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1 Introduction

The Casson-Walker invariant λw(M) is one of the fundamental invariants of ra-
tional homology spheres. Its restriction to the class of integer homology spheres
is an integer extension of the Rokhlin invariant [1, 16]. In the theory of fi-
nite type invariants of 3-manifolds it is the simplest Q-valued invariant after
|H1(M)| [3]. λw(M) remains, however, in general quite difficult to calculate.
While it is easy to do for a manifold ML obtained from S3 by surgery on a
framed knot L, the same question for links remains quite complicated. In par-
ticular, for 2-component links satisfactory formulas only exist for some special
cases [7, 5, 6]. Formulas from [8], although explicit, require enormously huge
calculations, even in simplest cases (see Section 8).

Problem. Given a framed 2-component link L = L1 ∪ L2 with the linking
matrix L, we want

1. Find simple explicit formulas for λw(ML);

2. Understand/separate the dependence of λw(ML) on L (considered as an
unframed link) and on L.

We thank Nikolai Saveliev for useful discussions and Vladimir Tarkaev for
writing computer program. The main results of the paper have been obtained
during the stay of both authors at MPIM Bonn. We thank the institute for
hospitality, creative atmosphere, and support.

2 Arrow diagrams

Let A be an oriented 3-valent graph whose edges are divided into two classes:
fat and thin. The union of all vertices and all fat edges of A is called a skeleton
of A.

Definition 1. A is called an arrow diagram, if the skeleton of A consists of
disjoint circles. Thin edges are called arrows.

It follows from the definition that each arrow connects two vertices, which
may lie in the same circle or in different circles. By a based arrow diagram we
mean an arrow diagram with a marked point in the interior of one of its fat
edges. See Fig. 1 for simple examples of based and unbased arrow diagrams.

1Both authors are partially supported by the joint research grant of the Ministry of Science
and Technology (Israel) and Russian Foundation for Basic Research
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Figure 1: Simple examples of arrow diagrams.

3 Gauss diagrams

Recall that an n-component link diagram is a generic immersion of the disjoint
union of n ≥ 1 oriented circles to plane, equipped with the additional infor-
mation on overpasses and underpasses at double points. Any link diagram can
be presented numerically by its Gauss code, which consists of several strings
of signed integers. The strings are obtained by numbering double points and
traversing the components. Each time when we pass a double point number k,
we write k if we are on the upper strand and −k if on the lower one. If we
prefer to distinguish knots and their mirror images or if we are considering a
link with ≥ 2 components, then an additional string of εi = ±1 called chiral
signs is needed. Here i runs over all double points ai of the diagram and signs
are determined by the right hand grip rule. See Fig. 2.

Figure 2: A 2-component link and its Gauss code

A convenient way to visualize a Gauss code is a Gauss diagram consisting
of the oriented link components with the preimages of each double point con-
nected with an arrow from the upper point to the lower one. Each arrow c is
equipped with the chiral sign of the corresponding double point. The number-
ing of endpoints of arrows is not necessary anymore, see Fig. 3. We say that a
link diagram is based if a non-double point in one of its components is chosen.
An equivalent way of saying this consists in considering long links in R3, when
the base point is placed in infinity. If the link is based, then the corresponding
Gauss diagram is based too. Note that forgetting signs converts any Gauss di-
agram into an arrow diagram, but not any arrow diagram (for example, a fat
circle with two thin oriented diameters) can be realized by a Gauss diagram of
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a link. However, that is possible, if we allow virtual links. This is actually the
main idea of the virtualization.

Figure 3: Two presentations of the Gauss diagram for the link diagram in Fig. 2

4 Arrow diagrams as functionals on Gauss dia-

grams

As described in [?, 10], any arrow diagram A defines an integer-valued function
〈A, ∗〉 on set of all Gauss diagrams. Let A be an n-component arrow diagram
and G be an n-component Gauss diagram. By a representation of A in G we
mean an embedding of A to G which takes the circles and arrows of A to the
circles, respectively, arrows of G such that the orientations of all circles and
arrows are preserved. If both diagrams are based, then representations must
respect base points. For a given representation ϕ : A → G we define its sign by
ε(ϕ) =

∏

ε(ϕ(a)), where the product is taken over all arcs a ∈ A.

Definition 2. Let A be an n-component arrow diagram. Then for any n-
component arrow diagram G we set 〈A, G〉 =

∑

ε(ϕ), where the sum is taken
over all representations of A in G.

Example 1. Let us describe functions for arrow diagrams A1 − A4 shown in
Fig. 1. Evidently, A1 determines the writhe of the link, which is defined as
the sum of the chiral signs of all double points. Let G be a Gauss diagram
of an oriented 2-component link L = L1 ∪ L2. Then 〈A2, G〉 = 2n, where
n = lk (L1, L2) is the linking number of the components. Indeed, for any arrow
of G we have exactly one representation of A2 to G. Therefore, all double points
contribute to 〈A3, G〉 (not only points where the one preferred component is over
the other). If we insert a base point into A2 and a base point into G (thus fixing
ordering of the two link component), we get n without doubling. It means that
〈A3, G〉 = lk (L1, L2). The meaning of 〈A4, G〉 is more complicated. If G is a
Gauss diagram of a knot K ⊂ S3, then 〈A4, G〉 is the second coefficient v2 of
the Conway polynomial of K, which is often called the Casson invariant of K.
See [?] for a diagrammatic description and properties of v2.

Example 2. For arrow diagrams U1, U2 shown in Fig. 4 and the Gauss diagram
G shown in Fig. 3, we have 〈U1, G〉 = 0 and 〈U2, G〉 = −1. The image of the
unique representation of U2 to G contains arrows 2,3,4.
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Figure 4: Two arrow diagrams

Remark 1. Often it is convenient to extend Definition 2 by linearity to the
free abelian group generated by arrow diagrams. Let A =

∑m

i=1 kiAi be a linear
combination of arrow diagrams. In general, the value 〈A, G〉 depends on the
choice of the Gauss diagram G of a given link L as well as on the choice of the
base point. However, for some carefully composed linear combinations of arrow
diagrams the result does not depend on the above choices. This gives a link
invariant 〈A, G〉, which we will denote by A(L). It is easy to show that such an
invariant is of finite type. Moreover, any finite type invariant of long knots can
be presented in such a form. A similar result for links is unknown. See [10].

5 A useful finite type link invariant of order 3

Consider the following linear combination U = U1 + U2 + U3 + U4 of arrow
diagrams (see Fig. 5).

Figure 5: Remarkable linear combination of arrow diagrams

Example 3. For the link and Gauss diagrams shown in Fig. 2 and Fig. 3 we
have 〈U, G〉 = −1+1 = 0, since there are only two representations of summands
of U in G: one representation of U2 (see Example 2) and one representation of
U4 with arrows 2,4,5 in its image.

Example 4. For the link and Gauss diagrams shown in Fig. 6 we have 〈U, G〉 =
−1− 1 = −2, since no summands of U have representation in G except the first
one which has two representations described by arrow triples (2,5,7) and (4,5,7).

Let n be an integer and B an unknotted annular band having n negative
full twists if n ≥ 0 and |n| positive full twists if n < 0, see Fig. 7 for n = 5. If
we equip the components of ∂B by orientations induced by an orientation of B,
then their linking number is equal to n.

Definition 3. The 2-component link ∂B is called the generalized Hopf link
and denoted H(n).
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Figure 6: Link 82
11 in the Alexander-Briggs-Rolfsen table [15].

Figure 7: Generalized Hopf link H(n) for n = 5.

Of course, H(n) has many different diagrams. For example, two differently
oriented diagrams of H(n) for n = 3 are shown in Fig. 8. Note that the linking
numbers of their components have opposite signs: 3 for the top diagram and
−3 for the bottom one.

Example 5. The diagrams of H(3) mentioned above differ only by orienta-
tion of one component. Nevertheless, their Gauss diagrams look quite differ-
ent. For the top Gauss diagram Gt we have 〈U, Gt〉 = 0, since no summands
of U have representation in Gt. Of course, the same fact holds for any n.
For the bottom diagram we get 〈U, Gb〉 = 4. Indeed, in this case there are
four representations of U4 in Gb. They can be described by four triples of
positive arrows (1,2,3),(1,2,5),(1,4,5), (3,4,5) contained in their images. Since
0 = 〈U, Gu〉 6= 〈U, Gl〉 = 4, we may conclude that the value of 〈U, G〉 depends
of orientation of the components. Nevertheless, the following proposition shows
that aside this phenomenon 〈U, G〉 is invariant.

Proposition 1. U determines an invariant U(L) = 〈U, G〉 for oriented links of
two numbered components.

Proof. We will always assume that the base point is in the first component. It
suffices to show that 〈U, G〉 is invariant with respect to
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Figure 8: H(3) with different orientations

1. Reidemeister moves far from the base point.

2. Replacing the base point within the first component.

In order to verify the invariance under Reidemeister moves, it suffices to
show that 〈U, R〉 = 0, where R runs over all relations of the Polyak algebra P
defined in [4].

Invariance of 〈U, G〉 under replacing the base point within the same com-
ponent follows from the observation that two link diagrams with the common
base point in their first components are Reidemeister equivalent if and only if
they are equivalent via Reidemeister moves performed far from the common
base point. One can give a “folklore” reformulation of that fact by saying that
the theory of links is equivalent to the theory of long links (having in mind that
the base point is at infinity).

Remark 2. One can show that 〈U, G〉 does not depend on the ordering of the
components of L. We prefer to extract this result from our main theorem (see
Corollary 1).

6 The Formula

Let L = L1 ∪ L2 be an oriented 2-component framed link such that the corre-
sponding 3-manifold ML is a rational homology sphere, i.e. the first homology
group of ML is finite. Denote by a, b, and n the framings of L1, L2, and their

linking number, respectively. Then the linking matrix L =

(

a n
n b

)

of L has
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non-zero determinant D = Det(L). Note that the first homology group H1(ML)
is finite and its order |H1(ML)| equals to |D|. It is easy to see that the signature
σ(L) of L can be found by the following rule:

σ(L) =







0 if D < 0
2 if D > 0 and a + b > 0
−2 if D > 0 and a + b < 0

We point out that if D > 0, then a, b have the same sign. Therefore, the sign
of σ is determined only by the sign, say, of a.

Let λw(ML) be the Casson-Walker invariant of ML, see [16]. We normalize
it so as to have 1

2λw(P120) = 1, where P120 is the positively oriented Poincaré
homology sphere, which is obtained from S3 by surgery along the right-handed
trefoil with framing 1. Recall that v2(K) denotes the Casson invariant of a knot
K ⊂ S3. It coincides with the coefficient at z2 of the Conway polynomial of
K. It can also be extracted from the Alexander polynomial ∆K(t) normalized
so that ∆K(t−1) = ∆K(t) and ∆K(1) = 1 as follows: v2(K) = 1

2∆′′
K(1). We

introduce a function F : L → Q, where L is the set of all oriented framed two-
component links, as follows.

Definition 4.

F (L) =
1

12
(n3−n)+

1

24
(a+b)(n2−D−2)+

1

8
σ(L)D+av2(L2)+bv2(L1)−U(L)

Theorem 3. (Main) For any oriented framed 2-component link L = L1 ∪ L2

we have 1
2Dλw(ML) = F (L).

Example 6. Let us apply the main theorem for calculation of the Casson-
Walker invariant λw for the manifold MH(2,a,b), where H(2, a, b) = L1 ∪ L2 is
the Hopf link H(2) shown in Fig. 9 and a, b are the framings of its components.

Figure 9: Generalized Hopf link H(2) framed by a, b

We orient the components of H(−2) such that their linking number is 2. It
is easy to see that U(H(2)) = 0 (see Example 5, where we have shown that U=0
for H(3)). Taking into account that n = 2 and v2(L1) = v2(L2) = 0, we get

1

2
λw(MH(2,a,b)) =

1

24D
(12 + (a + b)(n2 − D − 2) +

1

8
σ(L),
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where D = ab − 4 and σ(L) is the signature of the matrix

(

a 2
2 b

)

. For

a = 3, b = 1 we get 1
2λw(MH(2,a,b)) = −1, which is not surprising, since MH(2,3,1)

is the negatively oriented Poincaré homology sphere −P120. Indeed, one Kirby
destabilization move transforms H(2, 3, 1) the left trefoil framed by -1.

The plan of proving the above theorem consists of two steps.
Step 1. We show that the correctness of equality 1

2Dλw(ML) = F (L) is
preserved under self-crossing of a link component.

Step 2. We show that the equality is true for the Hopf links H(n), n 6= 0
framed by a, b. The orientations and ordering of components of H(n) may
be arbitrary. We do that by calculating λw(H(n, a, b) by our and by Lescop’s
formula [8].

Steps 1,2 imply Theorem 3, since any 2-component link can be transformed
by self-crossings of its components into a generalized Hopf link.

7 Behavior of λw with respect to self-crossings

Let us carry out Step 1. Suppose that a diagram G− of a framed link L− =
L−

i ∪ Lj is obtained from a diagram G+ of a framed link L+ = L+
i ∪ Lj by a

single crossing change at a double point C of L+
i such that the chiral sign of C

is 1 in L+
i and -1 in L−

i . Set i = 1, j = 2 or i = 2, j = 1 thus fixing the ordering
of the components or, equivalently, the based component. Note that L+

i can be
considered as to consist of two loops (lobes) with endpoints in C. Denote by
` the linking number of the lobes, by k the linking number of one of the lobes
with Lj , and by n the linking number of Li and Lj . Note that the crossing
change preserves the linking matrix L of L.

Lemma 1. In the situation above we have

1

2
D(λw(ML+) − λw(ML−)) = b`− k(n − k) = F (L+) − F (L−),

where D = Det(L) and b is the framing of Lj.

Proof. The first equality is a partial case (for 2-component links) of the cross-
ing change formula, which is the main result of [5]. Let us prove the sec-
ond one. Since the crossing change preserves the linking matrix, we have
F (L+) − F (L−) = bv2(L

+
1 ) − bv2(L

−
1 ) − 〈U, G+〉 + (〈U, G−〉). Recall that the

equality v2(L
+
1 ) − v2(L

−
1 ) = ` is one of the main properties of v2, see [4].

For the Arf-invariant v2mod2 it was known long ago, see [9]. It follows that
bv2(L

+
1 ) − bv2(L

−
1 ) = b`. Let us compute 〈U, G+〉 − 〈U, G−〉.

Case 1. Assume that i = 1, j = 2. Then the base point of L+ is in L+
i and

according to Proposition 1 we my think that the base point of G+ is placed just
before the initial point of the arrow a+(C) ⊂ G+ which corresponds to C. See
Fig. 10, where C is the double point number 1.

Then only U1 contains an arrow a which can be mapped to the arrow a+(C)
of G+. Further, each such representation of U1 in G+ is determined by a+(C)
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Figure 10: There is only one representation of U1 to G+. Arrows 1,8,5 are in
its image

and two other arrows of G+. One of them goes from the lobe containing the
base point to Lj , the other connects Lj to the other lobe. Taking into account
Example 1, we may conclude that the contribution to 〈U1, G

+〉 of representations
U1 → G+ whose images contain a+(C) is k(n − k), where k and n − k are the
linking numbers of Lj with the lobes.

Every other representation of Uk, 1 ≤ k ≤ 4, to G± takes no arrow to a±

and hence makes no contribution to the difference 〈U, G+〉 − 〈U, G−〉.
Case 2. Let i = 2, j = 1. Then the base point is in Lj while C is the self-

crossing point of Li. It follows that U1, U2, U4 have no representations in G±.
Moreover, U3 can have representations only in G+ and each such representation
is determined by two arrows from Lj to Li such that there endpoints are in
different lobes. As above, the total contribution of those representations to
〈U, G+〉 − 〈U, G−〉 is k(n − k).

Example 7. Let L+ = L+
1 ∪ L2 be the link shown in Fig. 10. We assume that

the framings of L+
1 , L2 are a, b. Note that n = 3 and k is either 1 or 2. Taking

into account that v2(L
+
1 ) = 1 and v2(L2) = 0, we get F (L+) − F (L−) = b − 2.

Therefore, 1
2Dλw(ML+ = 1

2Dλw(ML−) + b − 2.

8 Casson-Walker invariant for model manifolds

Let H(n, a, b) be a generalized Hopf link (see Definition 3) whose components
are framed by a, b. We orient the components so as to have the linking number
−n as in the top of Fig. 8. Let Q = Q(n, a, b) be the corresponding 3-manifold.
Our goal is to calculate λw(Q). To that end we introduce another framed link
S(A, B, C) shown in Fig. 11. It consists of four unknotted circles framed by
A = a + n, B = b + n, C = −n, and 0 such that each of the first three circles
links the forth circle framed be 0 exactly ones.

Lemma 2. Manifolds obtained by Dehn surgery of S3 along H(n, a, b) and
S(A, B, C) are related by a homeomorphism which preserves orientations in-
duced from the orientation of S3.
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Figure 11: Framed link presenting a Seifert manifold

Proof. Adding the C-framed component to the components framed by A, B and
then removing the 0-framed component together with the C-framed one, one
can easily show that S(A, B, C) is Kirby equivalent to H(n, a, b).

Remark 4. Let us denote by Q the manifold obtained from S3 by Dehn surgery
along H(n, a, b) or S(A, B, C). Performing surgery of S3 along the 0-framed
component of S(A, B, C), we get S2 × S1 such that the other three compo-
nents are the fibers of the natural fibration S2 × S1 → S2. It follows that
Q is a Seifert manifold fibered over S2 with three exceptional fibers of types
(A, 1), (B, 1), (C, 1). The Euler number of Q is 1

A
+ 1

B
+ 1

C
. The normalized

parameters of the exceptional fibers are (|X |, s(X)mod|X |), where X = A, B, C
and s(X) is the sign of X .

We also need the following technical lemma.

Lemma 3. For any numbers A, B, C such that D = AB + AC + BC 6= 0,
K = ABC 6= 0, and e = D/K > 0 we have s(A) + s(B) + s(C) = 1 + σ, where

s(X) denotes the sign of X and σ is the signature of the matrix L =

(

a n
n b

)

for a = A + C, b = B + C, n = −C.

Proof. One can extract from Lemma 2 that the matrices L =

(

a n
n b

)

and








A 0 0 1
0 B 0 1
0 0 C 1
1 1 1 0









have the same signature. It follows that permutations of

A, B, C do not affect the correctness of Lemma 3. So we may assume that
A ≥ B ≥ C.

Suppose that K > 0. Then D > 0 and either A ≥ B ≥ C > 0 and
σ = 2s(a) = 2s(b) = 2 or A > 0, B < 0, C < 0 and σ = 2s(a) = 2s(b) = −2. In
both cases we get the conclusion of the lemma.

Now suppose that K < 0. Since D < 0, we have σ = 0 and exactly one
negative number among A, B, C. Therefore, s(A) + s(B) + s(C) = 1 + σ.
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Let M be a rational homology sphere. Recall that the Lescop invariant
λL(M) is related to the Casson-Walker invariant λw(M) by

λL(M) =
1

2
|H1(M)|λw(M),

see [8, 14]. If M is presented by an oriented framed link L with linking matrix
L, then we can rewrite that formula as follows:

ελL(M) =
1

2
Dλw(M),

where D is the determinant of L and ε is the sign of D. We will use the Lescop
formula ([8], page 97) for the Seifert manifold M = (S2; (a1, b1), . . . , (am, bm)(1, b))
(in the original notation M = (Oo0|b; (ak,k )k=1,...,m)), where 0 < bk < ak and
e = b +

∑m
k=1 bk/ak is the Euler number:

λL(M) =

(

sign(e)

24

(

2 − m +

m
∑

k=1

1

a2
k

)

+
e|e|
24

− e

8
− |e|

2

m
∑

k=1

s(bk, ak)

)

|
m
∏

k=1

ak|,

where s(bk, ak) are the Dedekind sums.
Let us recall the definition and properties of s(b, a). If a, b are coprime

integers, then s(b, a) is defined by

s(b, a) =

|a|
∑

k=1

((

k

a

))((

kb

a

))

,

where

((x)) =

{

x − [x] − 1
2 if x 6∈ Z

0 if x 6∈ Z

is the sawtooth function, see Fig. 12.

Figure 12: The sawtooth function

It follows from the definition that s(b, a) possesses the property s(b, a) =
s(−b,−a) = −s(−b, a) = −s(b,−a) = s(b ± a, a). In particular, s(b, a) only
depends on b mod a and a.
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Proposition 2. Let Q = Q(n, a, b) be obtained by surgery of S3 along the framed
generalized Hopf link H(n, a, b). Then 1

2Dλw(M) = F (H(n, a, b)), where

F (H(n, a, b) =
1

12
(n3 − n) +

1

24
(a + b)(ab − 2D − 2) +

1

8
σ(L)D,

D = ab − n2.

Proof. According to Lemma 2 and Remark 4, Q is a Seifert manifold fibered
over S2 with three exceptional fibers of types (A, 1), (B, 1), (C, 1), where A =
a + n, B = b + n, C = −n. The Euler number of Q is e = 1

A
+ 1

B
+ 1

C
and the

normalized parameters of the exceptional fibers are (|X |, s(X) mod |X |), where
X = A, B, C and s(X) is the sign of X .

Note that reversing signs of n, a, b (and hence signs of A, B, C and e) does
not affect the correctness of the conclusion of the lemma. So we may restrict
ourselves to the case e > 0.

Let us introduce the following notations.

1. K = ABC. Then e = D
K

. Since e > 0, K and D have the same sign. We
denote it by ε.

2. P = A2B2 + A2C2 + B2C2. Then 1
A2 + 1

B2 + 1
C2 = P

K2 .

3. S = AC(B − s(B))(B − 2s(B)) + AB(C − s(C))(C − 2s(C)) + BC(A −
s(A))(A − 2s(A)). In order to explain the meaning of S, we recall that
the Dedekind sums s(1, `) can be calculated by the rule

s(1, `) =
1

12`
(` − s(`))(` − 2s(`)).

For the case ` > 0 this formula is contained in [?], for the case ` < 0 it can
be easily obtained by using properties of s(b, a) listed above. Therefore,
s(1, A) + s(1, B) + s(1, C) = S

12K
.

4. Σ = A + B + C.

Using this notation and applying the Lescop formula, we get

24λL(Q) = −|K|+ 1

|K| (P + D2 − DS) − 3D

Simple calculation show that P −D2 = −2KΣ and 2D−S = K(3(s(A)+s(B)+
s(C)) − Σ). It follows that

12Dλw(Q) = 24ελL(Q) = −K − 2Σ − DΣ + 3D(s(A) + s(B) + s(C) − 1),

where ε is the sign of D. Let us now substitute a = A + C, b = B + C, n = −C
to the expression for F (H(n, a, b)). We get

24F (H(n, a, b)) = −C3 + ΣC2 − ΣD − 2Σ + C3 − CD + 3Dσ.
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Let us show that 12Dλw(Q) − 24F (H(n, a, b)) = 0. Performing the sub-
straction, we get

12Dλw(Q)−24F (H(n, a, b)) = −K+3D(s(A)+s(B)+s(C)−1)+C3−ΣC2+CD−3Dσ

or, taking into account that −K + C3 − ΣC2 + CD = 0,

ελL(Q) − F (H(n, a, b)) = 3D(s(A) + s(B) + s(C) − 1 − σ).

It remains to note that s(A) + s(B) + s(C) − 1 − σ = 0 by Lemma 3.

Proof of Main Theorem (which states that 1
2Dλw(ML) = F (L), see The-

orem 3). We have realized the plan of the proof indicated in page 8. Using
Lemma 1, we reduce the proof to the partial case of manifolds presented by
generalized framed Hopf links. Then we use Proposition 2 for proving the the-
orem in this partial case. �

Corollary 1. Let L = L1 ∪ L2 be an oriented 2-component link in S3 and U
the linear combination of arrow diagrams shown in Fig. 5. Then the invariant
U(L) = 〈U, G〉 does not depend on the ordering of the components of L.

Proof. Evident, since 1
2Dλw(ML) and all summands of F (L) (maybe except

U(L)) do not depend on the ordering. It follows from Theorem 3 that so is
U(L).

9 Asymptotic behavior of the Casson-Walker in-

variant

Let L = L1 ∪ L2 be an oriented framed 2-component link. Then λw(ML)
depends on the underlying link and on the framing. Theorem 3 allows us to
understand the contribution of those two ingredients. We use that for describing
the asymptotic behavior of λw as the parameters of the framing tend to ∞. For
simplicity we restrict ourselves to the simplest case when they have the form
a = a0t, b = b0t and t → ∞.

Theorem 5. Let a 3-manifold M(t) be obtained by surgery of S3 along a framed

link L = L1 ∪ L2 having linking matrix L(t) =

(

a0t n
n bot

)

with determinant

D(t) = a0b0t
2 − n2 and signature

σ(t) =







0 if D(t) < 0
2 if D(t) > 0 and (a0 + b0)t > 0
−2 if D(t) > 0 and (a0 + b0)t < 0

Case 1. Suppose that a0 + b0 6= 0 and a0b0 6= 0. Then

λw(Mt) = − 1

12
(a0 + b0)t +

1

4
σ(t) + r(t),

13



where r(t) → 0 as t → ±∞.
Case 2. Suppose that a0 + b0 = 0 and a0b0 6= 0. Then

λw(Mt) = 2
v2(L1) − v2(L2)

a0
t−1 + r(t),

where r(t)t → 0 as t → ±∞.
Case 3. Suppose that a0b0 = 0. In order to be definite, we assume that

b0 = 0. Then

λw(Mt) = − 1

6n2
(a0(n

2 − 1 + 12v2(L2))t + n3 − n − 12U(L))

Proof. Follows easily from Theorem 3.
Theorem 5 shows that the asymptotic behavior of λw(Mt) as t → ±∞ only

depends on a0, b0. Let us illustrate the behavior of λw(Mt) graphically for
a0 + b0 6= 0, a0b0 6= 0, and t → ∞. The right-hand sides of the expression for
λw(Mt) (see Theorem 3) and its approximation − 1

12 (a0+b0)t+
1
4σ(t) make sense

for all (not necessarily integer) values of t. We show the graphs of these functions
for the generalized framed Hopf link H(n, a0, b0), where n = 2, a0 = 3, b0 = 2
(Fig. 13) and n = 5, a0 = −3, b0 = 2 (Fig. 14). Both graphs in Fig. 13 have

singularities at t = n2

√
a0b0

≈ 0.8 (because of the jump of σ).

Figure 13: The behavior of λw(Mt) and its approximation for H(2, 3, 2)

The following theorem shows the power series presentation of λw(Mt).

Theorem 6. Let a 3-manifold M(t) be obtained by surgery of S3 along a

framed link L = L(t) with linking matrix L(t) =

(

a0t n
n bot

)

. Suppose that

14



Figure 14: The behavior of λw(Mt) and its approximation for H(2,−3, 2)

a0b0 6= 0. Then for |t| > |n|√
|a0b0|

we have

λw(Mt) =
1

4
σ(L)+

+
1

12

(

−(a0 + b0)t +

∞
∑

k=0

(

(C1 − C3(a0 + b0))C
k
3 t−(2k+1) + C2C

k
3 t−(2k+2)

)

)

,

where C1 = (2n2−2)(a0+b0)+24av2(L2)+24bv2(L1)
a0b0

, C2 = −24U(L)+2n3−2n

a0b0
, and C3 =

n2

a0b0
.

Proof. Follows form Theorem 3. The infinite series in the expression for λw(Mt)

arises after replacing D−1 = (a0bot
2 − n2)−1 by t−2

a0b0

∑∞
k=0(

n2

a0b0
t−2)k.

10 A skein-type relations for U and λw

A usual skein relation involves diagrams of three oriented links L+, L−, L0. The
diagrams are identical outside a small neighborhood of one positive crossing C
of the diagram for L+. The diagram of the second link L− is obtained from
the diagram of L+ by a crossing change at C while the diagram of the oriented
knot L0 has no crossings at C.

We will consider the case when L+ = L+
1 ∪ L+

2 , L− = L−
1 ∪ L−

2 are oriented
2-component links and C is the crossing point of L+

1 and L+
2 . Then L0 is a knot

obtained by coherent fusion of L+
1 and L+

2 , see Fig. 15. We shall refer to any
triple (L+, L−, L0) of the above type as an admissible skein triple.

15



Figure 15: Three links participating in the skein-type relation

Proposition 3. For any admissible skein triple (L+, L−, L0) we have U(L+)−
U(L−) = v2(L

0).

Proof. Denote by G+, G−, G0 Gauss diagrams corresponding to the diagrams
of L+, L−, L0. The Gauss diagrams are almost identical. The only difference
between G+ and G− is that the arrows a+(C), a−(C) corresponding to C have
opposite orientations and signs. Knot diagram G0 is obtained by coherent fusion
of the circles of G+ along a+(C). Chose a base point in the first circle of G+ just
before the initial point of a+(C). We may assume that there are no endpoints
of other arrows on small arcs containing the endpoints of a+(C), a−(C), and on
arcs of L0 obtained by their fusion. See Fig. 16, where those free-of-endpoints
arcs are shown dotted and the complementary arcs are numbered by 1,2. For
reader’s conveniens we have also placed arrows diagrams for U and v2.

Figure 16: Skein triple of Gauss diagrams

Let us analyze representations of Uk, 1 ≤ k ≤ 4 in G±. We call a repre-
sentation ϕ : Uk → G± significant, if its image contains a±(C). Otherwise ϕ is
insignificant.

Step 1. Since G± are identical outside a±(C), there is a natural bijec-
tion between insignificant representations of Uk to G+ and G− such that the
values of corresponding representations are equal. It follows that insignificant
representations do not contribute to the difference U(L+) − U(L−).

Step 2. The careful choice of the base point tells us that there are no
significant representations of U1 in G±. The reason is that that the first arrow
we meet traveling from the base point along the first circle of G± is not a±(C).

Step 3. By similar reason there are no significant representations of Uk, 2 ≤
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k ≤ 4 in G−: the first arrow we meet is a−(C), which is directed from the second
circle to the first, not vice-versa, as in U2 −−U4.

Step 4. Let ϕ be a significant representation of Uk, 2 ≤ k ≤ 4 in G+.
Denote by ak the first arrow of Uk we meet traveling from the base point along
the first circle. Let us coherently fuse the circles of Uk along ak. It is easy
to see that we get an arrow diagram A for calculation of v2, together with the
corresponding representation ϕ′ : A → L0. The values of ϕ and ϕ′ are equal.
Vice versa, any representation of A → L0 determines a representation Uk → G+

having the same value. It follows that U(L+) − U(L−) = v2(L
0).

As a version for a skein-type relation for λw we suggest the following straight-
forward corollary of Proposition 3.

Corollary 2. For any admissible skein triple (L+, L−, L0) we have

D+

2
(λw(L+)−1

4
σ(L+))−D−

2
(λw(L−)−1

4
σ(L−)) = (n−1)

3n + a + b + 3

12
−v2(L

0)

11 An alternative Formula

Consider the following linear combination U ′ = U1+U2+
1
2 (U3+U ′

3)+
1
2 (U4−U ′

4)
of arrow diagrams, see Fig. 17.

Figure 17: Another remarkable linear combination of arrow diagrams

Lemma 4. Let L = L1 ∪ L2 be an oriented 2-component link. Denote by
L′ the link L1 ∪ L′

2 obtained from L by reversing the orientation of the second
component. Let G and G′ be their based Gauss diagrams (assuming that the base
points are in the first components). Then 〈U1, G〉 = 〈U1, G

′〉, 〈U2, G〉 = 〈U2, G
′〉,

〈U3, G〉 = 〈U ′
3, G

′〉, 〈U4, G〉 = −〈U ′
4, G

′〉, and 〈U ′, G〉 = 1
2 (〈U, G〉 + 〈U, G′〉).

Proof. Note that G and G′ actually coincide. The only difference is that their
second circles have opposite orientations and that arrows joining different circles
have opposite signs. First two equalities of the conclusion of the lemma are
evident, since any representation of Ui, i = 1, 2, to G determines a representation
of Ui to G′, and vice-versa. The images of those representations contains the
same arrows. Since exactly two of these arrows join differen components, the
values of the representations are equal. Similarly, any representation of Uj , j =
3, 4 determines a representation of U ′

j to G′, and vice-versa. The values of those
representations are the same for j = 3 and have opposite signs for j = 4. This
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is because the number of arrows in the images of representations is 2 for j = 3
and 3 for j = 4. Taking the sums, we get 〈U ′, G〉 = 1

2 (〈U, G〉 + 〈U, G′〉).
The following proposition and theorem are similar to Proposition 1 and

Theorem 3.

Proposition 4. U ′ determines an invariant U ′(L) = 〈U ′, G〉 for non-oriented
links of two numbered components.

Proof. It follows from Lemma 4 that 〈U ′, G〉 = 1
2 (〈U, G〉 + 〈U, G′〉). Therefore,

U ′(L) = 〈U ′, G〉 is an invariant of oriented links by Proposition 1. On the other
hand, 〈U ′, G〉 is invariant under reversing orientation of one of its components,
since the above expression for it is symmetric.

Theorem 7. For any non-oriented framed 2-component link L = L1 ∪ L2 we
have 1

2Dλw(ML) = F ′(L), where

F ′(L) =
1

24
(a + b)(n2 − D − 2) +

1

8
σ(L)D + av2(L2) + bv2(L1) − U ′(L)

Proof. Let us orient L and denote by L′ the oriented framed link obtained
from L by reversing orientation of L2. Note that the linking number n of the
components of L and the linking number n′ of the components of L′ have the
same modules and different signs, that is, n′ = −n. All other variables in
the expressions for F (L) and F (L′) (see Definition 4) except of U(L), U(L′)
are the same. In other words, a, b, D, σ and both v2 for L coincide with the
corresponding variables for L′. It follows from Lemma 4 that F ′(L) = 1

2 (F (L)+
F (L′). Since F (L) = 1

2Dλw(ML) = 1
2Dλw(ML′) = F (L′) by Theorem 3, we

get the conclusion.

12 Results of computer experiments

The formula for λw(M) from Theorem 3 is very convenient for calculation. If
a diagram of a link framed by integers of reasonable size has about a dozen
crossing points, then the manual calculation takes a few minutes. A simple
computer program written by V. Tarkaev accepts Gauss codes and takes only
seconds for calculating λw for framed links with thousands crossings. We present
here a few results of calculation λw for all rational homology 3-spheres which
can be presented by diagrams of 2-component (but not of 1-component) links
with ≤ 9 crossings and black-board framings. We thank S. Lins, who kindly
prepared for us a list of Gauss codes of those links.

• Number of different manifolds: 194

• Number of different values of |λw| for these manifolds: 66

• Numbers of different manifolds having given values of λw are presented in
Table 1.
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λw #M3 λw #M3 λw #M3 λw #M3

0 19 9/64 1 11/36 4 25/44 1
1/64 1 4/27 2 5/16 7 16/27 1
1/36 4 5/32 1 9/28 2 3/5 1
1/32 1 11/64 1 11/32 2 23/36 6
1/28 2 5/28 1 9/26 1 11/16 3
1/26 1 3/16 10 13/36 2 25/36 3
3/64 1 5/26 1 10/27 2 23/32 1
1/16 8 7/36 1 3/8 5 29/36 1
3/44 1 1/5 4 25/64 1 15/16 3
2/27 2 13/64 1 2/5 1 1 7
5/64 1 9/44 1 13/32 1 19/16 1
3/32 2 2/9 5 19/44 1 3/2 1
1/10 2 15/64 1 7/16 5 2 16
5/44 2 1/4 5 4/9 2 3 2
3/26 1 13/44 2 13/28 1 4 6
1/8 4 8/27 2 17/36 4 − −
5/36 2 3/10 1 1/2 6 − −

Table 1: How many manifolds have a given value of λw

We see from the table that for the set of 194 manifolds under consideration
the most popular values of |λw| are 0 (19 manifolds), 2 (16 manifolds), 3/16
(10 manifolds), 1/16 (8 manifolds), 5/16 and 1 (7 manifolds each). Exactly
30 values of |λw | are taken by only one manifold each. In other words, those
manifolds are determined by |λw|. In average, each value is taken by only 3
different manifolds from the list. This shows that the Casson-Walker invariant is
unexpectedly informative. For example, the number of different first homology
groups of the manifolds under consideration is 17, so the average number of
manifolds having a given group is about 11.4.
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