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ON COMPLEX ANALYTIC COMPACTIFICATIONS OF ~3

by

Mikio Furushima

Introduction. Let X be an n-dirnensional connected

cornpact cornplex manifold and A be an analytic subset of X.

We say the,pair (X,A) a cornplex analytic cornpactification of

a:n if X - A is biholomorphic to crn . If X adrnits a Kähler

metric, we say the pair (X,A) a Kähler compactification of

~n. Then, Hirzebruch -(Problem 27 in [4]) proposed the following

Problem H. Determine all the compactifications of ~n with

the second Betti number b 2 (X) =1 .

For n =1, it is easy ·to see that (X,A);; (IP 1 , (0). For

2 1Remmert-Van de Ven [10] proved that' (X, A) s (lP ,1P ), where

is a line on X = ]p2 ~ For n ~ 3, Problem H is still open.

n = 2,

A = IP
1

In the paper [2], the author considered the following special

case of Problem H for n =3.

Problem. Determine all the Kähler compactifications (X,A)

of ~3 such that A has at most isolated singular points.

Then we have the following

Theorem 1 ([2J). (X,A) be a Kähler compactification of ~3

such that A has at most isolated singular points. Then, A i8

an irreducible normal divisor on X, the line bundle {Al defined

by A is positive on X, and the canonical divisor Kx = -rA

(1 ~ r ~ 4 ). Especially, X is a Fano 3-fold of index r wi th

b 2 (X) =1. The structure of (X,A) is determined by the index r
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as follow:

w3 is a non-singular

JP4 and (02 iso

( 1 )

(2 )

_ 3 2
r = 4 .. (X,A) l:::: (JP ,JE> ), where

hyperplane on X = JP3 .

r = 3 .. (X,A) ;: (W3 ,(O~), where

quadric hypersurface in

A =]p2 is a

a quadric cone which is a hyperplane section.

(3) r =2 -~ (X,A) = (VS,H
S
)' where Vs is a Fano 3-fold of

degree 5 in ]p6 and H
S

is a hyperplane section

with a rational double,point (A4-singularity).

(4) r = 1 .- (X, A) .. ?·A 1s not a cone over a non-singular

,compact algebraic curve of genus q ~ O.

Moreover, X - A ~ 0::
3 in each case of r ~ 2.

In this paper, we shall consider the case of r = 1. Dur

main result is the following

Theorem 2. Let (X,A) be as in Theorem 1. Assume that the

index r =1. Then we have

Fano 3-fold of degree 22 -in

(X ,A) ;;::

13 '
JE>

(V22 ,H22 ), where V22 1s a

and H22 1s a hyperplane

section of V22 which 1s a normal rational surface.

Remark. There exists such a pair (V22 ,H22 ), but the

author does not know whether V
22

- H
22

~ a: 3 .

Question. Is there a hyperplane section H22 of V22 such

that V22 - H22 • er 3
?
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§ 1. General results.

Let (X,A) be a Kahler compactification of ~3 such that

A has at most isolated singular points., By Hartogs theorem, A

is an analytic subset 'of pure, codimension one. Since ,A has at

most hyper5urface singular points,. A is anormal Gorenstein sur-

face, that i5, we can define the canonical divisor RA on A.

Since ~3 is connected at infinity, A is connected, hence A

is an irreducible normal Gorenstein surface .. Then the general

properties can be sumrnarized as follow:

Proposition 1 (.[2]). Let (X,A) be as above. Then

(1) H
1

(XiZ) l;H'(AiZ)-O

( 2 ) H
2

(X i Z) E: H2 (A i Z) ;; Z •

H2
(XiZ)" is generated by the first ehern class c 1 ([A]) of

the line bundle [A] defined by A and H2
(AiZ) is ge-.

nerated by c 1 (NA)' where NA = [A] IA i5 the normal bundle.

(3) The Euler number x (X) = 4 - b 3 (A), where 3b
3

(A) = dirn H (Ai lR) .

(4 ) The line bundle [A] i5 positive on X and the canonical

divisor K =-rA (1 ::;;r::;;4). Especially, X i5 a Fane 3-foldX

of index r with the secend Betti nwnber b2 (X) = 1 •

(5 ) i = 0 for 1 ::;; i ::;; 3.H (X,OX)

(6 )
i =0 for 1 ~ i ~ 2 if r ~ 2H (A,OA)
1 .

=0 and 2 if r =1 .H (A,OA) H (A, GA) <= ce
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A projeetive algebraic normal Gorenstein surface A is

ealled a (singular) Del Pezzo (resp_ a singular

if -K
A

is positive on A (resp_ -K =0
A

and

K - 3 surface)

1
H (A,OA) =0)_

Then we have

Proposition 2 _ If r '= 2, then A is a (s ingular)

Del Pezzo surface with Pie A s Z-NA- If r = 1, then A i8 a

singular K - 3 surfaee with Pie A ~ Z-NA-



-5-

§ 2. The strueture of A in ease of ·r = 1 •

In this seetion, assume that r =1. Then A is a singular

K - 3 surfaee wi th Pie A ~ Z· NA and the singular points of A

are hypersurfaee singular points. 'Let Sing A be the set of the

singular loeus of A and 5 be the set of singular points of

A whieh are not rational double ,points. Let TI:M ~ A be the

-1minimal resolution of singular points of A and put B =TI (Sing A),

-1 So 2
C = TI (5) = U C. ,and s = dirn H (B:lR) • Let us denote the

i=1 ~

eanonical divisor on M by KM.

Lemma 1. S * <P •

Proof. Let us consider the following exaet sequence of

cohomology group (see [1]):

~

H 1 (Ai lR) ---+- 'H
1 (M i JR) ---+- H

1
(B i lR) --+- H

2
(Ai IR) ---+- ,H

2
(M, JR)

H
2 (BiIR) --+- o.

=1

1
we have KM =0 and H (Bi lR) =O.•

H1 (Ai lR) = 0 , by the exact sequenee

is a K - 3 surfaee. Sinee b 2 (A)

+and A is algebraie, we have b (A) =1 •. On the other hand, by

Brenton [1], b + (A) = b + (M). Thus we have b + (M) = 1. This 1s a

As sume that S =<p. Then

15inee H (A, 0A) = 0 implies

1above, H (Mi lR) = 0 . Thus M

eontradietion.

Q.E.D.

Corollary 1. M 1s a ruled surfaee over a non-singular

compact algebraic curve R of genus q =dirn H1 (M, GM) •

Proof. 5ince 5 * <p, we have -KM = Lni Ci (ni> 0, ni E2l) •

Thus Prn (M) =dirn HO (M, 0 (mK
M

» =0 for rn > O. By the classif ication
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of surfaces, we have the claim.

Q.E.D.

Lemma U ([ 11 ] ) .

(1 ) If q * 1, then S consists of one point with

d im (R
1

TI *0M) S =q + 1 •

p =q

(2) If q = 1, then S consists of either one point with

p =2 or two points with p =1, in second case of (2),g g

both of the two points are simple elliptic.

LeIl'lri1a 2. S consists of one po~nt with p =q + 1g and

b
2

(M) = s + 1 •

Proof. Assume that S consists of two points. By Lemma U,

these two points are simple elliptic and C = TI -1 (S) =C
1

U C
2

' where

C1 ' C2 are distinct sections of M. Since b 2 (A) =1, by the exact se-­

quence in Lemma 1, we have b 1 (M) =b
1

(B) and b 2 (M) = s + 1 .

Since 2 =b1 (M) =b
1

(B) 'b
1

(C) =b, (C 1 ) +b 1 (C2 ) =2 +2 = 4, this is

a contradiction.

Q.E.D.

Let Z be the fundamental cycle of S wlth respect to

the resolution TI: M~ A. Then,

Lemma 3 (see Proposition 2 in [3]).

q * 0 -> there exists an irreducible component C. of
~1

C such that C. is a sec±ion' of M and the rest
~1

( 1 )

(2 )

q = 0 az> M i5 a rational surface and -K = Z
M
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is either empty or. contained in the=
C - C. i U, C.

~ *~1 J.

singular fibres of :M, and -KM = Z + C. •
~1

Corollary 2 (see Corollary 1 in [3]). Assume that q * 0 •

Then

( 1 ) (C. • Z) = 2 - 2q
~1

(2 ) (Z·Z) ~ (CJ., ·C i )
,- ·1 1

Lemma 4

( 1 ) q * 0 .. b 2 (M) ~ ~ - 4q + ~

(2) q = 0 .. 11 ~ b
2

(M) ~ 13.

Proof. Asswne that q * o. By Noether forrnula,

10 - Bq = (KM . KM) + b
2

(M)

Since -K = Z + C. , we have
M ~1

(~·KM) = (Z·Z) + 2(Z·C. ) + (C. ·c. )
J.

1 J.1 ~

By Corollary 2 and (2.1) , (2.3) I

b 2 (M) = 6 - 4q - (Z·Z) - (C. ·C. )
~l ~

~ 6 - 4q - 2(Z·Z)

(2 • 1 )

(2 .2)

(2 .3)

(2 .4)

since S ={one point} is a hypersurface singular point of A, we

have, -

1(Z· Z) ;;; -n (Wagreich [12])

lpg ~ 1(n ~ 1) (n - 2) (Yau [1 3 ] )

(2 .5)

(2 .6)
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Since p g = q + 1, by (2.5) and (2.6), we have

- (Z • Z) :s; ~ (3 + 19 + 8q)

By (2.4) and (2.7), we have finally the inequality

b 2 (M) ~ 9. - 4q + 19- + 8q

This proves - (1). Next, assurne that q =o. By Noether formula,

(2 .7)

(2 .8)

since p = 1 and S is a hypersurface singularity, by Laufer
9

[ 14 ], we have 2Z = -1, - 2, - 3. By Lemma 3 - (1) and (2.8)., we

have the inequality. 11 ~ b 2 :s 13.

Q.E.D.

Corollary 3.

Proof. Assurne that q * o. Then, by Lemma 4 - (1 ), we have

2 :s b 2 (M) :s 9 - 4q + 19 + 8q

This implies q:S 3.
Q.E.D.

Now, since the index r = 1 , X is a Fano 3-fold of index 1

with b 2 (x) =1 and A i$ a hyperplane sectio~ of X. We put

1g = 2" (A· A· A) X + 1. The number g is called the "genus" of the

Fano 3-fold X. Then by Iskovskih, we have

Lemma 5· ([ 6] , [ 7"] ) . Let g be the genus of a Fano 3-fold

X of index 1 and b 2 '(X) = 1. Then,
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g 2 3 4 5 6 7 8 9 10 1"2

1 52 30 20 14 10'2b3 (X) 7 5 3 2-: 0

Table 1

Remark. The list of the cla5sification of Fano 3-folds

due to Iskovskih [6] is -.".J~ncomplete, in fact, S. Mukai-H. Umernura

[8] gave an example cf a Fano 3-fcld of index 1 and the genus

9 = 12 which "i5 overlocked by Iskovskih. But Table 1 is justified

by S. Mukai, who has recently succe~ded in classifying Fano

3-folds cf index '1 with b 2 (X) = l' applying the theory of vector

bundles on K - 3 'surfaces. According to his theory, such a X

can be represented as a complete intersection of a homogeneous

space (see [9 ]).

Lemma 6.

Proof.

By Corollary 3, Lemma 5 and Lemma 6, we have (9,Q) = (9,3),

(10,2) or (12,0) . If q = 3 , then, by Proposition 2 - (1 ) ,

b 2 (M) < 3, that is b 2 (M) = 2. Then, .M is a 1P 1 -bundle over R

of genus q = 3 (see Corollary 1 ) , "and thus A is a cone over

R. This contradicts Theorem 1 - (4). Therefore q * 3. On the other

hand, by Lemma 7 below, we roust have b 2 (M) ,4.

Lemma 7. Assume that q * o. Then, there exists unique

exceptional curve of the first kind in every singular fiber of M

and then another irreducible components cf the singular fiber are

all ccntained in B = n- 1 (Sing A) .
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Proof. See Proposition 7 in [3J.

Therefore (g, q) = (1 0 ,2) or - (12 ,,0). In case of q =2, by

Proposition 2 - (1), and the fact above, 'we have 4:i b
2

(M) :i 6.

Next, we shall deterrnine the type of singular fiber of M

in case of q = 2 •

Lenuna 8. As sume that 'q = 2. Let Z, C. , s, B be as above.
~,

We put (C. ·C. ) = e < O. Then we have -4 S-(Z·Z) ~ -3 and
~1 ~1

(1) (Z.Z) = -4 - (e,s) = (-2,3), (-3,4), (-4,5)

(2) ,{Z·Z) = -3 ~ (e,s) = (-3,3).

'Proof. Since q = 2, 4:i b
2

(M) :i 6. By (2 .4), 4 ~ b
2

,(M) :i

6 - 8 - 2 (Z· Z), narnely, 3:i - (Z·Z). By (2. 7), - (Z·Z) ~ 4. Therefore

-4 ~ (Z·Z) :s -3. Since (Z.Z) = -3 or -4 and 4 ~ b
2

("M) ~'6, by

Corollary 2 - (2) and (2.3), we have that

(i) b
2

(M) = 6 - (e, s) = (-4,5) and (Z· Z) = -4

(ii) b
2

(M) = 5 -(e, s) = (-3,4) and. (Z • z) = -4

(iii) b
2

(M) = 4 -(e , s) = (-3,3) and (Z • Z) = -3, or

(e, s) = (-2,3) and (Z· Z) = -4

Q.E.D.

By Lemma 7, Lemma' 8 and the fact that Sing A ....... S consists

of rational double points, we have t~e following

Proposition 2. Assurne that q = 2. Then the structure of M

as a ruled surface can be described as Table 2:

(i)

(ii)

(k = 2 or 3)
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(iii)

(iv)

(v) ffi--0-

(vi) 0-0-

(vii)

(viii)

Table 2

Notation. In proposition 2, the vertex ~ represents a

non-singular compact algebraic curve of genus 2 with the self-inter­

section number -k~ a non-sinulgar ,rational curve with the

self-intersection number -k, and we denote~ sirnply by ()
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§ 3. Proof of Theorem

Let (X,A), M, TI and g be as before. Then,

Lenuna 9. Pie A ~ ~ [D], where D is a ,canonieal eurve of

genus 9 such that deg D = .2g - 2 and D n Sing A =.<p (in

our ease g = 10, 12).

Proof. X is a Fano 3-fold of degree 2g 2 in ]pg+1

(see [7]) and A is a hyperplane seetion. For a sufficiently

general hyperplane seetion H. NA ~ [H] IA - [D] on A (linearly

equivalent), where D is a non-singular canonical curve of

genus g with deg D = (A·A·A) = 2g - 2 and D n Sing A = <p.

Q.E.D.

We shall prove Theorem 2. We have only to show q*.2. Then

q =0, namely, X is a Fano 3-fold of degree 22 in JP
1 3 and A

is a hyperplane section which -is normal and rational. Assume that

q =2. Then M is a ruled surface over a non-singular compact

algebraic curve of genus 2. We put -1D* = TI (D)~ M. Since

D n Sing A = <p, D* Q D, (n*.n*)M= -.2g - 2 and (D*·Bi)M = 0 for
-1every exceptional curve Bi C B = TI (Sing A). Let e i (O;S i ;S k)

be a basis of the cohomology group H2 (MiZ), which is chosen as

fellow: e O is the class of the negative section of. M

and e. (1;S i ;:;; k) is that of a singular fibers ef M. These can
~

be chosen easily if we can see the type of singular fibers of M.

Then we have

k
D* = \' Ct e (CL E:~)

I. i i 1.

i=O

(3 • 1 )

In case of (g,q) = (10,2), by Proposition 2, we determine

the structure of M as a ruled surface case Table 2). Thus, we
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can easily choose a basis {e.} (0:$ i :$ k), and have" that
1..

(i) the intersection number (e. ·e')M is determined by
1.. J

the graph in Table 2.

(ii) (D* • e
i

) M =0 if e
i

i8 the class of exceptional curve

-1in B = TI (Sing A) ,

(iii)

(iv)

(D*.D*)M::: 2g-2 = 18.

d .. = (D*· e. ) '* 0, where e. i8 the class of .the exceptio-
1..0 ' J.o J.o

nal curve of the first kind which is obtained by the

blowing up.

By (3.1) and the assertions (i) - (iv) above, we have

z. Finally, we canoverthe equations concerning to aJ." d.
J.b

show by easy calculations that these equat~ons have no solution

over Z (see Appendix).

Therefore q =0 and g =12. This completes the proof of

Theorem 2.
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§4 An example

Let M be a rational surface which 1s obtained from F 2 by

12 times blowing-ups, and the configuration of exceptionc;il., curves

on M be as Figure 1, where

(i)

(ii)

C. I S ,are all non-singular rational curves .
~

E. (i = 1,2), C. (i * 5,9) are the' exceptional curves
~ ~

obtained by the·blowing-ups.

(lii) (C 1 ·C1 ) = (C
S

.C
S

) = -3, (Ci .C i ) = -2 if 1 * 1,5

(E. • E .) = -1 (i = 1, 2) .
~ ~

(iv) D* 1s a non-singular compact algebraic curve of genus 12

with deg D* = (D*·D*) = 22, which ls the proper transforrn

of a curve of degree 1 1 in F 2 with a ..·,. singular ·point.

(v) (D*.E
1

) = 2, (D* • C ) = 0
i

(1 ~ i~ 12).

12
We.put C = U C.. Then the intersection matrix ((C. ·C.))

i= 1 ~ ~ J
is negative definite, hence C is an exceptional curve on M.

We put A = M/C. Then .A is a singular K - 3 surface with a

where D is the image of D*

hypersurface singular point

and deg D = (D*.D*) = 22.

(in fact, P = 1), and Pie A ~ Z [ D] ,
9

in A. We find that D n Sing A = ep

Assume that A is a hyperplane section of a Fano 3-fold X

of degree 22 in p13. Then we can see that X - A is an affine

3-fold with b. (X - A)
~

3= ~ b. (CL )
~

for i ~ o.

Question. Is X - A a homology 3-cell ?
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Appendix

(i) (k = 2 or 3)

(Cl. E Z) _ Then we have
~

0.1 - kClO = 0

0. 3 - 2Ci 1 + a O = 0

Ci 3 - 20:2 = 0

a
2

a 3 + a 1 = d 3

Ci 3 d 3 = 18

2 36 (k = 2 _3) _ Therefore Ci
O

.f/. Z_.. ClO =
2k-1

(ii) 0--0-CI)-O-o
e. e l e,. e.s e.t

4
D* = I

i=O
a.e.
~ ~

(Cl. E~)
1.

a 1 - 3CiO = 0

°4 - 3°1 + Cl = 0
0

Cl 3 - 2a = 02

°4 - -2 Ci + Cl = 03 2

Ci 1 - Ci 4 + Ci 3 = d 4

"'4- d S = 18

0
2 27 Therefore Ci O ~ z_.. = T0
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m-o-6-~(iii)
j 0
€o e l e.3 e.t

4
D* = I a.e i

(a. E Z)
. 0 ~ ~
~=

a, - 3ao = 0

a
3

- 2a + a o = 0- ,
a

3
- 2a = 00

a 4
+ a, - 2a + a 2 = 03

Therefore

(iv) @
eo e., es e.,. ~ e.z.

5
D* = I a. e. (a. €~)

i=O ~ ~ ~

( a, - 4ao = 0

as - 4a
1

+ a o = 0

a. 3 - 2a2 = 0

o - 2a + 0.
2

= 04 3

0:
5

- 2as: + a. 3 = 0

'.0. - Cl . + Cl 4 .' dSl 1 5
(XSds = 18

2 24 Therefore ~ ~... a. = - 0 00 5
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5
D* = L

i=O
o..e.
~ ~

(0. E Z)
~

(vi)

0., - 40: 0 = 0

et 4 - 30:., + eto = 0

et 3 - 2et2 = 0

0
4 - 20:. 3

+ et2 = 0

a
5

+ (Xl - 20.4 + 0. 3 = 0

°4 - (x .. = d
·5 5

d 5 • a = '85

a 2 = 81 Therefore a
O E z ....

0 16

5
D* = \' 0:. e

I~ i i
i=O

(a. E Z)
~

0:. 1 - 4 a
O

= 0

et 3 - 2a l + a O = 0

0. 3 - 2et 2 = 0

0;4 + a 1 - 2°3 + 0. 2 = 0

0:. 5 - 2a4 + 0. 3 = 0

= d 5

= 18

Therefore Ct o f/. z
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5

D* = I
i=O

a. e ..
~ ~

(a.E Z)
~

r
Cl 1 40: 0 = 0

0:0 - 20: 1 + Cl 3 = 0

0: 3 - 20: 2 = 0

Ci. 5 + Cl, -.:- .·3Cl 3 + Cl 2 = 0

Cts - 2Ct
4 = 0

Ci. 4 - Ci. 5 + °3 = d S

dS-aS = '8

:. a 2 16 Therefore Cl O ~ z_= 30

(viii)

~ e. el e" e:t.

5
D* = I Ct e. (ai E Z)

i ~

i=O

a 1 - 4°0 = 0

Ci. 3 - 2 Ct 1 + 0.
0

= 0

Cl 3 - 2Ct
2 = 0

Cl, - Ct 3 + °2 = d 3

°5 - 2Ct
4 = 0

°4 - Ct s = d S

Cto + Cts = 0

Ctsds + Ct
3

d 3 = 18

.'. Cl 2 6 Therefore t z_= Cl O0
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D* I

~,
r -Q.2. .

-3

-3

I
I

E,

C:z.
c,

Figure 1

\
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