) ,7r(A), 1"1 (A), . .. ,11,t(A))

and we define the order in a way that A <e B rncan.s

and "=e ~ =lex ".

To prove conelition (b) for our Gieseker anel exteneleel stabilities one
shoulel reineinbel' that we are on a surfacc anel thc slope p.. is elefineel
with respect to an ample divisor so if support of AlB is one-dimensional
thcn j1'B < J-lA and if the support is zcro-eliInensional thcn P'B = J-lA but
])(B) < p(A). This results in B < A für both stability orelers.

'vVe leave it to the reader to check that propcrties (a), (c) are also valid.

For the exteneled stability there is a following property, which is stronger
than thc condition (a):

Lemma 3.10 A =e B if and only if A and B !J.a7Jc proportional ehern data.

This is a direct consequence of thc c-stability definition.

It is inlportant to have in mind that if A is g-stablc then it is e-stable
and if A is e-selni-stable then it is g-sellli-stabie.

Lemma 3.11 Suppose A, Bare g-semi-stable (01' e-semi-stable) and

J-l (A) < J-l (B) + !(},

01' A, Bare g-stable, A ® K x =1= Band

J-l(A) ~ J-l(B) + ](},
then Ext?(A, B) = O.
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One can notice that even lvlumford-Takml1oto stability is enough for the
first statement here but we choose to rcctrict our considcrations only to
g-stability and e-stability through the paper.

PrüoEofthe lelnlna. . By the Serre eluality Ext2 (A, B) = HOIn(B, A ® K x )*
anel

tL(B) > tL(A) - !(} = IL(A ® J(x).

Thus B >9 A®l(x and it is clear that shcavcs B alld A0](x are semi-stable
so thcre is no morphisIns by Propositioll 3.2. Sirnilarly the sccond statement
follows via Serre duality from LeInma 3.3.0

LeInma 3.10 is crucial to prove thc fo11owing proposition, which is the
Inain rcason why we need the extcndccl stability.

Proposition 3.12 1/ X(B, B) > °fOT a e-scrnistable sheaf B then B 'tS

isomorphie to E EB E EB ... EB E where E is c1:ecptional.

ProoE oE the proposition. . Looking at an c-.Jordan-Hölcler filtration for B
we see that thc factors Gi are e-stable and their Chern data are proportional
by LCinma 3.10.

Let us denote E one of them. Then Chd(B) = a Clul(E) anel it fo11ows
that

X(B, B) = a2 X(E, E), thllS X(E, E) > O.

But dirn Hom(E, E) = 1 by Lemma 3.3 allel Ext~(E, E) = 0 by Lemma 3.1l.
Hence the conclition X(E, E) > 0 implies that Ext l (E, E) = 0, so we conclude
that E is exccptional and X(E, E) = l.

Now a is uniquelly defined by the equation

so a11 thc Chern clata are equal anel thc factors are exceptional hellce they
are isoInorphic as exceptional sheaves are uniquelly clefineel by their Chern
data ([Go]).

Then
Ext1(G i , Gj ) = Ext1(E, E) = 0,

so thc filtration splits and B = E EB E ffi ... EB E .0
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4 Families with stable sheaves

vVe state our Inain results in this section. The stability in the following
means Gieseker stability relative to anticanonical polarization.

Definition 4.1 We calt a coherent sheaf F on a Del Pezzo surface X a
restricted sheaf if it has no torsion and

tL(GmaxF) - tL(GminF) :S ](;,

where GminF and GmaxF are the first and thc last factars of a Harder
Narasimham filtration in F,

We will say thai a family 0/ sheaves is rC.'3tr-ieted if alt its members are
restricted sheaves,

Definition 4.2 Let:F be a family of sheaves on )( with base Z. We call it a
smooth versal family if Z is smooth and the following condition is satisfied:

KS For each z E Z the K odaira-Spencer morphi81u

is surjectivc}

(we denote by TzZ the tangent space of Z at (J. [Joint z).

Let us relnclnbcr that Exx denotes the set of ehern clata for nontorsion
exceptional sheaves on X.

Definition 4.3 We will say that an element c E Mt satisfy DL-condition
(Drezet- Le Potier condition) if:

DL1. c is not in Exx,

DL2. X(c, e) :S 0 for any e E Exx such that 7'(e) < r(c) und

J-L(c) 2:: J-L(e) 2:: fL(C) - ](; ,

DL3. x(e, c) :::; 0 for any e E Exx such that r(e) < r(c) and

tL(c) :S tL(e) :S tt(c) + J(~ ,
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DL4. ß(c) > ~.

Let us denote by Dx the set 0/ elements in Mt satisfying the DL-condition.

The conditions above are not independent. The RieInann-Roch formula
shows that Exx belangs to the subset {c E Mt I ß(c) < ~} so OL4 iInplies
OLL Also onc coulel notice that OL2 and DL3 are equivalent. Really it
follows from Serre cluality that x(e, c) = X(c, e 0 ]<x), but as e 0 ](x E Exx
so ,ve get what nccclecl.

We woulcl likc to keep OLl and OL3 in the definition anyway as it looks
Inore symInetric anel it woulel bc more convenient for future references.

Orezet anel Le Potier have proved ([OL]) that for X = p2 the condition
OL4 follows frolll DL2 but an example in [R2] shows that this is not so for
a general Dei Pczzo surfacc.

It is possiblc to provc that OL2, DL3 imply ß(c) 2: ~ for any DeI Pezzo
surfacc. On thc othcl' hand it was ShOWIl in [R5] that ß(c) 2 1 implies DL2,
OL3 so as a rcsnlt it iInplies the DL-conclitioll.

Proposition 4.4 11 c = Chd(F) for a nonexceptional stable sheaf F then
DL1, DL2 and DL3 ar'e valid.

As F is not cxccptional DL1 is valid. To prove OL2 let HS remember
that nontorsion exccptional sheaves are torsion free anel stable ([Go], [KO]).
Suppose e = Clul(E) and F <g E <g F 0 ](y, then LeInInas 3.3, 3.11 give
HS that what is needecl. Of course

J-L(C) < IL(e) < JI,(c) - ]<1 .

irnplics that F <g E <9 F 0 !(x so need to check OL2 only for e such
that IL(e) = IL(C) 01' IL(e) = lL(C) - 1<1. As the reasonings are similaI' we will
consider only the first possibility.

Thc llicmann-Roch fonnula shows that x(e, c) = X(c, e) in this case.
On thc other hand either E >e F anel then x(e, c) = 0, 01' E <e F anel
thcn X(c, e) = 0, 01' E =e F. But thc latter case iInplies that c = a e by
LClllma 3.10 so
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and Proposition 3.12 shows that F
eontradietion.D

E as it is e-stable which means a

Ivlain results of the paper are the following theorems whieh show that
nneler eertain eonelitions the eonverse of thc above is also true:

Theorem 4.1 Let)( be aDel Pezzo surJace. Let:F be a restricted smooth
versal Jarnily oJ sheaves on X with a parameter space Z. Suppose that its
ehern datum c = Chd(:F) satisfies DL-condition.
Then it exists a nonernpty open set U C Z such that sheaves F(u) are stable
Jor 11, E U.

Theorem 4.2 Let ~Y be aDel Pezzo surJace. Let F be a restricted smooth
versal Jarnily oJ .9heaves on X with a pararneter space Z. Suppose that its
ehern datum c = Chd(F) satisfies DL1 , DL2, DL3.
Then sheaves F(u) are e-semi-stable Jor 7L in a nonempty open set U C Z.

Let us mcntion that sheaves of rank 1 without torsion are always stable
allel they are exeeptional as soon as they are loealy free. The discriminant
in this ease is nOllllegative integer anel it is greater than ~ if and only if thc
sheaf is nonexceptional.

Thus the question of the existence of stable sheaves in a family when
r (c) = 1 becolnes trivial so

while proving Theorems 4.2, 4.1 we suppose that r(c) ~ 2.

"Ve prove Theoreln 4.2 in the following section. Now we derive Theo
reIn 4.1 from it.

ProoE oE TllCorenl 4.1. Vve could substitute the base Z of the family in
question by its open subset which exists by Theorem 4.2, so let us suppose
that sheaves F(z) are e-sen1i-stable für any z E Z.

As a first step we shall prove a similar result about e-stability namely thc
following.

Lemma 4.5 There exist a nonempty open set U C Z such that sheaves F(u)

are e-stable JOT 7L EU.
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If a sheaf is e-senü-stable hut not e-stable 1 then there exists (at least
one nontrivial) e-Jorclan-Hölder filtration in it whose factors are e-stable and
equivalent in respect to e-stability order.

There is a possibility to contral filtrations having lV factars with fixed
Hilbert palynonüals H1, ... , HN far the sheaves of a faInily with the help of
a generalizcd fiag variety which is a projcctivc variety over the hase Z:

0/ 1/: Dra[)f1 I , ... ,1IN (F) --t Z11, ... , N

and which represents the functor "set of the filtrations" (see [DL 1 p.202] or
{Gr]) .

Thus a point z E Z belongs to Im (0 NI ,... ,1/N) if and only if there exists a
filtration in F(z) having factors with these Hilbert polynomials.

Propositions (1.5), (1. 7) froIll [DL] give us a way to evahiate Im(01I1,...,IlN)'

We restatc thern a.s the following leInIna.

Lemma 4.6 Let F be (L family of .sheave.'3 on J\ with parameters Z, z E Z,
and

f E Drap/{l, ... ,HN (F).

Then f induces a filtration in F(z) and there is an exaet sequence

where the last nW1])hisrn w+ is a composition 01 a ](odaira-Spencer morphism
and a morphism frorn the exact sequence 01 Proposition 2.2

Provided that the lamily is smooth versal and

the morphisrn w+ is epimorphism, the variety DrapHl, ... ,HN (F) is smooth at
the point f, and the codimension 01 its image in Z is equal to

In order ta llse this in our situation let us prove the following.
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Lemma 4.7 Let A be a e-semi-stable sheaf such that ~ = ~ (A) > ! and
let A = pOA :J P1A :J ... :J F N +IA = 0 be (Ln e-Jordan-Hölder filtration in
A with factors Gi. Then for this filtration

Ex~,_(AJA) = 0 and

To prove the first statement we can llSC the spectral sequence from Propo
sition 2.2 in order to evaluatc Ext~_(A,A). As sheaves Gi are e-stable and
tl(Gd = tl(Gj), so we have '

EXt2 (GiJ G.i ) = 0

and we get what needed.

Proving the second statement we necd to establish first that in our special
situation we have ~(Gi) = ~(Gj) = ~. By thc definition of the discriminant
wc have for a sheaf G

1 2
~(G) = -(v(G)) - 7f(G).

2

Wc know that the factors of thc filtration in question are equivalent in rcspcct
to the e-stability order. Heuee wc havc

and
l),s(Gi ) = j),,(Gj ) = tls(A) for s = 1, ... , t.

As a rcsult lJ(Gi) are uniquelly defincd in Pie...\ ® Q and have to be equal to
v(A). Thus ~(Gi) = ~(A) = ~ as we statcd.

Now let us look at Euler charactcristic in the spectral sequence for
ExtF,+(A, A):

"L(_l)i dirn Ext~,+(A, A) = L X(Gi1 Cj ) = L r(G i ) r(G j ) (1 - 2~) < 0
i i>j i>j

(wc havc used the Riemann-Roch thcorclu hcre).
This irnplies that Ext~,+(A,A) t- 0 as it was needed.O
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To finish the proof of Lemma 4.5 let us have in mind that a system
of Hilbert polynomials for factors of a e-Jordan-Hölder filtration in Fez) is
defined by ranks Tl, ... , T N of the factors (because their slopes and discrim
inants are uniquelly defined by the ehern datuln of the family in question).
And we have

T = Tl + ... + TN

so there are only finite number of possibilities for these systems of Hilbert
polynomials. Hence all the points z for wbich sheaves Fez) could have a
nontrivial e-Jordan-Hölder filtration belong to a finite union of subvarieties
of nonzero codimension. Therefore thc subset U which is a complement to
this union gives HS what was needed for the lemma.D

Moving forward in our proof of the theorem we can without loss of gen
erality suppose that sheaves Fez) of thc family are c-stablc.

And even more so: we can suppose that thc)' are e-stable for several
different e-stabilities resulted in the different choices 01' divisors D I , ... , Dt

in the definition of an e-stability order.
But from relatively simple geometrical considerations for PicX ® Q it

follows that there exists such a systenl of e-stabilities that if a sheaf F is
c-stable in respect to all of them then it is g-stable. This finishes the proof
of the theorem. 0

5 Families and filtrations

In this section we shall prove Theorem 4.2 after SOlne preliminary consider
ations.

In the definition of stable sheaf there is a condition on slopes of its sub
sheaves. One could generalize this to a condition on systems of subsheaves
or filtrations. It was done in the paper [DL] in respect to Gieseker stability.
There it was defined the weight for a filtration in a sheaf and tbe properties of
the weight are extablished. We deneralize this here to the extended stability
along the guidelines from [R2].
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Let us recall that für a sheaf F of nonzero ra,Bk we have

Definition 5.1 In order to define g-weight 0/ a filtration

that has no factors 0/ zero rank let us consider' points

as vertices for the graph 01 a piecewise linear 1napping

where T = Tp. Thi.s mapping is called weight 01 the filtration with respect to
Gieseker stability or g-weight 0/ the filtration.

Definition 5.2 In order to define e-weight 01 a filtration

that has no factors of zero rank let us consider points

as vertices tor the graph 0/ a piecewise linear rnapping

where r = rF.
This mapping is called weight of the filtration with respect to the extended

stability or e-weight of the filtration.

We will omit the reference to astability i/ it is elear f,om the context
which stability is considered.
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A mapping n: [0, r] --+ R k is caUed convex if for a, b E [0, r]

n((a + b)/2) ~lex (n(a) + n(b))/2

(here" lex" stands for lexicograpbic order).

For mappings nl, nz we say nl :::; nz if ni (a) ~lex rfz(a) for any a E [0, r].

Here anel below" (s)-" refers either to Gieseker or to tbe extended stability.

Definition 5.3 A filtration is called (s)-convex if corresponding (s)-weight
mappzng zs convex.

Proposition 5.4 Let F be a sheaf on X.

1. An {s)-Harder-Narasimhan filtration in F is {s)-convex.

2. The weight of a (s)-Harder-Narasimhan filtration dorninates the (8)
weight of any other filtration in F.

3. There is a finite number 0/ weights for (s)-convex filtrations in F.

4. Let F be a fiat farnily of sheaves on X with a base Z. Consider for any
z E Z the (s)-weight for an-{s)-Hanler-Narasimhan filtration in a sheaf
F(z)' Then while z varies in Z these weights belong to a finite set.

Thc first two statements follow irnmcdiatcly from the basic propcrties of
Hareler-Narasirnhan filtrations.

To prove the thirel statement it is sufficient to show that there is a finite
number of possibilities for the image of the stability map for any member of
the filtration. For this it is sufficient to notice that slopes I)"~ j.Li of subsheaves
in a sheaf F are upper bounded anel that p is upper bounded on subsheaves
in F having J..L is bounded below. (As a consequence p, j),i are bounclecl on a
set of subsheaves where fL is boundcd bclow). This could bc chccked easily
for a sheaf of rank one and general case follows by induction on rank F.

For the last statement it is also sufficient to establish that slopes j)" fLi of
subsheaves in sheaves F(t) are upper bounded anel that p is upper bounded
provieled that I), is bounded below on the subsheaves. One could prove this
by induction on rank of F.
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Let it be fixed for the following that :F is a farnily from Theorem 4.2.

We will denotc by WJ/N(z) the wcight of e-Hareler-Narasimhan filtration
in F(z) anel let

seZ (n) = {z Iw 11 N (z) = n} 1

oeZ(n) = {ZIWIIN(z) ::; n}.

Proposition 5.5 1. Subsets seZ (n) constitute a stratification of Z.

2. Subsets oeZ(n) are open.

3. seZ(n) is a smooth dose subvariety in oeZ(n) having its normal space
at a point z isornorphic to

where the filtration in F(z) is cho8cn to be its e-Harder-Narasimhan
filtration.

The sinülar rcsult for Giescker stability was proved in [OLl. As the proof
for thc cxtcndcd stability uscs thc SaInc argulncnts we only briefty present
it here stressing thosc InoIncIÜs where SOlne spccific properties of e-stability
are needecl.

Lemma 5.6 Let A be a restricted sILenf pTovirlcd with its e-Harder-Narasim
han filtration. Then fOT" this filtration

Ext~,+(A, A) = 0 and EX~i',_(A, A) = O.

Lct Ci clenote factors of thc filtration in A. By definition of a Harder
Narasimhan filtration thcy are e-sernistablc and Ci <e C j for i < j so

Looking at thc spectral sequence [1'0111 Proposition 2.2 for ExtF,+(A, A)
we conclude that thc cntrics Ef,q for ]J + q = 0 are equal to zero. Thus

Ext~,+(A,A) = O.
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As A is restrieted whenee

for any pair i, j by Lemma 3.11 .
Applying tbis to the eomputation of Er,q ill the speetral sequenee of

Proposition 2.2 für Extp,_(A, A) we conclude that

Ext~,_(A,A) = 0

anel this finishes the proüLD

ProoE oE Proposition 5.5. Thc first statCll1Cnt is clear so let us prove tbe
seeond one. Let Z E S1eZ(n) anel f be a point in a gcneralized flag varicty
DrapHt,... ,HN (F) whieh eorrcsponds to thc Ha.rder-Narac;iInhan filtration in
F(z)' From Lellllnas 5.6 and 4.6 we eoncluelc that Drap1l 1

, ••. ,11N (F) is smootb
at fand that there is an exaet sequente:

Let us clenote by D an irrecIucible cOlllponcnt of Drap1l1, ... ,IlN (F) contain
ing f. It is clear that if z' belongs to the ilnage of D by thc eanonieal proper
morphism

DrapHl,...,J/N(F)~ Z

then tbe sheaf F(zl) has a filtration with thc Si:Hne c-weight as f. Henee the
weight of e-HarcIer-NarasiInhan filtration in F(zl) is no lcss than the weight
of f. Thus thc set n S·~ Z(i'h)

m2: ii

is closed beeause it is the union of a finite nUlnbcr of such iInages.
So oeZ(n) is open.

Now we are to prove the third statclncnt in thc proposition.
Let S1 = oeZ(7"i) aud S = seZ(n). Clearly S C S1 anel if z E S then the
e-weight of thc Hareler-Narsimhan filtration in F(z) is cqual to n. Moreover
if Fez) has a filtration of weight equal to Ti then it is a Harder-Narasimhan
filtration anel z ES.
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Suppose Z E S allel H 11 ... ,HN are HilbClt polynomials of thc factors of
an e-Harcler-Narasilnhan filtration in F(z) . It. is elear that S belongs to thc
image of a canonical Inorphism

anel coincicles with a component of it.
Hence from LClnma 4.6 (or Propositions (1.5) ,(1. 7) in (DL]) anel from

Lemma 5.6 it follows that the normal space to S at z can be complltcd by
an exact sequence

Prao[ o[ Theoren1 4.2. Vve work with c-stability through the proof.

The first step of thc proof is to consiclcr the stratification of Proposi
tion 5.5 for Z. As the selni-stability is cquivalcnt to triviality of a Harder
Narasimhan filtration or to linearity of t.he corrcsponding wcight, hence by
thc proposition thc set of parameters for sClnistablc sheaves is open. Thc
task is now to provc that it is not empty.

In order to provc that the stratuln corrcsponcling to semistablc sheaves
exists it is sufficient. to prove that all thc strata rclatecl to nontrivial Harder
NarasiInhan filtrations (with nonlinear weight fUllctions) have nonzero codi
mensions. This woulel be clone if we show that their normal spaces are
nonzero.

So by the sarne proposition 5.5 it is cllough to prove thc "key leIllIna" :

Lemma 5.7 Suppose for a restricted .'3hcaf A:

1. Chd(A) = c satisfies DL-condition]

2. an e-Harder-Narasimhan filtration in A i.'3 nontrivial.

Then for this filtration Ext~,+(A,A) i:- O.
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ProoE oE tlle lCll1111Cl. . Let us suppose the cOlltrary that Ext~,+(A,A) = 0
for A in respect to thc filtration. Let Gi denote faltors of the filtration in A
allel i = 1, ... , N. The factürs are e-selnistablc anel Ci <c C j for i < j so

As A is restrictcd hellce
Ext2(c j , Gi) = 0

for any pair i, j by LClnlna 3.11 .
Looking at the spectral sequence für Extj..,+(A, A) we conclude that it

elegenerates at E 1 allel that the terms Er,q for ]J + (j = 1, ]J > 0 are equal to
zero.

That means
x(C j , Ci) = 0 für i < j.

The additivity of the Euler characteristic pennits 11S to elerive from this thc
equalities:

x(GN , A)

x(A, Cd
x(GN,Gd

= X(GN,GN ),

x(Gt,Gd,
O.

(1)

(2)
(3)

Lemma 5.8 Provided (1)J(2),(3) eithcr X(G[,Gr) > 0 01' X(GN,GN) > O.

Suppose that Lenlll1a 5.8 has been proved. Thcn froln Proposition 3.12
we conclude that either GN Of Cl is isoIIlorphic to a clirect SUIn EEfJEEB· . ·EfJE
where E is an exceptional sheaf.

Then from (1) anel (2) it follows that

cithcr X(E, A) > 0 01' x(A, E) > 0

But because A is restricteel we have

and
o2: J-L(A) - IL(Go) 2: I(~

so there is a contracIiction to DL-condition.
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Thus to finish the proof we neeel onl1' to est.ablish LCllllna 5.8. This can
be made through SOHle calculations as folIows.

By the second form of the RieInann-Roch thcorCIn wc havc

x(GN,Gd = r(GN)r(Gd G(IJ - J(x) 'IJ + 1- 1:::,.' - 1:::,./1) (4)

where v = lJCl - lJCN' ~' = ~Cll ~" = ~GN'

Let us denote
1

P=-"2!(x,I)=ap +E

where E - P = O. Then as A is restrictcd so

-lei < v . ( - [(x) ::; O.

Hence
-2 < a ::; 0

and it is iInportant to mention that if (L = 0 then c =I- O. Thcrefore we can
conclude that

(v -l(x) -I) = (1) + p)'2 - p'2 = ((0. + 1)2 _1)p·2 + [.2::; 0

By Hodge index theoreln c·2 ::; 0 anel if c =I- 0 thcn [.2 < 0; so

(lJ - l(x) . 1) < O.

Then it fo11ow8 frDIn (3) and (4) that

1 - 6' - 6." > O.

Vifc can rewrite this as

1 - 6.' - 6." = ~ (1 - 26.') + ~ (1 - 26.") > 022' .

Hence we conludc that

cither 1 - 26.' > 0 01' 1 - 26" > 0

and as a result either x(G1,Gd > 0 01' X(GN,GN) > 0 by the Ricmann
Roch theorem allel this provcs thc lcmlna.

So we have finished thc proof of thc thcorcln 4.2.0
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6 Restricted families

In this section we will discuss thc Ino1'C const1'llctive appoach to the task to
determine weither a falnily of sheaves Oll a Dcl Pezzo surface is restricted or
not.

Definition 6.1 Let us say that there is given a splitting 0/ the anticanonical
divisor into lines i/ there is a set 0/ lines {Ps} such that

It is easy to construct a splitting whell J<} > 1 (or t < 8). But if K;; = 1
when we cannot find a splitting (at least if thc lincs in question are supposed
to be slnooth). This is because we havc P8' (-!(x) ~ 1 as -!(x is ample 1 so

(-!(x ).2 = (L Ps) . (-1<x) 2: Illunber of lines 2: 2.

Proposition 6.2 Given a splitting 0/ -!(x into lines {Ps} suppose that /or
a sILea/ F restrietions F!p" are rigid. Then thc shca/ F is restricted.

"\Te Ileecl two lenunas.

Lemma 6.3 Lct
O-rA-rF-rB-j-Q

bc exact and B have no torsion. Then fOT (L line P the seq7J,cnce

o-t Alp -t Flp -t Blp -+ 0

is el;act also.

ProoE oE tllc lClluna. . Clcarly thcrc are cxact scqucllces:

anel

o-t Torl(Olp,B) -+ O(-P) ®B~ 00B -+ CJlp 0B -t 0,

where a is a rnultiplication on a section of O(P) hence it has no kernel when
B has no torsion. So TorI (CJlp, B) is zcro and this proves the lemma.D
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Lemma 6.4 Let P be a line and F be a sheaf on X such that its restriction
Flp on P has no torsion. Suppose the rcstriction Flp is rigid. Then there
exists a number k such that for any subshcaf A of Fand for any factorsheaf
without torsion B ofF we have

v(A) . P ~ k + 1 and v(B)· P 2:: k.

It is important to mention that the sheaf Flp on a projective line is rigid
if anel only if for some k E Z

This means that a Harder-Narasimhan filtration in Flp (with respect to
Giesecker stability on P) has two factors r 1CJ (k) anel 1'2 CJ (k + 1) with slopes
k anel k + 1 respectively. Therefore thc slope of a subsheaf in Flp is less or
cqual to k + 1 and the slope of a factorsheaf is greater or equal to k.

Now in order to provc thc lemma lct 11S supposc that we have an exact
sequence

o ---+ A -----+ F ---+ B ---+ 0

and B has no torsion. This implies that

is exact.
Then the slope of a subsheaf Alp (which is equal to IJ(A) . P) has to be

~ k+l and the slope of a factorsheaf Blp (which is equal to v(B)·P) is ~ k.D

Let us again denote by GminF and GmaxF thc first and the last factors
of the Harder-Narasimhan filtration in F.

PraoE oE the proposition. . We cau apply thc previous lemma to
A = GmaxF and B = GminF and P = p~. Thcll for v = v(A) - v(B) we get

But as - K x is ample so

v . Ps ~ 1 ~ p~ . (-](x ).
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Thus we can make the following calculation

This provide us with what is needed to conclucle that F is restrictecl.D

Proposition 6.5 Let us suppose that we huve (j, srnooth vCTsal family :F 0/
sheaves without torsion on X with part17neters Z and theTe is a splitting 0/
-1('(, into lines {Ps} such that JOT any z E Z und P = Ps

Then theTe exists a nonempty open subset U c Z such that the /amily :Flu
is Testricted.

ProoE of the proposition. . V'ie follow here the reasoning of Drezet and
Le Potier [DL, p.231].

Consicler for z E Z a lnoduli spacc 1'1 of clefonnations for F(z) Ip. At[ is a
smooth variety with a tangent spacc iSOlllorphic to Ext 1(F(z) Ip, F(z) Ip).

Therefore we have a morphisrn for SOBle Ilcighborhood Z' of z

p: Z' -r At/,

with a eorresponding Illorphism of tangent spaces

But TzZJ = TzZ and the above morphislll fits into a. eonunutativc diagrain

TzZ -r Ext1(F(z),F(z))

11 -!-
TzZ J -r Ext1(F(z) Jp) F(z) Ir)

where the llppcr horizontal anow is a Kodaira-Spcncer Inorphism and thc
right vertieal anow is a Inorphism frOIn thc following exact scqucnce related
to thc restrietion onto P:
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and it is surjective by our presuppositious. This implies that p is a sub
mersion in SOllle neighborhood of z, heuce there is a nonernpty open set
in Z', which is mappecl by p onto nonclnpty open sllbset in M of points
corresponding to rigid sheaves on P.

As we have a finite number of lines in question, so there is a nonempty
open set U such that for Z E U all the restrietions F(z) IPi are rigid. Thcn
froln the proposition above we concludc that F(z) is restrictcd.O

7 Versal families

There is a general way to eonstruet families of shcaves whieh could be con
sidered as a variant of the lllonad technique related to exceptional systems.
vVe will use it here to procluce smooth restrictecl versal farnilies.

Let us recall the definition of exceptioual systerns ([Go], [KO],[R4]).

Definition 7.1 Sheaves Eo, ... ,Em are called e:cceptional system if they are
exceptional and for i < j

for alt k.

An exceptioual systelll is called corllpIcte if it generates the derivecl cate
gory; then its irllage in the Grothendieck group of sheaves provides a base for
thc group. It follows from results of OrIov ([Or],[KO]) that for aDel Pezzo
surface )( over an aIgcbraically closed field an cxccptiollal sYStClll Eo, ... , Ern
is eomplete if and only if m = t + 2.

Proposition 7.2 Suppose thqt there are .'liven:
a complete exceptional system E o, • .• , Ern of vector bunrlles on X,
sets j+, j-, where j+ U j- = {O"", m} and 1+ n 1- = 0,
and nonnegative integer numbers ni, i = 0, ... ,1n

such that they satisfy the following conditions:
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GIs sheaves 1i01r1,(Ei1 Ej ) for i E j- and j E j+ are generated by global
sections;

Then there exists a nonerrtpty open set U}

U C Hom( E9 niEil ffi niEi)'
iEI- iEl+

which consists of monomorphisms and such that fo1' inven,e images Ei of Ei
onto X x U there is an exaet sequenee

o ---+ EB nici ~ EB nici ---+ :F ---+ 0
iEI- iEI+

(5)

where:
(a) the morphism <I> is defined so that fo1' 'lL E U the restrietion <P to X X 'lL

coincides with a tnorphism:

u : ffi niEi ---+ EB 11i Ei ;
iEI- iEl+

(b) :F is a smooth versal farnily of sheaves on 1Y with the base U.

Suppose in addition that it is given a splitting of -!(x into lines

and that fOT any line P = P8:

R1 Ext1(Ei , Ej(-P)) = 0 fo1' i E j- und j E ]+)

R2 Exf(Ei , E j ( -P)) = 0 JOT either i, j E 1- 01' i , j E 1+.

Then it is possible to find the set U above such that the Jamily :F happens to
be a 1'estrieted srrlOoih versal Jarnily.

COInbining Theoreln 4.2 and the propositioll we conclucle that there is a
way to find stable sheaves on X with given Chern data. Let us write down
this conclusion as a theoreln.
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Theorem 7.1 Let X be aDel Pezzo surface and - J(x = z:: Ps be a splitting
0/ -!(x into lines. Suppose that there are given: a cornplete exceptional
systern Eo, . .. ,Ern on X and an element c E Mi that satisfies DL-condition.
Suppose that sets 1+, 1- and numbers ni, i = 0, ... 1 mare defined in a way
that

1J Jor the system Eo, . .. , Ern and Jor 1+, 1-, {ni} constructed above the
conditions: Hm , Gis, Hk, R1, R2 are valid, ihen ihere exisi a stable sheaJ
F on X wilh Chd(F) = c.

All that we need is to prove the proposition.
ProoE oE Proposition 7.2. Let it be

S = Hom( EB niEi, EB niEd

iEI- iEI+

anel let us consielcr a set }' of points (:c, s) E ..-\ x S such that the restriction
s(x) of s is on thc fiber at a point x of thc vector bunelles is not a monomor
phism. Clearly Y is an algebraic subset in X x S anel bccause of GIs. its
coelimension could be calculated as

L nir(Ed - L nir(Ei ) + 1.
iEl+ iEl-

So it is bigger than 2 by assuInption Rk.
Hence thc projectioll of Y on S, which coincidcs with the set of nOll

InonoIllorphisms, has positive codinlension. Thus there is nonempty open
set U of IlloIlomorphisIIlS in S.

The construction cf 1> is fairly standard alld the exact sequence (5) pro
vieles us with a ftat faInily F. To check that :F is SIllOOth versal we should
first prove that

But F(u) is quasi-isomorphie to a complex R(ll)'

R(u) = [ ... --t 0 --t EB niEi~ EB 7tiEi --t 0 --t ... ]
iEI- iEI+
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anel it is weil known that the eohoInologies Extk(F(u), F(u)) eoincides the
hyperhoInology of R(u) and the latter can bc evaluatcd via the following
spectral sequcnee.

Lemma 7.3 Let A'} B' be bounded cornplexes and suppose that Am are lo
cally free then there is a spectral sequence abutting to hypercohomology

(here Horn' is a complex of sheaves 01 loeal h01n01norphisms) and such that

Ef,q = EB Ext/(A i
l ßi+P).

i

In our situation highcr cohomologies between Ei and E j are trivial hence
we conclude that thc above spectral sequence degenerates at EI anel

(here HOIn" is a cOlnplcx of global hOInOlnorphisms).

This way we gct at once that Exe(F(u), F(u)) = 0 anel that thc natural
morphisIo

HOIn( EB niEi, EB niEd ~ Ext l (F(u), F(u))
iEI- iEI+

which arise in this cOInputation is an cpimorphisul. Thcn Lcrnma (1.6) in
[OLl states that this InorphisIll coincielcs with a Kodaira-Spencer Illorphism
so wc have got proveel the property KS.

Aeeording to Proposition 6.5 in order to gct a rcstrictcd fmnily it is suf
Reicnt to cheek thc cohOlllological conclitions:

hut these cohomologies could also be cOlnputcd a~'} hypcrcohomologies and
we can apply the above lemnla.

Conclitions Rl and R2 iInply that for thc corrcsponding spectral
sequence we have got

Er,q = 0 for 1) + q = 2,

hence Extk(F(u),F(u)(-L)) = 0 for k = 2 and this is what needed.D
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8 Stable sheaves with given ehern data

Here we prove that it is possible to find a stable sheaf with a given ehern
datum für SOlne Dcl Pezzo surfaces.

Theorem 8.1 Let X = p(;) (a DeZ Pezzo surjace arising by blowing 'Up a
point in p2 ). .

11 c E Mt satisjies the DL-conditionJ then there exist astahle sheal F on
X with Chd(F) = c.

11 C E Mt: satisfies the conditions DL1 J DL2, DL3J then there exist a
semi-stable sheaf F on X with Chd(F) = c.

Corollary 8.1 JI){ = p(;)' C E Mx, r'(c) 2: 1 und ~(c) 2: 1 then there exist
a stable sheal F on){ with Chd(F) = c.

The SaIllC result was prüved for X = p2 in [DL] and for X = Q in [R2].1
ProoE oE the theorcIn. . As it was mentioned after Theorem 4.2 the

existence of stable shcaves for r'(c) = 1 is trivial so we will SllPpOSC that
r(c) > 1 for the rest of the proof.

Becallse of ThcoreIn 7.1 all we have to do is to find an appropriate ex
ceptional system. For this \-ve need to Illake SOine calculations so let us first
fix notations.

Let L be the blown up line in X = p(21) a.nel li be apreimage in X of
a general line in p2. Then H, L is a base for Pic..l\ with thc following
intersection numbers:

H . H = 1, H· L = 0, L . L = -1,

The canonical divisor J(x is equal to I<.x = -3 H + L, anel 1<1 = 8.
In order tü fix a splitting for -](x wc put PI = H - L, P2 = Pa = H.

We can chose thc exccptional system E1, ••. ,E4 a.<.;

O(-2H+L+D), O(-H+D), V(-H+L+D), O(D)

where the choice of a divisor D dcpencls Oll c and it is specified in thc following
lemlua.

IThe had annüunced in [R3} that it is true für any Dei Pezzo surface but the prüof
happcned to be incomplete.
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Lemma 8.2 For any c from the theore1n there exist D E PicX and nonneg
ative numbers {ni li = 1, ... J 4} such that

L ni Chd(Ei ) - nl Chd(Ed = c
i>l

It follows frolll hcre that j- = {1}, 1+ = {2, 3, 4}.

\"Alc postponc thc proof of the lelllllla for a littlc whilc and continue with
thc theorCln. Let us first check the conditions on an cxceptional system ac
cording to Theorem 7.1 The homomorphism ancl Ext spaces bctween Ei do
not depend on thc shift by D, whencc it is sufficicnt to prove the conditions
providing D = O.

Condition Hm:
As it was provcn in [Go] for an exceptional pair A, B on J\ thc property

Extk(A ,B) = 0 for k > 0

is cquivalent to ll(A) ::; p,(B).
Therefore we need to calculate values of {l for thc elenlcnts of thc system.

The rcsult is

{l(O( -2H + L) = -5, {l(tJ(-H) = -3,
{l(O( -H + L) = -2, {l(CJ) = 0

From this it follows that Hm is valid.

Condition GIs:
It is deal' that shcaves

1iom(E1, E2 ) = CJ(H - L),
1iom(E1 , E3 ) = CJ(H) ,
1iom(E1, E4 ) = O(2H - L)

are generated by global sections.

Condition Rk:
It follows from Lelnma 8.2 that

L nir(Ei ) - L niT(Ei) r(c)
iEI+ iE/-
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but as r(c) > 1) we conclucle that Rk is valid.

Condi tion R2:
1s is proved in [G] that exceptional sheaves on X are stable) whence by
Proposition 3.11 in order to prove that

Ext2(Ei , E j ( -P)) = 0 for P :::;; Pk

it is sufficient to check that J-L(Ej ) - 3 > /l,(Ei ) - 8 or that

But the above calculations show that if i, j E J+ or i , j E 1- then

thus we have got what is needed here.

Conclition Rl:
We are to check that Ext,l(E1,Ej(-P)) = 0 for j = 2,3,4. This amounts to
show that 1-coholllology for the following sheaves are equal to zero:

0,
O(-L))

O(L),
0,

O(H),
O(H - L)

This is just an elenlcntary computation.

So we get the neecled conditions checkeeI anel in oreIer to finish the proof
all we are to do is to prove Lemma 8.2.

ProoE oE LClnlna 8.2. There is a way to C0l11pute {nd by llleans of thc
right dual exceptional system ([Go])

which is an exceptional system having thc propcrty:

X(Et) E j ) = ciO; whcre Ci = +1 or - 1.

For Dur case Olle call easily check that the dual systeln is:

CJ(D), V(H - L + D), CJ(L + D)) CJ(H + D),
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anel
Cl = +1, C2 = -1, 6'::\ = -1, 6'4 = +1.

So we get thc following:

nl = -X(O(H + D), c),
n2 = -X(O(L + D), c),
n3 = -X(O(H - L + D), c),
n4 = +X(O(D), c),

anel now our task is to show that it is possiblc to find D such that ni are
nonnegativeo It is the salne as to find a solution for the system of inequalities:

1
x(O(H), O(c - D)) ~ 0
x(O(L), O(c - D)) ~ 0

x(O(H - L), O(c - D)) ~ 0
x(O, O(c - D)) ~ 0

(6)

By means of the Riemann-Roch fonnula it is possible to rcwrite the sys
tem in more explicite form as follows. Let llS denote

1
v = v(c), ~ = ~(c), p = "2!(x,

X(O(N),c - D) = r(c) G(Z - N)2 - ~p2 + 1- ~)

As we have ~p"2 = 1 so system (6) is equivalcnt t.o

anel Z = p + v - H - D = xH + yL.
Thcn

1
(Z - H)"2
(Z - L)o2
(Z-H+L)'2
(Z)o2

< 6'

< c
< c
~ E:

(7)

where E: = 2~.

In a coordinate form this Ineans

y2 ~ E:

(y - 1)2 ~ E:

(y+l)2 :::;E:

y2 ~ C

(8)
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(9)

It is sufficient to prove that for any z' E n2 one could find TI, E Z2 such that
Z = z' + n is a solution for the systelll (8).

Let S be the set of solutions for (8) in R 2
. lt is cnollgh to prove that

thcre are A1 C R 2 anel {rnp } C Z2 with a propcrty:

for any z' E R 2 thcre exists n E Z2 such that

z = z' + nEU (S n 111 - rnp ) C U(S - rnp ).

p p

For the following we take

A1 = {(x, y) I 0 < x + y ::; I}

anel we leave t.o thc reader to check that S n 111 coincidcs with the set of
solutions for thc following systeln:

{

(x - 1)2 - (y + 1)2 ::; E:

x 2 y2 ~ E

0< :r.+y::; 1

Let us put m p = (p, -p, 0,0) for p E Z. It is clcar froln thc inequalities (9)
that

U(S n M - rnp ) = 111.
p

But for any z' E R 2 therc exists n E Z2 such that z = z' + n E A1, anel we
havc got what was nceded.D
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ABSTRACT.

Thc main goal of the article is to givc the gcneral dcfinition of algebraic stability that
would permit to consider stalility not only for algcbraic vcctor bundles 01' t.orsion-free coherent
sheaves but for the whole catcgory of cohercnt shcaves in au unificd way.

We present an axiomatic description of the algcbraic stability ou an abclian category and
prove some general results. Then the stability for cohercHt sheavcs on a projective variety
is constructed which generalizes Gieseker stability. Stabilities for graded modules and for
quiver representations are also discussed. The cOIlstrllctioIlS could be used for other abelian
categories as weIl.

The idea to generalize stability has appcalcd to thc author because it is quite incon
venient when stability considerations were restI'icted to the torsion-free sheaf subcategory
that is not abelian (sec for example [OSS], ch.2). Here in the seetion 2 we present the
definition of stability for cohcrent sheaves in genera1. 1

The scction 1 is devoted to the definition and basic propcrties of a general algebraic
stability. Then we discuss possible ways to construct sta.bilities.

The author would like to thank E.Schrödinger International Institute where the first
version of the text was written. 2

1When a preliminary version of this text had bcen written thc mithol' found thc article [MJ whcre st.a
bili ty for "coherent sheaves of pure cl imension d" (tlms for torsion sheaves n.s weIl) is considered. Although
definitions of the stabiIity proposed in (MJ and in this paper are different t.here is some commonality be
tween thelll and the sets of stable sheaves appeal' to be the same in both approachcs. Hence thc results of
[M] about thc moduli spa.ces for stable coherent sheaves ure valid for stahle sheaves in our sense as weil.

2The research was partly supported by INTAS grant.
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2 ALEXEIRUDAKOV

1. General algebraic stability.

Let A be an abelian category.

Remark. We will discuss Iater the cases WhCll A is thc catcgory of algebraic coherent
sheaves on a projective variety over a field k 1 thc category finitely generated graded
R-Iuodules over a polynolnial k-algebra R, anel thc catcgory of rcprcsentations of a quiver.

The Inain ingredicnt necded to define stability in A is astabilityorder on the objects
of A.

Definition 1.1. An order on nonzero objccts on A is called astabilityorder if:
Givcn an exact sequence of nonzcro objects

O--rA-rB-tC~O

we have
(88): (scesaw propcrty)

A -< B <=> A -< C <=> B -< C,
A >- B <=> A >- C <=> B >- C,
A ;::;::: B <=> A;::;::: C <=> B;::;::: C,

Remark. We imply that for A, B E Obj A either A -< B, or A >- B, 01' A ;::;::: B is valid and
that it is possible to have A ;::;::: B even when A =1= B.

One ean also deduce frolu thc definition the following property.

Lemma 1.2. Givcn an exact sequence of non~ero objects

O~A~B~C~O

anel an object D we have
(CM): (center of lUasS property)

A -< D and C -< D => B -< D,
A >- D anel C >- D =} B >- D,
A ;::;::: D and C ~ D => B ~ D.

We leave it to the reader to prove the lelnlna.

Definition 1.3. Let us call B stable when B is nonzero and for a nontrivial subobjcct
A c B we have A -< B.

Definition 1.4. Let us B caU selui-stable when B is non~ero anel for a nontrivial subobjcct
AC B we have A ~ B.

Because of thc seesaw property of the order Olle can usc factorobjects in the above
definitions as weIl:
B is stable if anel only if B -< C for a nontrivial factorobject C,
B is senü-stable nleans B =;< C for a nontrivial factorobject C.

In a sense stable objccts are similar to irrcdllcible ones and wc havc a general Schur
lemma type result.
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Theorem 1. Let A, B be semi-stable objects from A such that A >r Band supposc tlIere
is a nonzero morpllism cp : A -t B. Tbcn:

(a) A::=:::B,
(b) iE B is stable thcn rp is an cpimorphisln,
(c) iE A is stahle thcn cp is a Inonomorphisln,
(d) iE both A, Bare stable thcn cp is an iSOl110rphism.

Corollary (Schur lemma). Supposc that HOIll(A, B) are finite dimensional vcctor
spaces over a ficld k and that k is algebraically closed. Let A, B he stable objects such
that A >r B. Then

iE Hom(A, B) -j:. 0 then A ~ Band HOlll(A, B) = HOIll(A, A) = k.

Remark. For our examples of coherent sheaves and gradcd R-modules Hom-s are finite
dimensional vector spaces so the Schur lCIll1lla is valid.

To dcrive Coro11ary from the theorem wc need only to mention the classical fact that
a finite dimensional associative algebra, where a nonzero clelnent is invertible, over an
algebraically closcd field is necessary the field itself.

PfOO! 0/ Theorem 1. Let us consider thc usual kcr-iIn anel inl-coker cxact sequences für cp

o ---t K --+ A ---+ I ---t 0, o ---t I ---+ B ---+ C ---+ O.

As <p =f 0 so I =I O. By the definition of sellli-stability

I ~ B, and A ~ I so A ~ B.

But A >r B, so A ::=::: I ::=::: B, thus (a) is provecl.
For (b) we nced to Incntion that I -j:. B iInplics I -< B (becausc B is stable) in contra

diction with I ::=::: B that we have got above. We proceed siInilarly with (c) and (cl). D

We can also gcneralizc the Harder-NarasiInhan theorenl for algebraic vector bundlcs in
the following way.

Let us use in thc following thc convenient shorthand notations like A C; ~ B instcad of
writing A C Band A ~ B (with obvious variations).

As usual wc ca11 B noctherian if an asccnding chain in B stabilizes and say A is noe
therian when any object of A is noetherian.

Definition 1.5. Let us call B quasi-noethcrian (or q-noetherian) if a chain

in B has to stabilize.

Of course thc condition of being q-noctherian is weaker than bcing noetherian.
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Definition 1.6. Let us call B wcakly artinian (ar w-artinian) if

(wal): a chain

'in B has to be finite;
(wa2): a chain

in B has to stabilize.

We call A w-artinian if any object A in A is w-artinian.

Theorem 2. Suppose A is w-artinian and noetherian anel B is an ohject oE A. Thcn B
has a filtration

B = pO ::,) pI ::> ... J Fm J F m +l = 0

such that:

(i) Eactors Gi = pi / pi+l are scmistablc,
(ii) CO -< GI -< . . . -< Gm 1

and the filtration is uniquelly defined hy the propcrties (i), (ii).

We necd to prove SOlne propositions to gct the theon~nl.

Proposition 1.7. Let B be q-noctherian allel w-artinian thcn it exist a subobjcct B# in
B such that:

(a) iE A c B is a subobject in B then A ::;< B#,
(b) iE A c B anel A ~ B# then A c B,

and it is defined uniquelly by these p1'operties.

Clearly B# woulel be semi-stable and B is selni-stable iff B = B#.

Let B be nnder conditions of Proposition 1.7 further on.

Lemma 1.8. Let A c B. Tl1Cn either A is scnli-stablc 01' thcrc is a semi-stable A' c B
such that A' >- A.

Proo/ 0/ the lemma. Let Al = A. Ir Al is not selni-stable then there is A 2 such that

The sanle is valid for A 2 anel so on. Wc havc to COlnc to a semi-stable subobject after a
finite number of steps because the infinite chain

does not exist in the w-artinian B.
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Lemma 1.9. Let C be a subobject in B. IE tllcre is A c B satisfving A >- C tllen it exists
Cf C B such that Cf :J; >- C.

Proof of the lemma. By Lelnnla 1.8 we can snppose that A is senli-stable. Now we have
two standard exact seqnences

o ---+ An C ---+ A ---+ U ---+ 0,

o---+ C --+ A + C ---+ U ---+ o.

Bccause A is sClnistable, An C ~ A. Thus A ~ U by the secsaw property applied ho the
first sequcnce. But C -< A so C -< U. Hence the seconcl scquence ilnplies that C -< (A +C)
bccause of thc seesaw property. .

Wc see that Cf = A + C satisfies thc lenlllla.

Proof oJ Proposition 1.7. The uniqueness of B# is elear.
Ta prove the existence suppose to thc contrary that for any subobject B# in B either

(a) or (b) is wrang.
Let Ba be a subobject in B. Ir (a) is wrong for Ba thCll by Lemma 1.9 it exists

BI :J; >- BQ and BI is strictly larger thell Ba·
If (a) is valid for Ba but (b) is wrong thcn it exists A, A:::::: Ba, A is not a subobject in

Ba and wc can suppose that A is semi-stable by Lennna 1.8. Let BI = Ba + A. Again it
is easy to show that BI >;:: Ba and BI is also strictly large than Ba.

So we have got Ba C; ~ BI anyway with BI is strictly larger thCll Ba. Repeating these
argulnents we find B 2l B 3l • .• , such that

Ba C; ~ BI C; ~ B 2 ...

with strict inclusion on evcry step. This is irnpossible because B is q-noetherian. 0

Suppose that A satisfies the conclitions of ThcorCIIl 2.

Proposition 1.10. Let B have a filtration with tlw propertics (i), (ii) [rom Theorem 2.
Then B# = Fm.

ProoJ of the ]Jroposition. We can proceed by induction on 1n. For 111. = 0 the statement is
trivial. So let us consider the general case.

Let A be a subobject in B. By induction pm-I Ipm = (AI pm)#, thus

AI(pm n A) ~ F m- I I pm = ern-I.

But Gm-l -< Gm SO AI(pm n A) -< Fm.
Notice that (pm n A) ~ pm because Fm is semi-stable. Then by the property (CM)

wc have

so pm satisfies thc condition (a) fronl Proposition 1.7.
To prove that pm satisfies (b) consider A ::=::: Fm. Now we havc (pm n A) ~ pm :::::: A.

By (SS)-property this ilnplies
AI(Fm n A) >;:: A,
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provided that A/(Fm n A) i= O. But A x Fm = C m >- ern-I, hence

A/(Fm n A) >- Gm-I,

which is iInpossible by induction. Whence A/(Fm n A) = 0 anel Fm nA = A. Thus we
conclude that A c Fm so Fm satisfics (b), and the llniqucllcss statmnent from Proposition
1.7 gives us exactly what is needed. 0

Pro%/ Theorem 2. To construct the filtration let 11S deHne

FO = 0, F- 1 = B# and F-{i+l) = preiInagc (B / F- i )#.

Clearly a factor C-{i+l) = (B / F- i )# is s81ni-stablc anel C-{i+2) -< C- i +1 by (SS)-property
applied to the sequence

o .-t C- i + 2 -1- F- i+2 / p-i -1- C-i+ 1 .-t O.

Since B is noetherian so F- (m+ I) = B for SOlne 7n and we have only to shift thc indices
to get the filtration as it is neecled for the theorem.

To provc the uniqllcncss let us notice first that thc last tenn of a filtration is uniquely
defined by Proposition 1.10. From this it is easy to get the rcs111t by induction. 0

One can also constract a Jordan-Hölder filtration in a semi-stable object.

Theorem 3. Suppose A is w-artinian allel noctherial1 alld B is Ci scmi-stable object oE A.
Thell B }las a filtration

B = FO =:) F I =:) ••• =:) Fm ::> pm+l = 0

such that:

(i) Eactors Ci = F i / F i +1 are stable,
(ii) CO X Cl X ... x Gm,

alld tbe set {Gi} of factors is uniquclly dcfined hy tlw pToperties (i), (ii).

Proo/ 0/ the theorem. Clearly the subobjects ~Y in B such that X x B satisfy the ascend
ing and dcscending chain conditions. So thc result becoInes thc standard fact of basic
algebra. 0

2. Polynomial stability.

It is weH known that the category of algebraic coherent sheaves on a projective variety
is noetherian. The saIne is the category of finitcly gcneratcd graded R-modules wherc thc
algebra R is COffiITIutative and finitely generatccl over a fielcllk. We would like to constrllct
a natural stability order for these catcgories.

In both cases an object of a category has "a characteristic function". For a sheaf A on
a variety X it is:

P[A](n) = dilnfIHo(X,A(n)).

For a graded nloclule A = EBqEzAq let it bc the Hilbert-SanUlel function:

P[A](n) = dim~ EB~~~ooAq.

This justifies the following definition.
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Definition 2.1. We say that a catcgory A has a charactcristic function if for any object
A a function P[AJ : Z -> Z is defined with the propcrties:

a) given an exact sequence 0 -r A -t B -t C -t 0 wc havc

b) p[A] == 0 iff A == 0;
c) for n >> 0 thc function P[A] becolnes a. polynonlial which has a positive llighest

coefficient when A =1= 0,

Remark. Thc functions discusscd above for coherent shcaves and R-modulcs have these
properties,

It follows from the definition that if A C B then

Without loss of gcnerality we can suppose froHI now on that F[A] dcnotes thc polynolnial
obtained via condition c) of the definition,

Definition 2.2. Let A, B be nonzero objccts of A a.nd

TTl-

P[A](n) == L aini ,
i=O

1n

P(B)(n) == Lbini

i=O

be the corresponding polynolnials (m being unspecified large lllllnber) , Denote

and let

[
aTTl- am-ll ao]be the line of 2x2-lninofs of the lnatrix b l ... ,

TTl-' bm -1, .,., bo '
Thc polynolnial order is define by conditions:

A ;::::: B <=> A(A,B) == 0
A -< B <=> the first nonzero tenn in A(A,B) is positive,

We have to check transitivity and thc (88) propcrty.

Lemma 2.3. IfdegP[A] > degP[B] then A -< B.

Clearly thc first nonzero lninor in A(A,B) will be equal to the product of the highest
cofficients of P[A] and F[B] which are positive.
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Lemma 2.4. Jf deg P[A] = deg P[B] = d then A -< B iE and only if

(
ad-l ad-2 ao) (bd - 1 bd- 2 bo ), , . . . , <lex I ' b ' . . . , b

ad ad ad )d d d

(where "< lex" is used for "lexicographically lcss").

This amounts to thc straight checking according to the definition.

It follows froln Lenunas 2.3, 2.4 that the order is transitive.

Lemma 2.5. The polynolllial ordcr is astability ordcr.

Proof 01 the proposition. Let 0 -t A -r B -t C -t 0 be an exact scquence. Thcn

P[B](n) = P[AJ(n) + p[c] (n).

Hence

I
aj ai I_I aj ai I_I aj (Li I= Iaj + Cj ai + Ci I= Ibj bi I
bj bi - aj + Cj ai + Ci - Cj Ci Cj Ci Cj Ci

and this implies the scesaw property. 0

Proposition 2.6. If the characteristic functioll with tlw properties a)-c) is deHned for A,
thcn A is w-artinian.

Proof of the proposition. By thc contrary let HS have an infinite chain

with strict inclusions and let
Pr = L (L~r] xi

be the corresponding polynomials. As Ar ~ A r+1 strictly so

Pr(n) > Pr+1 (n) for TI.» O.

Hence deg Pr 2:: dcg Pr+1 and therefore deg P7' = deg P"+1 = ... = d for large enough r.
Since the polynomials havc positive integer values for 11, >> 0 so their highest coefficients

a~J belang to ~! N anel a~J :2: a~;+lJ by the same reasan so a~J = (L~+ll = ... = q far same

large r.
Then the property Pr (n) > Pr+1 ( n ) for n >> 0 is equivalent to

(
[r] [7'] [r]) ([r+1J [r+lJ [r+1])

q,ad _ 1 ,ad_ 2,··· ,ao ~lex f],a d- 1 ,(Ld-2 , ... ,ao

and this is thc salne as

(

a[rl a[7'] [r])
d-l d-2 a o--,--" .. ,-
q q q (

[r+lJ [7'+1] [r+l])ad _ 1 Ud - 2 a
O

>lex --, --, .. , , -- .
q q q

Because of Lemma 2.4 this Ineans Ar >- A r+1 which contradicts to the presupposition that
Ar ~ A r+1. 0
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3. Ratio of ad.ditive functions stability.

Another, perhaps nlore usual way to define a stability order ([F],[K],[LT],[OSSJ) is via
a ratio of two additive functions in a way that we are going to discuss in this section.

Definition 3.1. Let c and r be two additive functions on A anel let T(A) > 0 for any
nonzero object A of A. We call the ratio

IL(A) = c(A)
T(A)

the (c: r )-slope of A and defiue the slope order by conditions:

A -< B {:} IL(A) < lL(B),
A ~ B {:} Il(A) = Il(B).

This way stability for algebraic vector bllndlcs is llsllally dcfined ([OSS],[M],[LTD.

Lemma 3.2. Tllc (c:l')-slope order is a stabilit.Y order.

Pro%/ the lemma. Let us notice that

c(A) c(B) 1 IT(B)
T(A) - r(B) = T(A)r(B) l'(A)

c(B) I
c(A) .

c(B) I
c(A) .I

r(B)
r(A)

So the ordering between A and B is deternlincd by the positivity, negativity 01' nullity of
the detcrminant

Now it is easy to see that the same transfonnations of dcterminants that were used in the
proof of Lenuna 2.5 also work here. We leave details to the reader. 0

Remark. The function cis not obliged to take values in Z. For exalllple, Q, C 01' an ordered
Z-module could be the target set as weIl. The latter one was the case for the stability used
in ([RD.

A.D.King, [K] has llsed the notion of stability to construst moduli spaces of thc rep
resentations of a quivcr. In his case stability is discllssed only for represcntations with a
fixed Ko-image a and it depends on a choice of an additive function 8 such that 8(a) = O.
This approach makes it possible to constrllct a rnocIuli space but at the saUle moment it
does not allow to compare stable representations with different a as their stabilities often
have to be defined with respect to different funetions ().

In order to relate the King's definition with ours let U8 first reIllind the definition from
the King's paper.

Definition 3.3. ([K],p.516) Let A be an abelian category anel 0 : Ko(A) --+ :IR an additive
function on the Grothendieck group. An object. M E A is calleel 8-semistable if 8(M) = 0
and every subobject M' c M satisfics 8(M' ) ?:: O. Such an M is callcd 8-stablc if the only
subobjects M' with 8(M') = 0 are M and O.
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Proposition 3.4. Given astability for an abclian catcgory A that is defined VIa the
(c: r )-slope order and M E A let us consider an additive Eunction B such tllat

c(M)
B.= -c + r(M) T.

Then B(M) = 0 and M is stable by thc (c: r)-stability iE and only iE it is fJ-stable in thc
sense Definition 3.3.

Proof. Let us notice that .

8(M') ~ 0 {o} - c(M') + ~~Z~ reM') ~ 0 {o}
c(M') < c(M). 0
r(M') - r(M)

So thc King's results about moduli spaces B-stable objects are relevant to our stabil
ity. Thc existence theorclllS from ([KJ) for rnoduli spaces of B-stable representations of a
finite dimensional algebra iInply the existence theorellls for 11lOduli spaces of (c: r)-stable
representations.

Remark. The filtration of Theorenl 2 depencls on the stability. This is easy to check with
the following exarnple.

Let (1) --t (2) --t (3) be a quiver of type A3 anel

be the representation of the quiver (for the definitions consult for example [Kl).
We take r(V) = L: dirn Vi, c(V) = L: ai dinl Vi, Let V' be the representation where

dirn Vi' = 1 and the maps are isomorphisrns.
Thc subobjects of V' are the following two:

V [l} - {V[I] - 0 VII] - 0 V[I] - V'},
- 1-' 2 -, 3 - 3l

V (2} - {V[2] - 0 1/[2] - V' V[2] - V'}
- 1 - ,v2 - 2' 3 - 3 .

As a rcsult we conclucle that if al = 3, a2 = 2, (L3 = 1 then V' is stable. But if (Li = i
then V' is not stable anel

is thc Hareler-Narasimhan filtration in V'.
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