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Introduction

Let M be a closed C°°-manifold of dimension n. Both R-torsion and analytic torsion
are smooth invariants of acyclic orthogonal (or unitary) representations p of the funda-
mental group m;(M). The Reidemeister-Franz torsion (or R-torsion) 7as(p) of p is defined
in terms of the combinatorial structure of M given by its smooth triangulations. The
analytic torsion Thr(p) was introduced by Ray and Singer [RS] as analytic counterpart of
R-torsion. In order to define the analytic torsion one has to choose a Riemannian metric on
M. Then Tp(p) is a certain weighted alternating product of regularized determinants of
the Laplacians on differential ¢-forms on M with values in the flat bundle E, defined by p.
It was conjectured by Ray and Singer [RS] that Tas(p) = 7m(p) for all acyclic orthogonal
(or unitary) representations p. This conjecture was proved independently by Cheeger [C]
and the author [Mii].

The restriction to orthogonal (or unitary) representations is certainly a limitation of
the applicability of this result if m;(M) is infinite because an infinite discrete group will
have, in general, many non-orthogonal finite dimensional representations. It is the purpose
of the present paper to remove this limitation.

We call a representation p : (M) — GL(F) on a finite dimensional real or complex
vector space E unimodular if |det p(y)| = 1 for all ¥ € m;(M). Then we define R-torsion
and analytic torsion for unimodular representations and the main result is that for odd
dimensional manifolds M, the equality of the two torsions extends to all unimodular rep-
resentations.



Now we shall explain this in more detail. Let p : m;(M) — GL(FE) be an acyclic uni-
modular representation. Then the definition of R-torsion also makes sense for p. Nothing
has to be changed. The problem is how to define the analytic torsion. If p is an orthogonal
(or unitary) representation, then the flat bundle E, over M defined by p can be equipped
with a natural metric which is compatible with the flat connection. Associated to the
metrics on E, and M is the Laplacian A, acting on the space AY(M; E,) of E,-valued
differential g-forms on M. The zeta function of A, is defined in the usual way by

Co(sip) = Y Aj° Re(s) >n/2,

A;>0

where the A; run through the eigenvalues of Ag. It is well known that this function has a
meromorphic continuation to C which is holomorphic at s = 0 [Se]. Then the definition of
analytic torsion given by Ray and Singer is

01) Tu(p) = exp( 3 3(-1% Jo6u(o5 ) o)

For acyclic representations, Thps(p) is independent of the metric on M.

For an arbitrary finite dimensional representation p : 71 (M) — GL(E) , there is no
metric on E, which is compatible with the flat connection. In order to define the analytic
torsion in this case we proceed as follows. We choose a metric h on E,. Using the metrics
on M and E,, we define an inner product on A*(M; E,) which in turn gives rise to the
Laplacian A,. Then we define the analytic torsion Ta(p; h) by formula (0.1) where (4(s; p)
is now the zeta function of the ¢g-component of the new Laplacian Ay.

We note that this approach was used by Schwarz [S] in his treatment of abelian
Chern-Simons theory and it is actually the origin for our definition of analytic torsion
for non-orthogonal representations. We also note that a similar approach has recently
been used by Bar-Natan and Witten [BNW] to deal with the perturbative expansion of
non-abelian Chern-Simons gauge theory with non-compact gauge group.

The first important result about analytic torsion in the present context is that for an
odd dimensional manifold M and an acyclic representation p, Tas(p; k) is independent of
the choice of h on E,. Of course, it is also independent of the Riemannian metric on M
and we denote its common value, for any choice of h and g, by Tap(p). In general, the
variation of Tys(p; h) with repsect to h and g is given by an explicit formula. If dim M is
even, the variational formula contains additional terms which are locally computable, that
is, they are obtained by integrating densities which in any coordinate system are given-
by universal polynomials in the components g;;(z) and h;;(z) of the metrics and a finite
number of their partial derivatives. There are examples showing that these terms may not
vanish even if the representation is acyclic.

Using the inner product induced on the space of harmonic forms, we can also define
the R-torsion 7p(p; h) for non-acyclic representations p.

On the first sight, the choice of an arbitrary metric on E, seems to be very artificial,
but it is no more artificial than the arbitrary choice of the Riemannian metric on M. In
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general, there is no distinguished choice of a Riemannian metric on M. Only for special
manifolds, like locally symmetric manifolds, do there exist distinguished metrics on M
which make analytic torsion for orthogonal representations accessible to computations.
In this case, however, there exist also distinguished metrics on E, for many unimodular
representations which makes analytic torsion for these representations also accessible to
computations.

The main result of the present paper is

Theorem 1. Let M be a closed smooth Riemannian manifold of odd dimension and
let p : m1(M) — GL(E) be a unimodular representation on a finite dimensional real (or
complex) vector space. Let E, be the associated flat bundle. Then for any choice of a
metric on E,, we have

Tm(p; k) = Tm(p; b).

We remark that, in general, Theorem 1 does not hold in even dimensions.

To prove Theorem 1 we follow essentially Cheeger’s proof [C]. First we show that
log Tam(p; k) — log Tar(p; h) is independent of the metrics h on E, and g on M. The main
idea is then to keep track of

em(p) = log Tm(p; k) — log Tar(p; h)

if one does surgery on an embedded k-sphere in M and finally to reduce everything to
the case where one is able to show the equality explicitly. Cheeger’s proof is well suited
to work for non-orthogonal representations, because the decisive part of the proof consists
of local analysis near a given handle of M and the handles considered are such that E,
restricted to any of them is trivial as a flat bundle. Since we are free to choose the metrics
h and g according to our purpose, we choose h and g to be the standard product metrics
near the given handle. Then all the local analysis done by Cheeger in [C] extends without
change to the present situation.

Now we describe briefly the content of the paper. In section 1 we review Reidemeister
torsion for unimodular representations and we establish some of its properties. In section
2 we introduce analytic torsion for finite dimensional representations and we prove some
of its properties. We also consider analytic torsion for manifolds with boundary and prove
some results related to the variation of analytic torsion and R-torsion in this case. This
is needed in section 3 where we establish the equality of the two torsions for unimodular
representations. We explain the main steps of the proof and refer to Cheeger’s paper
[C] for all details not discussed in this section. Finally, in section 4 we consider two
examples where non-orthogonal representations occur in nature and the analytic torsion
as defined in section 2 arises naturally in this context. The first example are compact
locally symmetric manifolds. The results of Borel and Wallach [BW] can be used to
obtain numerous examples of acyclic unimodular representations. The corresponding flat
bundles can be equipped with canonical metrics which are locally homogeneous so that
methods of harmonic analysis can be applied. The second example is Chern-Simons gauge
theory. Witten [W1] has shown that for a compact gauge group, the analytic torsion of

3



flat connections occurs in the perturbative expansion of the path integral defined by the
Chern-Simons action. This has been recently extended to non-compact gauge groups by
Bar-Natan and Witten [BNW] and we explain how it is related to Theorem 1.

Acknoledgment: This work was done during the author’s visit at the Institute for
Advanced Study at Princeton and the Max-Planck-Institut fur Mathematik at Bonn. I am
very grateful to both institutions for financial support and hospitality.



1.Reidemeister torsion

In this section we recall the definition of Reidemeister torsion and we also collect some
of its basic properties. For details we refer to [Mil].
Given a real vector space E of dimension n, we set

det E = A™(E).

If E = {0}, then det E = R. Furthermore, if L is a one-dimensional vector space, each
nonzero element | € L determines a unique element ™! € L* defined by the equation
[71(l) =1 and we shall use the notation L~ = L*.

A volume on E will be a nonzero element w € det E. Any volume determines an
isomorphism det E = R. Note also that a volume w can be written as e; A--- A e, for

some basis ey, ..., e, of E.
Let

(1.1) Co:0 = Crn2Cu 22 2500 5 0
be a chain complex of finite dimensional real vector spaces and let
H,(C,) = ker 9,/Im0, 4,

be the g-th homology group of C,. The determinant line of the complex (1.1) is the
one-dimensional vector space

(1.2) ' det(C,) = é)(det c,) .

g=0
We also set

det H,(C,) = é(det Hy(C.) ™"

q=0

Let b, = dimd(C,) and h, = dim H,(C.). For each ¢,1 < ¢ < n, we choose 8, € A%(C,)
such that 96, # 0. Furthermore, let 0 # p, € det H,(C,) and v, € AP(ker d,) be such
that 7(v,) = g where m : ker 9; — Hy(C.,) is the canonical projection. Let ¢ : ker 8, — C,
be the natural embeddmg Then 00q+1 A 84 A t(vq) is a nonzero element of detC Set

p=Qg—o(Hyg )= D" Then we define the torsion
T(C.) € (det C.) ® (det Ho(C\)) ™
of the complex (1.1) by |

(1.3)
T(C.) = (691 A i(VO)) & (302 A6 Ai(n ))_1 ® - ® (00n Abny A i(l/n_l))(—-l)"_1

® (6,, A i(vn))(_l)n ® p.



It is easy to see that T(C,) is independent of the particular choices of 8, g and v,.

Now assume that we have chosen 0 # w € det C,. Then w defines an isomorphism
det Co = R and therefore, also an isomorphism

det C. ® (det Ho(C.)) ™" 2 (det H.(C.)) .

The image of T(C,) with respect to this isomorphism will be denoted by
T(C.,w) € (det H.(C.)) ™.
Note that for a 2-term complex Cy : 0 — C) 4 C: — 0 with Co = C; = RY and
wq € det Cy being the canonical volumes , T(C,,w) = det A.
Definition 1.4. The element T(C.,,w) € (det H,.‘(C'.))—'1 defined above is called the Re:-

demeister torsion (or R-torsion) of Cy with respect to the volume w.

If C, is acyclic, i.e., Hi(C.) = {0}, then (det H*(C’.))_1 = R and T(C,,w) is a
real number. More generally, any choice of a volume u € det H,(C,) induces a natural
isomorphism

(det H,(C.)) ' =R

by sending Ap~! to A € R.Thus T(C,,w) can be identified with a real number T(C.,, w, ) €
R and we set

(1.5) r(Cor, 1) = [T(Cu, 0, ).

Next we discuss some of the properties satisfied by R-torsion. Suppose that the C,
are actually equipped with inner products. Let 9; : C;—; — C, be the adjoint of 9, with
respect to these inner products and set

D, = 879, + 8y104.-

This is a symmetric and positive semi-definite operator on Cy. SetHy(C,) = ker Dy. Then
we have the following decomposition

Cyq =My(C,) ® Imby 41 & Im0;
and a canonical isomorphism
(1.6) H,(C.) = Hy(Co).
Let D, be the restriction of D, to the orthogonal complement of ker D, in C; and set
det' D, = det D,.

Now observe that the innner product on C, defines a volume w € det C,. Furthermore,
if we use the induced inner product on H4(C,) combined with (1.6), we obtain a volume
p € det H (C,).



Proposition 1.7. With the notation above, we have the following equality

7(C,,w, p)? = H (det'Dq)Q(—l)q .

9=0

Proof. The inner product on C, gives rise to a canonical splitting C, = C, & C,
where C, is acyclic, C| has zero differential and C, = H,(C.). Let w' be the volume
element in det C! induced by the inner product on C|. There is a natural isomorphism

det Cy = det C. ® det C!

and with respect to this isomorphism we have w = w’'@u. It is then clear that 7(Ce,w, ) =
7(C.,w"). The rest follows from Proposition 1.5 in-[BGS]. Q.E.D.

- Now consider a double complex, i.e., a sequence

(1.8) Cue:0 = Cre —23 -+ 25 Cre =5 Cpu — 0

of finite complexes. As usually, define the total complex T, by
T,= D Cis
i+j=¢

with differential D = § + (—1)!8 (on C; ;). The complex T, has two natural filtrations
and associated spectral sequences converging to H.(7,). Let (E?,8°), (El,8%),... be

the spectral sequence associated to the filtration of T, by the columns of C... Then
ET+1 =~ H (ET). The following result is due to D.Freed [F]

Proposition 1.9. Suppose that (1.8) is an exact sequence , ie., each complex C,j is
acyclic. Then there is a natural isomorphism

é(det(C.j)) (-1 &~ é det(EY)

7=0 r=0

where the product on the right hand side is finite and, with respect to this isomorphism,
®7=0T(Cej)\ ™" = @ T(EY).

For the proof see [F].

In particular, let

(1.10) 0—-Cesa— Coai — Cop— 0



be a short exact sequence of finite complexes and let

Moo = Hy(Cag) — Hy(Cor) — Ho(Cag) == Hy—1(Cz) — -+

be the long exact homology sequence associated to (1.10). The spectral sequence degener-
ates at the E%-term. Moreover,

T(E) = @}=oT(Ci) ™" and T(E}) = T(H.).
Corollary 1.11. There is a natural isomorphism

é(det(c.j)(“)j S é(det(Ci.))(—l)i ® det(H.)

§=0 i=0
and, with respect to this isomorphism,

B T(Co; )TV = @1, T(Cia) ™V ® T(H,).

Suppose we have chosen volumes wg; € de'q(qu) and pgi € det Hy(Cei), 1 =1,2,3 .
Set wei = @T_o(wgi) ™, wee = @2 g(we:) ™Y and p; = @F_o(1qi) ™V, Suppose that
T(Cqeywge) =1 for all ¢ =0,...,n. Then Corollary 1.11 implies

(1.12) 7(C3, w2, p2) = 7(Cq, w1, p1) T(CF, w3, p3) 7(He, 1)
where we regard H, as an acyclic complex with volume p defined by pg, g2 and psz (cf.

[Mil] for details).

Let C, and C! be two chain complexes with volumes w € detC,,w’ € detC., p €
det H.(C,) and p' € det H*(C,). Let C. ® C, denote the tensor product complex with its
standard differential, i.e.,

(1.13) (C.®C),= P (C.eCy.
r+s=¢q
Let dp = dimC}, and dj = dim C;. Then, by (1.13), we have a‘naftural isomorphism
(1.14) det(C, ® C1), 2 (X) (det C,)®% @ (det C;)®%.
r+s=gq

Now recall that, for any complex E,, one has ) (—1)? dim E; = x(E,), where x(FE,) de-
notes the Euler characteristic of the complex. Hence (1.14) induces a natural isomorphism

det(C, ® C1) & (det C,)®X(C) @ (det C1)®X(C),

Let w ® w' the element of det(C, ® C) which corresponds to w®X(C.) @ (w")®X(C+) under
this isomorphism. Furthermore, by the Kunneth formula, the homology of C, ® C! is given
by :



(1.15) Hy(C.®C) =  H.(C.)® H,(C.)

r4s=gq

and, in the same way as above, this induces a natural isomorphism
det H,(C, ® C.) 2 det H,(C,)®X(®?) @ det H, (C.)®X(C),

We let p @ u' denote the element of det H,(Co ® C.) which corresponds to u®X(C)) @
(u')®x(Ce) under this isomorphism.

Proposition 1.16. We have the following equality
T(C. ® C’:,w ®w',,u ® ul) _ T(C.,W, 'u)X(Ci) T(C:,w', ﬂ')X(C.)

where x(E,) denotes the Euler characteristic of the complex E,.

Proof. We introduce inner products on C,,C,, H,(C,.) and H.(C,) which induce
the corresponding volumes. Then we use (1.13) and (1.15) to define inner products on
C.e®C, and H.(Cs ® C.) in the canonical way. It is easy to see that these inner products
induce the volumes w ® w' € det(Co ® C,) and p @ u' € det H,(Co @ C). Now we apply
Proposition 1.7 above and Proposition 1.16 in [C]. Q.E.D.

Let
at a:_ 6-&
Cr:0=CreCl &= .. e2Cr <0

be the dual complex to (1.1). Note that there are natural isomorphisms
det Cy = (det C,)™" and det Hy(CY) = (det Hy(C.)) ™.
ﬁence, we get a natural isomorphism

(=n*

R

(1.17) (det C. © (det Ho(C)) ") ® (det C; @ (det Ha(C2)) ™) R.

Proposition 1.18. With respect to the isomorphism (1.17), we have

T(C.) @ T(CHV" = 41,

The proof is straight forward and follows by an easy generalization of the argument
used on p.141 of [Mi2] to prove equality (3).

Let w € det C, and p € det H,(C,) be volumes. Denote by w* € det C} = (det C,)™?
and p* € det H(C}) = (det H*(C’.))* the dual volumes determined by w and p, respec-
tively.



Corollary 1.19. We have the following equality
7(Ceyw, ) 7(Cy,w", ,J*)(—l)” -1

The R-torsion arises in the following context. Let K be a finite cell complex and K
the universal covering space of K with the fundamental group 7; = 71(K) acting as deck
transformations on K. We think of K as being embedded as a fundamental domain in K,
so that K is the union of the translates of K under ;. Let Cq(f{ ) be the real chain group
generated by the q-cells of K. Then C,(K) is a module over the real group algebra R(m).
The g-cells of K form a preferred base for C,(K) as R(7;)-module. Let p : m; — GL(E) be
a representation of 7; on a real vector space E of dimension N. It defines a flat bundle E,
over K and we define the chain group Cy(K; E) of chains with values in the local system
Ep by

C,(K;E)=C,K E.
(K5 E) = Cy( )Rgl)

The boundary operator 9, : Cy(K) — C,—1(K) induces 8, : Cy(K; E) — C,_1(K; E) and
we get a real chain complex
Cu(K;E): 0= Co(K; E) 25 Co_y (K5 E) 253 -+ 25 Gy (K E) = 0

Its homology will be denoted by H,(K; E). Slmllarly, we have the cochain complex with
coefficients in E,:

C*(K;E):0— C°(JK; E) 2% CHK; E) -2 ... 22 C™(K; E) — 0
where CU(K; E) = Homp(x,)(Cy(K), E) and § = 0*. Note that

CYK;E) = C'q(K) ® E.
R(m1)

We shall denote the cohomology of this complex by H*(K; E).

If K is a triangulation of a closed oriented smooth manifold of dimension n then, for
each g, we have the Poincaré duality isomorphism

(1.20) I,: H(M;E)-~ H" (M, E).

To define this isomorphism on the level of chains and cochains consider the dual cell
complex K* of K and let K* be its universal covering space. Then we have the following
result due to Reidemeister

Lemma 1.21. The R(m;)-module Cn_q(f{*) is canonically isomorphic to the dual of the
R(m;)-module Cy(K). Furthermore the boundary operator

0 Cocol %) — Cocqmr (K7)
is (up to sign) dual to the boundary operator
9 : Cpr1(K) — Cy(K).

For the proof see Lemma 1 in [Mi2].
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Corollary 1.22. For each q, there is a canonical isomorphism
ﬁq 1 Co(K*5 E) = Cq(f(*) & E;(Cn—q(f())* ® E=C""K;E)
R(m) R(m;)

which satisfies 6p_g41 01l = fIq 0 d,.

Hence, fIq induces an isomorphism on the homology of the corresponding complexes
and this is the Poincaré duality isomorphism II; above.

Now assume that a volume 6 € det E is given.Let e?, J = 1,...,rq, be the oriented

q-cells of K considered as a preferred base of the R(m;)-module Cy(K) and let z1,...,zn
be a base of E such that § = +z, A---Azy. Then (e] ®zy) is a preferred base of Cy(K; E)
and it defines a volume w, € det Cy(K; E).

At this point, the volumes depend on several choices

a) The choice of the embedding of K in the covering space K.
b) The orientation and ordering of the cells of K.
¢) The choice of the base z1,...,zn of E.
To deal with a), we make the following
Definition 1.23. A representation p: m(K) — GL(E) is called unimodular if | det p(7y)|
=1 for all y € m1(K).

If we assume that p is unimodular, then a different choice of the embedding of K
into K corresponds to a change of base in Cy(K; E) by a matrix whose determinant is of
absolute value one and therefore, the volume wq changes at most by sign. Similarly, b)
and c) cause only a change of sign. Set w = ®}_, (wg)"1".

Remark. The volume w depends, of course, on the choice of the volume § on E. We
indicate this by w(6). If we replace 6 by A, A € R, then

w(A) = [ AT ew(6) = AXF)w(6)
q=0

where x(K) is the Euler characteristic of K. Thus, if K is a triangulation of a closed
oriented manifold of odd dimension, then w is independent of the choice of a volume on
E. If x(K) # 0 we fix a volume on E and set w = w(#6).

Then we define the R-torsion T (p) b
k(p) = [7(Co(K; E),w)] € (det H(K; E)) ™" /{£1}

and this definition does not depend on the choices we made to define the volume element
w for Co(K; E). Let 4 € det Ho(K; E) be a volume . Then we have a natural isomorphism

(det Ho(K; E)) ™' /{£1} = R*
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and 7k (p) can be identified with a positive real number which we denote by 7x(p; ). An
important fact is that 7x(p; p) is invariant under subdivision. The proof is based on (1.12).
Namely, let K' be a subdivision of K and set Co = Co(K; F) and C, = C.(K'; E). Then
we have a natural injective chain map Co — C. and we denote by C, the quotient complex
C./C,. In this way we get a short exact sequence of chain complexes

0—>C.—i>Ci—+C’.—+O.

Furthermore, H,(C,) = H,(C!) and H,(C.) = 0. We choose the volume ' € det H.(C!)
to be equal to u. Then the torsion of the long exact homology sequence H, is 1. Each
chain group has a volume defined as above. The rows are acyclic, and it follows from the
definitions that the torsion of each row is 1. Hence we can apply (1.12) which gives

T(Clw', ') = 7(Coyw, ) 7(Ca, &)

and it remains to verify that T(C’.,G)) = 1. But this follows from the explicit description
of C, (cf. [Mil] for more details). Thus 7x(p) is a combinatorial invariant.

Let M be a compact smooth manifold and let p : m(M) — GL(E) be a unimodular
representation. The manifold M has a distinguished class of triangulations, the so-called
smooth triangulations. Any two of these have a common subdivision (cf. [Mu]). Thus, for
any choice of a volume yu € det H (M), we get an invariant 7ps(p; u) € R*.

Definition 1.24. The positive real number 7p/(p; 1) is called the Reidemeister torsion
(or R-torsion ) of the manifold M with respect to p and p.

Recall that a representation p : (M) — GL(E) is called acyclic if H*(M; E,) = 0.

If p is acyclic , the R-torsion 7a7(p) is a positive real number which is an invariant of
the manifold M and the representation p.

As above, the R-torsion Tar(p; ) has several important properties . Here we recall two
of them which we need in section 3 to prove the equality of analytic torsion and R-torsion.

Let M be a closed orientable manifold of dimension n and let p: m;(M) — GL(E) be
a unimodular representation with associated flat bundle E,. Let p* be the contragredient
representation. Then p* is also unimodular and the associated flat bundle is the dual
vector bundle EJ of E,. For each ¢, the Poincaré duality isomorphism II, induces an

isomorphism H,(M; E*) 3(}[ n—q(M; E))* and therefore, an isomorphism
A : det Hy(M; E*) <5 (det Ho_o(M; E)) ™.

The following result is a slight extension of Milnor’s duality theorem [Mi2].

Proposition 1.25. Assume that, for each ¢, we have chosen volumes 4 € det Hy(M; E)
and py € det Hy(M; E*) satisfying A\g(p;) = (in—g)~". Then we have

(o ) Tm (%5 )Y = 1
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Proof. We may essentially proceed as in [Mi2]. Let K be a smooth triangulation
of M and K* the dual cell complex. Denote by K and K* the universal covering spaces
of K and K*, respectively. By Corollary 1.22, we get a canonical isomorphism of chain
complexes

0 = Co(K* E) - Cosy (K% E) -2 - 2 Co(K* E*) — 0

! ! !

0 (Co(K;E)* L (Cu(E;E)* - L (Cu(KG E)) — 0

and, for each ¢, we have a canonical isomorphism
(1.26) det Cp_ o(K*; E*) s (det Co(K; E))

Let w, € det Cy(K; E) and w; € det Co(K™*; E*) be the canonical volumes constructed
above by choosing embeddings of K, K* in their universal covering spaces and a base
Z1,...,on of E such that § = +z; A--- A zx. Then, with respect to the isomorphism
(1.26), we have w},_, = (wy)~". Using Corollary 1.19, we obtain

T (p,w, 1) Tres (%, w*, p*) V" = 1.

Since K and K* have a common subdivision, our result follows from the definition of

™ (p; p) and Ta(p*; u*). Q.E.D.

Let M;, M; be two compact smooth manifolds and let p; : 71 (M;) — GL(E;), : = 1,2,
be unimodular representations with associated flat bundles E, , E,,. Note that m(M; X
M,) = m(My) x m1(M3) and the representation p1 ® pa : m1(M1 X Mz) — GL(E; ® E2) is
unimodular. Denote by p; : My x My — M;, i = 1,2, the canonical projection. Then the
flat bundle over M; x M, defined by p; ® p; equals pfE, ®@p3E,,. Let ,u, € det H.(M;; E;)
1 = 1,2, be volumes. By the Kunneth formula, we have

Hy(My x My; By ® By) = D) Ho(Mi; Er) ® Hy(Mp; Ey)
r+s=gq

and as above, we obtain an isomorphism
det H,(My x My; By @ E,) = det H, (My; E;)X(M2i82) @ det H, (My; Ey)X(MiiE1),

Let p1 ® p2 be the element of det H,(M; x My; E; ® E;) which corresponds to ,uX(Mz’Ez) ®

,uz(Ml’E‘) under this isomorphism. As a consequence of Proposition 1.16 we get
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Proposition 1.27. With the notation above, we have the following equality

Es) | Ey)

TM1XM2(p1 ® p2; I'L]. ® ’1'2) = TMI (pl; Hi1 )X(Mz; TM2(P2; #2)X(M1;

The volumes p we are considering arise in the following way. We choose metrics on
M and on the flat bundle E, defined by p. If 9M # @ we also impose boundary conditions
for the Laplacian on forms. Then the space of harmonic forms has an inner product and,
via the De Rham isomorphism, we get inner products on H*(M; E) or H*(M,0M;E),
depending on the boundary conditions, and these inner products define volumes (cf. section
2 for details). In particular, for this choice of volumes the condition of Proposition 1.25 is
satisfied.

Remark.We may also work with complex coefficients and define the R-torsion in this
case. As above, a representation p : m(M) — GL(E) on a complex finite dimensional
vector space E is called unimodular if | det p(v)| =1 for all y¥ € 71 (M). For a unimodular
representation p the R-torsion 7as(p; i) is defined in the same way as in the real case.

Let : : GL(N,C) — GL(2N,R) be the standard embedding which sends ¢ = A +

V=IB, A, B € Mat(N, R) to (g - ) € GL(2N, R). If | det(g)| = 1 then | det(i(g))| =

1. Hence, if p : m(M) — GL(N, C) is unimodular, then i 0 p : (M) — GL(2N,R) is

also unimodular and we are back to our previous framework.
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2.Analytic torsion for unimodular representations

In this section we define the analytic torsion and we prove some of its properties. Let
(M, g) be a compact Riemannian manifold of dimension n. For simplicity we assume that
M is orientable. Let p : (M) — GL(E) be a representation of the fundamental group
of M on a real vector space of dimension N. The representation p defines a flat vector
bundle E, over M. We choose a metric h on E,. It induces a R-linear isomorphism

#:E,5E;

where E} is the dual vector bundle. Let AP(E) be the space of C*° p-forms on M with
values in E,, i.e., the space of smooth sections of the vector bundle AP(T*M) ® E,. Then
# extends to an isomorphism

4 AP(E) 5 AP(E)
for each p. Furthermore, the Riemannian metric on M defines a linear mapping
*: AP(E) — A"TP(E)

for each p (cf. [MM)], §2) which satisfies ** = (—=1)?("P) on AP(E) and it is easy to see
that * and # commute. The usual exterior product of differential forms combined with
the evaluation map tr : E, @ E; — R induces the following exterior product for vector
valued forms

A: AP(E) ® AY(E*) — AP¥9(M)

where A*(M) is the space of smooth differential forms on M (cf. [MM],§2). Then an inner
product on AP(E) is defined by

(w,w') :‘/M wA*0 Huw'.

Let L2AP(E) denote the completion of AP(E) with respect to the norm defined by this
inner product. Since E,, is flat we have the De Rham complex

AY(E) 225 AY(B) 4. o AnE)

The formal adjoint of d, on AP(E) is given by
6p = (=1)"Ptotl ot~ d F#ox.
Remark: We may, of course, combine * and # into a single operator *. The advantage
of the notation above is that the dependence on the Riemannian metric on M and on the

Euclidean metric on E,, is separated by * and #.
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Now we define the Laplacian on p-forms as usual by
Ap =6bpdy + dp_16p_1.

Note that A, does not depend on the choice of an orientation on M and therefore we can
define A, also if M is not orientable. One has to use the formalism of densities (see section
3 of [C] for details).

Now assume that M = (.Then the Laplacian is a symmetric, positive semi-definite,
elliptic operator with pure point spectrum

0< X< s> 00.

Let ‘HP(E) denote the kernel of A,. This is the space of E,-valued harmonic p-forms on
M and the De Rham map induces an isomorphism

(2.1) HP(E) =5 HP(M; E)

where HP(M; E) is the cohomology of M with coefficients in the flat bundle E,. Let P,
denote the orthogonal projection of L?A(E) onto the subspace HI(E). The zeta function
associated to the Laplacian Ay on A(E) is defined by

. —_ 1 * s—1 —tA, — -3
Co(s5p) = () /(; t*71 Tr(e — Py dt= /\gﬁ A7°%,  Re(s) > n/2.
J

It is proved in [Se] that (,(s;p) extends to a meromorphic function of s € C which is
holomorphic at s = 0. As in the case of an orthogonal representation we define the
analytic torsion Ta(p; h) by

(2.2) Tm(p; h) = exp(% Y (-1)q dilqu(S; P)L:o) :

9=0
Note that Ths(p; h) also depends on the Riemannian metric ¢ , but we do not indicate this

dependence explicitly.

First we want to get a formula for the variation of the analytic torsion with respect to
the Riemannian and the Euclidean structure. To obtain such a formula we may proceed
as in [RS]. Consider a 1-parameter family h, of Euclidean metrics on E,. Let A, (u) be
the Laplacian and let P,(u) be the harmonic projection with respect to h,. Put

(2.3) F(u,s)=1 Z (—=1)4q /00 ¢~ Tr(e=*A ™ — P, (u)) dt
g=0 0

for Re(s) > n/2. By the remark above, this function extends to a meromorphic function
of s € C with a possible simple pole at s = 0. We may use the heat expansion

Tr(e_tA‘Z(u)) ~ Z aq,j(u) t_n/2+j

§=0
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to construct the explicit analytic contlnuatlon for F(u,s) (cf. section 3 of [C]). From the
resulting formula it is clear that F(u s) also admits an analytic continuation to C and

(2.4) aﬁlogTM(p, ha) = (,i (r(ls) = F(u,5))

8=0 '
To compute 2 F(u, s) we have to determine the variation of the trace of the heat operator.

Let a = #1# where # = d#/du. By (2.1), Tr(P,(u)) = dim H?(M; E) is indepentent
of u. Hence

6—auTr(e_tA"(“) - Pq(u)) = —t Tr(Aq e"m"("))

where Aq = d/du(A,). Since #-14 = —4#714t and *# = #x, it follows that Aq =
—abéd + bad — daé + déa. Employing dA, = Ay41d, Ay = Ay_16 and the fact that
Tr(AB ) = Tr(BA) for a trace class operator A anda bounded operator B, we obtain

(2.5)

Tr(Age24™) = Tr(adse™44™) — Tr(a5de tBq-1())
+ Tr(ad(?e_m"“(“)) — Tr(aéde_tAq(“)).

This implies

(2.6) Xn: (—1)qq TI‘( A, e A (“) Z (—1)¢ Tr(ae tA, (u))

q=0
It is clear that
(2.7) : ITr(e_tA"(“) - Pq(u))| <Ce™*

for t > 1 and some constants C,e > 0. Hence, for Re(s) > n/2, we can differentiate the
right hand side of (2.3) under the integral and, by (2.5) and (2.6), we obtain

(2.8) (%F(u,s) 22( 1)7 / e %Tr(a(e—m«W)—Pq(u))) dt .

q=0
We may regard « as differential operator of order zero. Then it follows from Lemma 1.7.7

in [G] that for ¢t — 0, there exists an asymptotic expansion of the following form

oo
(2.9) Tr(a e_tAq(u)) ~ Z Cq,k(u) t—-n/2+k .
k=0

This shows that Tr(a(e7*2«(*) — P,(u))) is O(t~"/%) for t — 0 and, by (2.7), it decreases
exponentially for ¢ — co. Hence, if Re(s) > n/2, we can integrate by parts on the right
hand side of (2.8) and we obtain

n

(2.10) %F(u,s) =1s) (-1 /0 g Tr(a(e"m"(“) — Pq(u))) dt

g=0
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By (2.9), this function extends to a meromorphic function of s € C which is holomorphic
at s = 0. Set (W), ifni
_ Jeqnpa(u), if nis even;
() = { 0, if n is odd.

where cg 5 /2(u) is the constant term in (2.9). Then

(2.11) %F(u, Moy =33 (1)1 Te(aPy(w)) — 13 (=1)te,(u) .

q=0

A similar result holds for the variation of the Riemannian metric on M. If we combine
(2.4) and (2.11), we obtain

Theorem 2.12. Let M be a closed oriented manifold of dimension n and let p be a
representation of 7;(M) on E. Let h, and g, be 1-parameter families of metrics on E,
and M, respectively. Set a, = #;l#u,ﬂv = *; 1%, where ¥ = d * /dv and denote by
Tm(p; u,v) the analytic torsion and by P,(u,v) the harmonic projection with respect to
(Pu,gv). Let cq(u,v) be the coefficients defined by the asymptotic expansion (2.9) as above.
Similarly, let dg(u,v) be the corresponding coefficients defined by the asymptotic expansion
of Tr(Be~*4¢).Then

n

0 : =
P log Tam(p;u,v) =1 E (=1)9 Tr(auPy(u,v)) — %Zcq(u,v)
q=0

g=0

a . n n

5 108 Tu(piu,v) = 1Y (1) Tr(BuPy(u,v)) — 3 dy(u,v) .
q=0 q=0

If n is odd, the local terms ¢4 and dy vanish and, by (2.1), we get

Corollary 2.13. Assume that dim M is odd and p : m;(M) — GL(E) is acyclic. Then
Twm(p; k) has the same value for any choice of a Riemannian metric on M and a metric h
on E,.

Thus, for an odd dimensional manifold M and an acyclic representation p, Thr(p; k)
is an invariant Ta(p) of the manifold M and of the representation p. This justifies the
following

Definition 2.14. Let M be an odd dimensional closed manifold and p an acyclic repre-
sentation of m1(M). Then the analytic torsion Tas(p) of p is the common value of T (p; h)
for any choice of a metric h on E,.

Thus for closed manifolds of odd dimension our definition of analytic torsion works
well. The situation is different if the dimension of M is even. For orthogonal (or unitary)
representations the individual local terms do not vanish in general, but their alternating
sum does. This can be seen as follows. Assume that E is equipped with an inner product
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and p : m(M) — GL(E) preserves the inner product, that is, p is orthogonal. Then *

commutes with A. Hence
e~ tBnogy=l — y—1,—tA

Multiplying by * and taking the trace gives
Tr(*'1>'t=e_m"‘4) = Tr(e"tA"-q ¥ 1 >i<) = Tr(*—le_m%i:) = Tr(>i< * 1 e—m").
Now observe that **~! = — =1 %, Then
Tr(x! ;ke—tA,,_q) — _Tr(*—l;ke—tAq)

which implies dg /2 = —dpn_g n/2. Therefore E:___o(—l)qdq,n/g = 0.

This is false, however, if the metric on E, is not compatible with the flat connection.
As an example consider a closed surface & of genus ¢ > 2 and choose on ¥ the metric of
constant curvature —1. Let E, be any flat orthogonal bundle over £. We denote by (-, )
the canonical metric on E, which is compatible with the flat connection. Let f € C*(X)
and u € R. Then we define a new metric h, by

hu(v,w) = e*f v, w),, for v,we€E,,, €.
If we use the canonical metric to identify E, and E;, then #, : E, — E, is given by
#Ho=eTGEy ve E,., z€X.

Hence a, = #_1# = f-Id. Let K, ,(2,2',t) be the heat kernel on E,-valued ¢-forms on
¥ where E, is equipped with h,. Then

tr(ou(2)Kq,u(2, 2,t)) = f(2) tr(Kgu(z, 2, 1)).

Let m be the rank of E, and K,(z,2',t) the heat kernel for the Laplacian on g-forms.
Then, for u = 0, trK,¢(2,2,t) = mtrK,(z, z,t).Furthermore, the first three coefficients
of the asymptotic expansion of trK,(z,z,t) are well-known (cf. [G], p.330). Since, by
assumption, the curvature of ¥ is = —1, it follows that '

(0) = e1(0) +ex(0) = — 5+ /E f(2) dz.

This shows that in the even dimensional case the local contribution to the variational
formula for Tps(p; k) is non-zero in general.

The analytic torsion for orthogonal representations satisfies a number of functorial
properties (cf. [RS],§2) which reflect known properties of the R-torsion. They continue to
hold, with some modifications, for arbitrary finite dimensional representations.

Let E, be a flat bundle over M defined by the representation p : m (M) — GL(E).
We denote by p* the contragredient representation. The associated flat bundle is the dual
bundle E7 of E,. Any metric h on E, induces a metric on E; which we denote by A*.
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Proposition 2.15. Suppose that M is a closed orientable manifold of dimension n. Let
p be a finite dimensional real representation of m1(M) and E, the associated flat vector
bundle. For any choice of a metric on E,, we have

T (p; B) Tm(p*; *) D" = 1.

Proof. We may essentially proceed as in the proof of Theorem 2.3 in [RS]. Let A,
(resp. A,+) denote the Laplacian on E,-valued (resp. E;-valued) differential forms on M.
The zeta functions (4(s; p) and (4(s; p*) of the operators A, ; and A,. 4, respectively, are
defined as above. By (2.2), it suffices to show that

(2.16) D (=1)1(&e(s5.0) + (—1)"Cy(s3 %)) = 0.

Let A > 0 be an eigenvalue of A, , and let £,();p) C AI(E) be the corresponding
eigenspace. We introduce the following subspaces

EqXip) ={p € E(X;p)|dp =0} and EJ(Xp) = {4 € &(Xp)| b4 =0}

As in [RS], pp.154-155, it follows that
E (X p) =E, (X p) @ E/(Np)

and A~!/2d defines an isometry of &, (X5 p) onto &,,(A;p), with inverse A1/28 Let
mg(A; p) and my(A; p) be the dimension of the spaces £(); p) and £}/ (}; p), respectively.
Then the multiplicity of A is mg(A; p) = mg(X; p) +my(A; p) = my(X; p) + myi,(A; p) and
we obtain

(217) D (=1)%Ce(s0) = D (1)) _my(hp)A™* = - i(—l)q Y my(Xp) A

A>0 A>0

and similarly for p*. Let d,§ denote the differential and the co-differential with respect to
E, and d', §' the corresponding operators with respect to E,« = E;. Then xo# : AY(E) —
A"TI(E”) satisfies * o # d6 = 6'd’ * off. Hence, * o # defines an isometry of £ (}; p) onto
gl’ﬁql(;\; p*) showing that mg(A; p) = my_,(}; p*). Combined with (2.17), we obtain (2.16).

Since (H.(M; E)) * = H,(M; E*), the representation p is acyclic iff the contragredient
representation p* : m1(M) — GL(E*) is acyclic and we get

Corollary 2.18. Let M be a closed orientable manifold of even dimension and let p :
71(M) — GL(E) be an acylic representation. Then

Tm(p) Tm(p™) = 1.
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Assume that FE is equipped with an inner product so that E = E*. Then p is orthog-
onal iff p* = p. Hence, for orthogonal representations, Corollary 2.18 implies Tp(p) = 1
which agrees with Theorem 2.3 in [RS].

Next consider two closed oriented Riemannian manifolds M;,7 = 1,2, and let E,, be a
flat bundle over M; defined by a representation p; : m1(M;) — GL(E;). We choose a metric
hi on E,,. Furthermore, let p; : My x My — M;,¢ = 1,2, be the canonical projection. The
flat bundle p}(E,, ) @ p3(E,,) over My x M, is associated to the representation p; @ p2 and
we denote by hy X hy the product metric on this bundle. We also assume that M; x M,
is equipped with the product metric.

Proposition 2.19. With the notation above we have the following equality

log Tatyx Mz (P1 ® p2; ha X ha) = x(Mz; Ez) log Tar, (p1; k1) + x(Ma; Er) log Tar,(p2; h2),

where x(M;; E;) denotes the Euler characteristic.
This is proved by an easy generalization of the proof of Theorem 2.5 of [RS].

Now assume that the representation p : 7 (M) — GL(E) is unimodular . Then
the Reidemeister torsion 7a(p) is defined to be an element of the one-dimensional vector

space (det H,(M; E))_l. In order to get a real number we have to choose a volume
p € det H,(M; E). In the present context we choose u as follows. Let h be a metric on
E,. Then the inner product on A*(E) induces an inner product on the space of E,-valued
harmonic forms H*(E) and we use the De Rham isomorphism combined with Poincaré
duality to introduce an inner product on H.(M;E). The inner product on Hy(M;E)
defines a volume p, which, up to sign, is uniquely determined by the metric A on E,.

Definition 2.20. Let yj = ®;‘___O(pq)(‘1)q € det H,(M; E) be the volume defined by the
metric h on E. Then we set

Tm(p; k) = T (p; pin)
where the latter is the R-torsion of M with respect to p and pp (cf. section 1).

Again the R-torsion depends not only on h, but also on g, unless p is acyclic. To
compute the variation of the R-torsion we follow the proof of Theorem 7.6 of [RS]. This,
however, requires some preparation. First we have the following version of Proposition 6.4
of [RS] in our context.

Proposition 2.21. Let M and E, be as above. Let h, and g, be 1-parameter families of
metrics on E, and M, respectively. For all values of u and v of the parameters, let Hy
be the space of E,-valued harmonic forms with respect to the metrics h, and g,. Let vg
be fixed. For each u there is an orthonormal base {¢;j(u)} of Hy,v, such that for each j,
¢;(u) is a differentiable function of u, ¢; = d/dup;(u) is closed , and

(2.22) (05, #3) = —3(pj, ;)

where a = #~1#. A similar result holds if we fix ug and vary v. Then in (2.22), a has to
be replaced by B = x~1x.
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The proof is analogous to the proof of Proposition 6.4 of [RS].

We also need some results concerning the De Rham map. Let K be a smooth triangu-
lation of M and denote by K* the dual cell complex. Given a ¢-simplex o and ¢ € AI(E),
set A9(p)(0) = [ w. Then A%(p) extends to a mj-equivariant map C,(K) — E, and
hence, we get an element A%(p) in CI(K; E). This defines the De Rham map

A9 AY(E) — CY(K; E)

and it satisfies AY(dp) = §A9(p). In case it is necessary to indicate which simplicial
complex we are working with we shall write A% in place of A%. If we replace K by
K*, we get a similar map A%.. Let E7 be the dual flat vector bundle associated to the
contragredient representation p* : m (M) — GL(E*) and h* the metric on E; = E,.
defined by h in the canonical way. Then A*(E*) is also equipped with an inner product
and for each ¢, the map

xo#: A1(E) — A"I(E")
is an isometry. Let fIq : C4(K; E*) = C™9(K*; E*) be the isomorphism of Corollary 1.22
with the roles of K and K* switched. We define the map
Ay N(E) — Cy(K; E")
to be
Ay = (—1)(nDe fIq—1 o Ap.toxo #.

This map satisfies A¢(6p) = OA,(p). Again, we shall write AKX for this map if we wish to
indicate the dependence on the particular simplicial complex K. Note that C(K; E) =
(Cy(K; E*))" and therefore, we have a canonical pairing (z,y) of ¢ € CI(K;E) and
y € Cy(K; E*). Let Z,(K;E*) C Cy(K; E*) be the subspace of cycles and Z9(K; E) C
CI(K; E) the subspace of cocycles. Then we can state De Rham’s theorem in our context
as follows.

Proposition 2.23. Let ¢, € AI(E) and assume that dp = 0 and 63 = 0. Then
AY(p) € Z9(K; E), Ay (%) € Z,(K; E*) and

(0, %) = (A%(p), Ag(¥))-

The proof is the same as for the case of orthogonal representations (cf. Proposition

4.2 of [RS]).

Now we are ready to derive the variational formula for R-torsion.
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Theorem 2.24. Let M be a closed oriented manifold and let p : m (M) — GL(E) be a
unimodular representation. Let h, and g, be 1-parameter families of metrics on E, and
M, respectively. Set a, = #;1#,4, B, = *; 1%, and denote by Tp(p; u,v) the R-torsion
and by Py(u,v) the harmonic projection with respect to (hy,g,). Then

n

5z 108 (g, ) = § 3 (1) T(auPy(u,v)

g=0

-(% log Ta(p;u,0) = 3 Y (=1)7 Tr(BuPy(u,v)) -

Proof. To begin with, we recall the definition of p(p; h). Let K be a smooth
triangulation of M and set C, = C.(K; E). We choose a lift of K to its universal covering
space K. Furthermore, we have chosen a volume 6 € det E. Let z1,...,zn be a base of E
such that = z; A---Azy. Then the oriented g-simpleces of K C K together with the base
{z;} determine a preferred base of C; and a corresponding volume w, € det C;. Assume
that h is a metric on E,. It determines a metric h* on E7 = E . Let ¢,...,¢, be an
orthonormal base of HY(E*). Then the homology classes of the cycles A4(p1), ..., Ag(r)

form a base of Hy(M; E) and pq = [Ag(¢1)] A--- A [A4(pr)] is the volume defined above.
With these choices of volumes, we have TMgp, h) = |T(Ce,w, p)|. For each ¢, pick a
base {6)_,} of dC; and for each j, choose 8, ; € C, such that 66 9’ Then

{6, ~q.—1, A,(pr)} is a base for C,. Let B, be the matrix of the cha.nge frorn this base to
the preferred base constructed above. Using the definition of T(C,,w, p), it follows that

log a(p; h) = Y (—1)7 log|det B,|.

Let H{ ,(E) be the space of E,-valued harmonic forms with respect to the metrics h,
and g,. We fix v and for each u, we choose an orthonormal base {¢;(u)} for H{ ,(E)
according to Proposition 2.21. The coefficients of B, that depend on u are the coefficients
of A4(¢j(u)) which are smooth functions of u. Therefore, Tas(p;u,v) is a differentiable
function of u and

0 - 1 d
™ log Tm(p; u,v) = ;(—l)q Tr(B, @Bq).
In order to compute the traces we consider the matrix D, = (*B,)~! which can be described

as follows. Note that CI(K; E*) & (Cy(K; E))”. Let a3,...,z% € E* be the dual base of

z1,...,oN € F and consider the preferred base of the R(m; )-module C q(K ) which is defined
by the g-simpleces of K C K. Then, as above, we get a preferred base of CI(K; E*) which is
dual to the preferred base of Cy( K; E) Then consider the base of CY(K; E*) which is dual
to {9;, 0; 1, Aq(pr)}. Using Proposition 2.23, it is easy to see that this base is of the form
{nd, ﬁ]q“ A%(pr) + bci} where {n?} is a base of §C9~1(K; E*) and the 7 ~q+1 € CYK;E*)
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are such that 617q+1 = r]?“. The matrix of the change from this base to the preferred base

is D,. Since aAq(gok) =0, we get

r

To(B; o By) = Te(*Dy - By) = 3 (A%(5) + b, - Ag(ipy)

j=1

a d
= D (A(0y), 2 Aa2s))
j=1
Now observe that by Proposition 2.23, (49(y;), A¢(¢;)) =1 and therefore,

(49070, = Ag(0)) =~ 43(5), Ag()) = ~(A%(5), Aali).

Using Proposition 2.23 and (2.22), we obtain

- Z Al(p5), Ag(j)) Z(‘PJv‘PJ) =2 Z(‘PJ’Q‘PJ) = 3 Tr(aPy(u,v))

j=1

which completes the proof of the first equality.
The variation with respect to v is computed in the same way. Q.E.D.

If we combine Theorem 2.12 and Theorem 2.24, we get

Corollary 2.25. Let M be a closed oriented manifold and let p : m1(M) — GL(E) be a
unimodular representation. If dim M is odd, then '

log Ty (p; k) — log T (p; h)

has the same value for any choice of a metric h on E, and a Riemannian metric on M.
If dim M is even, then the variation of log Ta(p; h) — log Ta(p; h) can be computed as
follows. Let h, and g, be 1-parameter families of metrics on E, and M, respectively. Let
the notation be the same as in Theorem 2.12. Then

0
a_u(log Tr(p; u, v) — log Tm(p; u,v)) = 3 Z( 1) ey (u, v)

0
%(log Trm(p;u,v) — log Tr(p;u,v)) = E (=1)711d, (u,v).
q=0

The example discussed above shows that for even dimensional manifolds the variation
of log T (p; h) — log Tar(p; k) may not be zero.

As in the case of orthogonal representations Corollary 2.25 is the key result to prove the
equality of Ta(p; h) and Tas(p; h) for closed manifolds of odd dimension. For this purpose
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it is essential to have the proper generalization of Corollary 2.25 to the case OM # . To

define the analytic torsion in this case we have to introduce boundary conditions for A,.

Let : : 9M — M be the inclusion and let i* : A*(E) —» A*(E|OM) be the induced map

on E,-valued differential forms. A differential form w € A*(E) is said to satisfy absolute

boundary conditions if ‘ '
*(#w) =0 and i*(*dw) =0,

and if w satisfies absolute boundary conditions then *w is said to satisfy relative boundary
conditions.

Let Dom(A,) (resp. Dom(A,)) be the subspace of A*(E) consisting of all those forms
which satisfy absolute (resp. relative) boundary conditions on OM. If w, 0 satisfy either
boundary conditions, then

(dw, 8) = (w, 66)

and the restriction of the Laplacian to the corresponding domains defines symmetric, pos-
itive semi-definite, operators

A, : Dom(A,) — A*(E) and A,:Dom(A,) — A*(E)

The corresponding self-adjoint extensions on L2A*(E) have pure point spectrum 0 < Aq o <
Aag <---and 0< Ao < App < -, respectively. Let H(E) and H}(FE) denote the spaces
of harmonic forms for absolute and relative boundary conditions, respectively. Then the
De Rham map induces isomorphisms

(2.26) Hi(E)—> H*(M;E) and H:(E)-5 H*(M,0M;E) .

The analytic torsion T% (p; k) (resp. T5;(p; h))for absolute (resp. relative) boundary con-
ditions is defined by formula (2.2) with A, replaced by Ag ¢ (resp. Ay g).

In order to compute the variation of the analytic torsion we may essentially proceed
as in the case of a closed manifold. There are, however, additional complications due to
the non-empty boundary.

First we have to study the variation of the trace of the heat operator. We fix absolute
boundary conditions. The case of relative boundary conditions follows similarly. Let A, be
a l-parameter family of metrics on E, and let A, 4(u) denote the Laplacian and Py ¢(u)
the harmonic projection with respect to h, and the choice of absolute boundary conditions.
Let K,(t; u) denote the kernel of e~*2«.¢(*) and let K, = K, + K} + K" denote the Hodge
decomposition of K, into its exact, coexact and harmonic components. To compute the
variation of Tr(e~*A+¢(*)) we simply follow the proof of Theorem 3.10 in [C] and we note
that Duhamel’s principle (3.9) which is used in the course of the proof remains valid in
our case. As above, let & = #~1#. Then

-gTr e thae(¥)) = t—q- Tr(aK] ,(t;u)) — Tr(aK!(t;u
ot q+ q

(2.27) Ou
+ Tr(aK,(t; u)) — Tr(aK,_,(tw)) }
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Applying (2.27), it follows that
a - q —tAa,q(u) 0 - q —tAg,q(u)
9 Z (=1)7¢ Tr(e 9 — Py g(u)) =t ot Z (-1) Tr(a(e T Pa,q(u))) .
g=0 q=0

The asymptotic expansion of Tr(ae‘m“'q(“)) contains now additional terms coming from
the boundary

N oo
(2.28) Tr(ae™ 00 ~ 37 el (u) T+ by (w) 1A,
k=0 k=0

Now we can proceed in exactly the same way as in the closed case and we get

d . a
(2.29) 2o 108 T (o) = 3 ) (=1){Tr(aPag(w)) = b ()}
9=0
if dim M is odd.

A similar relation holds for the variation with respect to the Riemannian metric. Then
a has to be replaced by 8 = ,'%, and the coefficients b2 , (u) by b5 ,(v) occurring in the

corresponding asymptotic expansion of Tr(ﬂe“AM(“)).
To define the R-torsion 74;(p; h) we employ the De Rham isomorphism (2.26) to intro-

duce a volume element for H*(M; E). The computation of the variation of log 7§,(p; hy)
remains the same

n

(2.30) 2 log iy (piha) = 1 Y (~1)7 Te(aPag(w)

9=0
Putting (2.29) and (2.30) together we obtain

Theorem 2.31. Let M be a closed manifold of odd dimension and E, a flat vector bundle
over M. Impose absolute boundary conditions. Let h, and g, be 1-parameter families of
metrics on E, and M, respectively. Denote by Ty;(p;u,v) the analytic torsion and by
T4(p; u,v) the R-torsion with respect to (hy,gy). Then

a a a - a
% (log TM(p; u, v) - log TM(p; u, v)) = % Z (_1)q+1 bq,n(u’ '0)
. 9=0

0 a a - ia
%(log Ty (p5u,v) — log Th(p; u, v)) = % Z (—1)q+l bq,n(u7 v)
q=0

where the coefficients by ,, and E;,n are determined by the asymptotic expansion (2.28)

and its counterpart for the variation with respect to g,. A similar result holds for relative
boundary conditions.

An immediate consequence of Theorem 2.31 is the following
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Corollary 2.32. Let the assumption and notation be the same as in Theorem 2.31. Then
for any values (u2,v) and (u1,v1) of the parameters the difference

(log T31(p; ua, v2) — log T31(p; uz, vz)) - (log Tri(p; ug,v1) — log Tar(p; u1, vl))

depends only on the germs of hy,, hy,, gv,, gy, restricted to OM and is completely inde-
pendent of the geometry and topology of int(M). The same holds for relative boundary
conditions.

Proof. Set
f(u,v) = log Ty (p; u, v) — log T3 (p; u, v).
Then, by Theorem 2.31, '

Fluzyva) = fuson) = [ 5 o) du+ [ 5 fur,) do

=13 o [ st dut [ B o
uy

g=0 v

By the construction of the asymptotic expansion (2.28) and its analogue for Tr(Be A 4(*))

the coefficients b; ,, and i)g,n depend only on the germs of hy,, hy,, gv,, gv, restricted to OM.
Q.E.D.
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3.The equality of analytic torsion and R-torsion

Let M be a closed oriented Riemannian manifold of odd dimension and let p :
71(M) — GL(FE) be a unimodular representation with associated flat bundle E,. Let
h be an Euclidean metric on E,. To establish the equality of the analytic torsion T (p; k)
and the R-torsion 7ps(p; h) we shall follow Cheeger’s proof for the case of orthogonal rep-
resentations [C]. As explained in the introduction, this proof is well-suited for this purpose
because the relevant analysis is done locally near a given handle and this can easily be
adapted to the case of unimodular representations.

We recall the basic steps in Cheeger’s proof and indicate how they have to be modified
(if at all). By Corollary 2.25, log Ta(p; h) — log 7a(p; k) is independent of the choice of h
and of the metric on M. Set

(3.1) em(p) = log Tr(p; h) — log Ta(p; ).

Furthermore, both T (p; k) and 7am(p; h) are independent of the choice of orientation.

Let My and M; be two closed smooth manifolds of odd dimension n and assume that
M, is obtained from Mj by surgery on some embedded k-sphere S*¥ C M, (see below for
the precise definition of this statement). Let Ey be a flat bundle over M, defined by a
unimodular representation pg of m;(Mp) and assume that E, extends over the trace of
the surgery to a flat bundle E; over M; defined by a unimodular representation p; of
m1(M;). By an argument similar to the one used in the introduction of [C], it suffices to
show that ear,(po) = 0 implies epr, (p1) = 0 for all such pairs (M, po), (M1, p1). A slight
complication arises because this can be proved directly only for 0 < &k < n — 1.

Now recall that surgery on an embedded k-sphere S¥ C My means the following:
a) The tubular neighborhood N(S*) is a product

N(S*) = S* x D™ F.

b) There is an embedded (n — k — 1)-sphere S®~*~! C M; whose tubular neighborhood
is also a product '
N(sn—k—l) — Sn—k—l X Dk+l.

c) There is a manifold M with boundary M = S* x §»¥~1 such that

My=N(S* UM and M, =N(S"* 1) uMm
oM oM

where the union means that the common boundaries of M, N(S*) and N(S"~*-1)
are identified with the obvious identification and the manifolds are given the standard
differentiable structures.

The fact that Ey extends over the trace of the surgery to give E; is equivalent to
the existence of a flat unimodular bundle £ over M which extends as a flat unimodular
bundle over My = N(S*)UM and M, = N(S®"%~1)UM. Recall that a flat bundle over a
contractible space is trivial as a flat bundle. Since S* x {p} C M bounds D**1 x {p}, it
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follows that Eo|S*, S¥ C Mpy, and therefore , Eo|N(S*) is trivial as a flat bundle. Similarly,
E;|N(S™F-1) is trivial as a flat bundle. This is the important fact which allows us to
extend Cheeger’s analysis.

We shall employ the following notation. If X is a Riemannian manifold and Y C X a
submanifold then we shall denote by N, (Y") the tubular neighborhood of Y in X consisting
of all normal vectors to Y of length < u.

Now we introduce metrics on My and M; such that the tubular neighborhoods N, (S¥)
and N;(S™%~1) are isometrically the product of the unit spheres $¥, $®~*~! and the unit
balls D*~*, D¥+! equipped with the standard flat metrics. Furthermore, since Eo|N;(S¥)
and E;|N;(S™*~1) are trivial we may fix trivializations

(3.2) Eo|N1(S%) = Ny(S¥) x RN and  E;|Ny(S™ %) = Ny(S™F 1) x RN

and we choose metrics hg, hy on Ey, E; in such a way that they coincide on Eo|N1(S k )
and E;|N;(S™%~1) with the product metrics given by the trivializations (3.2). Set

M _ [ My — N,(S%), if 0 < u<1/3;
YT UMy — N (SR, if2/3<u< 1.

5 [ EolMy, i0<u<1/3
T EiM,, i2/3<u<l.

We may think of M, (resp. E,) as being M (resp. E) equipped with the metric g, (resp.
hy). For1/3 < u < 2/3 let g, (resp. hy) be any smooth family of metrics connecting these
two families, but subject to the condition that, near OM = §* x §*—*-1 ¢, (resp. hy) is
fixed independent of M, , M;. As above, we denote by M, (resp. E,), 0 < u < 1, the
manifold M (resp. the flat bundle E) equipped with g, (resp. hy).

The structure of the proof of the equality of the two torsions is now the same as in
[C]. Let p: (M) — GL(E) be the unimodular representation that defines E and set

e = J108Tu(p; hu) —logTm(pihu), i 0<u<1;
* | log Tari(pis hi) — log Tari(pis hi), ifuw=1€{0,1}.

Then
€1 — € = (61 - el—u) + (el—u - eu) + (eu - 60) = A, + B, + C"u.

Let My, M;, E{, E] be a similar set of data where M] is again obtained from M|, by surgery
on a k-sphere S* (with the same k). Then

ey —ey=A,+ B, +C,

with the obvious notation. By Corollary 2.25, we have B, = B., and the core of the proof
is the following
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Theorem 3.3. Let My, M, Ey, Ey and My, My, E;, E| be quatruples as above. Then, if
O0<k<n-1,
lin})(Au —A)=0

and, if0< k<n-—1,
lim (Cy — C,) = 0.

By symmetry, it suffices to consider C,. To prove the Theorem for C,, we first consider

(3.4) (log Tat, (p; hu) — log Tate (po; ho)) — (log Tary (o5 y,) — log Tagy (po; o)

and investigate its behaviour as v — 0. Let A,(u) be the Laplacian on E,-valued q-forms
on M,, 1 > u > 0, satisfying absolute boundary conditions. Let (,;(s;u) be the zeta
function associated to Aj(u). Then

n

0
log TM.. (P; hu) = % Z (_1)qq %CQ(S; u)|s=0
=0

and we have to study the behaviour of %Cq(s; u)|s=0 as u — 0.

Recall that there exists an asymptotic expansion

(3.5) Tr(e—m“(")) = Zaq (u) ¢~/ 4 Zb j(u)t™ n/2+j/2 O(t-n/2+m+1/2)
Jj=0 j=0

ast — 0. The coefficients a, ;(u) are locally computable in the sense that they are obtained
by integrating local densities which in any coordinate system depend in a universal fashion
on the coeflicients g¢; j(z) and h; j(z) of the metrics and a finite number of their partial
derivatives. In the same sense, the coefficients b, j(u) are locally computable in terms of
the extrinsic geometry of the boundary, e.g., its induced metric and second fundamental

form (cf. [G] for details). Set

4,3 - aq,,-/z(U) + bg,j(u), if j=2L

Furthermore, let m > n/2 and denote by p,(t) the difference of Tr(e~*A¢«(*)) and its

asymptotic expansion up to order m. Denote by P,(u) the harmonic projection. Then,
using the definition of (;(s;u) in terms of the heat kernel, we get

2 . — = - —tAg(u)y _ u ! — 4
gl o= [ ()~ Ry de+ [ )

(3.6) ¢, i(u '
N Z L O . dim H(My; B))y

—n/2+]/2
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where v = —I(1) is Euler’s constant. Now we have to investigate the behaviour of the
individual terms as u — 0. Let A, be the Laplacian on Ej-valued q-forms on My. Then
we have a corresponding asymptotic expansion as t — 0 of the form :

m
Tr(e_m“) ~ Zaq j tn/24 4 Q@ 2HmEL),
Jj=0
The nature of the coefficients a, ;(«) and a4 ; implies immediately that

11}33) agj(u) =aq;, ¢=0,..,m.

Furthermore, by assumption, the boundary terms occurring in (3.5) are the same for both
M, and M,. Hence the contribution to (3.4) made by the coefficients of the asymptotic
expansion (3.5) and its analogues for M,, M, and M| will cancel out in the limit.

Next consider dim HY(M,; E, ). Recall that M, C M, and E, = Ey|M,. Hence there

is the long exact cohomology sequence
(3.7 .
o+ — HY(My, My; Eo) = HY(My; Eo) — HY(M,; Ey) = H (Mo, My; Eg) — -+ -
and, by excision,
HI(My, My; Eo) = HI(N(S*), ON(S*); Eo| N(S)).
Using (3.2), we obtain
(3.8) H(M,, M,; Ey) = HY(N(S*),0N(5%)) ® RV,

Since M] is obtained from M| by surgery on an embedded k-sphere Sk C My with the
same k, (3.8) also holds for (Mg, M,). Let k; = dim(kerl;). Then, by the exactness of
(3.7), we get

(3.9)  dim HY(M,; E,) = dim HY(Mo; Eo) — k, + d&im HT (Mo, My; Ey) — kg1

Let k; have the same meaning with respect to (My, M,,). Then the contribution to (3.4)
of the last term in (3.6) and its analogues for M, My, M| is

(3.10) 1Y (=1)2q((kq + kgt1) — (ky + Kiyp))-
q=0
This term will be further discussed below.

The essential part is to study the behaviour , as u — 0, of the first integral on the
right hand side of (3.6). For this purpose we need two estimates describing the behaviour

- of the heat kernel as u — 0. Let K,(z,y,t) and Ko(z,y,t) denote the kernel of e~*2s(%)
and e~ A4, respectively.
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Theorem 3.11. Let k < n—1. Given T, m,ug > 0, there exists Cmm(T, uo) such that for
t<T andz,y € M, C M,,

w52 ifn—k>2;

”I{O(m, Y, t) - Ku(ma Y, t)” < Cm(T’ uo)tm 1 ifn—%k=2.
|log u|’

This theorem states that away from S¥ C My, the heat kernel of (M,, E,) converges
uniformly to that of (Mo, Ey) as u — 0.

The next result describes the behaviour of the heat kernel near S¥. For u < wuy,
let A72Y denote the annulus obtained by removing the (n — k)-ball D% of radius u
from the (n — k)-ball D;‘o_k of radius uo. Let K, 1(t) be the heat kernel on q-forms on
Sk x AZ"lk with coeficients in the trivial flat R"Y-bundle satisfying absolute boundary
conditions. Introduce polar coordinates on Az:ik and write z € S* x Az,_lk as z = (z,7)
where z € $* x S"~*=1 and r € (u,1). Fix ug < 1.

Theorem 3.12. Let k < n— 1. Given T, m, there exists a constant Crr(T) such that
(1) Forry,ry < ug, 1,2 € S* x Sn=k-1

”Ku,l((a:la Tl)a (372’ TZ)’ t) - Ku((xh ™ )a (*7"2’ TZ)’ t)”

1+ u"_k_zr;(n_k—l)) (1+ u"_k_zr;(n—k—l)), ifn—Fk>2;

< Cm(T)tm 7’—1 7‘—1

- 1 1 1 K ifn—k=2.
( +|10gu|)( +|logu|)’ in

2

/ {tr(I{u,I((x, ), (2,7), 1)) — tr(Ku((z,7), (z,7), 1)) }{
Sk X AL,

(ud "t k=3 (ug — ), ifn—-k>2;

uo(uo—u)+l—og(Lg/lQ, ifn—k=2.
log” u

< Co(TH™

The proof of Theorem 3.11 and Theorem 3.12, which, for orthogonal flat bundles,
is given in section 7 of [C], depends on two kinds of results. First of all, some standard
estimates for the heat kernel are used (cf. section 5 of [C]). These estimates are derived
from Duhamel’s principle together with the Sobolev inequality. Both Duhamel’s principle
and the Sobolev inequality do not require any special assumption on the bundle E, and
therefore, the estimates obtained by Cheeger in section 5 of [C] are also valid in our setting.
The other part which is important for the proof of Theorem 3.11 and Theorem 3.12 is the
local analysis near S*. One has to construct a parametrix for A (u) satisfying absolute
boundary conditions which allows us to study its behaviour as u — 0. The parametrix
is obtained by patching an interior parametrix and a parametrix near the boundary. The
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interior parametrix is obtained by general constructions which again do not require special
assumptions. To construct the parametrix near the boundary it suffices to construct the
Green’s operator for A on R"-valued differential forms on S* x AZ"lk satisfying absolute

boundary conditions. By our assumption, the metrics on S¥ x AZ’_lk and
E,|(S*¥ x A7 F) = Sk x A77F x RN

are the standard product metrics. Therefore, all the local analysis done by Cheeger in
section 6 and section 7 of [C] can be applied to our case without any change. This suffices
to prove Theorem 3.11 and Theorem 3.12. We just follow the proof of these theorems in

section 7 of [C] line by line.

In order to estimate Tr(e**+(*)) for large ¢ one has to study the small eigenvalues,

that is, those eigenvalues of A,(u) which converge to zero as v — 0. Set
r(q) = dim HI~("—k-1)(gk),

The behaviour of the small eigenvalues is described by

Proposition 3.13. There exists A > 0 with the following property. For all 0 < € < A,
there exists 6 > 0 such that, for u < §, A (u) has exactly

dim HY(My; Eo) + N - r(q)
eigenvalues < A and all of them are < €.

The proof is exactly the same as the proof of Proposition 7.19 in [C].
Let 0 < A{(u) < Af(u) < -+ < A{,)(¥) < A be the non-zero eigenvalues described by
Proposition 3.13 . By Proposition 3.13, we have

dim Hq(Mu, Eu) + S(Q) = dlqu(Mo, Eo) + dim Hq+1(M0, Mu, Eo)
Comparing this with (3.9), we get
(319) b+ kg1 = 5(a).

Now let Af(u) denote the restriction of A,(u) to the orthogonal complement in L2A(E, )
of the sum of the eigenspaces corresponding to the small eigenvalues < A described by
Proposition 3.13. Note that A™° = 'I‘(l_s) fooo t*~le~Atdt. Taking the derivative at s = 0,
gives

oo 1
/ t~leMdt =—log)\—/ t~l(e M —1)dt — v
1 0
where v = —I''(1). Then the first integral on the right hand side of (3.6) equals

s(q) 0o 1 s(q)
- Z log Af(u) + / t! Tr(e—m;(”)) dt — / t1 (z e~ N (Wt _ s(q)) dt — s(q)v.
=1 ! 0 =1
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By (3.14), the contribution of the last term to (3.4) cancels (3.10). Furthermore, by
Proposition 3.13, the second integral tends to zero as u — 0 and for any given € > 0 there
exists T' such that for T > T, u < 6,

N [
/ t—lTr(e_tAq(“)) dt < e.
T

Fix ug,T > 0. Then

T T
/ t_lTr(e_tA;(“)) dt =/ t_I/ trKI(z,z,t)dr dt
1 1 Muo

T
+/ t‘1/ trK3(z, z,t) dz dt
(3.15) 1 - HEAA)

u,ug
s(9) .1 .
- Z/ t~ e MWt gt _ log T dim HY(M,; E,).
j=1v1

By Proposition 3.13, the last two terms tend to
—log T (s(q) + dim H(My; E,))
as u — 0, and, by Proposition 3.13, this equals
—log T (dim HY(My; Eo) + N - r(q)).

The same holds if we replace M, by M/, so that the combined contribution to (3.3) of the
last two terms in (3.15) and the analogous terms with respect to M,, will cancel out in the
limit v — 0.

Finally, one uses Theorem 3.11 and Theorem 3.12 to tread the remaining integrals.
Let K, ;(t) denote the kernel obtained by projecting the heat kernel K 1(t) defined above
onto the orthogonal complement of the harmonic forms. Then the final result can be stated
as

(3.16)

lim lim
uo—0 u-—0

/ 1 Tr(e_m"(“) — P(u)) dt — / t~! Tr(e™ ™ — PY) dt
1

1

_ s(q)
e ) e s
1 SkxAn-k ’

u,ug Jj=1

= 0.

Next we have to investigate the integrals fol t71u,(t)dt and fol t™1uo(t) dt. Recall that
pu(z,t), po(z,t) and py 1(z,t) are the differences between trKi(z, z,t), trK{(z,z,t) and
trK; ;(z,z,t), respectively, and their asymptotic expansion up to order m > n/2. Then
the argument which led to (3.16) can also be used to prove

1 1
/t—lﬂu(t)dt—/ t“‘/ po(z, t) dz dt
01 Jo 0 M,

lim lim
1
—/ t_l/ Pu,1(z,t)dz dt] = 0.
0 Skx AR E

uo—0 u—
u,ug

(3.17)
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Now consider M, M., Ej, E!. Let 0 < A\f(u) < - < /\;q(q
values described by Proposition 3.13 with respect to M}, E!,. Subtracting the correspond-
ing versions of (3.16) and (3.17) for M}, M., Ej, E,, from (3.16) and (3.17), respectively,

and using (3.6) we can summarize our results by

&igg{ (log Ta, (95 hu) — 10g Tary (po; o)) — (log Tay (05 hy,) — log Ty (P03 ho))

(3.18) s(q)
+ Z( ) los( N(w)/Xf(w)} =0

y(u) < A be the non-zero eigen-

It remains to investigate the corresponding expression for the R-torsion. First we consider

log 7, (P; hu) — log Tage (po; ho)-
Let Ky be a smooth triangulation of My and K " ¢ Ky a subcomplex which induces a
triangulation of the submanifold M C M,. Recall that M, denotes the manifold M

equipped with the metric g,. Furthermore, E = Eo|M and E, is the flat bundle E
equipped with the metric h,. Then we get a short exact sequence

(3.19) 0 = Co(K'; E) — Cu(Ko; Ey) — Co(Ko, K'; Eg) — 0

of chain complexes. Each of these chain complexes has a distinguished volume determined
by preferred bases and the metrics ho, go, hu, gu determine volumes o € det H, (My; Ey),
py € det H,(M,; E,). Since My — M = N(S*%), Eo|N(S§%) = N(S*) x RV and the
metrics are the standard product metrics, the torsion of the relative chain complex equals
TN( Sk)(].)N where 1 stands for the trivial 1-dimensional representation. Moreover, it is
easy to verify that the torsion of each complex

0 — Cy(K'; E) — Cy(Ko; Ey) — Cy(Ko, K'; Ey) — 0
equals 1. Thus we can apply (1.12) to (3.19) and we obtain
log Ta,(Po; ho) = 1og Tar, (p, hu) + N - log Tiv(sk)(1) + log 7(He; pu)

where H, denotes the long exact homology sequence of (3.19) regarded as an acyclic chain
complex of length 3n equipped with the volumes u,, po. Subtracting the corresponding
equation for My, M, , E;, E., we get

}ngl{(logw (p5 hu) = log Tazy (po; ho)) — (log Tary (p'; BY) — log Tars (P ho))
(3.20)
+ (log 7(Ha; pu) — log T(H.,uu))} =0.

- Now one has to study the behaviour of log 7(H,; py) and log 7(H,; ) as u — 0. ThlS is
completely analogous to [C] and we leave it to the reader (cf. p.316 of [C]). As result we
obtain that in the limit v — 0, log7(Hae; tu) — log 7(H,; p!,) cancels the contribution of
the small eigenvalues in (3.18). This completes the proof of Theorem 3.3.

Now we can proceed exactly in the same way as in [C]. Write di = e; — €9 where ¢; =
log T, (pi; hi) — log Tar,(pi; hi) and Mj is obtained from M, by surgery on an embedded
k-sphere.
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Proposition 3.21. We have d;, =0 for 1 < k < n — 2. Moreover, dy is well defined.

We just follow the proof of Propositon 8.20 and Proposition 8.21 of {C] line by line to
obtain the proof of Proposition 3.21.

We can now prove Theorem 1 of the Introduction.To prove this theorem we proceed
in exactly the same way as on p.318 of [C], using Proposition 1.25, Proposition 1.27,
Proposition 2.15 and Proposition 2.19.

Remark. Everything that has been said in the previous sections works as well for
finite dimensional complex representations of m1(M).
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4.Some examples

In this section we shall discuss two examples where non-orthogonal or non-unitary
representations of the fundamental group arise naturally and the torsion is of relevance in
this context

4.1. Locally symmetric manifolds.

Let G be a connected semi-simple Lie group with finite center. We also assume that G
has no compact factors. Let K be a maximal compact subgroup of G. The Lie algebras of G
and K will be denoted by g and ¥, respectively. Let g = €@ p be the Cartan decomposition
of g with respect to € and let 8 be the Cartan involution of (g, €). The quotient space
X = G/K is then a symmetric Riemannian manifold and G is the identity component of

the group of orientation preserving isometries of X. We shall denote by zo € X the coset
eK of the identity e € G.

Let I' C G be a discrete, torsion free, co-compact subgroup of G. Then M =T'\X is
a compact locally symmetric manifold covered by X with =y (M) =T.

Let p: G —» GL(E) be a representation of G on a finite dimensional complex vector
space E. If we restrict p to I', we obtain a representation pr : I' = GL(FE) with associated
flat vector bundle E, over I'\X. Since E is a Imodule, the group cohomology H*(T'; E)
is defined and we have the equality

H*(T\X;E,) = H*(T; E).

There is a different way to describe the bundle E,. Let pg : K — GL(E) be the restriction
of p to K and consider the fibration

(4.1) I'\G — I'\X

which is principal with structure group K. Then pg defines the induced bundle Ep over
I'\X whose global C'*°-sections are the C'*°-functions

f:T\G— E

which satisfy
f(gk) = p(k)"'(f(g)) forall g€ G, ke K.

Lemma 4.2. The bundles E, and E,, are naturally isomorphic. If f : NG - Eisa
section of E,, set f(z) = f(gzo) = p(g)f(g) where z = gzo. Then f : X — E defines
a section of E, and f — f establishes an isomorphism of the corresponding spaces of
C*°-sections.

For the proof see Proposition 3.1 in [MM].

Now observe that the flat bundles E, defined by a representation p : G — GL(E) fit
into the setting of the previous sections. Namely, we have
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Lemma 4.3. Any finite dimensional representation p : G — GL(FE) satisfies det p(g) =1
for all g € G.

Proof. Let N = dimc E. Then G acts on AV E via the character x = detop. Since
G is semi-simple, we have Dg = g and therefore, dy = 0. But G is connected which implies
x =1. Q.E.D.

Thus each of the flat bundles E, constructed above is unimodular. Next we equip
E, with a canonical metric. Following Matsushima and Murakami in [MM], we call a
hermitian inner product (u,v) on E admissible if

a) (p(Y)u,v) = —(u,p(Y)v) forallY € ¢, u,veE.
b) (p(Y)u,v) = (u,p(Y)v) forallY €p, u,ve€ E.

The existence of an admissible inner product on any G-module E is proved in [MM],
Lemma 3.1. Condition a) means that (-,-) is invariant under p(K) and therefore, it defines
a hermitian metric on E,. This is the canonical metric on E, defined by the admissible
inner product on E.

This choice of an inner product on E, allows us to use harmonic analysis to study the
Laplacian A on E,-valued differential forms on I'\X. The tangent space to X at z¢ can
be identified with p and the tangent bundle of I'\X is the bundle induced from (4.1) by
the adjoint representation ady K — GL(p). Therefore, we have a natural identification

A(T\X,E) = {p: I'\G —Ap" ® E|pis C*and
o(gk) = (Mad; (k™) ® p(k™)) (¢(9)), 9 € G,k € K}.

Concerning the cohomology H*(T'; E) there exist plenty of results , in particular, vanishing
theorems (cf. chapter VII of [BW]) telling us which representations are acyclic. We mention
one of them. Let h* C & be a maximal abelian subalgebra of €. Let ) be the centralizer of
h* in g. Then § is a Cartan subalgebra of g. Let ® be a root system of (gc, hc) and let @
be a root system of (¥c, bg) Fix a set ®] of positive roots for @4 and let ®* be a system
of positive roots for ® compatible with @] (see p.65 in [BW]). This means, in particular,
that 8o € & whenever « € ®*. As usually set

2p = Z «.

a€cdt+

Theorem 4.4.(Borel-Wallach). Let E be an irreducible, finite dimensional G-module with
highest weight A — p. If A # A, then H*(['; E) = 0.

For the proof see Theorem 6.7 of chapter VII in [BW].

Let hg = {H € bc|6H = —H}. Then by = (h&)” @ (hg)™. Moreover, assume
that tkG > rk K. Then dimbhg > 1 and the highest weight of a generic representation

38



satisfies A # A. Note that the condition rkG > rk K is satisfied whenever dimG/K is
odd which is the case we are mainly interested in. Thus, for compact locally symmetric
manifolds I'\ X of odd dimension, Theorem 4.4 produces a large class of acyclic unimodular
representations of I'.

As an example we shall discuss three dimensional hyperbolic manifolds. In this case
we have G = SL(2,C), K = SU(2) and H3 = SL(2,C)/SU(2) is the three dimensional
hyperbolic space. Let I' C SL(2, C) be as above, that is, a discrete, torsion free, co-compact
subgroup. Since SL(2, C) is simple, I is an irreducible discrete subgroup.

To describe the irreducible finite dimensional representations of SL(2, C), we have to
consider sl(2,C) as Lie algebra over R which we denote by sl(2, C)®. It is well known
that

s(2,C)® = 50(3,1) and su(2) = s0(3,R)
where $0(3,1) is the Lie algebra of SO(3,1) C GL(4,R). Furthermore, we also have an
isomorphism

(4.5) ©:50(3,1) %C & s0(4, C).
The Killing form of s0(3,1) is given by B(X,Y) =2Tr(X oY), X,Y € s0(3,1). Let
0100 0 0 00O 0 0 0O
-1 0 0 0 0 0 00O 0 00O
=1 9000) ™Zloo o1) 2 H=|54 91
0 0 0O 0 0 -1 0 0 01 0

Then H; € s0(3,R), H3 € 50(3,1), and B(H;, H3) = 0. Thus H; € p. Since [H;, H;] = 0,
it follows that h; = RH; and h = RH; @ RH, are the Cartan subalgebras of s0(3)
and s0(3,1), respectively, which we considered above. Furthermore, with respect to the
isomorphism (4.5), hc & CH; & CH;. Therefore, the complexified Cartan involution 6
acts on h¢ by 8(aH, + bH;) =aH; — bH,. Define ¢ € bg, i = 1,2, by

ej(Hk) = —i5jk.

Then the roots of (s0(4,C), hc) are given by +(e; — e3), +(e1 + e2) (cf. [H], p.188). We
choose the positive roots &% to be {a, 3} where a = e; —e;, B = €; +e2. Then 6 preserves
dt. Set
Hy =1i(H, — Hy) and Hp =i(H; + H>).

Then we have a(Hy) = B(Hg) = 2 and a(Hg) = B(Hao) = 0. Thus Hy, Hg are the dual
roots and wy = fa, wy = 3P are the fundemental weights. Hence the heighest weight A
of any irreducible representation p : s0(4,C) — gl(E) is of the form A = 1(pa + ¢B),
p,q € N. This shows that the irreducible representations of 50(3,1) on a complex finite
dimensional vector space are parametrized by pairs (p, ¢) € N2 and the Cartan involution
acts by 6(p,q) = (¢,p). Since SL(2,C) is simply-connected, the representations of the
Lie algebra can be lifted to SL(2, C). Hence for each (p,q) € N2, we get an irreducible
representation

Pp,q : SL(2, C) — GL(Ep,q).
Using Theorem 4.4, we get
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Lemma 4.6. Let " be a discrete, torsion free, co-compact subgroup of SL(2,C). For
(p,q) € N?, let E, 4 be the irreducible SL(2, C)-module described above. Then

H*T\H%E,,) =0 if p#q.

We note that the complexification of the standard representation of s50(3,1) on R*
has heighest weight Zo + 13 and therefore, it is equivalent to the sI(2, C)-module E; ;.
Thus we can restate Lemma 4.6 as follows. If a given irreducible sl(2, C)-module Ej with
heighest weight A has non-trivial cohomology, then A is a multiple of the heighest weight
of the standard representation of s0(3,1). This agrees with Theorem 1 in [R].

There is a more explicit way to describe the sl(2, C)-modules E, ,. First we observe
that there is a natural isomorphism

(4.7) ¥ :s50(4,C) = sl(2,C) x sl(2,C).
Moreover, if ¢ is the isomorphism (4.5), then we have
¥ o p(s0(3,1)) = {(X,X)| X €5l(2,C)}.

Next recall that the irreducible finite dimensional representations of the complex Lie
algebra sl(2, C) are parametrized by p € N. Given p € N, let W, be the corresponding
irreducible s[(2, C)-module. Then W; = C? and p; : 51(2,C) — gI(C?) is the standard
representation. Furthermore for each p € N, W), is the p-th symmetric power of the module
Wy = C2.

Let E be a finite dimensional complex vector space. Then the complex conjugate E
of E is defined to be the dual vector space of the vector space of all anti-linear forms on

E. Every x € E determines a unique element = € E. In particular, we can consider the
complex conjugate W, of the sl(2, C)-module W,. Then s{(2, C) acts on W, by

Py (X)W = po(X)w, X €5l(2,C), e W,
and we get an anti-holomorphic representation
Py SL(2, C) — GL(W,).
Given (p, q) € N?, set pp ¢ = pp ® P, Then
Pp,q : SL(2,C) — GL(W, @ W)

is an irreducible representation which is equivalent to the representation p, , above. This
is a special case of a more general result (cf. Theorem 3.1.1.1 in [Wal).

For all these acyclic representations p, the analytic torsion Tys(p) and the R-torsion
7m(p) are defined and independent of any choice of metrics.
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A possible application will be the following. For acyclic unitary representations ¢
of T', Moscovici and Stanton introduced in [MS] a certain zeta function Z,(s) which is
defined in terms of the geodesic flow @ on the unit tangent bundle of I'\X. The set of
periods of closed orbits of ® is discrete and the periodic set breaks up into connected
components which are parametrized by the non-trivial conjugacy classes {7} in I. Each
connected component X, is itself a compact locally symmetric manifold of non-positive
sectional curvature and @ restricts to a periodic flow on X, . Let XZ, = X,/®, let I, be

the common length of the periodic orbits in X, and p the multiplicity of a generic orbit
of ®|X,. Then

e-—sl.,

Zy(s)=exp— Y Tro(7) x(Xy) —.
(r}#1 H

It is proved in [MS] that Z,(s) is analytic for Re(s) > 0 and admits a meromorphic
continuation to C which is holomorphic at s = 0. The main result of [MS] is then that

Z,(0) = m(p)? where M =T\X.
In view of Theorem 1, it seems to be reasonably to conjecture that this continues to hold
for all finite dimensional unimodular representations p : G — GL(E). We shall return to

this point in a forthcoming paper. This may have interesting applications, because most
of the representations of I" are non-unitary.
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4.2. Chern-Simons gauge theory with non-compact gauge group.

Chern-Simons gauge theory is a three dimensional gauge field theory with pure Chern-
Simons action. It was used by Witten [W1] to introduce new 3-manifold invariants. The
basic setting for Chern-Simons theory is a compact oriented three dimensional manifold
M without boundary and a Lie group G. We start with the case where G is compact and
for simplicity, we take G to be SU(N). Consider the space A of all G-connections on the
trivial G-bundle over M. In fact, every principal G-bundle over M is trivial. The space A
may be identified with the space A!(M, g) of differential 1-forms on M with values in the
Lie algebra g of G. For a given connection A € A, the Chern-Simons action is defined to
be

(4.8) I(4) = i/ Tr(ANdA+2ANAA A)
47T M

where Tr is the trace of su(N) in the standard representation. This is a real valued
- non-linear functional on A. The gauge group G = Map(M, G) acts on A by the usual
prescription A9 = g~'Ag + g~ 'dg, g € G, A € A. The Chern-Simons functional I is not
invariant under the action of G, but it satisfies

CI(A%) =I(A)+2mm

for some m € Z depending on g € G. Let k € N. Then e**/(4) is a G-invariant function on
A and Witten’s invariant of M is defined as the path integral

(4.9) Zu(k) = / e* (A Dy

where the integration is over all gauge equivalence classes of connections. This, however,
- has to be considered as a.formal expression because no measure DA has been constructed
up to now. Part of this theory can be made rigorous and Witten gave an explicit recipe
for computing Zp(k). Moreover, using the theory of quantum groups, Reshetikhin and
Turaev [RT] introduced invariants Zps(q) of a 3-manifold M depending on a root of unity
¢ = >™/7 and they suggest that Z;(e?™/(*+2)) coincides with Z;(k) after normalization.

A standard way to study functional integrals like (4.9) is to use the method of sta-
tionary phase approximation which predicts the behaviour of Zs(k) for large k. In the
present context this method is again not based on solid ground, but it gives very interest-
ing results. By the method of stationary phase, the leading order contribution to Zps(k)
comes from the critical points of the action (4.8). The Euler-Lagrange equation for (4.8)
is

dA+ANA

which shows that the critical points of (4.8) are precisely the connections with vanishing
curvature, that is, the flat connections on the bundle P = M x G . A flat connection A is
determined up to gauge equivalence by a representation

(4.10) a:m(M)—-G
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up to conjugacy. Hence the space of gauge equivalence classes of flat connections on P can
be identified with Hom(m(M), G)/G where G acts on Hom(w(M),G) by conjugation.
Assume that the topology of M is such that there exists only a finite number of gauge
equivalence classes of flat connections on P, say Aj,..., A, and let o, ..., a,, denote the
corresponding homomorphisms (4.10).

Let A be a flat connection and for simplicity, assume that A is irreducible. To work
out the leading perturbative approximation to the contribution of the critical point A to
the path integral Zjs(k), gauge fixing is needed. This is achieved by picking a Riemannian
metric g on M. Let a : m;(M) — G be the holonomy representation of A and Ad : G —
GL(g) the adjoint representation. Then Ad o « is a representation

(4.11) pa : T (M) — GL(g)

and we denote the associated flat bundle by g,. Since g is compact, the Killing form is
negative definite on g. Therefore, the negative of the Killing form defines a G-invariant
inner product on g and with respect to this choice of an inner product, the representation
(4.11) is orthogonal. Finally, we note that the De Rham complex A*(M; gq4) is equivalent
to the complex of g-valued differential forms

0 — A°(M; g) 24 AL(M; g) 24 A2(M; g) 24 A3(M; g) — 0

where AY(M;g) = AY(M) ® g and d4 is the covariant derivative with respect to the con-
nection A. Since A is flat, we have d4 = 0. By assumption, 4 is irreducible and isolated
modulo gauge equivalence. Therefore, we have H*(M; go) = H'(M; go) = 0 and Poincaré
duality implies H*(M; g4) = 0, so that p, is acyclic.

To describe the final result we need some more notation. Let ¢;(G) be the value of the
Casimir operator of G in the adjoint representation, normalized so that c;(SU(N)) = 2N.
Furthermore, let I(g) be the Chern-Simons invariant of the Levi-Civita connection of g
with respect to a given trivialization of the tangent bundle of M and let n(g) be the
n-invariant of the metric g.

Assume now that the representatives A, ..., A,, of the gauge equivalence classes of
flat connections are all irreducible. Then Witten’s formula for the stationary phase ap-
proximation (or one loop approximation) of the path integral (4.9) is

1 1 m
(4.12) Zna (k) ~ —— (314 71 1(0) 3 eiliteaODIA) [Ty (o)

#2(G) pat

where Z(G) is the center of G, d is the dimension of G and Tas(pa, ) is the analytic torsion
of the flat connection p,;. In fact, formula (2.23) in [W1] has to be slightly corrected (cf.
also (1.32) in [FG]).

D.Freed and R.Gompf [FG] have done explicit computations in a number of cases
supporting the believe that (4.12) gives the correct asymptotic behaviour of Wittten’s
invariant.
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Since each pq; is acyclic, Tar(pq; ) is independent of the choice of the metric g on M
and, by [C], [Mii], it coincides with the R-torsion 7as(pa;). Furthermore, by the Atiyah-
Patodi-Singer theorem,

31(9) + 34:1(9)

is also independent of the metric. It depends only on the trivialization of the tangent
bundle. As we know, the R-torsion 7ps(pa;) can be computed from a triangulation K of
M in a pure combinatorial way. This suggests that one may be able to develop a rigorous
treatment of the path integral (4.9) on the combinatorial level and derive the asymptotic
behaviour (4.12) in this way. .

There exist also conjectures how (4.12) has to be modified if we give up the assumption
that the gauge equivalence classes of flat connections are isolated and irreducible (cf. (1.36)
in [FG]).

So far we considered the case of a compact gauge group. Witten has also started
to investigate Chern-Simons theory with non-compact gauge group [W3|. There exist
several motivations to develop such a theory. For example, 2 4+ 1 dimensional gravity is
related to Chern-Simons gauge theory with gauge group SL(2, C), I50(2,1) or SL(2,R) x
SL(2,R) depending on wether the cosmological constant is positive, zero, or negative [W2].
For a general non-compact Lie group G, the quantization of Chern-Simons gauge theory
with gauge group G is not yet understood. Nevertheless, one can study the perturbative
expansion of the corresponding path integral [BNW].

The perturbative treatment of Chern-Simons gauge theory with non-compact gauge
group requires again gauge fixing. Since the Killing form is indefinite there exists no obvious
gauge fixing as in the compact case and different approaches are possible [BNW].For a semi-
simple Lie group G, the most natural gauge fixing seems to be the unitary gauge fixing
described in section 4 of [BNW]. Let A be a flat connection on the trivial G-bundle over M
with holonomy representation a : 71(M) — G. As above, let go be the flat bundle defined
by po = Ad o a. Then the unitary gauge fixing amounts to the choice of a Riemannian
metric ¢ on M and a Hermitian metric h on go. We observe that po : m (M) — GL(g) is
unimodular. In fact, since g is semi-simple, the Killing form is non-degenerate. Hence, for
each g € G, Ad(g) preserves a non-degenerate symmetric bilinear form on g which implies
that | det Ad(g)|] = 1. This is precisely the setting of section 2.

Under the same assumption as above, one gets a formula for the one loop approxi-
mation of the path integral which is similar to (4.12). The analytic torsion Tp(pq;) is
now defined by (2.2). For the discussion of the phase factor see section 4 of [BNW]. By
assumption, each representation po; is acyclic and therefore, by Corollary 2.13, Tar(pq; ) is
independent of the choice of the metric on M and g,. Moreover, by Theorem 1, Ta(pq;)
equals the R-torsion 7p(pq; ) which has again a pure combinatorial describtion. This sug-
gests that Chern-Simons gauge theory with a non-compact but semi-simple gauge group
should also be accessible to a combinatorial treatment.
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