ON COMPLEX ANALYTIC COMPACTIFICATIONS OF \mathbb{C}^{3}

 byMikio Furushima

```
Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3
```


ON COMPLEX ANALYTIC COMPACTIFICATIONS OF $\mathbb{4}^{3}$

by

Mikio Furushima

Introduction. Let X be an n -dimensional connected compact complex manifold and A be an analytic subset of X. We say the pair (X, A) a complex analytic compactification of \mathbb{C}^{n} if $X-A$ is biholomorphic to \mathbb{C}^{n}. If X admits a Kahler metric, we say the pair (X, A) a Kăhler compactification of $\mathbb{1}^{n}$. Then, Hirzebruch (Problem 27 in [4]) proposed the following

Problem H. Determine all the compactifications of \mathbb{d}^{n} with the second Betti number $b_{2}(X)=1$.

For $n=1$, it is easy to see that $(X, A) \approx\left(P^{1}, \infty\right)$. For $n=2$, Remmert-Van de Ven [10] proved that $(X, A) \approx\left(\mathbb{P}^{2}, \mathbb{P}^{1}\right)$, where $A=\mathbb{P}^{1}$ is a line on $X=\mathbb{P}^{2}$. For $n \geq 3$, Problem H is still open.

In the paper [2], the author considered the following special case of Problem H for $n=3$.

Problem. Determine all the Kahler compactifications (X, A) of \mathbb{C}^{3} such that A has at most isolated singular points.

Then we have the following
Theorem 1 ([2]). (X,A) be a Kähler compactification of \mathbb{a}^{3}. such that A has at most isolated singular points. Then, A is an irreducible normal divisor on X, the line bundle [A] defined by A is positive on X, and the canonical divisor $K x=-r A$ (1 $\leq \mathrm{r} \leq 4$). Especially, X is a Fano 3-fold of index r with $b_{2}(X)=1$. The structure of (X, A) is determined by the index r
as follow:
(1) $\quad r=4 \rightarrow(X, A) \cong\left(\mathbb{P}^{3}, \mathbb{P}^{2}\right)$, where $A=\mathbb{P}^{2}$ is a hyperplane on $X=\mathbb{P}^{3}$.
(2) $r=3 \rightarrow(X, A) \approx\left(\Phi^{3}, \Phi_{0}^{2}\right)$, where \mathbb{Q}^{3} is a non-singular quadric hypersurface in \mathbb{P}^{4} and $\mathbb{\Phi}_{0}^{2}$ is a quadric cone which is a hyperplane section.
(3) $\quad r=2 \leftrightarrows(X, A) \cong\left(V_{5}, H_{5}\right)$, where V_{5} is a Fano 3-fold of degree 5 in \mathbb{P}^{6} and H_{5} is a hyperplane section with a rational double point (A_{4}-singularity).
(4) $\quad r=1 \Rightarrow(X, A) \approx$?. A is not a cone over a non-singular compact algebraic curve of genus $q \geq 0$.

Moreover, $X-A \approx \mathbb{C}^{3}$ in each case of $r \geq 2$.

In this paper, we shall consider the case of $r=1$. Our main result is the following

Theorem 2. Let (X, A) be as in Theorem 1. Assume that the index $r=1$. Then we have $(X, A) \approx\left(V_{22}, H_{22}\right)$, where V_{22} is a Fano 3-fold of degree 22 in \mathbb{P}^{13} and H_{22} is a hyperplane section of V_{22} which is a normal rational surface.

Remark. There exists such a pair $\left(\mathrm{V}_{22}, \mathrm{H}_{22}\right)$, but the author does not know whether $\mathrm{V}_{22}-\mathrm{H}_{22} \cong \mathbb{\mathbb { C }}^{3}$.

Question. Is there a hyperplane section H_{22} of V_{22} such that $\mathrm{V}_{22}-\mathrm{H}_{22} \approx \mathbb{a}^{3}$?

§ 1. General results.

Let (X, A) be a Kähler compactification of \mathbb{a}^{3} such that A has at most isolated singular points. By Hartogs theorem, A is an analytic subset of pure codimension one. Since A has at most hypersurface singular points, A is a normal Gorenstein surface, that is, we can define the canonical divisor K_{A} on A. Since \mathbb{a}^{3} is connected at infinity, A is connected, hence A is an irreducible normal Gorenstein surface. Then the general properties can be summarized as follow:

Proposition $1([2])$. Let (X,A) be as above. Then
(1) $\quad H^{1}(X ; Z) \approx H^{1}(A ; Z) \approx 0$
(2) $H^{2}(X ; Z) \cong H^{2}(A ; Z) \cong \mathbb{Z}$.
$H^{2}(X ; \mathbb{Z})$ is generated by the first Chern class $C_{1}([A])$ of the line bundle [A] defined by A and $H^{2}(A ; Z)$ is generated by $c_{1}\left(N_{A}\right)$, where $N_{A}=[A] \mid A$ is the normal bundle.
(3) The Euler number $X(X)=4-b_{3}(A)$, where $b_{3}(A)=\operatorname{dim} H^{3}(A ; \mathbb{R})$.
(4) The line bundle [A] is positive on X and the canonical divisor $K_{X}=-r A \quad(1 \leq r \leq 4)$. Especially, X is a Fano 3-fold of index r with the second Betti number $b_{2}(x)=1$.
(5) $\quad H^{i}\left(X, O_{X}\right)=0$ for $\quad 1 \leq i \leq 3$.
(6) $\quad H^{i}\left(A, O_{A}\right)=0$ for $1 \leq i \leq 2$ if $r \geq 2$
$H^{1}\left(A, \dot{O}_{A}\right)=0$ and $H^{2}\left(A, O_{A}\right) \approx \mathbb{C}$ if $r=1$.

A projective algebraic normal Gorenstein surface A is called a (singular) Del Pezzo (resp. a singular K-3 surface) if $-K_{A}$ is positive on A (resp. $-K_{A}=0$ and $H^{1}\left(A, O_{A}\right)=0$). Then we have

Proposition 2. If $r \geq 2$, then A is a (singular)
Del Pezzo surface with Pic $A \equiv \mathbf{Z} \cdot N_{A}$. If $I=1$, then A is a singular $K-3$ surface with $\operatorname{Pic} A \cong \mathbb{Z} \cdot N_{A}$.
§ 2. The structure of A in case of $r=1$.

In this section, assume that $r=1$. Then A is a singular K-3 surface with Pic $A \cong z \cdot N_{A}$ and the singular points of A are hypersurface singular points. Let Sing A be the set of the singular locus of A and S be the set of singular points of A which are not rational double points. Let $\pi: M \longrightarrow A$ be the minimal resolution of singular points of A and put $B=\pi^{-1}$ (Sing A), $C=\pi^{-1}(S)=\bigcup_{i=1}^{S_{0}} C_{i}$, and $s=\operatorname{dim~} H^{2}(B: \mathbb{R})$. Let us denote the canonical divisor on M by K_{M}.

Lemma 1. $S \neq \phi$.
Proof. Let us consider the following exact sequence of cohomology group (see [1]):

$$
\begin{aligned}
& \longrightarrow H^{1}(A ; \mathbb{R}) \longrightarrow H^{1}(M ; \mathbb{R}) \longrightarrow H^{1}(B ; \mathbb{R}) \longrightarrow H^{2}(A ; \mathbb{R}) \longrightarrow H^{2}(M, \mathbb{R}) \\
& \longrightarrow H^{2}(B ; \mathbb{R}) \longrightarrow 0 .
\end{aligned}
$$

Assume that $S=\phi$. Then we have $K_{M}=0$ and $H^{1}(B ; \mathbb{R})=0$. Since $H^{1}\left(A, O_{A}\right)=0$ implies $H^{1}(A ; \mathbb{R})=0$, by the exact sequence above, $H^{1}(M ; \mathbb{R})=0$. Thus M is a $K-3$ surface. Since $b_{2}(A)=1$ and A is algebraic, we have $b^{+}(A)=1$. On the other hand, by Brenton [1], $b^{+}(A)=b^{+}(M)$. Thus we have $b^{+}(M)=1$. This is a contradiction.

> Q.E.D.

Corollary 1. M is a ruled surface over a non-singular compact algebraic curve R of genus $q=\operatorname{dim} H^{1}\left(M, O_{M}\right)$.

Proof. Since $S \neq \phi$, we have $-K_{M}=\sum n_{i} C_{i} \quad\left(n_{i}>0, n_{i} \in \mathbb{Z}\right)$. Thus $P_{m}(M)=\operatorname{dim} H^{0}\left(M, O\left(\mathrm{mK}_{M}\right)\right)=0$ for $m>0$. By the classification
of surfaces, we have the claim.
Q.E.D.

Lemma $U([11])$.
(1) If $q \neq 1$, then s consists of one point with $p_{q}=$ $\operatorname{dim}\left(R^{1} \pi_{\star} O_{M}\right)_{S}=q+1$.
(2) If $q=1$, then s consists of either one point with $\mathrm{p}_{\mathrm{g}}=2$ or two points with $\mathrm{p}_{\mathrm{g}}=1$, in second case of (2), both of the two points are simple elliptic.

Lemina 2. S consists of one point with $p_{g}=q+1$ and $b_{2}(M)=s+1$.

Proof. Assume that S consists of two points. By Lemma U, these two points are simple elliptic and $C=\pi^{-1}(S)=C_{1} \cup C_{2}$, where C_{1}, C_{2} are distinct sections of M. Since $b_{2}(A)=1$, by the exact sequence in Lemma 1 , we have $b_{1}(M)=b_{1}(B)$ and $b_{2}(M)=s+1$. Since $2=b_{1}(M)=b_{1}(B) \leq b_{1}(C)=b_{1}\left(C_{1}\right)+b_{1}\left(C_{2}\right)=2+2=4$, this is a contradiction.
Q.E.D.

Let Z be the fundamental cycle of S with respect to the resolution $\pi: M \longrightarrow A$. Then,

Lemma 3 (see Proposition 2 in [3]).
(1) $q=0 \Rightarrow M$ is a rational surface and $-K_{M}=Z$
(2) $\quad q \neq 0 \Rightarrow$ there exists an irreducible component $C_{i_{1}}$ of
C such that $C_{i_{1}}$ is a section of M and the rest
$\overline{C-C_{i_{1}}}=\underset{i \neq i_{1}}{U_{i}} C_{i}$ is either empty or contained in the singular fibres of M, and $-K_{M}=Z+C_{i_{1}}$.

Corollary 2 (see Corollary 1 in [3]). Assume that $q \neq 0$. Then
(1) $\left(C_{i},-Z\right)=2-2 q$
(2) $(z \cdot z) \leq\left(C_{i_{1}} \cdot C_{i_{1}}\right)$

Lemma 4
(1) $q \neq 0 \rightarrow b_{2}(M) \leq 9-4 q+\sqrt{9+8 q}$
(2) $q=0 \Rightarrow 11 \leq b_{2}(M) \leq 13$.

Proof. Assume that $q \neq 0$. By Noether formula,

$$
\begin{equation*}
10-8 q=\left(K_{M} \cdot K_{M}\right)+b_{2}(M) \tag{2.1}
\end{equation*}
$$

Since $-K_{M}=Z+C_{i_{1}}$, we have

$$
\begin{equation*}
\left(K_{M} \cdot K_{M}\right)=(z \cdot z)+2\left(z \cdot c_{i_{1}}\right)+\left(c_{i_{1}} \cdot c_{i_{1}}\right) \tag{2.2}
\end{equation*}
$$

By Corollary 2 and (2.1), (2.3),

$$
\begin{align*}
b_{2}(M) & =6-4 q-(Z \cdot Z)-\left(C_{i_{1}} \cdot C_{i_{2}}\right) \tag{2.3}\\
& \leq 6-4 q-2(Z \cdot Z) \tag{2.4}
\end{align*}
$$

since $S=$ \{one point $\}$ is a hypersurface singular point of A, we have,

$$
\left\{\begin{array}{l}
(z \cdot z) \geq-n \quad \text { (Wagreich }[12]) \tag{2.5}\\
p_{g} \geq \frac{1}{2}(n-1)(n-2) \quad(\text { Yau }[13])
\end{array}\right.
$$

Since $p_{g}=q+1$, by (2.5) and (2.6), we have

$$
\begin{equation*}
-(z \cdot z) \leq \frac{1}{2}(3+\sqrt{9+8 q}) \tag{2.7}
\end{equation*}
$$

By (2.4) and (2.7), we have finally the inequality

$$
b_{2}(M) \leq 9-4 q+\sqrt{9+8 q} .
$$

This proves (1). Next, assume that $q=0$. By Noether formula,

$$
\begin{equation*}
b_{2}(M)=10-\left(K_{M} \cdot K_{M}\right) \tag{2.8}
\end{equation*}
$$

since $P_{g}=1$ and S is a hypersurface singularity, by Laufer [14], we have $z^{2}=-1,-2,-3$. By Lemma $3-(1)$ and (2.8), we have the inequality. $11 \leq b_{2} \leq 13$.

Corollary 3. $0 \leq q \leq 3$.
Proof. Assume that $q \neq 0$. Then, by Lemma 4-(1), we have

$$
2 \leq b_{2}(M) \leq 9-4 q+\sqrt{9+8 q}
$$

This implies $q \leq 3$.

Now, since the index $r=1, X$ is a Fano 3-fold of index 1 with $b_{2}(x)=1$ and A is a hyperplane section of X. We put $g=\frac{1}{2}(A \cdot A \cdot A) X+1$. The number g is called the "genus" of the Fano 3-fold X. Then by Iskovskih, we have

Lemma 5-([6],[7]). Let g be the genus of a Fano 3-fold x of index 1 and $b_{2}(X)=1$. Then,

g	2	3	4	5	6	7	8	9	10	12
$\frac{1}{2} \mathrm{~b}_{3}(\mathrm{X})$	52	30	20	14	10	7	5	3	2	0

Table 1

Remark. The list of the classification of Fano 3-folds due to Iskovskih [6] is incomplete, in fact, S. Mukai-H.Umemura [8] gave an example of a Fano 3-fold of index 1 and the genus $g=12$ which is overlooked by Iskovskih. But Table 1 is justified by S. Mukai, who has recently succeeded in classifying Fano 3-folds of index 1 with $b_{2}(x)=1$ applying the theory of vector bundles on $K-3$ surfaces. According to his theory, such a X can be represented as a complete intersection of a homogeneous space (see [9]).

Lemma 6. $q=\frac{1}{2} b_{3}(x)$
Proof. $\quad 2 q=b_{1}(M)=b_{3}(M)=b_{3}(A)=b_{3}(X)$.
By Corollary 3, Lemma 5 and Lemma 6, we have $(g, q)=(9,3)$, $(10,2)$ or $(12,0)$. If $q=3$, then, by Proposition $2-(1)$, $b_{2}(M)<3$, that is $b_{2}(M)=2$. Then, M is a \mathbb{P}^{1}-bundle over R of genus $q=3$ (see Corollary 1), and thus A is a cone over R. This contradicts Theorem 1 - (4). Therefore $q \not q 3$. On the other hand, by Lemma 7 below, we must have $b_{2}(M) \geq 4$.

Lemma 7. Assume that $q \neq 0$. Then, there exists unique exceptional curve of the first kind in every singular fiber of M and then another irreducible components of the singular fiber are all contained in $B=\pi^{-1}($ Sing $A)$.

Proof. See Proposition 7 in [3].

Therefore $(\mathrm{g}, \mathrm{q})=(10,2)$ or $(12,0)$. In case of $\mathrm{g}=2$, by Proposition 2-(1), and the fact above, we have $4 \leq b_{2}(M) \leq 6$.

Next, we shall determine the type of singular fiber of M in case of $q=2$.

Lemma 8. Assume that $q=2$. Let $Z, C_{i q}, S, B$ be as above. We put $\left(C_{i_{1}} \cdot C_{i_{1}}\right)=e<0$. Then we have $-4 \leq(2 \cdot z) \leq-3$ and

$$
\begin{align*}
& (z \cdot z)=-4 \Rightarrow(e, s)=(-2,3),(-3,4),(-4,5) \tag{1}\\
& (z \cdot z)=-3 \Rightarrow(e, s)=(-3,3) .
\end{align*}
$$

Proof. Since $q=2,4 \leq b_{2}(M) \leq 6 . \quad$ By (2.4), $4 \leq b_{2}(M) \leq$ 6-8-2(z.z), namely, $3 \leq-(z \cdot z)$. By (2.7), $-(z \cdot z) \leq 4$. Therefore $-4 \leq(Z \cdot Z) \leq-3$. Since $(Z \cdot Z)=-3$ or -4 and $4 \leq b_{2}(M) \leq 6$, by Corollary 2 - (2) and (2.3), we have that

$$
\begin{align*}
& \text { (i) } \quad b_{2}(M)=6 \Rightarrow(e, s)=(-4,5) \text { and }(Z \cdot z)=-4 \tag{i}\\
& \text { (ii) } \quad b_{2}(M)=5 \Rightarrow(e, s)=(-3,4) \text { and }(z \cdot z)=-4 \tag{ii}\\
& \text { (iii) } \quad b_{2}(M)=4 \Rightarrow(e, s)=(-3,3) \text { and }(z \cdot z)=-3 \text {, or } \\
&
\end{align*}
$$

Q.E.D.

By Lemma 7, Lemma 8 and the fact that Sing A,S consists of rational double points, we have the following

Proposition 2. Assume that $q=2$. Then the structure of M as a ruled surface can be described as Table 2:
(i)

$$
(k=2 \text { or } 3)
$$

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Table 2

Notation. In proposition 2, the vertex k represents a non-singular compact algebraic curve of genus 2 with the self-intersection number $-k$ a non-sinulgar rational curve with the self-intersection number $-k$, and we denote 2 simply by \bigcirc.

§ 3. Proof of Theorem

Let $(X, A), M, \pi$ and g be as before. Then,
Lemma 9. Pic $A \cong \mathbb{Z}[D]$, where D is a canonical curve of genus g such that $\operatorname{deg} D=2 g-2$ and $D \cap$ Sing $A=\phi$ (in our case $g=10,12)$.

Proof. X is a Fano 3 -fold of degree $2 g-2$ in \mathbb{P}^{g+1} (see [7]) and A is a hyperplane section. For a sufficiently general hyperplane section $H .\left.\quad N_{A} \sim[H]\right|_{A} \sim[D]$ on A (linearly equivalent), where D is a non-singular canonical curve of genus g with $\operatorname{deg} D=(A \cdot A \cdot A)=2 g-2$ and $D \cap$ sing $A=\phi$. Q.E.D.

We shall prove Theorem 2. We have only to show qq2. Then $q=0$, namely, X is a Fano 3 -fold of degree 22 in \mathbb{P}^{13} and A is a hyperplane section which is normal and rational. Assume that $q=2$. Then M is a ruled surface over a non-singular compact algebraic curve of genus 2. We put $D^{*}=\pi^{-1}(D) \hookrightarrow$ M. Since $D \cap \operatorname{sing} A=\phi, D^{*} \cong D,\left(D^{*} \cdot D^{*}\right)_{M}=-2 g-2$ and $\left(D^{*} \cdot B_{i}\right)_{M}=0$ for every exceptional curve $B_{i} \subset B=\pi^{-1}($ Sing $A)$. Let $e_{i} \quad(0 \leq i \leq k)$ be a basis of the cohomology group $H^{2}(M ; \mathbb{Z})$, which is chosen as follow: e_{0} is the class of the negative section of. M and $e_{i} \quad(1 \leq i \leq k)$ is that of a singular fibers of M. These can be chosen easily if we can see the type of singular fibers of M. Then we have

$$
\begin{equation*}
D^{*}=\sum_{i=0}^{k} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbb{Z}\right) \tag{3.1}
\end{equation*}
$$

In case of $(\mathrm{g}, \mathrm{q})=(10,2)$, by Proposition 2 , we determine the structure of M as a ruled surface case Table 2). Thus, we
can easily choose a basis $\left\{e_{i}\right\} \quad(0 \leq i \leq k)$, and have that
(i) the intersection number $\left(e_{i} \cdot e_{j}\right)_{M}$ is determined by the graph in Table 2.
(ii) ($\left.D^{*} \cdot e_{i}\right)_{M}=0$ if e_{i} is the class of exceptional curve in $B=\pi^{-1}$ (sing $\left.A\right)$,
(iii) $\left(D^{*} \cdot D^{*}\right)_{M}=2 g-2=18$.
(iv) $\quad d_{i_{0}}:=\left(D^{*} \cdot e_{i_{0}}\right) \neq 0$, where $e_{i_{0}}$ is the class of the exceptional curve of the first kind which is obtained by the blowing up.

By (3.1) and the assertions (i) - (iv) above, we have the equations concerning to $\alpha_{i}, d_{i_{0}}$ over \mathbb{Z}. Finally, we can show by easy calculations that these equations have no solution over z (see Appendix).

Therefore $q=0$ and $g=12$. This completes the proof of Theorem 2.

Let M be a rational surface which is obtained from \mathbb{P}^{2} by 12 times blowing-ups, and the configuration of exceptional curves on M be as Figure 1, where
(i) C_{i} 's are all non-singular rational curves.
(ii) $E_{i}(i=1,2), C_{i}(i \neq 5,9)$ are the exceptional curves obtained by the blowing-ups.
(iii) $\left(C_{1} \cdot C_{1}\right)=\left(C_{5} \cdot C_{5}\right)=-3, \quad\left(C_{i} \cdot C_{i}\right)=-2$ if i\#1,5 $\left(E_{i} \cdot E_{i}\right)=-1 \quad(i=1,2)$.
(iv) D^{*} is a non-singular compact algebraic curve of genus 12 with deg $D^{*}=\left(D^{*} \cdot D^{*}\right)=22$, which is the proper transform of a curve of degree 11 in \mathbb{P}^{2} with a... singular point. (v) $\quad\left(D * \cdot E_{1}\right)=2,\left(D * \cdot E_{2}\right)=3$ and $\left(D^{*} \cdot C_{i}\right)=0 \quad(1 \leq i \leq 12)$.

We put $C={\underset{i=1}{u}}_{12} C_{i}$. Then the intersection matrix $\left(\left(C_{i} \cdot C_{j}\right)\right)$ is negative definite, hence C is an exceptional curve on M. We put $A=M / C$. Then A is a singular $K-3$ surface with a hypersurface singular point (in fact, $P_{g}=1$), and Pic $A \cong \mathbb{Z}[D]$, where D is the image of D^{*} in A. We find that $D \cap$ Sing $A=\phi$ and $\operatorname{deg} D=\left(D^{*} \cdot D^{*}\right)=22$.

Assume that A is a hyperplane section of a Fano 3-fold X of degree 22 in \mathbb{P}^{13}. Then we can see that $X-A$ is an affine 3-fold with $b_{i}(X-A)=b_{i}\left(\mathbb{C}^{3}\right)$ for $i \geq 0$.

Question. Is X - A a homology 3-cell ?

Appendix
(i)

$$
\begin{aligned}
& D^{*}=\sum_{i=0}^{3} \alpha_{i} e_{i}\left(\alpha_{i} \in \mathbf{z}\right) . \text { Then we have } \\
& \begin{cases}e_{1}-k \alpha_{0} \\
\left.\alpha_{1}-2\right) \\
\alpha_{3}-2 \alpha_{1}+\alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{2} & =0 \\
\alpha_{2}-\alpha_{3}+\alpha_{1} & =\alpha_{3} \\
\alpha_{3} \cdot \alpha_{3} & =18 \\
\therefore \alpha_{0}^{2}=\frac{36}{2 k-1} \quad(k=2.3) . \text { Therefore } \alpha_{0} \notin \mathbf{z}\end{cases}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& D^{*}=\sum_{i=0}^{4} \alpha_{i} e_{i}-\left(\alpha_{i} \in \mathbb{Z}\right) \\
& \left\{\begin{aligned}
\alpha_{1}-3 \alpha_{0} & =0 \\
\alpha_{4}-3 \alpha_{1}+\alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{2} & =0 \\
\alpha_{4}-2 \alpha_{3}+\alpha_{2} & =0 \\
\alpha_{1}-\alpha_{4}+\alpha_{3} & =\alpha_{4} \\
\alpha_{4} \cdot \alpha_{5} & =18 \\
\therefore \alpha_{0}^{2}=\frac{27}{4} . & \text { Therefore } \alpha_{0} \notin \mathbb{Z} .
\end{aligned}\right.
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \left\{\begin{aligned}
& D^{*}=\sum_{i=0}^{4} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbf{z}\right) \\
& e_{0} \\
& \alpha_{1}-3 \alpha_{0}-2 \alpha_{1}+\alpha_{0}=0 \\
& \alpha_{3}-2 \alpha_{0} \\
& \alpha_{4}+\alpha_{1}-2 \alpha_{3}+\alpha_{2}=0 \\
& \alpha_{3}-\alpha_{4}:=0 \\
& \alpha_{4} \cdot d_{4}=18 \\
& \therefore \alpha_{0}^{2}=8
\end{aligned}\right. \\
& \begin{array}{ll}
\alpha_{4}
\end{array} \\
& \text { Therefore } \alpha_{0} \notin \mathbb{z}
\end{aligned}
$$

$$
D^{\star}=\sum_{i=0}^{5} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbb{Z}\right)
$$

$$
\begin{cases}\alpha_{1}-4 \alpha_{0} & =0 \\ \alpha_{5}-4 \alpha_{1}+\alpha_{0} & =0 \\ \alpha_{3}-2 \alpha_{2} & =0 \\ \alpha_{4}-2 \alpha_{3}+\alpha_{2} & =0 \\ \alpha_{5}-2 \alpha_{5}+\alpha_{3} & =0 \\ \alpha_{1}-\alpha_{5}+\alpha_{4} & =d_{5} \\ \alpha_{5} \alpha_{5} & =18 \\ \therefore \alpha_{0}^{2}=\frac{24}{5} & \text { Therefore } \alpha_{0} \notin \mathbb{Z}\end{cases}
$$

(v)

$$
\begin{aligned}
& \frac{4-3}{e_{0}}-e_{e_{1}}^{1} \\
& D^{*}=\sum_{i=0}^{5} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbb{Z}\right) \\
& \begin{cases}\alpha_{1}-4 \alpha_{0} & =0 \\
\alpha_{4}-3 \alpha_{1}+\alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{2} & =0 \\
\alpha_{4}-2 \alpha_{3}+\alpha_{2} & =0 \\
\alpha_{5}+\alpha_{1}-2 \alpha_{4}+\alpha_{3} & =0 \\
\alpha_{4}-\alpha_{5} \because \because \because & =d_{5} \\
\alpha_{5} \cdot \alpha_{5} & =18\end{cases} \\
& \therefore \alpha_{0}^{2}=\frac{81}{16} \quad \text { Therefore } \alpha_{0} \notin \mathbf{z} .
\end{aligned}
$$

(vi)

$$
\begin{aligned}
& D^{*}=\sum_{i=0}^{5} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbb{Z}\right) \\
& \begin{cases}\alpha_{1}-4 \alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{1}+\alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{2} & =0 \\
\alpha_{4}+\alpha_{1}-2 \alpha_{3}+\alpha_{2} & =0 \\
\alpha_{5}-2 \alpha_{4}+\alpha_{3} & =0 \\
\alpha_{4}-\alpha_{5} & =d_{5} \\
\alpha_{5} d_{5} & =18 \\
\therefore \alpha_{0}=6 & \text { Therefore } \alpha_{0} \notin \mathbf{z}\end{cases}
\end{aligned}
$$

(vii)

$$
\begin{aligned}
& D^{*}=\sum_{i=0}^{5} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbf{z}\right) \\
& \begin{cases}\alpha_{1}-4 \alpha_{0} & =0 \\
\alpha_{0}-2 \alpha_{1}+\alpha_{3} & =0 \\
\alpha_{3}-2 \alpha_{2} & =0 \\
\alpha_{5}+\alpha_{1}-3 \alpha_{3}+\alpha_{2} & =0 \\
\alpha_{5}-2 \alpha_{4} & =0 \\
\alpha_{4}-\alpha_{5}+\alpha_{3} & =\alpha_{5} \\
\alpha_{5} \cdot \alpha_{5} & =18 \\
\therefore \alpha_{0}^{2}=\frac{16}{3} & \text { Therefore } \alpha_{0} \notin \mathbf{z}\end{cases}
\end{aligned}
$$

(viii)

$$
\begin{aligned}
& D^{*}=\sum_{i=0}^{5} \alpha_{i} e_{i} \quad\left(\alpha_{i} \in \mathbf{z}\right) \\
& \begin{cases}\alpha_{1}-4 \alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{1}+\alpha_{0} & =0 \\
\alpha_{3}-2 \alpha_{2} & =0 \\
\alpha_{1}-\alpha_{3}+\alpha_{2} & =d_{3} \\
\alpha_{5}-2 \alpha_{4} & =0 \\
\alpha_{4}-\alpha_{5} & =d_{5} \\
\alpha_{0}+\alpha_{5} & =0 \\
\alpha_{5} d_{5}+\alpha_{3} \alpha_{3} & =18 \\
\therefore \alpha_{0}^{2}=6 & \text { Therefore } \alpha_{0} \notin \mathbf{z}\end{cases}
\end{aligned}
$$

Figure 1

References

1. Brenton, L.: Some algebraicity criteria for singular surfaces. Invent. Math. 41, 129-147 (1977)
2. Furushima, M.: Singular Del Pezzo surfaces and complex analytic compactifications of the 3 -dimensional complex affine space \mathbb{a}^{3}. Nagoya Math. J. 104, 1-28 (1986)
3. Furushima, M.: Singular K-3 surfaces with hypersurface singularities. Pacific J. Math. 125, 67-77 (1986)
4. Hirzebruch, F.: Some problems on differentiable and complex manifolds. Ann. Math. 60, 213-236 (1954).
5. Iskovskih, V.A.: Fano 3-folds I. Izv. Akad. Nauk. SSSR Ser. Mat. 41, 516-562 (1977)
6. Iskovskih, V.A.: Fano 3-folds II. Isv. Akad. Nauk. SSSR Ser. Mat. 42, 469-506 (1978)
7. Iskovskih, V.A.: Anticanonical models of three-dimensional algebraic varieties. J. Soviet Math. 13, 745-814 (1980)
8. Mukai, S., Umemura, H.: Minimal rational threefolds. Lect. Notes Math. 1016. Berlin, Heidelberg, New York: Springer 1983.
9. Mukai, S.: Curves, K-3 surfaces and Fano 3-folds of $g \leq 10$. (Preprint)
10. Remmert, R., Van de Ven, A.: Zwei Sätze uber die komplexprojective Ebene. Niew Arch. Wisk. 8 (3), 147-157 (1960)
1.1.... Umezu, Y.: On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math. 4, 343-354 (1981)
11. Wagreich, P: Elliptic singularities of surfaces. Amer. J. Math. 92, 419-454 (1970).
12. Yau, S.T.: On maximally elliptic singularities. Trans. A.M.S. 257, 269-329 (1980).
13. Laufer, H.: On minimally elliptic singularties. Amer. J. Math. 99, 1257-1295 (1977).
