# ON ISOTROPY OF QUADRATIC PAIR 

NIKITA A. KARPENKO


#### Abstract

Let $F$ be an arbitrary field (of arbitrary characteristic). Let $A$ be a central simple $F$-algebra endowed with a quadratic pair $\sigma$ (if char $F \neq 2$ then $\sigma$ is simply an orthogonal involution on $A$ ). We show that the Witt index of $\sigma$ over the function field of the Severi-Brauer variety of $A$ is divisible by the Schur index of the algebra $A$.


## 1. Introduction

Let $F$ be a field (of arbitrary characteristic). Let $A$ be a central simple $F$-algebra endowed with a quadratic pair $\sigma$ (cf. §2.1, a reader without interest in characteristic 2 may replace $\sigma$ by an orthogonal involution).

Let $X$ be the Severi-Brauer variety of the algebra $A$ (cf. $\S 2.5$ ) and let $F(X)$ stands for the function field of $X$. We show (Theorem 3.3) that the Witt index ind $\sigma_{F(X)}$ of the quadratic pair $\sigma_{F(X)}(\mathrm{cf} . \S 2.4)$ is divisible by the Schur index ind $A$ of the algebra $A$.

This result generalizes [6, Theorem 5.3] stating that $\sigma_{F(X)}$ is anisotropic provided that $A$ is a division algebra.

Besides, this result supports the affirmative answer to the following
Question 1.1. Assume that the quadratic pair $\sigma_{F(X)}$ is isotropic. Does the $F$-variety $Y_{d}$ of right $\sigma$-isotropic ideals in $A$ of reduced dimension $d=\operatorname{ind} A$ possess a 0 -dimensional cycle of degree 1?
Indeed, $Y_{d}(F(X)) \neq \emptyset$ by Theorem 3.3.
If ind $A=2$, then Question 1.1 is answered in the affirmative for $A$ and moreover $Y_{2}(F) \neq \emptyset$ by [8, Corollary 3.4]. We recall that in general it is not known whether $Y_{d}(F) \neq \emptyset$ provided that the variety $Y_{d}$ has a 0-dimensional cycle of degree 1 (cf. [2, Question after Proposition 4.1]).

## 2. Preliminaries

A variety is a separated scheme of finite type over a field.
2.1. Quadratic pairs. Let $A$ be a central simple $F$-algebra. A quadratic pair $\sigma$ on $A$ is given by an involution of the first kind $\tilde{\sigma}$ on $A$ together with a linear map $\sigma^{\prime}$ of the space of the $\tilde{\sigma}$-symmetric elements of $A$ to $F$, subject to certain conditions (cf. [7, Definition (5.4) of Chapter I]).

If char $F \neq 2$, then $\tilde{\sigma}$ is an arbitrary orthogonal involution on $A$ and the map $\sigma^{\prime}$ is determined by $\tilde{\sigma}$. Therefore the notion of quadratic pair is equivalent to the notion of orthogonal involution in characteristic $\neq 2$.

[^0]If char $F=2$, then the algebra $A$ is of even degree and the involution $\tilde{\sigma}$ is of symplectic type.

In arbitrary characteristic, any quadratic form on a finite-dimensional vector space $V$ over $F$ such that its polar bilinear form is non-degenerate, produces a quadratic pair on the endomorphisms algebra $\operatorname{End}(V)$, called the quadratic pair adjoint to the quadratic form (the involution of the adjoint quadratic pair is the involution adjoint to the polar symmetric bilinear form of the quadratic form). This way one gets a bijection of the set of quadratic forms on $V$ (up to a factor in $F^{\times}$) having non-degenerate polar forms onto the set of quadratic pairs on $\operatorname{End}(V)$.

A right ideal $I$ of a central simple $F$-algebra $A$ endowed with a quadratic pair $\sigma$ is called isotropic or $\sigma$-isotropic, if $\tilde{\sigma}(I) \cdot I=0$ and $\sigma^{\prime}$ is 0 on the part of $I$ where $\sigma^{\prime}$ is defined (we mean that $\sigma^{\prime}$ is 0 on the set of $\tilde{\sigma}$-symmetric elements of $I$ ).

Dimension over $F$ of any right ideal of $A$ is divisible by the degree $\operatorname{deg} A$ of $A$; the quotient is called the reduced dimension of the ideal.

Let $r \geq 0$ be an integer. The variety $Y_{r}$ of the right $\sigma$-isotropic ideals in $A$ of reduced dimension $r$ is empty if $r>(\operatorname{deg} A) / 2$. For $r \leq(\operatorname{deg} A) / 2, Y_{r}$ is a projective homogeneous variety under the action of the linear algebraic group $\operatorname{Aut}(A, \sigma)$. In particular, $Y_{0}$ is Spec $F$ with the trivial action. If $r<(\operatorname{deg} A) / 2$ then $Y_{r}$ is a projective homogeneous variety under the action of the connected linear algebraic group $\operatorname{Aut}(A, \sigma)^{\circ}$ (connected component of $\operatorname{Aut}(A, \sigma)$ ); in particular, $Y_{r}$ is integral for such $r$. If $r=(\operatorname{deg} A) / 2$ (for even $\operatorname{deg} A$ ) and the discriminant of the quadratic pair $\sigma$ (cf. [7, §7B of Chapter II]) is trivial, then the variety $Y_{r}$ has two connected components each of which is a projective homogeneous variety under $\operatorname{Aut}(A, \sigma)^{\circ}$; these components are isomorphic to each other if and only if the algebra $A$ is split.

If $A=\operatorname{End}(V)$ and $\sigma$ is adjoint to a quadratic form $\varphi$ on $V$, then for any $r$, Morita equivalence identifies the variety $Y_{r}$ with the variety of $r$-dimensional totally isotropic subspaces of $V$. In particular, $Y_{1}$ is the projective quadric of $\varphi$.
2.2. Chow groups. Let $X$ be a variety over $F$. A splitting field of $X$ is a field extension $E / F$ such that the Chow motive of $X_{E}$ is a direct sum of twists of the motive of the point Spec $E$. Any projective homogeneous (under an action of a linear algebraic group) variety (in particular, each variety $Y_{r}$ of $\S 2.1$ ) has a splitting field.

Given a variety $X$ over $F$, we write $\operatorname{Ch}(X)$ for the Chow group modulo 2 (i.e., with coefficients $\mathbb{Z} / 2 \mathbb{Z}$ ) of $X$. As in [4, §72], we write $\operatorname{Ch}(\bar{X})$ for the colimit colim ${ }_{L} \operatorname{Ch}\left(X_{L}\right)$ over all field extensions $L$ of $F$. Note that for any splitting field $E / F$ of $X$ the canonical homomorphism $\mathrm{Ch}\left(X_{E}\right) \rightarrow \mathrm{Ch}(\bar{X})$ is an isomorphism.

We write $\overline{\mathrm{Ch}}(X)$ for the image of the homomorphism $\mathrm{Ch}(X) \rightarrow \mathrm{Ch}(\bar{X})$. An element of $\operatorname{Ch}(\bar{X})$ is called rational or $F$-rational, if it is inside of $\overline{\operatorname{Ch}}(X)$.
2.3. Varieties of isotropic ideals. Let $A$ be a central simple $F$-algebra endowed with a quadratic pair $\sigma$. Let $Y=Y_{1}$ be the variety of right $\sigma$-isotropic ideals in $A$ of reduced dimension 1. Note that for any splitting field $L / F$ of the algebra $A$, the variety $Y_{L}$ is isomorphic to a projective quadric. Therefore $\operatorname{Ch}(\bar{Y})$ has an $\mathbb{F}_{2}$-basis given by the elements $h^{i}, l_{i}, i=0, \ldots,[\operatorname{dim} Y / 2]$, introduced in [4, §68].

For any $i \geq 0$, the element $h^{i}$ is the $i$ th power of the hyperplane section $h$ (in particular, $h^{0}=[Y]$ and $h^{i}=0$ for $\left.i>\operatorname{dim} Y\right)$. The element $h$ can be non-rational. It is $L$-rational, where $L$ is a splitting field of the algebra $A$.

The element $l_{i}$ is the class of an $i$-dimensional linear subspace lying inside of $Y_{E}$ (where $E$ is a splitting field of $Y$ ). If $i \neq \operatorname{dim} Y / 2$, then this class does not depend on the choice of the linear subspace. However in the case of even $\operatorname{dim} Y$ and $i=\operatorname{dim} Y / 2$, there are (exactly) two different classes of $i$-dimensional linear subspaces on $Y_{E}$ (and their sum is equal to $h^{i}$. An orientation of the variety $Y$ is a choice of one of these two classes.

The basis elements of $\operatorname{Ch}(\bar{Y})$ introduced above satisfy the formula $h l_{i}=l_{i-1}$ for $i=$ $1, \ldots,[\operatorname{dim} Y / 2]$.
2.4. Witt index. Let $\sigma$ be a quadratic pair on a central simple $F$-algebra $A$. There exists an integer ind $\sigma$ such that $\{0$, ind $A, 2$ ind $A, \ldots,(\operatorname{ind} \sigma)($ ind $A)\}$ is the set of the reduced dimensions of the right $\sigma$-isotropic ideals in $A$. We call ind $\sigma$ the (Witt) index of the quadratic pair $\sigma$. It satisfies the inequalities $0 \leq \operatorname{ind} \sigma \leq(\operatorname{deg} A) /(2$ ind $A)$.

Now we assume that the algebra $A$ is split (this is in fact the only case where we use the definition of the Witt index of a quadratic pair). Then the quadratic pair $\sigma$ is adjoint with respect to some non-degenerate quadratic form $\varphi$ (whose similarity class is uniquely determined by $\sigma$ ) and ind $\sigma$ is the Witt index of $\varphi$. If $Y$ is the variety of right $\sigma$-isotropic ideals in $A$ of reduced dimension 1 and $i$ is a nonnegative integer, then the element $l_{i} \in \operatorname{Ch}(\bar{Y})$ is rational if and only if $i<\operatorname{ind} \sigma$, cf. [4, Corollary 72.6].
2.5. Severi-Brauer varieties. Let $A$ be a central simple $F$-algebra. Let $X$ be the SeveriBrauer variety of $A$, that is, the variety of all right ideals in $A$ of reduced dimension 1 . Over any splitting field (of $A$ or, equivalently, of $X$ ), the variety $X$ is isomorphic to a projective space of dimension $(\operatorname{deg} A)-1$. For any $i \geq 0$, we write $h^{i} \in \operatorname{Ch}^{i}(\bar{X})$ for the $i$ th power of the hyperplane class $h \in \operatorname{Ch}^{1}(\bar{X})$. Therefore, for any $i$ with $0 \leq i \leq \operatorname{dim} X, h^{i}$ is the only nonzero element of the group $\operatorname{Ch}^{i}(\bar{X})$. Note that $h^{i}$ is rational if $i$ is divisible by ind $A$ (cf. [1]).

Now we assume that the Schur index of $A$ is a power of 2 . Then by [5, Proposition 2.1.1], we have $\overline{\operatorname{Ch}}^{i}(X)=0$ for all $i$ not divisible by ind $A$. Let us additionally assume that $A$ is a division algebra. Since the (say, first) projection $X^{2} \rightarrow X$ is a projective bundle, we have a (natural with respect to the base field change) isomorphism $\mathrm{Ch}_{\operatorname{dim} X}\left(X^{2}\right) \simeq \operatorname{Ch}(X)$ Passing to $\overline{\mathrm{Ch}}$, we get an isomorphism $\overline{\operatorname{Ch}}_{\operatorname{dim} X}\left(X^{2}\right) \simeq \overline{\operatorname{Ch}}(X)=\overline{\operatorname{Ch}}^{0}(X)$ showing that $\operatorname{dim}_{\mathbb{F}_{2}} \mathrm{Ch}_{\operatorname{dim} X}\left(X^{2}\right)=1$. Since the diagonal class

$$
h^{0} \times h^{(\operatorname{deg} A)-1}+h^{1} \times h^{(\operatorname{deg} A)-2}+\cdots+h^{(\operatorname{deg} A)-1} \times h^{0} \in \overline{\operatorname{Ch}}_{\operatorname{dim} X}\left(X^{2}\right)
$$

is nonzero, it follows that this is the only nonzero element of the group. This result is generalized in Lemma 3.1 below.

## 3. Witt index

Let $F$ be a field.
Lemma 3.1. Let $A$ be a central simple $F$-algebra such that the Schur index of $A$ is $a$ power of 2 . Let $d=\operatorname{ind} A$ and $n=(\operatorname{deg} A) /(\operatorname{ind} A)$. Let $X_{A}$ be the Severi-Brauer variety
of $A$. Let $X$ be the Severi-Brauer variety of a central division $F$-algebra Brauer-equivalent to $A$. Then for any $r=1, \ldots, n$, the element

$$
h^{0} \times h^{r d-1}+h^{1} \times h^{r d-2}+\cdots+h^{d-1} \times h^{(r-1) d}
$$

is the only nonzero element of the group $\overline{\mathrm{Ch}}^{r d-1}\left(X \times X_{A}\right)$.
Proof. Let $r$ be an integer satisfying $1 \leq r \leq n$.
Since the projection $X \times X_{A} \rightarrow X$ is a projective bundle and $\overline{\mathrm{Ch}}^{i}(X)=0$ for $i \neq 0$ (cf. §2.5), we have an isomorphism $\overline{\operatorname{Ch}}^{j}\left(X \times X_{A}\right) \simeq \overline{\operatorname{Ch}}^{0}(X)$ for any $j=0, \ldots, \operatorname{dim} X_{A}$ (and, in particular, for $j=r d-1$ ). Therefore the group $\overline{\operatorname{Ch}}^{j}\left(X \times X_{A}\right)$ has only one nonzero element for such $j$ (for $j>\operatorname{dim} X_{A}$ this group is zero).

We write $D$ for a central division $F$-algebra Brauer equivalent to $A$. We fix an isomorphism of $A$ with the tensor product $D \otimes M_{n}(F)$ where $M_{n}(F)$ is the algebra of square $n$-matrices over $F$. Tensor product of ideals produces a closed embedding $X \times \mathbb{P}^{n-1} \hookrightarrow X_{A}$ (which is a twisted form of the Segre embedding). Picking up a rational point of $\mathbb{P}^{n-1}$ we get a closed embedding in : $X \hookrightarrow X_{A}$ such that for any splitting field $E$ of $X$ the image of $X_{E}$ is a linear subspace of the projective space $\left(X_{A}\right)_{E}$. The image of the diagonal class under the push-forward with respect to the closed embedding id ${ }_{X} \times$ in : $X^{2} \hookrightarrow X \times X_{A}$ is equal to

$$
\alpha_{n}=h^{0} \times h^{n d-1}+h^{1} \times h^{k d-2}+\cdots+h^{d-1} \times h^{(n-1) d} .
$$

It follows that $\alpha_{n}$ is the only nonzero element of the group $\overline{\mathrm{Ch}}^{n d-1}\left(X \times X_{A}\right)$.
A basis of $\mathrm{Ch}^{r d-1}\left(\bar{X} \times \bar{X}_{A}\right)$ is given by the elements

$$
h^{0} \times h^{r d-1}, h^{1} \times h^{r d-2}, \ldots, h^{d-1} \times h^{(r-1) d} .
$$

Let

$$
\alpha_{r}=a_{0} h^{0} \times h^{r d-1}+a_{1} h^{1} \times h^{r d-2}+\cdots+a_{d-1} h^{d-1} \times h^{(r-1) d}
$$

with some $a_{0}, a_{1}, \ldots, a_{d-1} \in \mathbb{Z} / 2 \mathbb{Z}$ be the nonzero element of the subgroup

$$
\overline{\mathrm{Ch}}^{r d-1}\left(X \times X_{A}\right) \subset \mathrm{Ch}^{r d-1}\left(\bar{X} \times \bar{X}_{A}\right) .
$$

Since

$$
\alpha_{r} \cdot\left(h^{0} \times h^{(n-r) d}\right)=a_{0} h^{0} \times h^{n d-1}+a_{1} h^{1} \times h^{n d-2}+\cdots+a_{d-1} h^{d-1} \times h^{(n-1) d}
$$

is a nonzero element of the group $\overline{\mathrm{Ch}}^{n d-1}\left(X \times X_{A}\right)$ (here we use the fact that the element $h^{(n-r) d} \in \operatorname{Ch}\left(\bar{X}_{A}\right)$ is rational, mentioned in $\left.\S 2.5\right)$, it follows that $\alpha_{r} \cdot\left(h^{0} \times h^{(n-r) d}\right)=\alpha_{n}$, i.e., $a_{0}=a_{1}=\cdots=a_{d-1}=1$.

Proposition 3.2. Let $A$ be a central simple $F$-algebra. Let $d=\operatorname{ind} A$. Let $\sigma$ be a quadratic pair on $A$. Let $X$ be the Severi-Brauer variety of a central simple $F$-algebra Brauer-equivalent to $A$. Let $Y$ be the variety of $\sigma$-isotropic ideals of reduced dimension 1 in $A$. If for some integer $r \geq 0$ the cycle $l_{r d} \in \operatorname{Ch}(\bar{Y})$ is $F(X)$-rational, then (for an appropriately chosen orientation of $Y$ ) the cycle $l_{(r+1) d-1} \in \operatorname{Ch}(\bar{Y})$ is $F$-rational.
Proof. Let $D$ be a central division $F$-algebra Brauer-equivalent to $A$. We may assume that $X$ is the Severi-Brauer variety of $D$.

Since the algebra $A$ possesses an involution of the first type, the index $d$ of $A$ is a power of 2 .

If $d=1$, then there is nothing to prove. We assume that $d \geq 2$ in the sequel.
For any field extension $L / F$, the pull-back homomorphism $\operatorname{Ch}\left(X_{L} \times Y_{L}\right) \rightarrow \operatorname{Ch}\left(Y_{L(X)}\right)$ with respect to the morphism $Y_{L(X)}=(\operatorname{Spec} L(X)) \times Y \rightarrow X_{L} \times Y_{L}$ given by the generic point of $X$ is surjective by [4, Corollary 57.11]. These pull-backs give a surjection

$$
f: \operatorname{Ch}(\bar{X} \times \bar{Y}) \rightarrow \operatorname{Ch}(\bar{Y})
$$

such that the image of the subgroup of rational cycles in $\operatorname{Ch}(\bar{X} \times \bar{Y})$ is the subgroup of $F(X)$-rational cycles in $\operatorname{Ch}(\bar{Y})$. Since the external product $\mathrm{Ch}(\bar{X}) \otimes \operatorname{Ch}(\bar{Y}) \rightarrow \operatorname{Ch}(\bar{X} \times \bar{Y})$ is an isomorphism (cf. [4, Proposition 64.3]), the external products of the basis elements of $\operatorname{Ch}(\bar{X})$ with the basis elements of $\operatorname{Ch}(\bar{Y})$ form a basis of $\operatorname{Ch}(\bar{X} \times \bar{Y})$. The homomorphism $\operatorname{Ch}(\bar{X} \times \bar{Y}) \rightarrow \mathrm{Ch}(\bar{Y})$ is easily computed in terms of this basis: for any basis element $\beta \in \operatorname{Ch}(\bar{Y})$, the image of $h^{0} \times \beta$ is $\beta$ and the image of any other basis element of $\operatorname{Ch}(\bar{X} \times \bar{Y})$ is 0 .

We fix an integer $r \geq 0$ such that the cycle $l_{r d} \in \operatorname{Ch}(\bar{Y})$ is $F(X)$-rational. Let $s$ stands for the integer $(\operatorname{deg} A) / 2-1$. Note that $r d \leq s$ (otherwise, the cycle $l_{r d}$ is not defined at all). Let $\alpha \in \operatorname{Ch}(\bar{X} \times \bar{Y})$ be a rational cycle whose image in $\operatorname{Ch}(\bar{Y})$ under the surjection $f$ is $l_{r d}$. We have

$$
\begin{aligned}
\alpha=h^{0} \times l_{r d}+a_{1} h^{1} \times l_{r d+1} & +\cdots+a_{s-r d} h^{s-r d} \times l_{s} \\
& +b_{s} h^{s-r d} \times h^{s}+b_{s-1} h^{s-r d+1} \times h^{s-1}+\cdots+b_{0} h^{2 s-r d} \times h^{0}
\end{aligned}
$$

for some $a_{1}, \ldots, a_{s-r d}, b_{s}, \ldots, b_{0} \in \mathbb{Z} / 2 \mathbb{Z}$ and for an arbitrary chosen orientation of $Y$ (in this sum, the summands with the first factor $h^{i}$ are of course 0 for $i>d-1$ ).

The variety $Y$ is a closed subvariety of $X_{A}$. The image of $\alpha$ under the push-forward $\operatorname{Ch}(\bar{X} \times \bar{Y}) \rightarrow \operatorname{Ch}\left(\bar{X} \times \bar{X}_{A}\right)$ with respect to the base change $X \times Y \hookrightarrow X \times X_{A}$ of the closed embedding $Y \hookrightarrow X_{A}$ is equal to

$$
h^{0} \times h^{D-r d}+a_{1} h^{1} \times h^{D-r d-1}+\cdots+a_{s-r d} h^{s-r d} \times h^{D-s},
$$

where $D=\operatorname{dim} X_{A}=\operatorname{deg} A-1$. It follows by Lemma 3.1 that $d-1 \leq s-r d$ and $a_{1}=\cdots=a_{d-1}=1$. Choosing an appropriate orientation of $Y$, we may assume that $b_{s}=0$.

It follows that

$$
\alpha=h^{0} \times l_{r d}+h^{1} \times l_{r d+1}+\cdots+h^{d-1} \times l_{(r+1) d-1} .
$$

Taking push-forward of $\alpha$ with respect to the projection $X \times Y \rightarrow Y$ we obtain $l_{(r+1) d-1} \in$ $\operatorname{Ch}(\bar{Y})$. Therefore the cycle $l_{(r+1) d-1}$ is rational.

Theorem 3.3. Let $A$ be a central simple algebra over a field $F$. Let $\sigma$ be a quadratic pair on A. Then the Witt index of $\sigma$ over the function field of the Severi-Brauer variety of any central simple $F$-algebra Brauer-equivalent to $A$ is divisible by the Schur index of $A$.

Proof. Let $Y$ be the variety of $\sigma$-isotropic ideals of reduced dimension 1 in $A$. Let $d=\operatorname{ind} A$ and let $r \geq 0$ be the largest integer with ind $\sigma_{F(X)} \geq r d$. If ind $\sigma_{F(X)}>r d$, then the cycle $l_{r d} \in \operatorname{Ch}(\bar{Y})$ is $F(X)$-rational. Therefore, by Proposition 3.2, the cycle $l_{(r+1) d-1}$ is $F$ rational (and in particular $F(X)$-rational) and it follows by $\S 2.4$ that ind $\sigma_{F(X)} \geq(r+1) d$, a contradiction with the choice of $r$. Consequently, ind $\sigma_{F(X)}=r d$.

Remark 3.4. Proposition 3.2 is stronger than Theorem 3.3, because in the proof of Theorem 3.3 we have only used the fact that the cycle $l_{(r+1) d-1}$ is $F(X)$-rational while Proposition 3.2 states that this cycle is $F$-rational.

## 4. Motivic Decomposition

Cycles constructed in the previous section produce a motivic decomposition which we now describe. Our motivic category is the category of graded correspondences $\operatorname{CR}(F, \mathbb{Z} / 2 \mathbb{Z})$ defined in $[4, \S 63]$. We write $\mathcal{M}(X)$ for the motive of a smooth projective variety $X$.

Proposition 4.1. Let $A$ be a central simple $F$-algebra endowed with a quadratic pair $\sigma$. Let $Y$ be the variety of right $\sigma$-isotropic ideals in $A$ of reduced dimension 1 . Let $d=\operatorname{ind} A$. Let $D$ be a central division algebra Brauer-equivalent to $A$. Let $X$ be the Severi-Brauer variety of $D$. Let $w$ be the Witt index of the quadratic pair $\sigma_{F(X)}$. Then the Ch-motive $\mathcal{M}(Y)$ of $Y$ has a direct summand isomorphic to

$$
\begin{aligned}
S=\mathcal{M}(X) \oplus \mathcal{M}(X)(d) \oplus & \cdots \oplus \mathcal{M}(X)(w-d) \\
& \oplus \mathcal{M}(X)(m) \oplus \mathcal{M}(X)(m-d) \oplus \cdots \oplus \mathcal{M}(X)(m-w+d)
\end{aligned}
$$

where $m=\operatorname{dim} Y-\operatorname{dim} X$. If $\sigma_{F(X)}$ is hyperbolic (i.e., if $w=\operatorname{deg} A / 2$ ), then $\mathcal{M}(Y) \simeq S$.
Proof. We have seen in the proof of Proposition 3.2 that the cycles

$$
\alpha_{r}=h^{0} \times l_{r d}+h^{1} \times l_{r d+1}+\cdots+h^{d-1} \times l_{(r+1) d-1} \in \operatorname{Ch}(\bar{X} \times \bar{Y})
$$

with $r=0,1, \ldots, w / d-1$ are rational. For the same $r$, taking pull-back with respect to the closed embedding $X \times Y \hookrightarrow X \times X_{A}$ of the rational cycle

$$
h^{0} \times h^{(r+1) d-1}+h^{1} \times h^{(r+1) d-2}+\cdots+h^{d-1} \times h^{r d} \in \operatorname{Ch}\left(\bar{X} \times \bar{X}_{A}\right)
$$

of Lemma 3.1, we get a rational cycle

$$
\beta_{r}=h^{0} \times h^{(r+1) d-1}+h^{1} \times h^{(r+1) d-2}+\cdots+h^{d-1} \times h^{r d} \in \operatorname{Ch}(\bar{X} \times \bar{Y})
$$

Let $E / F$ be a splitting field of $Y$. Using the multiplication formula of $\S 2.3$, one checks that the morphism

$$
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{w / d-1}, \beta_{0}, \beta_{1}, \ldots, \beta_{w / d-1}\right): S_{E} \rightarrow \mathcal{M}\left(Y_{E}\right)
$$

is right inverse to the morphism

$$
\left(\beta_{0}^{t}, \beta_{2}^{t}, \ldots, \beta_{w / d-1}^{t}, \alpha_{0}^{t}, \alpha_{2}^{t}, \ldots, \alpha_{w / d-1}^{t}\right): \mathcal{M}\left(Y_{E}\right) \rightarrow S_{E}
$$

(where ${ }^{t}$ stands for the transposition). Moreover, these are mutually inverse isomorphisms provided that $\sigma_{F(X)}$ is hyperbolic. Nilpotence theorem [4, Theorem 92.4 with Remark 92.3] finishes the proof.

Remark 4.2. The summands of $S$ are indecomposable by [5]. The decomposition of $\mathcal{M}(Y)$ into a sum of indecomposable summands which we get in the case of hyperbolic $\sigma$ (or, at least, of hyperbolic $\sigma_{F(X)}$ ), is unique by [3].

## References

[1] Artin, M. Brauer-Severi varieties. In Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), vol. 917 of Lecture Notes in Math. Springer, Berlin, 1982, pp. 194-210.
[2] Bayer-Fluckiger, E., Shapiro, D. B., and Tignol, J.-P. Hyperbolic involutions. Math. Z. 214, 3 (1993), 461-476.
[3] Chernousov, V., and Merkurjev, A. Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem. Transform. Groups 11, 3 (2006), 371-386.
[4] Elman, R. S., Karpenko, N. A., and Merkurjev, A. S. Algebraic and Geometric Theory of Quadratic Forms. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, to appear.
[5] Karpenko, N. A. Grothendieck Chow motives of Severi-Brauer varieties. Algebra i Analiz 7, 4 (1995), 196-213.
[6] Karpenko, N. A. On anisotropy of orthogonal involutions. J. Ramanujan Math. Soc. 15, 1 (2000), 1-22.
[7] Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P. The book of involutions, vol. 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits.
[8] Parimala, R., Sridharan, R., and Suresh, V. Hermitian analogue of a theorem of Springer. J. Algebra 243, 2 (2001), 780-789.

UPMC Univ Paris 06, Institut de Mathématiques de Jussieu, F-75252 Paris, FRANCE
Web page: www.math.jussieu.fr/~karpenko
E-mail address: karpenko at math.jussieu.fr


[^0]:    Key words and phrases. Algebraic groups, projective homogeneous varieties, Chow groups. 2000 Mathematical Subject Classifications: 14L17; 14C25.

