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ON COMPLEX ANALYTIC COMPACTIFICATIONS OF €°
by

Mikio Furushima

Introduction. Let X be an n-dimensional connected

compact complex manifold and A be an analytic subset of X.

We say the pair (X,A) a complex analytic compactification of

n

C if X-2 1is biholomorphic to ¢, If X admits a Kihler

metric, we say the pair (X,A) a K&hler compactification of
. Then, Hirzebruch (Problem 27 in [4]) proposed the following
Problem H. Determine all the compactifications of ¢” with

the second Betti number b2 (X) =1.

For n=1, it is easy to see that (X,3a) = (IP1, @), For n=2,
Remmert-Van de Ven [10]‘ proved that  (X,a) = (IPZ,IP1) , where A= ]P1
is a line on X-= 113'2 . PFor n23, Problem H is still open.

In the paper [2], the author considered the following special
case of Problem H for n=3.

Problem. Determine all the K&hler compactifications (X,3)
of E3 such that A has at most isolated singular points.

Then we have the following
Theorem 1 ([2]). (X,A) be a Kidhler compactification of 3
such that A has at most isoclated singular points. Then, A 1is
an irreducible normal divisor on X, the line bundle f[A] defined
by A 1is positive on X, and the canocnical divisor Kx = -rA

(1srs4). Especially, X 1is a Fano 3-fold of index r with

bz(x) = 1. The structure of (X,A) is determined by the index r



as follow:

(1) r=4 =» (X,A) = (IPB,IPZ), where A=IP2 is a

hyperplane on X = IP3 .

(2)  r=3= (x,a) s (@°,0)), where @’

is a non-singular
guadric hypersurface in ZIP4 and Qg is

a quadric cone which is a hyperplane section.

(3) r=2.= (X,A)EE(VS,HS), where V5 is a Fano 3-fold of
degree 5 in Eﬁ and He is a hyperplane section

with a rational double point (A4-singularity).

(4) r=1= (X,A) 2. A is not a cone over a non-singular

.compact algebraic curve of genus gz 0.
Moreover, X-—A=am3 in each case of rz2.

In this paper, we shall consider the case of r =1, Our
main result is the following

Theorem 2. Let (X,A) be as in Theorem 1. Assume that the
index r =1. Then we have (X,3) E(V22,H22), where V,, 1is a
Fano 3-fold of degree 22 in Eﬂ3 and sz is a hyperplane

section of V22 which is a normal rational surface.

Remark. There exists such a pair (V but the

author does not know whether V22-H2212¢3.

227Hy0)

Question. 1Is there a hyperplane section H
3 ?

22 of V22 such

that V -H =

22 22



§ 1. General results.

let (X,2) be a Kahler compactification of E3 such that

2 has at most isclated singular points. By Hartogs theorem, A
is an analytic subset of pure codimension one. Since A has at
most hypersurface singular points, A is a normal Gorenstein sur-
face, that is, we can define the canonical divisor KA on A,

Since E3 is connected at infinity, A is connected, hence A

is an irreducible normal Gorenstein surface.. Then the general

properties can be summarized as follow:

Proposition 1{{2)}). Let (X,A) be as above. Then
1 1 _
(1) H (X;%) =H (A;XZ) =0
(2)  ®Y(x;2) = B2 (A;Z) = 2.

HZ(X;z) is generated by the first Chern class ¢, ([A]) of
the line bundle [A] defined by A and HZ(A;Z) is ge-

nerated by c1(NA), where N, = [A]JIA is the normal bundle.

(3)  The Euler number x(X) =4-by(A), where b,(A) = dim H’ (A;R) .

(4) The line bundle [A] 4is positive on X and the canonical
divisor KX==-rA (1srs4). Especially, X 1is a Fano 3-fold

of index r with the second Betti number bz(x) = 1,

(5) Hi(X,OX)=0 for 154is3.

(6) Hi(A,OA)=0 for 15is§2 if rz2

H1(A,0A)=0 and H2(a,0.) =€ 4if r =1.



A projective algebraic normal Gorenstein surface A is
called a (singular) Del Pezzo (resp. a singular K- 3 surface)
if -Kp is positive on A (resp. —KA=0 and H‘l (A,OA) =0).
Then we have

Proposition 2. If rz22, then A is a (singular)

Del Pezzo surface with Pic Asz-NA. If r=1, then A 1is a

singular K- 3 surface with Pic AEZ'NA.



§ 2. The structure of A in case of r=1.

In this section, assume that r=1. Then A is a singular
K-3 surface with Pic Aizz-NA and the singular points of A
are hypersurface singular points. Let Sing A be the set of the
singular locus of A and S be the set of singular points of
A which are not rational double points. Let 7 :M —> A Dbe the
minimal resolution of singular points of A and put B==w—1(Sing A},
c=n"'(s) = joci , and s = dim B®(B:TR) . Let us denote the
canonical diiilor on M by Ky-
Lemma 1. S =#4¢.
Proof. Let us consider the following exact sequence of

cohomology group (see [1]):

— B (A;R) —> H' (M;R) —> H' (B; R) —> H? (A; R) —> HZ (M, R)

—> B2 (B;R) —> 0.

Assume that S =¢. Then we have KM=0 and I-I‘l (B;IR) = 0..
Since H1(A,0A)==0 implies H1(A;BU =0, by the exact sequence
above, H1(M;HU =0, Thus M 1s a K-3 surface. Since bz(A)= 1
and A 1is algebraic, we have b+(A)= 1. .0n the other hand, by
Brenton {11, b+(A)==b+(M). Thus we have b+(M)= 1. This is a

contradiction.

Corollary 1. M 1s a ruled surface over a non-singular
compact algebraic curve R of genus g =dim H1(M,OM).

Proof. Since S % ¢, we have -KM=EniCi (ni>0, niEZ}.
Thus Pm(M)==dim HO(M,O(mKM)) =0 for m>0. By the classification



of surfaces, we have the claim.

Q.E.D.

Lemma U ([11]).

(1) If qg+1, then S consists of one point with pq =

aim (R'ms0,) . =q+1.

M)S

(2) If g=1, then S consists of either one point with
pg =2 or two points with pg =1, in second case of (2),

both of the two points are simple elliptic,

Lemma 2. S consists of one point with Pg =9 +1 and
b, M) =s+1.

Proof. Assume that S consists of two points. By Lemma U,
these two points are simple elliptic and C = 7 (S) =C, UC,, where
C, +C, are distinct sectionsof M. Since b2 (A}Y=1, by the exact se-
quence in Lemma 1, we have b, (M) =b1 (B) and b, (M) =s+1.

Since '2=1:).| (M) =b.I (B) Zb1 {(C} =b1 (C.I) +b1(C2) =2 +2 =4, this is
a contradiction.
Q.E.D.

Let Z Dbe the fundamental cycle of S with respect to

the resolution @7 : M —> A. Then,
Lemma 3 (see Proposition 2 in [31).

(1) g=0 =M 1is a rational surface and -KM= Z
(2) g+0 = there exists an irreducible component Ci of
1
C such that Ci is a section of M and the rest
1 -



Then

(1)
(2)

(1)
(2)

Since

T .U is ei ' ~
C Cj‘1 i¢i1 Ci is either empty or contained in the
singular fibres of M, and Ky =12 +Ci

1

Corollary 2 (see Corollary 1 in [3]). Assume that gq=0.

(C. *2) = 2-2q
1y
(z-2) s (C, -C. )

Lerma 4

q¢0»b2(M)59—4q + /9+8q

g=0m= 11Sb2(M) S13.

Proof. Assume that g # 0. By Noether formula,

10 - 8q = (Ky + Ky) + by (M)

—KM = Z-+Ci1, we have
(K,,°K.,) = (2+2) +2(2-C, )+ (C, -C. )
KM M l.} l1 :I..l

By Corollary 2 and (2.1), (2.3},

since

b,(M) = 6 - 4g - (2-2) - (C. °*C. )
2 iy i

S 6 - 4g - 2(2+7)

(2.1)

(2.2)

(2.3)

(2.4)

S = {one point} 1is a hypersurface singular point of A, we

have,

I(Z-Z) 2-n (Wagreich [12])

tpg;%(n-. ) (n=-2) (yau [13])

(2.5)

(2.6)



Since Pg = g+1, by (2.5) and (2.6), we have

-(2-2) s3(3 + /578 (2.7)
By (2.4) and (2.7), we have finally the inequality

b, (M) S9-4g+/9 + 8qg .
This proves (1). Next, assume that g=0. By Noether formula,

b, (M) = 10 - (K, K, | (2.8)

since pg=1 and S 1is a hypersurface singularity, by Laufer
[14], we have 22=—1, -2, -3. By Lemma 3 - (1) and (2.8), we

have the ineguality . 11 & b2 S 13.

Q.E.D.

Corollary 3. 0sgs3.

Proof. Assume that g+ 0. Then, by Lemma 4 -~ (1), we have

Zsz{M) S 9~ 4g + V9+8qg

This implies g s 3.
Q.E.D.
Now, since the index 1r=1, X 1is a Fano 3-fold of index 1
with b,(x) =1 and A is a hyperﬁlane section of X. We put
g = %(A-A-A)X+ 1. The number g 1is called the "genus" of the
Fano 3-fold X. Then by Iskovskih, we have
Lemma 5 - ([6],[7]). Let g be the genus of a Fano 3-fold

X of index 1 and b2'(X) =1, Then,



%bB(X) 52 130 {20 (14 {10 | 715|320

Table 1

Remérk. The list of the classification of Fano 3-folds
due to Iskovskih {6] is _incomplete, in fact, S. Mukai-H.Umemura
[8] gave an example of a Fano 3-fold of index 1 and the genus
g = 12 which is overlooked by Iskovskih. But Table 1 is justified
by S. Mukai, who has recently succeeded in classifying Fano
3-folds of index 1 with bz(x) = 1' applying the theory of vector
bundles on K-3 surfaces. Aécording to his theory, such a X

can be represented as a complete intersection of a homogeneous

space (see [9 1).

_ 1
Lemma 6. q = 3b3(X) -
Proof. 2q = b1(M) = bB(M) = b3(A) = b3(X)7
By Corollary 3, Lemma 5 and Lemma 6, we have (¢,q) = (9,3),
(10,2} or (12,0). If g = 3, then, by Proposition 2 - (1),
bz(M) < 3, that is bZ(M) = 2. Then, M 1is a Eﬂ -bundle over R

of genus gq = 3 (see Corollary 1), and thus A is a cone over
R. This contradicts Theorem 1 - (4). Therefore g+ 3. On the other

hand, by Lemma 7 below, we must have b, (M) 2 4.

Lemma 7. Assume that g+ 0. Then, there exists unique
exceptional curve of the first kind in every singular fiber of M
and then another irreducible components of the singular fiber are

all contained in B = 7 (Sing A).
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Proof. See Proposition 7 in [3].

Therefore (g,q) = (10,2) or ~(12,0). In case of q=2, by
Proposition 2 - (1), and the féct above, we have 43§ b2 (M) 6.

Next, we shall determine the type of singular fiber of M
in case of g=2.

Lemma 8. Assume that g=2. Let 2, Ci1, s, B be as above.

We put (Ci -C, ) e <0, Then we have -4 s5°(2:2) £-3 and

1+
(1) (2.2) = -4 = (e,s) = (-2,3), (=3,4), (-4,5)
(2)  [2z-Z) = -3 =» (e,s) = (=3,3).

“Procf. Since q=2, 4sb2(M) $6. By (2.4), 4$b2.(M) S
6-8~-2(2-2), namely, 3s-~(2-2). By (2.7), -(2-2) s4. Therefore
-4 s (2-2) s-3. Since (2:Z) = -3 or -4 and 4.<.b2 (M) £6, by

Corollary 2 - (2) and (2.3), we have that

(i) b2(M) = 6 = (e,s) = (-4,5) and (z2°2) = -4
(ii) b, (M) = 5 = (e,s) = (-3,4) and (2:2) = -4
(iii) Db, (M) = 4 = (e,s) = (-3,3) and (Z.2) = -3, or
' (e,s) = (-2,3) and (Z:2) = -4
Q.E.D

By Lemma 7, Lemma 8 and the fact that Sing A~S consists
of rational double points, we have the following

Proposition 2. Assume that g =2. Then the structure of M

as a ruled surface can be described as Table 2:

(1) H!F_"k_"%_C:) | (k = 2 or 3)
(ii) 3] G’ ",, "' "'
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(1) EI—O—Q-O

@
) BHO-O-O-0O-0O

(v) Eﬂ-@—g—(}@

(vi) m_o_gO

(vii) :

Wil OO0

Table 2

Notation. In proposition 2, the vertex represents a
non-singular compact algebraic curve of genus 2 with the self-inter-
section number -k@ a non-sinulgar rational curve with the

self-intersection number -k, and we denote@ simply by O .
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§ 3., Proof of Theorem

Let (X,A), M, m and g be as before. Then,

Lemma 9. Pic A=Z[D], where D is a canonical curve of
genus g such that deg D = 2g - 2 and DnNSing A =¢ (in
our case g = 10, 12}). )

Proof. X is a Fano 3-fold of degree 2g - 2 in 2Pg+1
(see [7]) and A 4is a hyperplane section. For a sufficiently
general hyperplane section H. NA ~ [I-I]IA ~ [D] on A (linearly
eqguivalent), where D is a non-singular canonical curve of ‘
genus g with deg D = (A-A*A) = 2g - 2 and DnNSing A = ¢.

Q-EoDo

We shall prove Theorem 2. We have only to show g+#+.2. Then
g=0, namely, X 1is a Fano 3-fold of degree 22 in :P13 and A
is a hyperplane section which is normal and rational. Assume that
g=2. Then M 1is a ruled surface over a non-singular compact
algebraic curve of genus 2. We put D* = n_1(D)C—> M. Since
DnSing A = ¢, D* =D, (D*-D*)=-2g - 2 and (D*'B;), = 0 for
every exceptional curve B, cB = n~ ' (sing A). Let e; (0sisk)
be a basis of the cohomology group H2(M;x), which is chosen as
follow: ey is the class of the negative-section of. M
and e (1s1i<k}) is that of a singular fibers of M. These can

be chosen easily if we can see the type of singular fibers of M.,

Then we have

k
D* = } ase, (o €Z) (3.1)

i=0

In case of (g,q) = (10,2), by Proposition 2, we determine

the structure of M as a ruled surface case Table 2). Thus, we
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can easily choose a basis {ei} (0 i £k), and have that

(i) the intersection number (e, -e.) is determined by

i 79'M
the graph in Table 2.

i)M==0 if e is the class of exceptional curve
in B = ﬂ_1 (Sing A),

(i1) (D*-e

(1ii) (D*-D*)M = 2g-2 = 18.
(iv) d, .= (D*-e, } #0, where e, is the class of the exceptio-
*0 1o 0
nal curve of the first kind which is obtained by the

blowing up.

By (3.1) and the assertions (i) - (iv) above, we have
the equations concerning to ai, dio over X. Finally, we can
show by easy calculations that these equations have no solution
over Z (see Appendix).
| Therefore g=0 and g=12. Tﬁis completes the proof of

Theorem 2.
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§4 An example

et M Dbe a rational surface which is obtained from :Ez by

12 times blowing-ups, and the configuration of exceptional. curves

on M be as Figure 1, where

(i) Ci's are all non-singular rational curves .

(ii) Ei (1 = 1,2), Ci (i+5,9) are the exceptional curves

obtained by the blowing-ups.

{iii) (C1'C1) (Cs-Cs) = -3, (Ci-Ci) = -2 if i+1,5

-1 (i=1,2).

(Ei-Ei)
{(iv) D* is a non-singular compact algebraic curve of genus 12

with deg D* = (D**D*) = 22, which is the proper transform

of a curve of degree 11 in ZPZ with a.- singular point.
(v) (D*-E,) = 2, (D*-Ez) = 3 and (D*-Ci) =0 (1£1is512).

12
We.put C = U C.,. Then the intersection matrix ((Ci'Cj))

is negative definiE;, hence C 1is an exceptional curve on M.
We put A = M/C. Then A 1is a singular X=-3 surface with a
hypersurface singular point (in fact, Pg = 1), and Pic A=ZE[D],
where D is the image of D* in A. We find that DnSing A = ¢
and deg D = (D*.D*) = 22,

Assume that A 1is a hyperplane section of a Fano 3-fold X
of degree 22 in ZP13. Then we can see that X - A is an affine

3-fold with b, (X - A) =.bi({t3) for i20.

Question. Is X - A a homology 3-cell ?
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(k = 2 or

& & € €

3
*
D 'E age;  (ay €Z). Then we have
i=0
o, - kqo =0
ay - 2a1 + o =0
ay - 2a2 =0
az - a3 + oy = d3
0«_3 . d3 = 18
2 36
2 —— (k = 2.3), Therefore
%0 7 2k-1
1 B0
€ (=1 Co (=Y e,
4
D* = .z a i (Gi EZ)

i=0
0 = 3a0 =0
Oy = 3&1 + ag= 0

{ Gy - 2a2 = 0
Oy = 2a3 +o0,= 0
a1 - a4 + a3 = d
(14. ds = 18

2 _ 27
g =T . Therefore e ¢ K.
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(D&
(iii) () ® O
€ € e3 e,_
4
D* = Z ase, (aiex)
i=0
0y - 3&0 = 0
ay - 2_01‘| + a = 0
-2 =
{ a3 ao 0
a4+a1—2a3+a2=0
a3 = oy = 4
L ey cdy = 18
2
Qg = 8 Therefore

- H-O-O0-0-0O
€. & &% & &

5
D* = iz-:o a; € (o, €2Z)
f o, -4a0 =0
a5—4a1 + oy = 0
) a3-2a2 = 0
a4-2a3 ta, = 0
a5-2a5: tag = 0
a, -ag *a, = c'i5
{ a5d5 = 18
a2 = 24 Therefore

aOEZ.

aoex
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5

* =

D iZO a e, (o, €Z)
r - =

a‘1 4u0 0

a, = 3a, + o =0

a3 - 201.2 =0
{

a4 - 20-3 + a2 - 0

35 + a1 - 204 + a3 =0

6. - a. ) = 4

4 5 5
. dS. %5 =18

Gg = %3_1 Therefore o ¢ %Z.

5
D* = .z alei (0.1 €Z)
i=0
r - -
@y = 4o 0
ay - 20, + ag =0
a3 - 2&2 = 0
{ _ _
@, + a, = 2a; + a, =0
0.5 - 20.4 + (13 = 0
a. d = 18
\ °5 7§
2

ot = 6 Therefore o, ¢ Z



5
D* = iZO ae, (o€ B)
( a, - 4o, =0
e = Zcx.| + oy = 0
ay - 2a, =0
| g+ ay +s3a3 +a, = 0
ag - 2a4 =0
@4 T %5 * Oy = ds
L d5rog | - 18
:.ag = %ﬁ Therefore o, ¢ %.

(viii) W~ (D~

& es & & e e
5
D* = ) a.ey (a; €Z)
i=0
(o, - 40, = 0
a; = 20, + ag = 0
ag = 2a2 =0
@) - 03 +a, = d3
) ag - 2a4 =0
a, = G = dg
ay *+ ag =0
| a5d5 + a3d3 = 18
2

“ag = 6 Therefore o, £ Z.
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e
e |,

~3

Cz

Figure 1
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