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LARGE TORSION SUBGROUPS OF SPLIT JACOBIANS OF CURVES OF
GENUS TWO OR THREE

EVERETT W. HO\VE, FRANCK LEPREVOST, AND BJORN POONEN

ABSTRACT. We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians
split complctely and have various large rational torsion subgroups. For examplc, the rational points
on a cer:tain elliptic surface over pl of positive rank paramcterize a family of genus-2 curves over
Q whose Jacobians each have 128 rational torsion points. Also, we find thc genus-3 curve

15625(X4 + y4 + Z4) _ 96914(X 2 y 2 + X 2Z2 + y2Z2) = 0

whose Jacobian has 864 rational torsion points.

1. INTRODUCTION

Nearly twenty years ago Mazur settled thc qucstion of which groups ca.n oeeur as t.hc group of
rational torsion points on an elliptic curve over Q, but the analogous question for Jacobian varieties
of eurves over Q of genus greater than 1 reIuains open. Most of the work that has been done on this
question has eentered on the probleIll of finding groups that da oeeur as rational torsion subgroups
of Jacobians. Several researchers have produeed families of genus-2 curves whose Jacobians contain
various given groups in their rational torsion (see [19], [20], [23], [24], [31], and the sununary in [27])
while others have constructed fmnilies of curves in which thc size of thc rational torsion subgroup
of the Jacobian increases as the genus of thc curve increases (see [7), [8], [21]' [22]' [25], [26]). The
largest group of rational torsion heretoforc known to exist on the Jacobian of a curve of genus 2
was a group of order 30; for genus-3 curves, the largest group had order 64.

In this paper we present many explicit fanülies of curvcs of genus 2 and 3 whose Jacobians possess
large rational torsion subgroups. The strategy behind our constructions is to take a product of
elliptic curves, each with large rat.ional torsion, and to find a eurve whose Jaeobian is isogenous to
the given product. Thus it is HO surprise that the groups wo list occur as torsion groups of abelian
varicties; rather, tho point of interest is that they occur aB torsion groups of Jacobian varieties.

For eurves of gcnus 2, we havc the following result:

Theorem 1. For every abstmet group G listed in the first coltimn 01 Table 1, there exists a lamily oJ
ctirves over Q oJ genus 2, parameterized by the rational points on a non-empty Zariski-open subset
oJ a variety oJ the type listed in the third column, whose Jacobians contain ~ group oJ rational points
isomorphie to G.

When we say that a family is parameterized by the rational points in a non-empty Zariski open
subset U of a variety X, we mean in particular that the closure of the image of U in the moduli
space of genus-2 curves is of the same dimension as X. Also, by "positive rank elliptic surface"
we Inean an elliptic surface ovcr pI with positive rank. Note that a fanlily parameterized by the
rational points in a Ilon-empty open subset of po consists of a single curvc. We will orten refer to
fanülies pararneterized by pI anel p 2 as 1- and 2-parameter fanülies.

A siInilar table expresses our results for eurves of genus 3.
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G Paranleterizing variety

Z/20Z 20 p2

Z/21Z 21 p2

Z/3Z X Z/9Z 27 p2

Z/30Z 30 p2

Z/35Z 35 positive rank elliptie curve

Z/6Z x Z/6Z 36 p2

Z/3Z x Z/12Z 36 p2

Z/40Z 40 positive rank elliptic surface

Z/45Z 45 positive rank elliptie eurve

Z/2Z x Z/24Z 48 p2

Z/7Z X Z/7Z 49 po

Z/5Z X Z/10Z 50 positive rank elliptie surface

Z/60Z 60 positive rank elliptie eurve

Z/63Z 63 po

Z/8Z x Z/8Z 64 p2

Z/2Z X Z/4Z x Z/8Z 64 p2

Z/6Z X Z/12Z 72 positive rank elliptie surface

Z/2Z x Z/6Z x Z/6Z 72 positive rank elliptie surface

Z/2Z x Z/2Z x Z/24Z 96 positive rank elliptie curve

Z/2Z x Z/2Z x Z/4Z x Z/8Z 128 positive rank elliptic surface

TABLE 1. Families of curves over Q of genus 2 such that G is contained in thc
torsion subgroup of the Jacobian.

Theorem 2. For every abstract grotip G listed in the first column oJ Table 2, there exists a Jamily oJ
curves over Q oJ gentis 3, parameterized by the rational points on a non-empty Zariski-open subset
oJ a variety oJ the type listed in the third column, whose Jacobians contain a group oJ rational
points isomoryhic to G. The Jourth coltimn oJ the table indicates whether or not the Jamily consists
entirely 0/ hyperelliptic CU11Jes.

In Part 2 of the paper we review the results on elliptie eurves that we will nccd to prove these the
orems. In Part 3 we show how, given a pair of non-isomorphie elliptic curves whose Galois Inodules
of 2-torsion points are iSOlllorphie, one can construct explieitly a curve of genus 2 whose Jacobian
is isogcnous to the product of the given elliptic eurves. After giving some quick applications of
thc cOllstruction to the problems of finding gcnus-2 eurves of low conductor and of high rank, we
give a lilodular interpretation of our construction in Section 3.3. The rest of Part 3 is taken up
with thc proof of Theorelu 1. In Part 4 we bcgin with another explieit construction: We show in
Section 4.1 how one can construct a curve of genus 3 whose Jacobian is isogenous to a product of
three given elliptic curves, provided tlmt each of thc elliptic curvcs has a rational 2-torsion point ,
that thc product of their discrinüllants is a square} and that a certain explicitly calculable nUluber
depending on the eurves is a square. The rernainder of Part 4 contains thc proof of Theorem 2.
The reader should note that our verifications of thc many entries in Tables 1 and 2 are organized
not by thc sequence of the entries in the tables but rather by the type of argulnent the verifications
require. Consequently, the proofs of the theorems are distributed among several seetions.

Throughout the paper} and often without furt her mention} we will mako use of van Hoeifs
Maple package IntBasis for computillg Weierstrass models for genus-1 curves with a rational
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IAll hyp.? IlJQlJ Paralueterizing varictyG

Z/2Z x Z/30Z 60 positive rank elliptic curve yes
Z/10Z x Z/10Z 100 pI yes

Z/2Z x Z/8Z x Z/8Z 128 positive rank elliptic surface yes
Z/4Z x Z/4Z x Z/8Z 128 pI yes

Z/4Z x Z/40Z 160 positive rank elliptic curve no
Z/2Z x Z/4Z x Z/24Z 192 positive rank elliptic curve no

Z/2Z x Z/2Z x Z/2Z x Z/24Z 192 positive rank elliptic surface yes
Z/10Z x Z/20Z 200 p2 no

Z/6Z x Z/6Z x Z/6Z 216 positive rank elliptic curve no
Z/4Z x Z/60Z 240 positive rank elliptic curve no

Z/4Z x Z/8Z x Z/8Z 256 positive rank elliptic curve no
Z/2Z x Z/2Z x Z/8Z x Z/8Z 256 p2 uo
Z/2Z x Z/4Z x Z/4Z x Z/8Z 256 p2 uo

Z/2Z x Z/2Z x Z/2Z x Z/4Z x Z/8Z 256 p2 yes

Z/2Z x Z/12Z x Z/12Z 288 p2 no

Z/2Z x Z/2Z x Z/6Z x Z/12Z 288 positive rank elliptic surface yes

Z/2Z x Z/2Z x Z/4Z x Z/4Z x Z/8Z 512 positive rank elliptic curve uo
Z/2Z x Z/2Z x Z/2Z x Z/2Z x Z/4Z x Z/8Z 512 pI yes

Z/6Z x Z/12Z x Z/12Z 864 po no

TABLE 2. Families of curves over Q of genus 3 such that G is containcd in the
torsion subgrollp of the Jacobian. The final colUlun indicates whether or not the
fanüly consists 'cntirely of hyperelliptic curvcs.

point; CreulOua'S programs findinf and mwrank for finding points on, and cOlnputing ranks of,
elliptic curves over Q; Mathematicaj and especially PARl.

2. GENUS ONE

In this section we record facts about torsion of elliptic curvcs over Q that we will need later.
Mazur's theorem [28] states that if E is an elliptic curve ovcr Q, then thc group of rational torsion
points on E is iSOlnorphic to Z/NZ with N ::; 10 or N = 12, or isomorphic to Z/2Z x Z/2NZ with
N S;; 4. For cach possibility where the group is not killed by 2, thc elliptic Cllrves having that group
as torsion subgroup farIn al-parameter family. We will need to have an explicit equation for the
universal curve for each faluily. For N = 3, this universal clliptic curve is y2 = x3 + (x + t)2/4 aud
a 3-torsion point is (0, t/2). For the other cases, we copyl Tablc 3 in [17] to our Table 3.

Let E~ denote the elliptic curve with a rational N -torsion point wit.h parameter t, and sitnilarly
define E~ 2N' We will need to know SOlllething about the field of definition of the 2-torsion points
on the c~rves E'fv. Therefore we record the discriminant ßN(t) of E~ modulo squares in Q(t) in
Table 4. Ir N is odd, the discriminant ßN(t) is equal (Iuodulo squares) to the discriminant of thc
cubic field 0 btained by adjoinillg the coordinates of one 2-torsion point j if N is even, ß N (t) is equal
(modulo squares) to the discriluinant of the quudratic field obtained by adjoining the coordinates
of a Hon-rational 2-torsion point.

1 Actually, we have done a tiny bit more than copy: we have expanded the implicit exprcssions for thc parameters
fJ and c in [17] to express band c in terms of a single parameter t.
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cb

4 t 0

5 t t
6 t2 + t t
7 t3 _ t2 t2 - t

8 2t2 - 3t + 1
2t2 - 3t + 1

t
9 t5 - 2t4 + 2t3 - t2 t3 - t2

10
2t5 - 3t4 + t3 -2t3 + 3t2 - t
(t2 - 3t + 1)2 t2 - 3t + 1

12
12t6 - 30t5 + 34t4 - 2lt3 + 7t'2 - t -6t4 + 9t3 - 5t2 + t

(t - 1)4 (t - 1)3

(2,4) 2 1
0t --

16

(2,6)
-2t3 + 14t2- - 22t + 10 -2t + 10

(t2 - 9)2 t2 - 9

(2,8)
16t3 + 16t2 + 6t + 1 16t3 + 16t2 + Gt + 1

(8t2 - 1)2 2t(4t + 1)(8t2 - 1)

I N or (2, 2N) ~

TABLE 3. ParallIeters b, c for the universal elliptic curve y2 + (l-c)xy-lnJ = x 3 -bx2

over Xl (N) 01' Xl (2, 2N). In each case, (0,0) is a torsion point of Iuaxilual order.

3 t(1 - 27t)
4 16t + 1
5 t(t2 - Ilt - 1)
6 (t + 1)(9t + 1)
7 t(t - 1)(t3

- St2 + 5t + 1)

S St2 - St + 1

9 t(t - 1)(t2 - t + 1)(t3 - 6tZ + 3t + 1)

10 (2t - 1)(4t2 - 2t - 1)
12 (2t 2 - 2t + I)(Gt2

- 6t + 1)

~ Discriminant 6.N(t) modulo squares

TADLE 4. Discriminant (modulo squares) of thc elliptic curve E~.

We will necd to know the x-coordinates of the llonzero 2-torsion points on E~ 2N' at lca.."t for
N = 3 anel N = 4. These are given in Table 5. For N = 4, the point Tl is thc on~ that is 4 titnes
a rational 8-torsion point. Note that these x-coordinates are also valid for the Blode}

y2 = x 3 _ bx2 + [(1 - c)x - b]2/4

obtained by cOIupleting the square in y.
For our work with genus-3 curves, we will require different models of thc universal elliptic curves

E~ for N = 4,6,8,10,12 and E~ 2N for N = 2,3,4; in particular, we will wa.nt to have each curve

writ ten in the form y2 = x (x2+A~+B), where x = y = °is a specified 2-torsion point. Table 6 lists
the values of A and B for the curves we will need, as well as the value of the nUllIber 6 = A2

- 4B,
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ICurve ~

E~6
-2t + 10 -t3 + 7t2 - Ilt + 5 -2t2 + 4t - 2

, t2 - 9 4(t + 3)(t - 3)2 (t + 3)2(t - 3)

Etg
16t3 + 12t2 + 2t 32t3 + 24t2 + 8t + 1 -32t4 - 32t3 - 12t2 - 2t

(8t2 - 1)2 16t2 (8t2 - 1) (4t + 1)2(8t2 - 1)

TABLE 5. The x-coordinates of the 2-torsion points on E~,2N.

5

which differs from the discriluinant of the elliptic curvc by a faetor of 16B2 . Thc entrics in the table
were calculated by completing the square in y for the lllodels of the E~N anel E~ 2N given above,
llloving a rational 2-torsion point to x = 0, scaling with respcct to x to clear de~Olninators, and
lnaking a linear change of variables in t so as to simplify the rcsulting polynomials. We will refer to
these models as FiN and Fi 2N depending on which universal elliptic curve they model. However,
there are two essentially different ways of putting the curves E~,4 and E~,g into the desired fonn,
because one of the 2-torsion points on these curves is a multiple of a point of order 4 while the
others are not. We denote the models in which the 2-torsion point at x = 0 is a multiple of a
4-torsion point by Fi<1 and Fi g, and wc denote the other models by FJ 2 and FJ 2'

For convenience, v.:e list in Table 7 the coordinates of a torsion poi~t of lna.xhnal order on thc
curves FiN' Fi 2N' allel FiN 2· Also, in Tablc 8 we give the 3;-coordinatcs of thc 2- torsion points
other than (0,0) on the cur~es whose 2-torsion points are all rational. In the entries for Pi 2 anel
FJ 2' the point labeled Tl is twice a rational 4-torsion point. '

Finally, we note that while there is no universal clliptic curve over the modular curve X (2) there
is a replaceluent that will suffice for our purposes. If k is a fielel of characteristic different from 2,
then every elliptic curve ovcr k that ha..":l all of its 2-torsion dcfined over k is isomorphic to a twist
of a specialization of the curve Fi,2 ovcr k(t) defincd by y2 = x(x2 + Ax + B), where A = -1 - t
and B = t.

3. GENUS TWO

3.1. Conventions. All curves are supposed to be llonsingular and irredllcible lluless we specifically
lIlelltioll that they might llot be. The lllodular curves we consider in section 3.3 are possibly singular.
If A is a variety over a field k and if K is an extension field of k, we will dcnote by AK the K -scheIne
A XSpeck Spec K. If A is an abelian variety over a field k and N is a positive integer, we will denote
by A[N] the k-group scheIne that is thc kernel of the llulltiplication-by-N lllap on A.

3.2. Jacobians (2,2)-isogenous to a product of elliptic curves. In this section we will show
how one can construct a curve of genus 2 whose Jacobian is (2,2)-isogenous to a product of two
given elliptic curves, provided one has an isomorphisIll of their 2-torsion groups that does llOt cOlne
fronl an iSOlnorphislll of elliptic curves. Related results, süme of them constructive, have appeared
in the literature - see for example [9], [10]' [12]' [14]' [18].

Suppose E anel F are elliptic curves over a separably closed field K, and let N be a positive
integer not divisible by the characteristic of K. The product of thc canonical polarizations on E
and F is a principal polarization A on the product variety A = E X F, and by combining the Weil
pairings on E[NJ and F[N] we get a non-degenerate alternatillg pairing eN from the N-torsion
of A to thc grollp-scheme of Nth roots of unity over K. Sllppose G is a sllb-grollp-scheme of
A[N] that is isotropic with respect to the pairing eN and timt is lnaxilnal with rcspect to this
propcrty. Then the polarization NA of A rcduccs to a principal polarization tL on t.he quotient
abelian variety B = AIG (see [30], Proposition 16.8, p. 135). The polarized variety (B,/J.) will be
either the polarized Jacobian of a curvc over K or the product of two polarized elliptic curves ovcr
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12N, (2, 2N), or (2N, 2) ~ A, B, alld 6 = A2 - 4B

A = 2t + 1
4 B = t2

6 = 4t + 1

A = 2t2+ 2
(2,4) B = (t - 1)2(t + 1)2

6 = 16t2

A = -t2 - 6t - 1

(4,2) B=4t(t+l)2
6 = (t - 1)4

A = -3t2 + Gt + 1
6 B = -16t3

6 = (gt + l)(t + 1)3

A = - 2t4 + 12t2+ G
(2,6) B = (t + 3)(t - 3)(t + 1)3(t - 1)3

6 = 256t2

A = 2t4 + 4t2 - 2
8 B = (t + 1)4(t - 1)4

~ = 16(2t2 - 1)t4

A = t8
- 4t6 + 22t4

- 4t2 + 1
(2,8) B = 16t4 (t + 1)4(t - 1)4

ß = (t2 - 2t - 1)2(t2+ 2t - 1)2(t2+ 1)4

A = - 2t8 + 8tG + 4t4 + 8t2 - 2
(8,2) B = (t2 - 2t - l)(t2 + 2t - l)(t2 + 1)2(t + 1)4(t - 1)4

/). = 256t8

A = -(2t2 - 2t + 1)(4t4
- 12t3 + 6t2 + 2t - 1)

10 B = 16(t2 - 3t + l)(t - 1)5t5

6 = (4t2 - 2t - 1)(2t _1)5
A = 24t8

- 96t7 + 216t6
- 312t5 + 288t4

- 168t3 + 60t2 - 12t + 1
12 B = 16(3t2 - 3t + If(t - 1)6t

G

ß = (6t2 - 6t + 1)(2t2 - 2t + 1)3(2t - 1)6

TABLE 6. Parameters A, B for the universal elliptic curve y2 = x(x2 +Ax +B) over
XI (2N) or X.(2,2N)" The 2-torsion point (0,0) is twice a rational 4-torsion point
for the entries Inarked (2,4) and (2,8), and is not for thc entries lnarked (4,2) and
(8,2).

K. Suppose N = 2; in this case it is easy to show that if (B, J-L) is a Jacobian then G IUnst be
the graph of an iSOInorphism E[N](K) ~ F[N](K). Our first result is that the converse of this
statelnent is almost true.

Proposition 3. Let E and F be elliptie etirves over a field k whose ehm"aete1"istic is not 2, let K
be a separable clostire of k, let A !Je the TJolarized abelian stirfaee Ex F J and let G ~ A[2](K) be the
gmph 01 a g1'OUp isomorphism 'ljJ: E[2](K) ---7 F[2](K). Then G is a maximal isotropie subgroup 01
A[2](K). Furthermore, the quotient polarized abelian variety AK jG is isomorphie to the polarized
Jaeobian 01 a eU1"Ve Cover K, tinless'ljJ is the restrietion to E[2](K) 01 an isomorphism EK ---7 FK.
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4 x =-t
y=t

(2,4) x = -(t + l)(t - 1)
y = 2(t + l)(t - 1)

(4,2) x = 2(t + 1)
y = 2(t + l)(t - 1)

6 x = -4t
y = 4t(t + 1)

(2,6) x = (t - 3)(t + 3)(t - l)(t + 1)
y = 4(t - 3)(t + 3)(t - l)(t + 1)

8 x = -(t + 1)3(t - 1)
y = 2(t + 1)3(t - l)t

(2,8) x = -4(t - l)t(t + 1)3
y = 4(t - l)t(t + 1)3(t2 + l)(t2 - 2t - 1)

(8,2) x = (t2 + l)(t2 - 2t - l)(t - l)(t + 1)3
Y = 4(t2 + l)(t2 - 2t - l)(t - l)(t + 1)3t

10 X = 4(t - l)(t2 - 3t + 1)t3

y = 4(t - l)(t2 - 3t + l)t3(2t - 1)
12 x = -4(t - 1)(3t2 - 3t + l)t5

y = 4(t - 1)(3t2 - 3t + l)t5 (2t2 - 2t + 1)(2t - 1)

I N, (2, 2N), or (2N,2) ~ (x, y)-coordinatcs

TABLE 7. Coordinates of a torsion point of IuaxiIual order on the universal curves

Ffv, Fi 2N' and FiN 2', ,

X(Tl)

(2,4) -(t - If -(t + 1)2
(4,2) (t + 1)2 4t
(2,6) (t + 3)(t - 1)3 (t - 3)(t + 1)3
(2,8) -16t4 -(t - 1)4(t + 1)4
(8,2) (t - 1)4(t + 1)4 (t2 + 2t - l)(t2 - 2t - l)(t2 + 1)2

I (2, 2N), or (2N,2) ~

TABLE 8. The x-coordinates of thc 2-torsion points on Fi,2N and FiN,2 other than (0,0).

1f'ljJ gives rise to a curve C, then C and the isomorphism Jac C ~ A K jG can be defined oveT k if
and only if G can be defined over k, if and only if'ljJ is an isomorphism of Galois modules.

Proof. All of the proposition except for the final sentence is the special case N = 2 of the results
of [14]. The final statement of the proposition follows fronl standard descent argunlents that make
use of the fact that the autOIllorphism group of C is naturally isomorphie to that of the polarized
variety AK jG. 0

Let k and K be as in Proposition 3 and let E ancl F be the elliptic curves over k defined by the
equations y2 = fand y2 = g, respectively, where f alld gare separable Illonic cubic polynmnials in
k[x] with discriminants ßf and ß g . Suppose'ljJ is a Galois-lllodule isomorphisIu E[2](K) -t F[2](K)
that cloes not corne from an iSOIuorphism EK --+ FK. Our next proposition shows how we can use
f, g, anel 'ljJ to find a nlOclel for the curvc Cover k timt appcars in Proposition 3.



8 EVERETI W. HOWE, FRANCK LEPREVOST, AND BJORN POONEN

Proposition 4. With notation as above, let 01, 02, and 03 be the roots 01 f in K and let ß1,
ß2, and ßJ be the roots 01 g in K. SUPTJose the roots are indexed so that ~((Oi,O)) = (ßi,O). The
numbers a1 J b1, a2, and l>2 defined by

U1 = (03 - (2)2/(ß3 - ß2) + (0:2 - al)2/(fJ2 - ßd + (01 - (3)2/(ß1 - ßJ)
b1 = (ß3 - ß2)2/(03 - (2) + (ßL, - ßI)2/(a2 - od + (ßI - ß3)2/(01 - (3)

a2 = 01 (ß3 - ßL,) + 02(ßI - ß3) + 03(fh - ß1)

l>2 = ßl(03 - (2) + ßL,(01 - (3) + ß3(a2 - ad
are nonzero, and the ratios a1/a2 and bl/~ are in k. Let A = ßgal/a2 and let B = I:::..fb1/b2. Then
the polynomial h defined by

h = - (A(a2 - aI)(al - a3)x2 + E(f32 - ßd(ßl - ß3))

. (A(a3 - 02)(02 - al)x2 + B(ßJ - ß2)(ß2 - ßd)

. (A(03 - (2)(01 - (3)X2 + B(ß3 - ß2)(ßl - ß3))

is a separable sextie in k[x], and the polarized Jacobian 0/ the eurve Cover' k defined by y2 = h is
isomorphie to the quotient 01 E x F by the graph 01 'IjJ.

Prooj. Simple algebra shows that if either al or a2 were zero we would have

ß
ß2 - ßl ß1 Ü 2 - ßL, 0 1

3 = ü3 + .
02 - 01 02 - 01

But then the aut01llorphism

,T, ß2 - ßl ßI0'2 - ß2 a 1
'±': ZHZ +-----

a2 - 01 a2 - a1

of Pk would ta.ke 0i to ßi for i = 1,2,3 and woulel also take 00 to 00, anel this would nwan that
7./J CaIne from the isomorphism EK --t FK obtained from W, contrary to our hypotheses. Therefore
a1 and a2 are nonzüro. It is easy to check that thc ratio a1/a2 is fixed by the action of 83 that
perulutes the indices of the os and ßs. But the Galois equivariance of thc map ~ shows that the
action of Gal(K/k) on al/a2 factors through t.his actioIl of 8 3, so a1/a2 is a.n elcInent of k. A
sinülar argument shows that b1 and b2 are nonzero and tImt b1 / b2 E k.

Thc group Gal(K/k) acts on h by pcrmuting its factors, so h is an element of k[x]. The coefficicnt
of x 2 in each factor is nonzero, so h is a sextic. To show that h is separable it will be enough to
show that the polynomial 9 E k[u] definecl by

9 = -(A(a2 - ad(a1 - (3)U + B(ß2 - ßd(ß1 - ß3))

. (A(a3 - a2)(a2 - adu + B(ß3 - (32)(f32 - ßt})

. (A(a3 - (2)(a1 - a3)u + B(ß3 - f:h.)(ß1 - ß3))

is scparable, becausc h(x) = g(x2 ) and thc raots afg are Ilonzero. Let t1 = -(A/B){ln/bd and let
t2 be thc element

t2 = ..!:- (ßdß3 - ß2)2 + f:h.(ß1 - ß3)2 + ß3(ß?, - ß1)2)
b1 03 - a2 al - 0:3 02 - 01

of k. Thc reader may verify that the automorphism Z I-t tlZ + t2 of Pk- takes the roots of 9 to the
roots of g. Thc roots of fJ are distinet by assumptioIl, so the roots of 9 lllllst also bc distinct, so 9
is separable.

Now we turn to the final statement of the proposition. Let F be thc elliptic curvc over k defincd
by v2 = g. Once one knows that Z H t1z + t2 takes thc roots of 9 to those of 9, it is a simple matter
to verify that the map
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provides an iSDIuorphism between F anel F. Thus we can deRne a lnorphism X: C --+ F of degrec 2
by

(x, y) H (tlX2 + t2, (ßf j B 3)y).

The involution r of C defined by this double cover is given by (x, y) H ~:;"X, V).
Let E bc thc clliptic curve over k clefined by v2 = 7, where 7E k[u] if(~fven by...,.

7= -(A(a2 - ad(al - a:l) + B((h - ßd(ßl - ß3)~').''''

. (A(a3 - 02)(a2 - a1) + B(ß3 - (h)(ß2 - ßdu )

. (A(a3 - 0:2)(a1 - a3) + B(ß3 - (h)(ß1 - ß3)u).

The a-ß symmetry in our equations shows that there is an iSDIuorphislll E --+ E given by

(u,v) H (SIU+S2,(ßgjA3)v),

where SI and S2 are the eleluents of k defined by exchanging as and ßs in the definitions of tl and
t2. Thus we get a k-morphism cp: C --+ E of degree 2 defined by

(x, y) H (Sljx2+ S2, (ßg jA3)(yjx3
)).

The involution a of C defined by this double cover is given by (x, y) H (-x, -V).
Let A = E x F, let J bo the Jacobian of C, and let w: A --+ J be the morphislll cp* x X* . Note

that thc ilnage of cp* in J is fixcd by a*, while the image of x* is fixcd by r*; since a*r* = -1, we
see that w is an isogeny. Let tL be the canonical polarization of .J. The fact that cp has degree 2
iIllplies that ?- /LCP* is the multiplication-by-2 lIlap Oll E, and similarly ? I-J.X* is the multiplication
by-2 map on Fj here ....... inelicates thc dual 1I1Orphislll. If we let ,,\ be thc product polarization on A
obtaineel frDIn the canonical polarizations on E anel F, then wo have a commutative cliagrmu

A ~ A

The diagram shows that w Ulust have degree four, and its kernellies in the 2-torsion of A. By using
thc explicit representatiou of 2-torsion elements of E, F, and .J as elegree-zero K-elivisors on E, F,
and C that are supported only on Weierstrass points, one may check easily that the graph G of 1/J
is contained in ker w, and since #G = # ker w, we mUßt have G = ker w. 0

Below we give a few quick applications of Proposition 4. First, we exhibit a curvc of genus 2
over Q whose Jacobian has a very small eonductor. Mestre [29] proved under standard conjeetures
that the eoneluctor of a g-diluensional abelian variety over Q IUUSt be greater thau (10.32)g, so for
a 2-dimensional variety a eonductor of 121 is elose to the miniInuul of 107.

Corollary 5. The conductor 0/ the Jacobian 0/ the curve y2 = -2x6 - 10x4 + 26x2 + 242 is 121.

Proo/. Take E anel F to be the modular curves Xl (11) and X o(ll) over Q. The Q-rational 5
isogeny E --+ F gives us a Galois-module isomorphism 'ljJ: E[2](Q) --+ F[2](Q), and'ljJ does not
COllle from an isomorphism EQ --+ FQ because Bei anel FQ are not isomorphie to one another.
Applying Proposition 4 to convcnient models of E aud F alld simplifying the rcsulting equation
gives us the curve in the statelllcnt of thc eorollary. 0

Rernark. The curve in Corollary 5 is none other than X o(22). An isomorphisIll frDIll the ulodel

y2 = (X 3 + 2X2 _ 4X + 8) (X3
- 2X2 + 4X - 4)

foI' Xo (22) given in [11] to our curve

y2 = -2x6
- 10:c4 + 26x2 + 242
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is given by (X, y) = (1 - 4/X,16Y/X 3 ).

Corollary 6. Let E be an elliptic curve over a field k 01 characteristic not 2, and Sti]Jpose End E =
Z. 11 E has a k-rational cyclic subgroup 01 some order N ~ 2, then there exists a genlls-2 curve
ove1' k whose Jacobian is isogenotis over k to E x E.

Proof. We ma.y 313Sllme N is prime. If N = 2, then there is a llonzero k-rational point 01' order 2,
and we Illay use in Proposition 3 the isomorphism 'f/; : E[2](K) ---+ E[2](K) interchanging the other
2-torsion points. If N is an odd prilne, then the isogeny to the elliptic curve F over k obtained
by dividing E by the eyclie subgroup deRnes an isomorphisIll of Galois-Inodules 'f/; : E[2](K) ---+
F[2](K). The condition End E = Zensures that E and F are not isomorphie, so the result again
follows frolll Proposition 3. 0

Remark. If E is an clliptic curve in characteristic p > 2 with j-invariant not in F p, then End E = Z
and E[P] (K) is a k-rational eyclie subgroup of oreIer p, so thc hypotheses of Corollary 6 are satisfied.

Remark. The eonclusion of Corollary 6 holds for some elliptic eurves E that do not satisfy the
eondition that End E = Z. For exaluple, if E is any elliptic eurve over F pn, P > 2, with j (E) t/. F p,

and one consiclers thc cyclie sllbgroup E~J](Fp), then the proof of Corollary 6 still goes through:
the condi tion j (E) t/. F p guarantees that E will not be isomorphie to its p- isogenous eurve F, sinee
J"(F) = j(E)l jp .

Here is another example , this tinle in characteristie 0: Let E be the elliptie curve

E : y2 = x3 - 169x + 845.

Thc eubic on the right is irreelucible, anel has square discrinlinant 134 , so its Galois group is A3 .

Therefore any isomorphisnl 7.j; : E(2](Q) ---+ E[2](Q) that. rotates the three non-trivial 2-torsion
points will be defined ovcr Q. Since j(E) f. 0, such a rotation cannot be the restriction of an
autOlnorphisnl of E, so by Proposition 3, we obtain a genus-2 curve ovcr Q whose Jacobian is
(2,2)-isogellous ovcr Q to E x E. On the other hand, E is curvc 676Dl in [4], which h313 110

Q-rational cyclic subgroups.

We can use Corollary 6 to constrllct genus-2 curvcs over Q whosc Jacobians have high rank, as
was also noticed by Stefalle Fennigicr.

Corollary 7. The Jacobian 01 the curve

y2 = -1707131824107329945 . (x2 + 55871769054504519799033274614104129)

. (x4
- 1086862437115841494920959046499163042x2

+3121654577279888882305769763628790308995888274656243920700573254848641)

has rank 28 over Q.

Proof. According to [6], the elliptic curvc

E : y2 =-x(x2 + 2429469980725060x + 275130703388172136833647756388)

h313 rank 14, and (0,0) is a rational 2-torsion point on E. The j-invariant is

483941743120924000812123996730853715578647268051688786879688
5250870830712351132421548861849566889806152906127048721

which is not an integer, so E cannot have conl~lex multiplication. Using Corollary 6 a.nd the
forrnulas of Proposition 4, we obtain thc desircd genus-2 curvc ovcr Q whose Jacobian is (2,2)
isogenous to E xE. D
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3.3. A modular interpretation. One of our goals in this paper is to construct curves over Q
of genus 2 whose Jacobians have large rational torsion subgroups, anel our strategy will be to
use Proposition 4 to "tie together" two olliptic curves that each havc largo torsion subgroups. In
particular, cvery curve C we construct will COIne equippeel with a (2, 2)- isogeny E X F -+ Jac C,
wherc E and F have some particttlar rational torsion struct.ure. We would like to construct the
moduli space of curves equipped with such isogenies.

Suppose k is a field and K is a soparable closure of k. Pick a set of elements {(M : M E Z>o}
of K such that (M generates the group of Mth roots of unity in K and (M = (~M for all integers
M, k > O. By a full level-M structure on an elliptic curve EIK we mean a pair of points (P, Q)
in E(K) that fOrIn a Drinfeld basis for E[M] (see [15L Chapter 1) and such that Panel Q pair
to (M under the Weil pairing on E[M]. This corresponds to thc Inoduli problem denoted in [15]
by [r(M)]call (sec [15], Seetions 3.1 and 9.1), but only because wo are working over a field - we
would have to be more ca.reful with the roots of unity otherwise. There is an obvious right action
of the group SL2(ZjMZ) on the set of fulllovcl-M structuros on a givcn curve E. Suppose G is
a subgroup of SL2(ZIMZ); by a partial level-M structure of type G on a Cllrve EIK wc Iuean a
G-orbit of fullievol-M strueturcs on E. If N is a positive divisor of M, then an (N, M)-structure
on an elliptic curve E / K is a pair (P, Q) of points on E(K) such that Q has "exact order M"
(see [15], Chapter 1) and such that Panel (M/N)Q form a fullievel-N structure on E; this is an
eXaIuple of a partial level-M structure. If E is an elliptic curve over k, then by a partial level-M
structUf'e of type G on E we mean a partiallevel-M structure of type G on EK that is stable under
the action of Gal(K/ k).

We let X(M) denote the usual compactified coarse nloduli space of elliptic curves with fullievel
M structure; we view X(M) a.s a curve over k((M)' Note that if char k divides M then X(M) will
have several cOInponents. For every subgroup G of SL2(Z/MZ) there is also a modular curve, which
we will denote by X (M; G), t.hat parameterizes clliptic curves with part iallevel-M structurc of type
G. The curve X (M ;G) is a k ((M )-schClue, where a E (Z/ MZ) * is a generator of the subgrollp
det G c (Z/MZ)*. Finally, wo denote by X I (N, M) the modular curvc that paraIueterizcs elliptic
curves with (N, M)-structure. The curve Xl (N, M) is a scllCme over k((N).
. Suppose the characteristic of thc base field k is not 2, a.nd supposc we are givcn two integers
M and N and subgroups G c SL2(Z/MZ) and H C SL2(Z/NZ). Let e be the sInallest field
containing the fields of definition of X(M; G) and X(N; H). We are interested in the fUllctor F
from the category of fields over e to the category of sets defined as follows: If l' => e is a field with
scparable closure R, then F(1') is the set of all R-isolIlorphisIll classes of tripies ((E, 0:'), (F, ß), 'lj;),
wherc E is an elliptic curve with partial level-M strllcture 0:' of type G ovcr r, where F is an
elliptic curve with partial level-N structure ß of type H over r, aud where 'lj; is a Galois-1l10dule
isomorphiBlu E[2](R) -+ F[2](R); here wo say tImt ((E,a), (F,ß),'I/J) and ((E',a'), (F',ß'),'lj;') are
R-isOInorphic if there are isoIIlorphisms cp: (E,a)R -+ (E',a')R anel x: (F,ß)R -+ (F',ß')n such
that 'lj;' 0 cp = X 0 '1/) on E(2](R). We will show that this functor is representcd by thc i-scheme y O

defined in the next paragraph.
Thc Iuodular curve X (2) is elefilleel over k, allel since char k =I- 2 it has only one eOIUponcnt. The

covering X(2) -+ X(I) is Galois with group S = SL2(Z/2Z), and the action of an element sES
Oll a point X (2) is determined by its action Oll the tripIe (E, P, Q) eorresponding to that point.
Let Zl = X(2)l xX(1) X(M; G)l anel let Z2 = X(2)l XX(I) X(N; H)t, where XX(I) nlCans the fiber
product over X(l)t. The covers Zl -+ X(Mj G)l and Z2 -+ X(N; H), are Galois with group S.
Let Z be the 2-diInensioual e-SchenlC Zl x Z2, where x means thc fiber product over Spee e, let S
act on the cover Z -+ X(Mj G)e x ..'«Ni H)t diagonally, and let Y be the quotient surface of Z
by this action. Finally, let y O be the opcn subvariety of Y that lies ovcr thc open subvariety of
X(I)l x X(l)l where neither factor is 00.

Proposition 8. The scheme yO represents F.
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Proof. First let us detennine how to describe thc r-valued points on y O• Let y be such a point.
Then y corresponds to a Gal(R/r)-stable S-orbit of elenIents of Z(R) that lie over the finite part of
X(l)R x X(l)R. Let z be one of thc points in this orbit. According to thc Inodular interpretation
of Z, the point z corresponds to thc R-isomorphism dass of a quadruple

((E, P, Q), (E, a), (F, U, V), (F, ß)),
where E and F are elliptic curves over R, where P and Q are independent 2-torsion points in E(R)
and U and V are independent 2-torsion points in F(R), where a is a partial level-M structurc
of type G on E, and where ß is a partial level-N strueture of type H on F. When an element
of S is applied to this quadruple, thc only things that get changed are the points P, Q, U, and
V, so the fact that the S-orbit containing z is defined over r means that (E, a) is ismnorphic to
all of its Galois conjugates alld (F, ß) is isonlorphic to all of its Galois conjugates. According to
Proposition 3.2 (p. 274) of [5], this Ineans that (E, a) and (F, ß) can be defined over r. If we
think of E and F as curves over r, then the fact that the S-orbit of z is defined over r Ineans
exactly that thc group isomorphism 'ljJ: E[2] (R) --+ F[2] (R) defined by scnding P to U and Q to
V is Galois equivariant. Thus, a point y E yO(r) gives us a tripie ((E, a), (F, ß), 'ljJ) - but only
up to R-ismIlorphislll. And dearly thc R-isomorphism dass of such a tripIe will give HS a point on
y O. This gives us a bijeetion between .1'(1') and Hom(Specr, yO) for every r, and this collection of
bijections is casily seen to provide a natural equivalence F H Hom( . ,yO). 0

Let W be the open subscheme of yO whose r-valued points correspond to R-isOInorphism classes
of tripIes ((E, a), (F, ß), 'ljJ) such that 'IjJ does not corne frorn an iSOIllorphisrn bctween ER and FR..
PrOfi Proposition 3 we see that the r-valued points of W correspond to R-isomorphisIn dasses of
tripIes (C, (E, a), (F, ß)), wherc (E,a) is an elliptic curve with partial lcvcl-M structure of type
G over r, where (F, ß) is an elliptic curve with partial level·N strueture of type H over r, anel
where C is a curve of genus 2 over r provided with a (2, 2)-isogeny Ex F --+ Jac C that takes twicc
the canonical polarization of E x F to the canonical polarization of Jac C. We abbreviate this by
saying that W is the mochlE space for such tripIes.

Corollary 9. Let M' be the least common multiple 0/ 2 and M and let N' be the least cornmon
multiple of 2 and N. Every geometrie component 01 W is an open subvar'iety of a quotient surface
of X(M')K X X(N')K.

Proof. Let Zl and Z2 be as in the cOllstruction of Y above anel let ep and 'ljJ be thc natural quotient
1l1aps from X(M')K to X(2)K and to X(Mj G)K, respectively. For every s in thc covering group S
of X(2)jX(1) we get a morphism <I>,~: X(M')K --+ (ZdK by combining thc morphisIns sep and 'ljJ.
It is deal' frmn the Inodular interpretation of these schemes that the maps <1>5 provide a surjective
Inorphism froIn thc SUffi of six copies of X(M')K to (ZdK. SiInilarly we find a surjective morphisIn
from the slun'of six copies of X(N')K to (Z2)K. Therefore every cOIuponent of ZK = ZIK X Z2K
is a quotient surface of X (M') K x X (N') K, and every component of WK is an open subvariety of
a quotient surface of X(M')K x X(N')K. D

We will be interested in finding genus-2 curves over Q whose Jacobians are equippecl with (2,2)
isogenies frOIn a product of elliptic curves with specifieel rational torsion structures. Thus we will
want to look at the Q-rational points on thc moduli space W, and it would be particularly nice to
find subvarieties of W whose Q-rational points are Zariski dense. In the ncxt fcw sections we will
find such subvarieties for several different dIoices of torsion struetures, although we will not phrase
our arguInents in tcrnlS of moduli spaces.

Example. Suppose we are interested in tying together an elliptic curve wit.h (2, M)-structure and
an elliptic curve with (2, N)-structurc, whcre M anel N are cven integers. It is easy to check that
X(2) XX(I) Xd2, M) is the sunl of six copies of XI (2, M), and X(2) XX(I) Xl (2, N) is the sum of
six copics of Xl (2, N). The group S aets on each of these varieties by pcrmuting thc sumnIands,



TORSION SUBGROUPS OF JACOBlANS 13

and the quotient surface Y is the sum of six eopies of Xl (2, M) x Xl (2, N). Thus in this ease W
has a very simple strueture. The reader is eneouraged to work out the structure of W for other
pairs of partial level structures and to keep thc resuIts iu mind when rcading thc following sections.

3.4. Building Jacobians from elliptic curves E with #E(Q)(2] = 4. Ir two elliptic curves over
Q are to have 2-torsion subgroups isomorphic as Galois-modules, it is necessary that they havc thc
same ntuuber of rational2-torsion points! In this section we eonsider the case where this ntuuber is 4,
so we are concerned with the families of elliptic curves over Q with torsion subgroup containing
Z/2Z x Z/2NZ, for N ::::; 4. Any mClnber of the farnily with N = NI ean be paired with any
rnember of the family with N = N 2 , since the 2~torsion subgroups are automatieally isomorphie
as (trivial) Galois-rnodules. Moreovcr the generic mernbers of each family (choosing Cl. different
indetenninate pararneter for each) are clearly not isomorphie to each other, so by Proposition 3,
we get 2-parmneter familics of genus-2 curvcs whose Jaeobians map via a (2, 2)-isogeny to EI x ~.
In other words, we have shown that the eorresponding moduli spaee is a union of rational surfaces
over Q. (This also follows immediately frmn t.he example at thc end of the preceding section.) That
t.hese fmnilies really have two pararueters ean be seen from the fact that over C, one can specify
the j-invariants of the two elliptic curves arbitrarily and independently2. Sirnilar argurnents apply
later in this paper; we leave the details to the reader.

The product of the rational torsion in the two elliptic curvcs does not ruap injeetively to the
rational torsion points of the Jacobian, but only a (2,2)-subgroup is killcd. The group structure
of tbe irnage of this product in the Jacobian depends on NI and N2 , but also on thc choice of
isomorphisrn between the 2-torsion of the two curves if NI alld N 2 are cven, since in this case
each elliptic eurve has a 2-torsion point which is distinguished by the property of being Ni tirnes
another rational torsion point. For instancc, if NI = N 2 = 4, elernentary calculations with abelian
groups show that this group has structure Z/2Z x Z/4Z x Z/8Z if these special 2-torsion points
are identified under 'l/J, and Z/8Z x Z/8Z otherwise. If Nr = 3 and N2 = 4, then we obtain
Z/2Z x Z/24Z. Ir NI = N2 = 3, then we obtain Z/6Z x Z/6Z. We have not eonsidered the cases
where Ni ::; 2, since these cases lead to subgroups of the above.

Although smue rational 2-power torsion is lost upon passing from E x F to the Jaeobian; there is
also the possibility that Sülne 2-power torsion can be gained: a non-rational point on E x F rnight
rnap to a rational point on J. This phcnornellon will be cxplorcd in Scction 3.7. .

3.5. Building Jacobians from elliptic curves E with #E(Q)(2] = 2. We now consider elliptie
curves E and F having torsion subgroups Z/NZ and Z/N'Z with even N, N' ::::; 12. An iSOluorphislll
of Galois-modules from E(2](Q) to F(2](Q) Blust lllap thc rational 2-torsion point to the rational
2-torsion point, so we see that such an isolllorphism exists if and only if the quadratie field over
which the non-rational 2-torsion points of E are defined cquals the quadratic field for F, and this
holds if and only if the discriminants of E and F are equal modulo squares. We are thus led to the
problerll of finding the rational solutions to

(1)

outside the I-dimensional closed subset corresponding to CaBes where E or F degenerates or where
j(E) = j(F). Each such solution gives rise to a Jacobian of a gcnus-2 curvc over Q whose torsion
subgroup contains the quotient of Z/NZ x Z/N'Z by thc identification of the points of order 2 in
each fac tor.

Ir N' = 4, then (1) is

2 Actually, Olle should choose the j-invariants to bc differcllt, so that the elliptic curves are guarantecd llOt to be
isomorphic, but this is an open conditioll} so thc number of parameters is not reduced by this constraint.
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which is a rational sllrfaec over Q, since we can solve for u in tenns of t and y. In particular,
for N = 10, we obtain a 2-paranleter falllily of Jacobians whose torsion subgroups contain Z!20Z.
(The other N will give results which are subsUIned in our other results.)

If N' = 6, then (1) is

(2) 6. N ( t )y2 = (u + 1)(9u + 1).

This can be considered as a conic over Q(t) with a Q(t)-rational point, namely (u, y) = (-1,0),
and it is easy to see that this makes (2) a rational surfaee. In partieular, for N = 10 or N = 12, we
obtain a 2-parameter family of Jacobians whose torsion subgroups contain Z!30Z or Z/3Z x Z!12Z,
respectively.

If N' = 10 and N = 8, then (1) is

(Bt2 - Bt + l)y2 = (2u - 1)(4u2 - 2u - 1).

Ir we set t = (82 - 28 + 3)/(482 + 4), we obtain a split elliptie surface over the 8-line, and the Q(s)
rational point (tL l y) = (-1/2, (282 + 2)! (82 - 28 - 1)) is of infinite order, since its specialization at
8 = 0 is of infinite order on the resultillg elliptic curve ovcr Q. Thus we have an elliptic surface
over pI of positive rank, and the Q-rational points on this surface outside of the 1-dilnensional set
of degenerate solutions parameterize Jaeobians over Q whose torsion subgroups contain Z!40Z.

If N' = N = 10, then (1) is

(2t - 1)(4t2 - 2t - l)y2 = (2u - 1)(4u2 - 2u - 1)

whieh is an elliptie sllrface over thc t-li ne, and (u, y) = (t, 1) is a Q (t)- rationa.l point of infinite
order, since nnder the obvious iSOlnorphism over Q(t)( J(2t - 1)(4t2 - 2t - 1)) to thc clliptic curve

y2 = (2u - 1)(4u2 - 2u - 1)

it lnaps to a point with non-constant u-coordinate. Hence we obtain a positive rank elliptie surfaee
whose points (outside a I-diInensional set) parameterize Jacobians whose torsion subgroups eontain
Z/5Z x Z/lOZ.

Similarly, if N' = N = 12, then (1) is

(2t2 - 2t + 1)(6t2 - 6t + l)y2 = (2u2 - 2u + 1)(6u2
- 6u + 1),

which again is an elliptie surface over the i-line if we choose (u, y) = (t, 1) as the zero seetion. We
then have the Q(t)-rational point (u, y) = (t, -1), whieh is of infinite order, for the Salne reason
as in the previons case. Hence we obtain a fmnily of Jacobians, paralneterized by the points on an
open snbset of a positive rank elliptic surfaee, whose torsion subgroups contain Z/6Z x Z!12Z.

Finally, if N' = 10 and N = 12, then (1) is

(3) (2t2
- 2t + 1)(6t2

- 6t + l)y2 = (2u - 1)(4u2 - 2u - 1).

Ir we choose t = 1/3, the resulting elliptic eurve is eurve 900AI of {4], whieh has rank 1. There are
only finitely many rational points on this elliptic eurve that give l/, such timt EJo degenerates or is

isomorphie to Ei~3, so we obtain a family of Jacobians 1 parameterized by the points on an open
subset of a positive rank elliptic curve, whose torsion subgronps contain Z!60Z.

Remark. In fact, there are infinitcly lnany other specializations of t for which (3) beCOlnes an elliptic
eurve of positive rank.

3.6. Building Jacobians from elliptic curves E with #E(Q)(2] = 1. Here we eonsider elliptie
curves E and F having torsion subgroups Z/NZ and Z!N'Z, respectively, with N, N' odd (and at
IllOSt 9). For an elliptic curve y2 = f(x) with trivial rational 2-torsion, each non-trivial 2-torsion
point is defined over a cubie extension, namely the extension 0 btained by adj oining a root of f (x).
The Galois-Inodules E(2](Q) and F[2](Q) are isomorphie if and only if the corresponding eubic
fields are isomorphie. In this case, the discriminants of thc elliptic eurves must be equal modulo
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squares. The eonverse is not quite true (eubie flelds having the same diseriminant lnodulo squares
are not neeessarily isomorphie), but it will turn out that thc diserinlinants often cOlltain enough
information for our purposes.

A short seareh for solutions to .6.7 (t) = .6.g (u) modulo squares (and such that the discriIninants do
not vanish) leads to the solution t = -16/3, u = 4. PARI shows that the eorresponding cubie fields
are both isomorphie to the unique eubie field of discriminant -2964. (Uniqueness ean be seen from
thc tables obtainable by ftp at megrez. math. u-bordeaux. fr in directory /pub/numberf ields.)
Henee we find a genus-2 eurve whose Jacobian has a rational torsion point of order 63. Following the
recipe given by Proposition 4 gives an explicit model for thiB genus-2 curve. After a few sinlplifyiqg
ehanges of variable, we obtain the lnodel

(4) C : y2 = 897x6
- 197570x4 + 79136353x2 - 146398496.

Let D be the divisor (R) + (R') - (00+) - (00-) on C, where

(
-69 + V4369 )R = 2 ,4515015 - 68241 vi4369 ,

where R' is the Galois eonjugate of R, and where 00+ and 00- are the two points at infinity on a
desingularizcd luodel of C. One ean eheek that D lnaps to a 9-torsion point on one of the elliptie
quotients of C and to a 7-torsion point on the other elliptic quotient (see [13]), so D represents
a divisor of order at least 63 on C. Sinee C ha." good reduction at 5, and sinee therc is only one
positive lllUlt ipIe of 63 less than thc Hasse-Weil bound (1 + J5)4 for # (Jae C) (F5), wc IUUSt have
#(Jac C)(F5 ) = 63, and hence the torsion subgroup of (Jac C)(Q) is isomorphie to Z/63Z and is
generated by the dass of D. It seems likely timt there will be only finitely many gcnus-2 eurves
over Q whose Jacobians possess a rational 63-torsion point. It is perhaps even the ease that the
eurve (4) is the only oue.

Similarly, we find the solution t = 7, u = -14/13 to .6.7 (t) = .6.7 (u) modulo squares. (We must
be carcful to exdude solutions where u = t, 1L = 1/(1 - t), 01' U = (t - 1) / t , sinee these eorrespond
to taking thc salne elliptie eurve but with one 7-torsion point a nnIltiple of the other.) For these
values of t and 'U, the corresponding eubic fields turn out to be isomorphie, so we indeed obtain a
curve G whose Jacobian eontains a subgroup of rational points isomorphie to Z/7Z x Z/7Z. Using
Proposition 4, we find the model

C : y2 = x6 + 3025x4 + 3232987x2 + 869675859

for this enrve. The Jaeobian of the reduetion of C lnodulo 5 is isogenous to the produet of two
elliptie eurves eaeh with exactly 7 points (7 being the only multiple of 7 less than the Weil bound),
so the Jacobian of the reduetion has exactly 49 points. Thus we find that thc rational torsion on
the Jaeobian of C is in faet iSOluorphic to Z/7Z x Z/7Z.

To handle SOlue of the other eases (in particular those with N = 3) we will use the following
lemma. Thc restrictions on E are not neeessary, hut we only need the result under these restrictions.

Lemma 10. // E is an elli[Jtic curve over a fidd k 0/ characteristic not 2 such that E[2](k) is
trivial and j(E) 1= 0, 1728, then there is aI-parameter /amily of elliptic curves E' over k such that
E' has a k-rational 3-torsion point and E' [2] ~ E[2] as Gal(k/k)-modules.

Proof. Write E in Weierstrass fOrIU as y2 = x 3 + Ax + B (so A, B =F 0), and let r be a root of
x 3 +Ax+B. We dainl that specializing t to - B 2 / A3 in the universal elliptie eurve y2 = x 3 + (x +t)2

aver X d3) givcs one E' with thc clesired propertics. A calculatioll shows that s = - (B / Ar)2 is a
root of x3 + (x - B 2 /A3 )2 in k(r), and s eanllot be in k, since r is at IIlOSt quadratie over k(s).
Thus k(r) alld k(s) are thc SaIne eubie extensioll of k, and hence thc eurves

y2 = x3 + Ax +Band y2 = x3 + (x _ B 2 /A3
)2
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havc ismnorphic 2-torsion as Galois-Inodules.
The set of all E' with the desired properties correspond to the k-rational points of a twist of the

modular eurve Xl (2, 6) classifying clliptic curves with a 3-torsion point and fnll level-2 strueture.
But this Inodular eurve is rational, and the previous paragraph shows that our twist of it has a
k-ratimial point, so our twist is a rational curve over k, and we obtain the desired I-pa.rameter
family. 0

Applying the lelnma with k = Q(t) and E as the universal elliptie curve with a 7-torsion point
yields a 2-parameter family of pairs of elliptic curves with a 3-torsion point and a 7-torsion point
respectively, and having isonlorphic 2-torsion as Galois-modules, so by Proposition 3, we obtain a
2-paralneter family of genus-2 eurves over Q whose Jacobians possess a. rational 2I-torsion point.
SiInila.rly, if we take E = EÖ we obtaill a 2-paramct.er farnily of genus-2 curves over Q whose
Jacobians have torsion subgroup cOlltaining Z/3Z x Z/9Z.

Next we construct infinitely many genus-2 curves with a rational 35-torsion point. Let E be
the elliptie curve Eil with a rational 7-torsion point. The elliptic curves E' over Q equipped
with a rational 5-torsion point and a Galois-moelule isomorphism E'[2] -+ E[2] correspond to the
rational points on a twist X' of Xl (2, 10). Now Xl (2, 10) is a covering of Xl (5) with Galois
group GL2 (Z/2Z) ~ S3, and the subgroup A3 corresponds by Galois theory to an intennediate
covering whose function field is thc Cluadrat ie extension of Q(t) (where t is the parameter on Xl (5) )
obtained by adjoining the square root of the discriminant of the cubie ft (x) if EA is wri t ten in t.he
fonn y2 = ft(x). This funetioll fielcl is of genus 1, since from Table 4, ~5(t) = t(t2 - Ilt - 1). But
Xd2, 10) is an elliptic curve aB weil (see [16]), so its map down to the intennediate covering Dlust
be an isogeny (in fact, a 3-isogeny). Similarly our twist X' of Xd2, 10) is a genus-l curvc with a
elegree-3 map to the unique intermediate covering X" of clegree 2 over Xl (5). The eurve X" classifies
elliptic eurves E' with a 5-torsion point anel a Galois-stable A3-orbit of isonlorphisms E'[2] -+ E[2].
There are two A 3-orbits, and they are defined over Q(J~ 7( -1)~5 (t) ), since an antomorphism of
this Reld over Q(t) is trivial on Q( J~7( -1)) if and only if it is trivial on Q(~5(t)), whieh Ineans
the signatures of its permutation actions on the nonzero 2-torsion points of E and Eg roust be the
same. Thus X" is the genus-l curve y2 = ~7(-1)~5(t), i.e.,

y2 = -26t(t2 - Ilt - 1).

This is an elliptic eurve of conduetor 54080, which is too large for it to be listed in the tables
of [4]' hut Crelnona's rank-cOluputing program shows that it has rank 2; the points (-2/13,22/13)
aud (-26,806) are independent of one another and have infinite order. The genus-l twist X' of
Xt{2, 10) has a rational point) because a PARl seareh finds an elliptic curve E§, with t = 1/26,
such that the eubic field (of discriInillant -104) obtaincd by adjoining a 2-torsion point is thc salne
as that obtained by adjoining a 2-torsion point of E. Thus X' is an elliptie eurve 3-isogenous to
X". In partieular, X' has rank 2, so it has infinitely many rational points, all but finitely nlany of
whieh give rise to genus-2 curves whose Jacobians possess a subgroup Z/5Z x Z/7Z ~ Z/35Z.

Sinülarly the elliptic curve E = Eg5 with a rational 9-torsion point has 2-torsion subgroup

isomorphie as Galois-module to that of the elliptic ellrve E~3/10 1 and the elliptie eurve

y2 = ~9(-5)t(t2 - Ilt - 1)

of eonduetor 13838400 (!) has rank 2 again according to CreDlona's prograrn, with (-10/93,6970/93)
and (-640/27,5860240/81) as independent points of infinite order. Thus we obtain infinitely many
genus-2 curves whose Jacobians possess a rational 45-torsion point.

3.7. Gaining 2-power torsion. Let k be a field of characteristic not 2, let K = ksep be a separable
closure of k, and let Gk = Gal(K/k). Ir E is an elliptic curve over k, then E[2] \ {O} = SpeeL
where L is a separable k-algebra of diDlensioIl 3. Explicitly, if E is in the fornl y2 = f (x) with
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f(x) E k[x] a cubic polynOIuial, then L = k[T]/(f(T)). As is weH known (see [1]' [2]' [33]),

H 1(Gkl E[2]) ~ ker (L" /L,,2 ~l k" /k"2)

and the composi tion

17

o

E(k)/2E(k) L-t H1(Gkl E(2]) ~ ker (L" /L,,2 ~n k" /k"2)

is a map ~ sending a rational non-2-torsion point P with x-coordinate Xp to thc iluagc of Xp - T.
When P is a non-trivial rational 2-torsion point, xp - T vanishes in exactly one cOInponent of
L, and ~(P) equals the image of Xp - T is aH hut this componcnt; thc image of P in this last
componeut (whieh is a eopy of k) eau be dcduced up to squares from knowing that ~(P) is in the
kernel of the norm.

Proposition 11. Let f(x) and g(x) be ctibic polynomials in k[x] stich that

E : y2 = I(x) and F : y2 = g(x)

are elliptic curves admitting an isomorphism 01 Gk-modules 'ljJ : E[2](K) --+ F(2](K). Define L
and ~ as above /01' E J and simila1'ly define LI and ~I /01' F. The map 'ljJ induces an isomorphism
;jJ : L' -t L. Let A be the qtiotient 0/ E x F by the g1uph 0/ 'lj;.

(a) // a point (Po, Qo) 0/ (E x F)(K) 1naps to a k-1'ational point on AJ then 2Po E E(k) and
2Qo E F(k).

(b) Given P E E(k) and Q E F(k), thc1'e exists a point (POl Qo) 0/ (E x F)(K) that maps to
a k-1'ational point on A and such that 2Po = P and 2Qo = Q, i/ and only i/ i

l (Q) corresponds to
i(P) (up to squares) under the isomorphism ;j;.

Proo/. Let ,\ be the prillcipal polarization of A derived from the pl'incipal polal'ization Oll E x F.
Ir we COInpose the isogeny E x F -t A with ,\ allel the dual isogcny A --+ E x F, thc result is
multiplication-by-2 on E x F, so part (a) is deal'.

Now let P E E(k) and Q E F(k). Supposc that there exists (Po, Qo) E (E x F)(K) that Inaps to
a k-rational point on A and such that 2Po = P and 2Qo = Q. This Ineans that (Po, Qo)U - (Po, Qo)
is in the graph of 'lj; for all a E Gk . In particular, under the map indueed by 'I/J, the dass of
~u := Po - Po in H I (Gkl E[2]) is mapped to the dass of E~ := Qö - Qo. In other wol'ds, ;j; takes
il(Q) to i(P).

Conversely suppose that ;j; takes i' (Q) to i (P). This means that the luap illdueed by 'lj; takes
the image of P in H I(Gk ,E(2]) (undel' the coboundary luap) to the inlage of Q in H 1(Gk,F[2]).
Fix PI E E(K) such that 2Pl = Panel Ql E F(K) such that 2Q1 = Q. Then there exist 2-torsion
points R E E[2](K) and S E F[2](K) such that

'lj;(Pf - PI + Ra - R) = Q7.- Ql + BU
- S

for all a E Gk. Let Po = PI + Rand Qo = Ql + R. Then 2Po = P, 2Qo = Q, alld

(POl Qo)U - (Po, Qo)

is in the graph of'lj; for all a, so (Po, Qo) maps to a rational point on A.

For elliptic eurves E over Q with all 2-torsion points rational, L is simply Q x Q X Q, the factors
corresponding t.o thc non-trivial torsion points Tl, T2 , 7:1' Now asslune that E = E~ 8' Then,
i(T2) E L is (XT~ - XTll *, XT~ - XTa ), where * is detennined by the condition that the product of all
three components equall (nlodulo squares). By the formulas in Table 5, we have (Inoclulo squares)

i(T2 ) = (-1, -(8t2
- 1)(8t2 + 8t + 1), (8t2

- 1)(8t2 + 8t + 1)) E (Q* /Q"2)3 .
Now if F = E28 with uon-triviaI2-torsion points T{, T~, T~ and corresponding luap i

/
, then,

i'(T~) = (-1, -(8u2
- 1)(8u2+ 8u + 1), (8u2

- 1)(8u2 + 8u + 1)) E (Q" /Q"2)3 .
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If 'Ij; is the isoulorphism E(2] --+ F(2] taking Ti to Ti, then the map '0 of Proposition 11 is siulply
the identity Q x Q x Q --+ Q x Q x Q. Thus by Proposition 11, if there exists y such tImt

(5) (8t2
- I)(8t2+ St + I)y2 = (8u2 - I)(8u2+ 8u + 1),

then there exists (Po, Qo) on E x F with double (T2, T2) such that (Po, Qo) Inaps to a. rational
point on the quotient A of E x F by thc graph of 1/J. In this case, (Po, Qo) lllaps to a new rational
2-torsion point on A, not in thc inlage of E(Q) x F(Q).

We can consider (5) as a genus-1 curve over Q(t), and we make it an elliptic curve by choosing
(u, y) = (t, 1) as thc origill. Thon the point (u, y) = (t, -1) has infinite order, since the divisor
(t, -1) - (t, 1) corresponds to a non-constant point on the Jacobian of

y2 = (8u2
- I)(Su2 + 8u + 1),

which is isonlorphic to (5) over Q(t)( J(8t2 - 1)(8t2 + St + 1)). Hence (5) is a positive rank elliptic
surface whose points (outside a I-dimensional set) parameterize a family of genus-2 curvcs whose
Jacobiaus have torsion subgroup over Q containing Z/2Z x Z/2Z x Z/4Z x Z/SZ.

Let us now try to do the same for E = E~,6 and F = EZ,6' In this case, frolll Tablc 5 we cOInpute

L(T1 ) = (2(t - 3)(t + 3)(t - 5), (t + 3)(t - ·5), 2(t - 3)) E (Q* /Q*2)3 .

This time in order to get an extra 2-torsion point on A coming from a half of (Tl, T{), we need to
find rational solutions to the system

(6) 2(t - 3) = 2(u - 3)y2

(t + 3)(t - 5) = (u + 3)(u - 5)z2.

(Note that the third condition

2(t - 3)(t + 3)(t - 5) = 2(u - 3)(u + 3)(u - 5) (modulo squares)

would then be autOIuatic.) Ir we solve for t in the first equation and substitute into the second, we
obtain the equation

((u - 3)y2 + 6) ((u - 3)y2 - 2) = (u + 3)(u - 5)z2,

which defines a genus-I Cllrve over Q(u). We ulako it an elliptic curve by choosing (11, z) = (1,1)
as origin,and then note tImt (y, z) = (-1, 1) is a point of infilli te order l since it is of infin ite order
for the specialization 7L = O. Thus the systeIu (6) provides 11S with a positive rank elliptic surface
whose points parameterize a family of genus-2 curves whose .Jacobians have torsion subgroup over
Q containing Z/2Z x Z/6Z x Z/6Z.

Next we investigate thc possibility of gaining 2-power torsion when E = Et6 and F = EZ,8' Let
Tl, T2 , T3 and T{, T2,T3be the nontrivial 2-torsion points on E anel F, rospectively, as in Table 5.
We have

1.(Td = (2(t - 3)(t + 3)(t - 5), (t + 3)(t - 5),2(t - 3)) E (Q* /Q*2)3 l

~/(T2) = (-1, -(Su2- 1)(Su2+ 8u + 1), (8u2
- 1)(Su2+ Su + 1)) E (Q* /Q*2)3 .

In an atteulpt to obtain siInpler equations than we would by mapping Ti to Ti for each i, we let
1/J : E(2] --+ F(2] be the iSOInorphism such tImt 1jJ(Td = T2, 1jJ(T2) = T3, <lud 'I/J(T3) = T{. Hence ;jJ
is the isomorphism Q x Q x Q --+ Q x Q x Q acting on the factors as the penuutation (1 3 2). By
Proposition 11, a point on Ex F with double (Tl, T2) maps to a ncw rational point on the quotient
A if and only if we can find rational numbers y and z such that

2(t - 3) = (_I)y2,

(t + 3)(t - 5) = (8u2 - 1)(8u2 + 8u + 1)z2.
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Ir we solve the first equation for t, substitute into the second, and IlIUltiply both sides by 4, we
obtain

(y2 _ 12)(y2 + 4) = 4(8u2 - 1)(8u2 + 8u + l)z2.

For y = 2/9, the resulting genus-l curve has a rational point (u,z) = (1/3,44/9), and is birational
to the elliptic curvc

y2 = X 3 - 1681X

of conductor 53792 and rank 2. Thc ncw rational point on A is a 2-torsion point, since its double
is the inlage of (Tl, T2), which is in the graph of 'I/J. Hence we have produced a family of genus-2
curves, paranwterized by the points Oll a positive rank elliptic curve, whosc Jacobians have torsion
subgroup over Q containing Z/2Z x Z/2Z x Z/24Z.

4. GENUS THREE

4.1. Jacobians (2,2, 2)-isogenous to a product of elliptic curves. In this section we will show
how one can find a curvc of genus 3 whose Jacobian is isogcnous over a quadratic extension of the
base field to a product of three given elliptic curves. Genus-3 curves of the sort we will see were
useel in [3].

We Inaintain the conventions of Section 3.1.
Suppose EI, E 2 , and E3 are elliptic curves over a separably closcd field K, and let N be a positive

integer not divisiblc by the characteristic of K. The product of thc canonical polarizations on the
Ei is a principal polarization A on the abelian variety A = EI X ~ X E3 , and the Weil pairings on
the n-torsion subgroups of the Ei combine to give us a non-degenerate alternating pairing CN frmn
A[N] to the group scheIne of Nth roots of unity over K. Suppose G is a sub-group-scheme of A[N]
that is maximal isotropic with respe'ct to the pairing eN. As in the similar situation we saw in
Sectiou 3.2, the polarization NA on Arcduces to a principal polarization J-L on the quotient variety
B = A/G. A result of Gort and Deno [32] shows that the polarized variety (B,J-t) either breaks
up as a product of lower-dimellsional polarized varieties or is the callollically polarized Jacobian
of a curve Cover K of genus 3.3 We would like to see what group-scheu18s G lead to curves in
tbe case where N = 2. Sinee we will be workillg over a separably closeel field, we will identify
sub-group-schCInes of A[2] with slIbgroups of A(2J(K).

Lemma 12. Let A = EI X E2 X E 3 and e2 be as above. There aT'e exaetly 135 rnaximal isotropie
subgrou]Js G of A[2](K). Exactly 81 of these group-schemes are of the form GI X G2 , where GI
is a maximal isotropie subgroup of Ed2](K) for some i and G2 is a maximal isotropie subgroup of
ITj;i:i Ej[2](K)j for these G, the polarized variety (B, p.) splits into a product 01 lower-dimensional
polarized varieties. If G is oue 01 tlle remaining 54 groups, then 101' each i we may label the nonZC1'0
elements 01 Ed2](K) by the symbols Pi, Qi, and ~ in such a way so that G is the group

{(O, 0, 0), (0, Q2, Q3), (QI, 0, Q3), (QI, Q2, 0),

(PI, P2, P3 ), (PI, R2, R3), (R1 , P2 , R3), (R I , R2,P3 ) } .

Remark. In fact, our eonstructions below will show that every group of the last type gives rise to a
curve. This fact can also be provell by assunüng that a G of the given type is the kernel of a map
A ---7 Al X A2 cf polarizcd varieties and obtaining a contradietion. In anticipation of this result, wc
will call maxinlal isotropie subgrollps cf A[2](K) (or sub-group-sehelucs of A[2]) non-split if they
are of thc latter type.

Proof. In any group isomorphie to (Z/2Z)6 with a non-degenerate alternating pairing, there are
(26 - 1)(25 - 2)(24 - 22 ) ways of choosing au ordcred triplc (VI, V2, V3) tImt gencrate a lllaximal

3The analogons statcmcnt is not necessarily true ovcr a ficld that is not separably elosed. See thc remark followillg
the proof of Proposition 14.
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isotropie subgroup, and eaeh Inaximal isotropie subgroup has (23 - 1)(23 - 2)(23 - 22 ) such bases,
so there are

(26 - 1)(25 - 2)(24 - 22)

(23 _ 1)(23 _ 2)(23 _ 22 ) = 135

such subgroups.
For i = 1,2,3 let Si denote the set of maximal isotropic subgroups of A(2](K) that can be

written GI x G2 , with G l C Ed2](K) and G2 C Ilj:;fi E j [2](I(). There are 3 choices for GI and

(24 - 1)(23 - 2)/(22 - 1)(22 - 2) = 15 choices for G2, so #Si = 45. The interscction of any two of
the Si is the set S of subgroups of A[2](K) that ean be written GI x G2 X G3, with Gi C E i (2](K)j
clearly #S = 27. Thus there are #81 + #S2 + #S3 - 2#S = 81 Hubgroups that split a.s in the
stateluent of the leuuna.

We are left with 135 - 81 = 54 subgroups to account for, and it is easy to see that there are
exaetly this ulany subgroups of the form described in the final sentence of the lemma: There are 3
choiees for each of the Qi, and givcn PI and P2, there are 2 choices for P3 . 0

Suppose IlOW that k is a field of characteristic not 2 with scparable closure K, and let EI, E 2 ,

and E3 be elliptic curves over k. It is clear that a non-split sub-group-scheme of EI K X ~K X E3K
will cmne frOUl a sub-group-scherue of EI x ~ X E 3 if and only if we have both that all of the
points Qi are defined over k and that evcry k-automorphism of K that moves allY of the Pi nloves
exactly two of theIn. Given the first cOllditioll, the secolld condition will hold if and only if the
product of the cliscriluinants of the curvcs Ei is a square in k.

So suppose Ei is the elliptic eurve ovcr k given by the equation y2 = x(x2 + Aix + Bi) where
Bi -=I- 0, and let Qi be the rational 2-torsion point (0,0). Thc cliseriIuinant of Ei differs by a square
faetor fr01u the number ßi ~ Ar - 4Bi , so let 11..'; asStllUe that ßIß2ß3 is a square in k. For each i
let Pi be a nonzero element of Ed2](K) different frmn Qi. Let G be the non-split sub-group-scherne
of the product A = EI X ~ X E3 corresponding to this choice of P's and Q's. We are led to the
question: Is the quotient polarized variety A/G the Jacobian of a curvc over k, and if so, what
equations define the eurve?

Before we answer this question, wc must define some Illunbcrs. For each i, wc lct di = -(Ai +
2xpJ, where XPj dcnotes thc x-eoordinate of the point Pi. Note that d~ = ßi. The produet
R = dl d2d3 is an elcluent of k because ~1~2~3 was assumed to be a square. We let Ai denote
Ai/di, and we define the twisting factor (associatecl to the giVCll Ei, Pi, and Qi) to be the number

(The twisting factor is so named beeause it deterrnines a quadratie exten..<üon of k over whieh A/G
beemues isomorphie to a .Tacobianj see Proposition 14.)

Proposition 13. With notation as aboveJ suppose T = O. Then each of the p1'odtiets B I B 21 B I B31

and B 2B 3 is a square, and A/G is iSOm017Jhic (over k) to the polarized Jacobian 0/ the hYIJC1'elliptic
curve Cover k defined by the homogeneous equations

w2Z2 = aX4 + by4 + cZ4

o= dX2 + ey2 + f Z2,
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a = (RB1) (_~ + B2 + B3)
2 ~1 ~2 ~3

b= ( RB2) ( BI _B2 + B3)
2 ß} ß2 ß3

c = (RB3 ) ( BI + B2 _ B 3 ) ,
2 ßl ß2 ß3

where dJ c, and I are dete1mined up to sign vy the relations

B 2B 3 d2 = 1

B}B3e2 = 1

B 1B212 = 1,

and where the signs 01 d, e, and I are chosen so that we have Al = -acl and A2 = -bd! and
A3 = -cde.

Proof. Thc statement that T = 0 is equivalent to thc stateruent that AI + A~ + A5 - 2)q A2A3 -1 = O.
Solving this equation for A3 in terms of Al anel A2 leads to

A3 = A1 A2 ± J(AI - l)(A~ - 1),

and dividing this last equality by d3 gives

A3 A 1A2 ± 4JBlIi2
ß3 R"

Thus B I B 2 is a square in k. By symmetry, the numbers B I B 3 and B zB 3 are squares as weil.
We leave it to the reader to verify that the signs of d, e, and f can be chosen so that the relations

Al = -ael and A 2 = -bdf anel A3 = -cde hold; this can be seen by noting tImt thc squares of
the desired relations, as weIl as the product of the dcsired relations, follow frolll the fm'mulas given
anel the condition that T = O.

Note that the coefficients d, c, and I are all nonzcro. FurthenIlore, the fact timt none of the Bi
is zero implies that at most one of the cocfficiellts a, v, allel c can be zero. Wc leave it to thc reader
to show that these last two facts imply that the curve C is nonsingular.

It will suffice to prove that Jac C ~ A/G in the special case whcre k has characteristic 0, for
if k has positive characteristic wo cau simply lift all of the coefficients Ai and Bi up to the ring
W of Witt vectors ovcr k; to see that this can be done in such a way that T lifts to 0, we argue
as follows. First we lift each ßi np to W in such a. way that the proeluct of the lifted values is a
square in W ,and we lift R to a square root of this product. Now we" view T as a function of the
three variables Ai. Wo will be able to nse Honsel's lmulua to lift the Ai up to W so as to make
T = °if any Olle of the partial derivatives &T/ BAi is nonzero. We claim that at least. one of these
deriva.tives is nonzero. To prove t.his, let us assluue tImt all thrce of the partial derivatives are zero
and obtain a contradiction. From our assmuption we find that RAi = 6.i Ilj:li A j for each i. Ir
any one of the Ai were zero, these threc equalities would iluply that all of the Ai werc zero, which
would contradict the assumption timt T = O. But if all of the Ai were Ilonzero, thon by Illultiplying
the three equalities together we would find that R = A1A2A3 ! and this fonnula for R, conlbined
with RAi = ßi Ilj:li A j , would show that Ar = ~i, which would lead to the iIllpossibility Bi = O.
This proves our claim.

To prove that Jac C ~ A/G in characteristic zero we need only consider the universal case, in
which we let the ~ and the Ai be indeterminates, we let f be the quotient Reld of the domain

Q[d1, d2 , d3 , Al, A2, A3]/(Ai + A~ + A~ - 2AIA2A3 - 1),
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Ai = )..idi

Bi = (A; - d;)/4

Qi = (0,0)

Pi = (-(~ + Ad/2,0)

R = dl d2d31

anel we let k be the subfielel Q(A l1 A 2 , A3l B I, B 2, B 3, R) of e. (Note that k is fixed by the involution
of I! that acts on )..1, )..2, d1, anel d2 by mult iplicat ion by -1, so k is a proper subfield of I! and contains
(by synlmetry) none of the di .) So let us assumc that we are in the universal case.

Let ~X be the involution on C dcfined by X H- -X. The involution ~x gives HS a double
cover 'PX: C --+ Fx of curves over k, and we woulel like to find equations for the curve Fx. Ir we
dehomogenize the equations for C with respect to Z by letting w = WIZ, x = X / Z, and y = YIZ 1

and if we then divide by ~x by defining u = x2 , we find that the quotient curve Fx is given by

w2 = au2 + by4 + c

o= du + ey2 + f.
This pair of equations ean be eorIlbined to get the single equation

(7) v2 = (ae2 + bd2)y4 + 2aef1/ + (af2 + crP),

where v = dw. Using Examplc 3.7 (pp. 293-294) in Seetion X of [34], we see that thc Jacobian of
the genus-1 curve Fx is the elliptic curve Ex ovcr k dcfined by

(8) y2 = x(x2 + Axx + Ex)

where Ax = -aef anel 4Bx = (aef)2 - (ae2 + bd2)(af2 + cd2). Clearly we have Ax = All anel by
using a little algebra anel the fact that T = 0 we can see that Bx = BI. Thus thc double cover 'PX
gives us a IIlap 'Px frOln EI to the Jaeobiall J of C.

Siluilarly, the involution ~y on C defined by Y H- - Y gives HS a elegree-2 cover 'PY' frOln C to
the curve Fy over k giVCIl by the equation

v 2 = (ae2 + bd2)x4 + 2bdfx2 + (bf2 + ce2
).

The Jaeobian of F}, is isomorphie to E 2 , so we get a map rp), frOln ~ to J.
Lastly, the involution ~z defined by Z H- -Z gives us a degree-2 eover <pz: C --+ Fz to a eurve

Fz over k whose Jacobian is iSOInorphic to E3 , so we get a Illap <pz frOln E3 to J. (When clividing
C by ~z, the reader rnay find it helpfnl to recast the first defining equation of C into thc fonn
V2Y2 = aX<1 + by<1 + GZ4 by letting V = W ZIY; this will lnake it possible to dehoillogenize with
respect to Y and get eqllations similar to the ones obtained when dividing by ~x.)

Let I denote thc subgroup of thc alltomorphism group of J gencratcd by ~x" ~Yl and ~z' and
let C denote the category of abelian varieties over the separable closure K of k up to isogeny. Tbe
semisilllpIe group ring Q[I] acts on the dass [J] of J in C, allel [J] splits into thc direct SUlTI of its
eigenspaees. The dass of the image of 'Px eonsists of the sum of the eigellspaces on which ~X acts
as 1, while the dass of thc image of rp), consists of the sum of thc eigenspaces on whieh ~)' aets
as 1. Howevcr, the eigenspaces on which both ~x and ~)' act as 1 are trivial, beeause their surn is
the dass of the Jacobian of the quotient of C by the group (~x, ~y ), allel this quotient has genus
O. Thus the classcs of thc images of rpx anel <p)' have t.rivial interscction. Silnilarly, we find that
the dass of the image of 'Pz shares HO nonzcro eigenspaces with the cIasses of 'Px or <p)" It follows
that the morphislll <1'* = 'P'X x <py x rpz frOln A to J is an isogeny.

Let Jl. denote the canonieal polarization of J. Thc fact that rpx has degree 2 implies that ;;J;Jl.<P'X
is the llmltiplieatioll-by-2 lnap on EIl anel similarly ~)t<p),. anel ~tLrpZ are the Illultiplieation-by-2
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maps on E 2 and E3 ; here""" indicates the elual morphislll. We finel that we have a comlllutative
eliagram

A ~ A
l~· r~
J ~ J.

We see that <p* has elcgree eight auel its kernel G' is a maximal isotropic sub-group-scheme of A(2].
The group-scheme G' must be non-split. To complete the proof of the proposition we Illust show
that it is cqual to the given group-scheme G.

Since G' is non-spli t, there must be nonzero elements Q~ E Ei [2](K) such that G' (K) contains
the three elements (0, Q~, Q;), (Q~, 0, Q;), anel (Q~, Q~, 0). As we noteel beforc the statenlCnt of
the proposition, the points Qi must actually be elefineel over k. However, because c4 is not in k,
the curve Ei has only one nonzero k-elefineel 2-torsion point, naIlwly Qi. Therefore Q~ = Qi. There
are exactly two non-split Iuaximal isotropic subgroups of A[2](K) th~t contain the subgroup

anel the interseetion of these two groups is H. So to show timt. G'(I() = G(K), all we rrmst elo
is show that the two groups contain a common element that is not in H. To show this, we can
specialize our universal eXaInple to a particular case, allel show that the specialized groups G anel
G' contain a COIluuon elenwnt not in H.

Consider the specialization map f. -r C that takes each ~ to -4 and each Ai to -1/2; wc will
abuse notation by saying that d l = -4, and so Oll. We see that each Ai = 2, each Bi = -3, each
..6.i = 16, each Pi = (1,0), and the curve C is elefiued by the two equations W 2Z2 = -18(X4 +
y4 + Z4) and 0 = (1/3)(X2 + y2 + Z2).

Let <P* denote the lIlap <{JX* x <{JY* x '{JZ* from J to A anel recall timt q>* denotes thc map
<{Jx x <{Jll" X <{Jz from A to J. An easy COlUPlltation shows that. <P *<I> * is multiplication by 2 on J.
Thus the image under <1>* of a 2-torsion elemcnt of J is in the kernel of <1>*. To cOluplctc the proof,
we will show that (PI, P2, P3) E A(K) is the image nudel' <I> * of a 2- torsion point of J.

Let U1 aud U2 be the Weierstrass points on C given in hOluogeneolls coordinates [W : X : Y : Z]
by [0 : ( : (2 : 1] and [0 : (2 : ( : 1L respectively, where ( = e2rri/ 3 . Note that U1 - U2 represents
a 2-torsion elenlCnt of J. Under the specialization we have made, equation (7), whieb defincs
Fx , becomes v2 = -4y4 - 4y2 - 4, and in these (y, v) coordinates we have CPx (Ud = ((2,0) and
<{JX (U2) = ((,0). The curve Ex, defined by eqnation (8), is givcn by y2 = x 3 + 2x2 - 3x, and nnder
the isomorphisIll

(
iv - y2 - 2 -2v - 2iy2 - 4i)

(y,V)H 2' 3
Y Y

from Fx to Ex these two points on Fx lIlap to (iJ3,2(V3) and (-iV3,2(2V3), respectively. The
difference of these two points on the elliptic curve Ex is equal to the 2-torsion point (1,0). Thns
'{JX*(UI - U2) = Pl' By synllnetry, we find that <{Jy*(Ul - U2) = P2 and <{Jz*(Ul - U2) = P3 a.s weIl,
so (PI, P2 , P3 ) is in the inlage of J[2](K) under ep* and henee in G'(K). It is in G(K) as well, so
G' = G and the proposition is proved. 0

Proposition 14. Let notation be as before Proposition 13, and suppose T -=j:. O. Let C be the plane
quartic ouer k defined by
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Let k' be the field k( VT). Then the polarized Jacobian of Ck' is is01noryhic to the polarized variety
Ak,/Gk,·

Proo/. We leave it to the reader to show that an equation of the form

aX4 + by4 + cZ4 + dX2y2 + eX2 Z2 + Jy2 Z2 = 0

defines a non-singular curve if and only if the seven numbers a , b, c, rP - 4ab, c2 - 4ac, 12 - 4bc,
alld af2 + be2 + C(t2 - 4abc - def are nonzero. In aur case, these nUInbers are BI, B 2 , B 31 T R/4ß3,

T R/4ß2, T R/4ßt, and TZ /16, which are all nonzero. Thus our Cis a non-singular curve of genus 3.
As in the praof of Proposition 13, we quickly rcduce to the universal case. This tiulC, that Ineans

that the di and thc Ai are indeterminates, tImt I! is the field

Q(d1, dZ1 d3, )'1, AZ, A3),

that.

Ai = Aid;.

Bi = (A; - d;)/4

Qi = (0,0)

Pi = (-(di + Ai )/2, 0)

R = d1dzd3 ,

and that k is the proper subfield Q(A I , Az,A3, BI, Bz, B3, R) of I!. Let I!' = l(VT); note that
k' = k( VT) is a proper subfield of I!' because it contains none of thc d i .

Let ~x be thc involution X ~ -X of Ck' and let tpx: Ck, -7 Fx be the double cover induced
by ~x. To find a Illodel far the curve Fx over k', we dehomogenize the cquation for C by letting
x = X/Z anel y = Y/Zj then, setting 'lt = xZ, we find thc model

B 1u Z + B Zy4 + B 3 + duyz + eu + jyZ = 0

for Fx. If we let v = 2B1u + dyz + e and simplify, we get the Inodel

vZ = (dz - 4B1B z )y4 + (2de - 4B1J)y2 + (eZ - 4BIB 3).

Exrouple 3.7 (pp. 293-294) of [34] shows that thc Jacobian Ex of Fx is the elliptic curve ovcr k'
defined by yZ = x3+Axx2 +Bx, wherc Ax = 2B1f -de and Ex = BdB I f z+Bzcz +B3dz -def
4BIBzB3)' Using the fonnulas far d, c, and f givcn in the proposition, we find that A x = A 1T/4
and Bx = B1Tz/16. Thus we see that Ex ~ EIk" anel the double cover 'Px: Ck' -7 Fx gives us a
Inap rpx from E Ik, to the Jacabian J of Ck"

If we define two Illore involutions ~y and ~z af Ck' in the obvious way, we get double covers
'Py: Ck' -7 Fy anel IPz: Ck' -7 Fz that give rise to hOInomorphisms 'Pt,.: Ezk, -7 J and tp;: E 3k' -7

J.
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Let J.L he the eanonieal polarization of J and let Ahe the product polarization on A = E l X E 2 X E3 .

As in the proof of Proposition 13, we get a commutative diagraIn

2>' -Ak, ---+ Ak,

whcre q>* = i.px x i.p},. x i.pz is an isogcny of elegrec 8 whose kernel G' is a non-split lnaximal isotropie
sub-group-seheme of A k l[2]. Our task is to show that G' = Gk"

Let K be an algebraie closure of E'. Rationality arguments as in the proof of Proposition 13 show
that G'(K) eontains the subgroup .

H = {(O, 0, 0), (0, Q2, Q3), (Ql, 0, Q3), (Ql, Q2, On,

anel, as before, to show tlmt G'(K) = G(K) all we lllust do is show that the two graups eontain a
comluon eleUlent that is not in H. To show this, we anee again specialize our universal exalupie to
a partiClilar example.

Cansider the specializatian map f ---7 C that takes eaeh di to 4 and eaeh Ai to -1/2; we will abuse
notation by saying that cli = 4, and so Oll. We see that each Ai = 2, caeh Bi = -3, each ßi = lö,
eaeh Pi = (-3,0), anel T = -32. Fol' each i, let Rt be the 2-torsion point (1,0) of Ei, Note that
the Ei are the same as in the speciali~ationat the end of the proof of Proposition 13. FrOUI that
proof, we know that the polarized quotient of A by the subgroup generated by H ane! (R1 , R2 , R.3 )

is the Jaeobian of a hyperelliptic eurve. Sinee A/G' is thc Jacobian of a plane quartic, Torelli's
theorem shows that G'(K) eannot possibly contain (RI, R 2 , R 3 ). The only possibility remaining is
that G'(K) eontains (PI, P2, P3 ), which shows t.hat G' = G and completes the proof. 0

Remark. One nlight ask whether thc base field extension ta k( VT) is neeessary far the proposition
to be true. Indeed it is nccessary. To see this, consider an arbitrary plane quartic Cover k, let J
be its polarized .lacobian, and let K be a separable closul'c of k. Since C is not hyperelliptic, wc
have an isomorphisIll Aut J ~ Aut C x {±1} of Galois modules (where the Galois action on {±1}
is trivial). Taking Galois cohomology, we find

HI(AutJ) ~ HI(AutC) x HOIu(Gal(K/k) , {±1}).

The two HIS eatalog the twists of J and C, respectively, aud the Horn catalogs field extensions of k
of degree at most 2. Suppose J' is a quadratic twist of J corresponding to an eleulCnt of H I (Aut J)
that is trivial in HI(Aut C) hut nontrivial in the Hom. Thc curve over k that oue ohtains frorn J'
is none other than C, and it takes a quadratic extension to makc Jac C iSOIIlorphic to J'.

We eau use Proposition 14 to give an exmnple of a Jacobian of a curve ovcr Q whose conductor,
while not exactly small, is at least not so big. Recall that Mestre's result [29] implies that under
standard conjectures the coneluctor of a 3-d imensional abelian variety over Q is at lea..~t 1100.

Corollary 15. The cond'Uctor 01 the Jacobian 01 the curve

2X4 + 2y4 + 15Z4 + 3X2y2 - l1X2Z2 - l1y2 Z2 = 0

is 2940.

Proof. Take EI and ~ to be the curve y2 = x3 -11x2 +32x, which is isomorphie to thc curve 14A4
of [4] and has eonductor 14. Take E 3 to be the curve y2 = x 3 - 31x2 + 240x, which is iSOlllorphic to
the curve 15A3 of [4] and has eouductor 15. If we take PI = P2 to be a non~ero 2-torsioll point on
EI other t han (0, 0), a.nd if we take P3 to he (15, 0), then we find that the twist ing factor is T = 322

.

Applying Proposition 14 to these curvcs gives the curve in the stateIllcut of the corollary. 0
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4.2. Building hyperelliptic Jacobians - introduction. In the next few sections wc will find
tripies (EI,~,E3 ) of elliptic curves ovcr Q that have large rational torsion subgroups and for
which we can choose 2-torsion points Pi and Qi that make thc twisting factor equal to zero. Our
strategy will be to specify the rational torsion st.ructurc on E;~ and eletennine thc corrcspondillg
conditions on EI and ~ that will make the twisting factor zero. We will not exhaust the possible
cOInbinations of torsion structures; the equations that arise becOIne very ß1CSSY very quickly, so we
will only look at the cases where it 8eems likely tImt thc solutions to the equations will be easy to
find.

Suppose we have three elliptic curves EI, ~, a.nd E3 over a field k with each Ei defined by an
equation y2 = x(x2 + Aix + Bi) and such that the product .6 1.62.63 is a square in k. For each i
let Qi be the point (0,0) on Ei and let Pi be some other 2-torsion point on Ei, corrcsponeling as in
Section 4.1 to a square root ~ of .6i . We lloted in thc proof of Proposition 13 that the condition
that thc twisting factor be 0 is equivalent to the condition that

(9)

(10)

where Ai = At!~. We can rewrite t.his equation in the equally useful form

A3 AIA2±4~

d3 rl1d2

The fact that these equations hold precisely when T = 0 will be the basis of all of our constructions
of genus-3 hyperelliptic curves with la.rge torsion subgroups.

4.3. Building hyperelliptic Jacobians with E 3 of type (2,2). Suppose E 3 = Fi 2' so that
A 3 = -1, - 1 and B 3 = t. We have .63 = (t - 1)2, so let us choose d3 to be 1 - t. lf EI and E2
are any elliptic curves over Q such that B 1B2 allel .6 1 .6.2 are both squares, say .6 1.62 = r2 and
BI B 2 = 8

2 , then equation (10) becOInes

t+l A 1A2 ±4s
t-1 r

This will have a rational nonzero solution for t a..<; long as the right-hand side is neither 1 nor -l.
Thus, we need only search for pairs (E1 ,E2) such that B 1B2 anel .61.62 are both squares.

Take EI = Fra anel .&2 = FG. Thcn BI = -29 and .6 1 = 11 .35 , and up to squares in Q(u) we
have

B 1B 2 = Zu

.6 1.62 = 33(9u + 1)/(u + 1).

Thus we woulel like to find rational solutions to thc pair of equat ions u = 2v2 and (9u +1) / (u +1) =
33w2 . Solving the second equation for u gives 'U = (33w2 - 1)/{9 - 33w2

), anel inserting this in the
first equation and setting x = 2(9 - 33w2 )v gives us

x 2 = 2(33w2
- 1)(9 - 33w2

).

This curve of genus 1 has a rational point (w,x) = (1/3,16/3), and a calculation shows that it is
birational with the elliptic curve

y2 = x(x + 66)(x - 198).

This elliptic curve has rank 2; its group of rational points is generated by its 2-torsion anel the
points (-44, 484) and (-2,160). Suppose C is thc curve associated to Olle of these rational points
via Proposition 13 and our choice of the curves Ei. We leave it to the reader to show that the image
of the rational torsion of EI x E2 X E3 in the Jacobian of C is a group of thc form Z/2Z X Z/30Z.
Thus we have a family of hyperelliptie curvcs of genus 3, paranlCterized by the points on.a positive
rank elliptic curve, whose Jacobians contain a rational sllbgroup of the fonll Z/2Z x Z/30Z.
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Suppose we take EI to be equal to E 2. Then B I B2 and ßIß2 are automatically squares. In
particular, if we take EI = F{Ol we find aI-parameter family of hyperelliptic genus-3 curves whose
Jacobians contain Z/10Z x Z/10Z.

Suppose we take EI = F~2 anel E2 = Fg,z' Then ßI anel ß2 are each squares in Q(u, v). Ta
find values of'lL and v that make the product BIBz a square, we must find rational solutions to thc
equation

(u2 - 2u - 1)(u2 + 2u - 1)w2 = (v 2
- 2v - l)(v2 + 2v - 1).

This equation defines an elliptic surface over Q(u) if wo take the zero section to be (v,w) = ('ll., 1).
Then the section (v, w) = (-u, 1) has infinite order. Thus wc find a fmuily of hyperelliptic genus-3
eurves, parameterized by the points on a positive rank clliptic surface, whose Jacobians contain a
rational subgroup of the form Z/2Z x Z/8Z x Z/8Z.

Thc groups we can obtain from other choices of EI anel E 2 are subgroups of the groups we build
in the next fcw seetions.

4.4. B uilding hyperelliptic J acobians with E3 of type (2 , 4). Suppose now wo take E3 = Fi 4'

so that A3 = 2t2 + 2, B 3 = (t -1)2(t + 1)2, and ß3 = 16t2. Ir we take d3 = 4t, then equation (10)
becOIues

t 2 + 1
2t

Solving this quadratie equation for t, we find

(Al ± 2y'B;)(Az ± 2.;B;)
t - ----------- Vß I ß 2 .

Thus, if BI, BZl anel ßIßZ are all squares in Q, we cau find a specialization of Fi,4 that will give

HS a twisting factor of O. (Note that Ai =I ±2Vßi since Ei is nonsingular, so the bad value t = 0
in Fi 4 is automatically avoided.)

Suppose we take EI = FBand ~ =FI
v
2 . We check frOIn TaLle 6 timt BI and Bz are squares in

Q (u, v) 1 so all we must do is find values of Hand v such that ß 1ßz is a square. Find ing such u
and v recluces to fincling rational points on the surface S elefincel by

(2u2 - l)w2 = (6v 2 - 6v + 1)(2vz - 2v + 1).

Let Y be the genus-O curve 2t2 - 1 = 41z2 , aud let E be the genus-1 curve

41 y2 = (6v2
- 6v +1)(2v2

- 2v + 1).

We have a rational luap Y x E --+ S over Q mapping (t, Z), (v, y) to (u, v, w) = (t, v, y/z). Sinee
Y has the rational point (t, z) = (9/11,1/11), Y is isomorphie to pI over Q. Since E has the
rational point (v , y) = (5 , 11), it is an elliptic eurve over Q, and in fact it is isomorphie to y2 =
x 3 - 41x2 + 1681x. Moreover E has positive rank , since x = 729/121 gives a point of infinite order.
Hence Y x E is a split elliptie surface over P Qof positive rank , anel thc points on this sl1rface
paralueterize a family of hyperelliptie curves of genus 3 whose .1acobians contain groups isolllorphic
to Z/2Z x Z/2Z x Z/2Z x Z/24Z.

Next we take EI = F28 and E2 = F28 . We check that B 1, Bz, ßI, and ..6.2 are all squares in
Q(u, v), so every pair of ;ational values ~f u and v will give us a rational values of t. This gives us
a 2-parmneter family of hyperelliptie curves of genus 3 whose Jacobians contain groups ismllorphic
t.o Z/2Z x Z/2Z x Z/2Z x Z/4Z x Z/8Z.

Finally, if we take E 1 = F~2 and ~ = F 12l we see that BI and B 2 are squares. The condition
tImt ßIß2 be a square leads us to find rational solutions to the equation

(6!Lz - 6u + 1)(2u2 - 2u + 1)w2 = (6v2
- 6v + 1)(2v2

- 2v + 1).

This equation defines an clliptic surface over Q(u) if we t.ake thc zero sectiOll to be (v , w) = (u, 1),
and then the seetion (v, w) = (-'lL + 1, 1) has infinite order. Thus we find a positive rank elliptic
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surface whose points parameterize a family of hyperelliptic curves of genus 3 whosc Jacobians
contain groups isomorphic to Z/2Z x Z/2Z x Z/6Z x Z/12Z.

4.5. Building hyperelliptic J acobians with E 3 of type (4,2). Building hyperelliptic Jacobians
by taking E 3 = FJ 2 is much more difficult than doing so by taking E3 = Fi 4' but it is possible.
Here we have A 3 =' _t2 - 6t - 1 and we Inay take d3 = (t - 1)2, so equation (10) becmues

(11) -t
2

- Gt - 1 = A 1A2 ±4~
t 2 - 2t + 1 d 1d2

Suppose we have chosen elliptic curves E} and ~, and have calculateel the right hand side of
equation (11) to get a nunlber r. Solving for t, we find that we must have (r+l)t2+(2-6r)t+(r+l) =
0, and for t to be a rational numbcr thc discriminant of this quadratic Inust be a squarc, which
reduces to the condition that 2(1 - r) be a square.

lf we set E} alld ~ equal to some of our universal eHiptic curves, the condition that 2(1 - r) be
a square turns into an absolute mess that the reader shoulel be thankful we do not go into here.
However, in the special case where EI = E2 and we take the plus sign in equation (11), we have
l' = 2Af - 1, so 2(1 - r) is a square preciscly when 1 - Af is a square. A little algebra shows that
this will be the case when -Bu:::"! is a square.

Suppose we take EI = pJ. Findillg t such that -B}ß} is a square is equivalent to solvillg thc
equation w2 = 1- 2t2 . This equation defines a rational curve, so we obtain al-parameter fanüly of
hyperelliptic curves, anel we cOInpute that the rational torsion subgroups of their Jacobians contain
a group isomorphie to Z/4Z x Z/4Z x Z/8Z.

Wc can take EI to be any of the other universal curves, but for most of the choicos it is not
possible to have -BIß} be a square, and for the others the groups we get are subgroups of groups
that wo have already obtained.

4.6. Gaining 2-power torsion. Wo noted in Section 3.7 that the rational torsion subgroup of
a quotient of an abelian variety is sOInetiIncs larger than thc image of the rational torsion of thc
original variety. As in the genus-2 case, we can use this fact -to increase thc size of the torsion
subgroups we can Blake. In order to do this, it will be useful to have SOIlle of the ideas used in
Section 3.7 spelled out in Inüre detail.

Let k be a field with separable dosure K alld suppose E is an elliptic curve over k with #E[2] (k) =
4. Let y2 = I(x) = (x-XS)(X-XT)(X-XU) be a model for E, and let S, T, and U be the 2-torsion
points on E with x-coordinates XS, XT, anel Xu, respectively.

Lemma 16. Let notation be as above, and suppose W is an element 01 E(K) s1Jch that 2W = S.
Then W cau be defined over the fidd e = k(Jxs - XT, Jxs - xu). Furthermore, the action oJ
an element (J" oJ Gal(K/k) on W Cl.m be determined by its action on Jxs - XT and Jxs - xu as
Jollows:

(a) IJ a fixes neither Jxs - XT nor Jxs - xu, then W a
- W = S.

(b) IJ a fixes Jxs - x,/, but not Jxs - Xu, then W a - W = T.
(c) /1 (J" fixes Jxs - Xu b1Jt not JX8 - Xl', then W a - W = U.

Proof. Under our assumptiolls, the k-algebra L of Sectioll 3.7 is ismllorphic to k x k x k. The lCIllma.
then follows from the fact that the isorllorphism

H 1 (Gk , E[2]) ~ ker (L* / L*2~ k* /k*2)

[rmn [33] sends the image of S in H I (G k, E(2]) to the dass of the element

((xs - XT)(XS - xu), (xs - XT), (xs - xu)).

o
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Coefficients of Iuodel A = 2(84 + 1)
y2 = x(x 2 + Ax + B) B = (82 + 1)2(8 + 1)2(8 - 1)2

of universal curve .6. = 16s4

x-coordinates of Xs = -(s - 1)2(.'> + 1)2
2- torsion points XT = 0

S,T,U XU = -(82 + 1)2

x- and y-coordinates of a Xv = -(82 + 1)(8 + 1)(8 - 1)
4-torsion point V with 2V = T Yv = 2(82 + 1)(8 + 1)(8 - 1)

x- and v-coordinates of a xw = -(8 - 1)(8 + 1)(8 - i)2
4-torsion point W with 2W = S Yw = -28(8 - 1)(8 + 1)(8 - i)2

TABLE 9. Data for the universal elliptic curve Pi 4a' Here i denotes a square root
of -1. If er is a non-trivial element of Gal(k(i)/k),' then W a - W = U.
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Using Lcmlua 16 we can write down families of elliptic curves with specific rational torsion
subgroups and extra 4-torsion over an extension that is at most quadratic. For instance, suppose
we take E to bc the universal curve pi 41 with Xs = -(1 + t)2 anel XT = 0 alld xu = -(1 - t)2.

We see that Xs - XT = -(1 + t)2 and ~s - xv = -4t. Ir we take t = -82 then xs - Xv will be
a square and x s - XT will be -1 , up to squares, so for this choice of t there will bc a point W of
E defined over e= k(A) sucli that 2W = Sand such that W a - W = U for every non-trivial
k-automorphislu er of e. Wit.h a Httle calculation we can find the coordinates for W. Putting this
together with the information we have about pi 4 from Tables 6, 7, and 8 gives us the information
sUlunlarized in Table 9. We will refer to the uni~crsal curve wc have thus constructcd as Fi 4a'

We can use thc curve F2,4a to build Jacobians. Suppose wo take EI = ~, E3 = F2,4a 1 d; = (h,
and d3 = 482 . Then equation (9) gives U8 two possibilities: either ..\3 = I, or ..\3 = 2,.\r - 1. The
fonuer is iIUpossible, because in that case x(x2 + A3X + B3) would have a double root at O. The
latter becOIues

8
4 + 1 = 2,.\2 _ 1
282 I'

which can be solved to obtain 8 = ±"\I ± J):f=l, or

±A1 ±2y'1J;
8=

.ßl
So suppose we take EI = E;. = P28 over k = Q(u). For this curve the nUlubers BI and .6.1 are
both squares in k, so we can set 8 'ta be an element of k that makes thc twisting factor cqual to
zero. Thus we find a hyperelliptic curvc Cover k = Q(u) whose Jacobian is (2,2, 2)-isogenouB to
EI x EI x E3. Given thc choice of points Qi iInplicit in the above expression.", it is easy to calculate
that the irnage of the known k-rational torsion of EI x EI X E3 in the Jacobian J of C is a group
of the fonn Z/2Z x Z/2Z x Z/2Z x Z/4Z x Z/8Z. Now we will show timt in fact J(k) contains a
torsion group larger than this.

Let PI be thc point on EI with x = -16u4 and let R 1 be the point with x = -(tL - 1)4(u + 1)4
(see Table 8). Ir we apply Lemma 16 to the curve EI, with S = PI and T = Ql anel U = R1 , we
find that there is a point WI E EI (K) defined over an (at worst) biquadratic extension f! of k with
2W1 = PI. Note that Xs - XT = -16u4 differs frOUl -1 by a square, so k(i) C f anel thc action of
a er E Gal(e/k) on .jXPI - XQI is the sarne as its action on i.

Let P3 bc the point on E3 with x = _($2 + 1)2 (see Table 9) anel let W:~ be the point labeled W
in Table 9. Let us consider how an element er of Gal{f/k) acts upon the eleIllent (W1 , W 1, W3 ) of
(EI x EI x E3 )(e). Ir er is not the identity and yet fixes i, then (WI ,W I ,W3)a - (W1, W1 , W3) =
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(Ql, Qll 0). If Cf does not fix i, then Wr - W3 = P3 and we see that (Wl, WI, W3 )U - (Wl ,W1 , W3 )

is either (PI,PI,P3) 01' (RI ,RI ,P3)' Thus we see that (W1, Wl, W3)U - (WI , W1, W3) is an elen1ent
of t.hc kernel G of EI x EI X E3 --+ J for every (J, so the image Z of (WIl W1l W3 ) in J is defined
over k. Sinee 2(WI , WI ,W3 ) = (PI, PI, P3 ) is in G, thc point Z is a 2-torsion point. FiuallYl we
note that (W1l W1 , W3) does not differ by an elenwnt of G from any of thc known rational torsion
points of EI x EI X E3 , so Z is not in thc iIllage of thc known rational torsion of EI x EI X E 3 .

Thus, the k-rational torsion of thc Jaeobian of C eontains a group isomorphie to Z/2Z x Z/2Z x
Z/2Z x Z/2Z x Z/4Z x Z/8Z. Sinee k is a rational function field over Q, wc get aI-parameter
fanüly of hyperelliptic curvcs of genus 3 having this group in their rational torsion subgroups.

4.7. Building Jacobians of plane quartics - introduction. Now we turn our attention to
the task of building plane quarties whose Jacobians have large rational torsion subgroups. Most
of the falnilies we will construct will be produced by fixing the torsion structure of thc curvc E3

and analyzing the twisting factor as a function of the eoefficients of EI alld ~, but one interesting
dass of exmnples will arise by setting EI = E2 = E3 . Instead of trying to get the twisting factor to
be zero, as we did in the last few sections, we will try to get the twisting factor to bc a square, so
that (by the final statement of Proposition 14) thc procluct of the Ei will be isogenous over Q to
the Jacobian of a eurve. It will be convenient to use thc second expression for the twisting factor,
namely

(12)

where Ai = Ai/~'

As in thc hypcrelliptic case, we willll~t examine all possible cOlnbinations of torsion st.ructures
on the curves EIl E2 , and E3 here because of the complexity of thc cquations that arisc.

4.8. Building J acobians of plane quartics with E3 of type (4, 2). In this scction wo will take
E3 = FJ2l so that A3 = -t2 - Gt -1 aud 6 3 = (t _1)4. We will take d3 = (t - 1)2.

Supp~se we take EI = EJ and d1 = d2 . Thcn >q = A2, and the twisting factor is

T = did3 (2-\I + -\5 - 2-\IA3 - 1)

= 6 1d3(A3 - 1)(-\3 - 2AI + 1)

= 6 1(-\3 - I)(A3 - (2-\T - l)d3 )

= ("\3 - 1)(61 A 3 - ( 2Ar - 6t}d3 ).

A quick calculation shows that "\3 - 1 = -2(t + 1)2/(t - 1)2, SO up to squares iu Q(t) the twisting
factor is

4Ard3 - 2~dA3 + d3 ) = 4(t - 1)2 AT + 16t.6ol'

To get the twistillg factor to be a square, wo need to find rational solutionB to thc cquation

w2 = 4(t - 1)2Ai + 16t.601'

For fixed Al and .60 1, this last equation defines a curve of genus 0 in thc (t, w)-plane, and sincc it
has a rational point (namely (t, w) = (O,2Ad) it is isomorphie to pI. We can panuneterize the
eurve by setting

t = (z + 4B1) (z - .60 1) / (AIz) 1

W = 2(z2 + 4BI ßt}/(A1z).

Supposc in particular wo take EI = F1o' Then we get a 2-parameter fanüly (the paraInetcrs
being 1J, and z) of plane qllartics whose Jacobians are isogenous to EI X EI X E 3 , and a sinlple
computation with abelian groups shows that these Jacobians have a rational subgroup ismllorphic
to Z/10Z x Z/20Z.
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If we take EI = F2uB wo get a 2-parameter family of plane quartics whoRe Jacobians contain a
rational subgroup iso~orphic to Z/2Z x Z/4Z x Z/4Z x Z/8Z. If we take EI = F~2 we get a
2-paraIneter family of plane quartics whose Jaeobians contain a rational subgroup iSOIllorphic to
Z/2Z x Z/2Z x Z/8Z x Z/8Z. And if we take EI = Fi2 wo get a 2-pararueter fanüly of plane
quartics whose Jacobians contain a rational subgroup isomorphie to Z/2Z x Z/12Z x Z/12Z.

Without the assumption timt EI = E 2 it is not as easy to Inake the twisting factor a square.
But suppose we take EI = F10

1
/
2

anel ~ = Fi /2
. Then AI = -625/2048 and A~ = -49/32, and

we can choose d1 and d2 so that dldz = 4 anel AIA2 = 175/256. Then the twisting faetor is

T = 4d (_ 625 _ 49 A~ _ 175 A 3 _ 1)
3 2048 32 + ß3 128 d3

-1922t4 + 118024t3 + 29940t2 + 118024t - 1922
= 21O (t - 1)2

so in order to luakc the twisting factor a square we IUUSt find rational solutions to thc oquat.ion

w2 = -1922t4 + 118024t3 + 29940t2 + 118024t - 1922.

This last equation defines a eurve of genus 1, and it has a rational point, namely (t, w) = (1,512).
A calculation then shows that the eurve is birational with t.he elliptic eurve defined by y2 =
x 3 + 2565x - 15606. This happens to be the curve 528A2 in [4]' whieh has rank 1. (Thc point
(33,324) is of infinite order.) We see that there is a family of plane quartics, paraIueterized by the
points on a positive rank clliptic curvc, whosc Jacobians eontain a rational subgroup iSOIuorphic t.o
Z/4Z x Z/40Z.

Now let us try taking EI = Fiz and Ez = F;~4. If we take d1 = 256 allel d2 = 4 then we have
>q = 47/128 and A2 = 863/512. The twisting fa~tor is

T = 1024d (2209 744769 A~ _ 40561 A 3 _ 1)
3 16384 + 262144 + ß3 32768 d3

110460lt4 + 2371804t3 + 9824406t2 + 2371804t + 1104601
= 2B(t - 1)2

so in order to Inake the twisting factor a square we luust find rational solutions to the equation

w2 = 110460lt4 + 2371804t3 + 9824406t2 + 2371804t + 1104601.

The genus-l Cllrve elefined by this eqllation has a rational point - namely, (t, w) = (1,4096) 
so it is an elliptic curve. A calculation shows that it is birational with the elliptic eurve 1/ =
x 3 - 151563x + 10810438. Cremona's rank-finding program ealculates that this elliptic curvo has
rank 2, and provides the two independent rational points (59,1440) and (-157,5544). Thus wo have
CL positive rank elliptic curve whose poipts parametcrize a fanlily of plane qllartics whose Jacobians
contain a rational subgrollp isomorphie to Z/2Z x Z/4Z x Z/24Z.

Finally, let us take EI = F1Ö
1
/

3 and Eh. = FI
1t3

. Then AI = -485809/759375 and A~ =
-3721/375, and we can choose d1 and d2 so that d1d2 = 625/59049 and AIA2 = -42517/16875.
The twisting factor is

T - ~d (_ 485809 _ 3721 A~ 85034 A3 _ 1)
- 59049 3 759375 375 + ~3 + 16875 d3

-177710460t4 + 433908240t3 + 216604440t2 + 433908240t - 177710460
= 31652(t - 1)2

so in order to Inake the twisting factor a square we must find rational solutions to the equation

w 2 = -177710460t4 + 433908240t3 + 216604440t2 + 433908240t - 177710460.
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This genus-l curve has rational points - for instance, (t, w) = (1,27000) - so it can be made
into an elliptic eurvc. A ealculation shows that the elliptie eurve we get is isomorphie to the curve
y2 = x 3 + 213x - 30566. Cremona's rallk-fincling program says timt this eurve has rank 1, anel gives
the non-torsion point (53, 360). Thus we have found a posit.ive rank elliptic curve whosc points
parameterize a fanüly of plane quarties whose Jacobiaus eontain a. rational subgroup isomorphie to
Z/4Z x Z/60Z. . .

4.9. Building Jacobians of plane quartics with E3 of type (2,4). In this seetiou we will take
E3 = Fi 41 so that A 3 = 2t2 + 2 anel .63 = 16t2 . We will take d3 = 4t.

As w~ saw in the preeeding scction, if we take EI = Ez anel dI = d2 then the twisting factor is

T = ("\3 - 1)(ßI A3 - (2Af - .6dd3).

For our choice of E3 we have "\3 - 1 = (t - 1)2/(2t), so up to squares in Q(t) the twisting factor is

(2t)(.6 1 (2t2 + 2) - (2AT - .6d(4t)) = 4t(.6 t (t + 1)2 - 4AIt).

Thus, we would like to find rational solutions to the equation

(13)

Suppose we take EI = Fi2, so that Al = 2 . 47 and .61 = 216 . Equation (13) becomes w 2 =
4t(216 (t + 1)2 - 24472t), and 'by setting s = 4096t and z = 5127lJ we get

z2 = 83 + 5983s2 + 167772168.

A search for points on this curve llsing Cremona's programs comes up with the non-torsion point
(s, z) = (5929/64,20520885/512). Thus we find a farnily of plane quartics, parmneterizcd by thc
points on a positive rank elliptic curve, whose .Tacobians cont.aill a rational subgroup iSOIllorphic to
Z/4Z x Z/8Z x Z/8Z.

Gtller choices for EI lead to groups we have already construeted, nlost of thern in thc seetions
on hyperelliptie eurves.

4.10. Building Jacobians of plane quartics with EI = E2 = E3• Suppose we take E 1 = E2 =
E 3 'anel d1 = d2 = d3· Sinee .61.62.63 is supposed to be a square, we see that .6. 1 must be a square
and d1 Blust an eleruent of the base field. If we write ,,\ and d for "\1 anel fit, we finel that the
twisting factor is

T = d3 (3,,\2 - 2,,\3 - 1) = _d3 (,,\ - 1)2(2"\ + 1).

Up to squares, then, the twisting factor is

-d(2"\ + 1) = -(2A + d),

where we write A for Al'
Suppose we take EI = Fi 6' Then A = -2t4 + 12t2 +6 and we eau take d = I6t. Thc twisting

factor, up to squares, is t4 -'6t2 - 4t - 3, so we woulcl like to find rational solutions to

w 2 = t4
- 6t2

- 4t - 3.

Thc desingularization of this genus-l eurve has rational points at infinity, so it is an elliptic eurve.
A ealeulation shows that it is isomorphie as an elliptie eurve to y2 = x 3 - 48. This is the curve
243Al in [4]; it has rank 1, and its group of rational points is generated by the point (4,4). Thus
we find a positive rank elliptic Cllrve whose points parameterize a farnily of plane quarties whose
Jacobians contain a rational subgroup isomorphie to Z/6Z x Z/6Z x Z/6Z.

Taking EI to be Fi,4 or FJ,2 gives us rational subgroups timt we ean get in other ways, and
taking EI to be E~,8 or E&,2 leads to equations with no rational solutions.
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Coefficients of model A = -(82 - 28 - 1)(82 + 28 - 1)
y2 = x(x2 + Ax + B) B = -482(8 - 1)2(8 + 1)2

of universal curve D.=(82 +1)4

x-coordinates of xs = 0
2-torsion points XT = (8 + 1)2(8 - 1)2

S,T,U Xu = -482

x- and v-coordinates of a XF = -2(8 + 1)(8 - 1)
4-torsion point V with 2V = T YF = 2(82 + 1)(8 + 1)(8 - 1)

x- and v-coordinates of a Xw = 2is(s + 1)(8 - 1)
4-torsion point W with 2W = S Yw = -28(8 + 1)(8 - 1)(8 - i)2

TABLE 10. Data for the universal elliptic curve Ft 2a' Here i denotes a square root
of -1. Ir a is a non-trivial elelnent of Gal(k(i)/k), 'then WO' - W = U.
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4.11. Gaining 2-power torsion. In this section we will show how to further specialize two of the
families we wrote down in the last few sections to obtain larger rational torsion subgroups. For the
first exaluple, we will ncecl to write down the universal curve F14a in a slightly different fonn. All
we would like to do is make a change of variables in the cquation' for F14a so that the point labeled
S in Table 9 will have x-coordinate O. After translating x by the pr~per alnount to do this, we
obtain a curve that we will call FI 2a' All the information we will nccd about this curve is listed in

Table 10. Note that Ft 2a is a specialization of FJ 2' &,;; the notation suggests. In fact, Ft 2a = F4-{J·
Now suppose we try to build a plane quartic'by taking EI = E2 = F~8 anel E3 =' F42a . For

notational convenience, we denote by t the number -82, so that E3 = FJ 2 as weIl. Le't PI be
thc 2-torsion point on EI with x = -16u4 alld let P3 be thc point labeled Uin Table 10, so that
d3 = (t - 1)2 = (82 + 1)2.

As we noted in Section 4.8, the twisting factor in this situation is cqual to

4(t -1)2Ai + 16tD.} = 4(s2 + 1)2Ai -1682D.I,

up to squares, so we would like to find solutions to

w2 = (s2 + 1)2Ai - 482D.l.

For fixed Aland D.I, this is a genus-l curvc in the (8, w)-plane whose desingularization ha..-'l rational
points at infinity, so it is isomorphie to its Jacobian, which (according to thc fonnulas in Example
3.7 (pp. 293-294) of [34]) is given by

y 2 = x(x + D.d(x - 4BI ).

Ir we take u = 2 then this curve is given by y2 = x(x + 30625)(x - 82944) anel has a non-torsion
point (-21600,4514400). Thus, for this choiee of u there are infinitely many values of s E Q that
Blake the twisting factor a square.

Let C be the plane quartic associated to one of these choices. Let A be the abelian variety
EI X EI X E3 and let G be thc kerncl of thc hOlllomorphism 'I/J fronl A to the Jaeobian J of C. Thc
iIllage under 1j; of the known rational torsion of A is a rational torsion subgroup of J iSOIllorphic
to Z/2Z x Z/4Z x Z/4Z x Z/8Z. Note that the nUIllber of independent (Z/4Z)-factors contained
in this group is as largc as is allowed by the rcstrictions ilnposed by the Galois-equivariancc of thc
Weil pairing. Howevcr J there is nlore rational torsion 011 J than just this.

Let R 1 be the 2-torsion point on EI with x = -(u-l)4(u+l)4 (see Table 8). Applying LClllma 16
to the curve EI, taking S = PI and T = QI and U = R1, wc find that there is a point WI E EI (K)
defined over a Galois extension eof Q with 2WI = PI' Since Xs - XT = -16u4 we see that e
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contains Q(i); furthenuore, if a is any automorphism of f that fixes i then Wf - W l is either 0 01'

Ql, while if a eIoes not fix i then Wf - Wl is either P j or R l .

Let W3 be thc point on E 3 labeled W in Table 10. Thc point W3 is clcfined over Q(i), anel if
a is the non-trivial autolllorphisill of Q(i) then W:f - W3 = P3 . Knowing the Galois action on
W 1 and W3 , one can check quite simply that {W l , W 1, W3 )0" - (Wl, W 1, Wl) is an eleluent of G for
every a E Gal{K/Q). Thus the image Z of (W1 , W 1, W3) in J is a rational point. It is certainly
not one of the points we already calculated because (Wl, W 1 , W3 ) does not differ frmu one of the
known rational points of A by an element of G. However, 2Z is one of the points we previously
ca.lculated, and indeed 2Z is a 2-torsion point. As rClllarked before, the torsion subgroup cannot
contain (Z/4z)n for n > 3, so the only possibility is that J contains a rational torsion subgroup
isonlorphic to Z/2Z x Z/2Z x Z/4Z x Z/4Z x Z/8Z.

We end by trying to acid 2-power torsion to thc family of curves ·we obtained in t.he preceding
section by takillg EI = E2 = E3 = F,J 6' Sincc thc three elliptic Cllrvcs (lrc iSOlllorphic to onc
another, we drop thc subscripts. Recall that wo chose d = 16t. This corrcsponds to choosing P to
be the 2- torsion point Oll E with x-coordinate equal to (t - 3) (t + 1)3 . Let R be the 2-torsion point
on E with x-coordinate (t + 3)(t - 1)3. Of course, Q is the point (0,0) on E.

Suppose we can find a value of t E Q that makos the twisting factor a square and that equals
(3 + s2)/(1 - 8 2 ) for sOllle s E Q. Then the x-coordinate of P will be a square, anel if we apply
Lemlua 16 to E, taking S = P and T = Q and U = R, we find that there will be point W on E
defined over a quadratic extension i of Q such timt 2W = Panel WO" - W = Q for the non-trivial
element of Gal(E/Q). Let C be the plane quartic corresponding to this hypothetical t, anel let
'ljJ: Ex E x E --+ J be the Inap to the Jacobian of C with kernel G generated by (0, Q, Q), (Q, 0, Q),
alld (F, P, P). The inw.ge under 'ljJ of the rational torsion of E x E x E is a. group isonlOrphic
to Z/6Z X Z/6Z x Z/GZ, but there is still more rational torsion Oll J. For consider the elelneut.
Y1 = (W, W,O) of E x E x E: since yt - Y1 = (Q, Q, 0) is in G, we sec thc ilnage of Y1 in J is
a rational point Zl' Sillülarly, the image Z2 of Y2 = (W, 0, W) is a rational point. Since neither
2Yl nor 2Y2 is in G, while both 4Y1 and 4Y2 are zero, we see that Zl anel Z2 are 4-torsion points.
Moreover, they are independent 4-torsion points, because neither 2(Yl + Y2 ) nor 2(Y1 + 3Y2 ) is in
G. Thus J contains a rational torsion subgroup isomorphic to Z/6Z x Z/12Z x Z/12Z.

To find such a curve C, we IUust find a value of s such that t = (3 + 82 ) / (1 - s2) will malm the
twisting factor a square. Frmll the preceding Rection, we know t.hat the twisting factor will be a
square if there is a w such that

w2 = {1 _ 6t2 - 4t - 3.

Inserting our fonllula for t into this equation anel clearing dellominators shows that we want to find
solutions to

y2 = _s8 + 6s4 + 56s2 + 3,

with s =I- ±l. Amazingly enough, there are such solutions to this equation: we cau take (s, y) =
(±1/5, 1432/625). These solutions give t = 19/6. Inserting the corresponcling values for A, B, and
6. into the fonllulas of Proposition 14 leads us to the plane quartic C defined by

15625(X4 + y 4 + Z4) _ 96914(X2y 2 + X 2Z2 + y2 Z2) = O.

The Jacobian of this curve contains a rational torsion subgroup of order 6 . 12 . 12 = 864. Both E
and C have good redlletioll 1l10dulo 7; sinee thc rcdllction E' of E modulo 7 has 12 points (12 beillg
the ollly multiple of 12 lying within the Weil bouuds), and since the redllction J' of the Jacobiau of
C is isogenous to E' x E' x E', we see that J' has 123 = 1728 points. Thereforc the rational torsion
subgroup of J is ismllorphic either to Z/6Z x Z/12Z x Z/12Z, to Z/12Z x Z/12Z x Z/12Z, to
Z/2Z x Z/6Z x Z/12Z x Z/12Z, or to Z/6Z x Z/12Z x Z/24Z. The second anel thircl possibilities
can be ruled out by looking at the action of Galois on the 4-torsion of E x E x E. The fourth ean
also be ruled out: the elual isogeny $* : J --+ E x E x E would take a 24-torsion point on J to a
point of order at least 12 on E x E xE, sinee w·~ is Illultiplicat ion-by-2 on J, but the torsion



TORSION SUBGROUPS OF JACOBIANS 35

subgroup of E X E X E is of exponent only 6. Thus, wo have found a single plane qllartic C such
that thc rational torsion subgroup of lac C is iSOInorphic to Z/6Z X Z/12Z X Z/12Z.
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