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Introduction

The topic of the present paper is the investigation of general elliptic differential
operators on manifolds with singularities. The first work in this direction seems to
be the well-known paper by V. Kondrat'ev [1], where elliptic operators on manifolds
with conical points were investigated.

The further development of this theme is eonneeted with the works of a lot of
rnathematicians (see, for example, [2] - [10]). In paritcular, in works [4] - [5] the
Mellin pseudodifferential calculus on manifolds with singular points of conical type
was eonstructed, the finiteness theorems were proved, and the asymptotic expansions
of solutions near points of singularities were found. On the basis of the resurgent
representation the resurgent analysis [11] of the problem ean be earried out and
in particular, exact asymptotic expansions of solutions near singular points of the
manifold ean be obtained. We emphasize that the main and adequate technical tool
for the investigation of problems on the manifolds with singularities of the cone type
is the Mellin transform.

The present paper is aimed at the investigation of the quite new situation in
the elliptie theory on manifolds with singularities, that is of the situation when
the underlying manifold has singularities of the cusp type. In this situation the
Mellin transform apparatus occurs to be inapplieable. Hence, the first and the most
important question is to create an adequate apparatus for investigating equations
on manifolds with singularities of this new type. Fortunately, at present such an
apparatus (resurgent representation) was already created hy the authors [12] - [11].
We remark that the resurgent analysis· being rather modern hut very powerful tool
of asymptotic theory of differential equations includes, in particular, the summation
procedure for divergent series (the asymptotic expansions are, as a rule, the series of
this type). As we shall see below, the divergent series typieally arise in the theory
of partial differential equations on manifolds with eusps, and, hence, the application
of the resurgent analysis in this situation is inavoidable.·

IThe above mentioned book [11] by the authors is an elementary introduction to the resurgent
analysis and, at the same time, contains sufficiently full list of definitions, not ions and theorems
needed for applications of resurgent analysis in the asymptotic theory of differential equations.
Besides, it containa sufficiently complete bibliography on the topic and ia not too expensive. Below,
we allow ourselves to cite this book often not pretending in all cases that all affirmationa in this
book belong to the authors. The book itself contains all the priority information.
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We remark also tbat the application of the resurgent analysis for obtaining
asymptotic expansions for solutions was useful in the situation of conical points
as weH [17] - [19].

Tbe present paper is tbe first from the sery of papers on elliptic theory on
manifolds with singularities of the cusp type. Here we construct asymptotics of
solutions near points of singularity of the underlying manifold. We remark also
that, except for the fact tbat it is interesting by itself, the results obtained here
are tbe basis for the construction of the solvability theory (Fredholm property) of
elliptic problems in the spaces with tbe weigbt determined by the asymptotics as
wen as for same other questions of the tbeory.

A few words of the structure of the paper. To begin with, we consider simple
examples for Beltrami-Laplace operators accosiated with metrices induced by the
geometry of the problem. These examples are sufficiently representative in the sence
that in the process of their considerations all main effects (but, unfortunately, not
tbe apparatus!) arising during the consideration of this problem will be shown.

Tbe ideas and the technical tools used in the paper, that is, semiclassical ap­
proach and resurgent analysis, are presented in Sections 3 and 4. One have to keep
in mind that the semi-classical approach gives just formal asymptotics2 , and the
resurgent analysis resummates these series thus supplying one witb the real (exact)
asymptotics.

1 Examples

In this section, we consider two concrete examples. These are the case when the
manifold has cusps of the first and, consequently, second order. By these two princi­
pally different situations we illustrate all the qualitative features of the theory. The
presentation is carried out for Beltrami-Laplace equations associated with Rieman­
nian metrics induced from the three-dimensional space by cusps of the first and the
second order.

It is well-known that the simplest model for a singular point of the conical type
is a vertex of the circular cone. Tbe form of partial differential operators near such
points can be obtained from the consideration of the Beltrami-Laplace operator
corresponding to the metrics induced on the surface of the cone from the three-

2That is, formal series asymptotics.
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Figure 1. Singularity of the cusp type.

dimensional space. This operator reads

where c2 is a constant determined by the angle of the cone.
Similar, in the constructing the general form of partial differential operator with

point singularities 0/ the cusp type one can use a.s a model the Beltrami-Laplace
operator on the surface of the "thinning cone" in R 3 obtained by rotation of the
parabola of the (k + 1)th order

(1)

around the axis Or (see Figure 1). The coordinates on such a surface are (r, Cf'),
where Cf' corresponds to the angle of rotation around the axis Or. The number k
will be called the order 0/ degeneracy, and the point with k = 1 will be called a
simple cusp point.

The Riemannian metrics induced on surface (1) from the metrics of R 3 is given
by the formula
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Now, equating to zero the coefficients of powers of r in the latter relation, we arrive
at the following recurrent system for the coeflicients Uj (cp) of expansion (4):

[52 + :;2] Uo(~) = 0,

[52 + :;2] U1(~) = - [251 + a :;2]Uo (~) ,

[52+:;2] Uj(~) - - [25 h +i -l)+a:;2] uj-d~) (5)

+ (( i + 2j - 4) (, + 1) + (j - 2) (j - 3)] U j - 2 ('P)

for j = 2) 3, ....
Since we are constructing a nontrivial solution to (3), the function Uo ('P) must

he nonvanishing. This means that the operator

is degenerate, or, in other words, that the number z = S belongs to the spectrum
of the analytic family

iI (z) = [Z2 + :;2] (6)

of differential operators on the circle SI. The spectrum of analytic family can be
defined as the set of singular points of the inverse operator if-l (z). In the considered
case, this latter operator is a meromorphic one. This can be proved from the general
theory, hut here we prefer to verify this fact by a direct computation. To construct
the operator iI-1 (z) one needs to solve the equation

Expanding the functions u (cp) and f (<p) into the Fourier series:

+00
U (cp) = L eikCPuk,

k=-oo

+00
f(cp) = L eikCPfk,

k=-oo

6



(3)

So, the Beltrami-Laplace operator on the surface of the thinning eone has the form

-2k-2 { 1 ( k+l 8 ) 2

!::J.g = r 1 + (k + 1)2 r2k r 8r

_ k (k + 1)2 r
3k

(rk+l~) + 8
2

} (2)
(1 + (k + 1)2 r2k )2 8r 8r.p'1·

For the case of a simple cusp formula becomes

!::J. -4 { 1 (2 8 ) '1 4r
3

( '1 8 ) 8
2}

9 = r 1+ 4r'1 r 8r - (1 + 4r2)2 r 8r + 8r.p2 .

In this section, we consider two examples of equations, which are simplified forms
of equation (2) for k = 1 and k = 2, respectively. First can be considered as an
example of a differential equation near a point of the cusp type of order 1, and the
seeond as an example of a differential equation near a point of the cusp of order 2.

1.1 Cusp of order 1

Let us eonsider the equation

Ru ~ r-4
{ (r 2 :r)2+ (1 +ar) :;2}u(r,~) = 0,

where a is some eonstant. First, we sha.ll construet a formal solution to this equation.
We search for a solution in the form3

(4)

(the role of constants Sand 1 will be clear during the computations).
Caneelling out the inessential factor r-4 and substituting (4) into (3), we obtain

the equation

3The form of the anzatz (4) will be derived from the "semiclassical reasons" in Subsection 3.1
below.
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we rewrite equation (6) in the form

and, hence, the operator iI- 1 (z) is given by

+00
u ('1') = f!-l (z) f ('1') = Leik'" Z2 ~ pO

k=-oo

The latter formula shows that this operator is holomorphic at any point except for
z = k E Z. One can see that the kernel of the operator H (z) is one and the same for
z = ±k. So, to construct different solutions to system (5) (and, hence, for equation
(3)) it is sufficient to consider only the values S E Z+.

The operator (6) has for every k E Z+ two-dimensional kernel and cokernel with
oue and the same generators

ut (<.p) = e±ikl,O

(except for k = 0 where the kernel and cokernel are one-dimensional spaces with
generator 1). So, the first equation from (5) shows that

• The number S must belong to Z+ (S = k) .

• The function Uo (<.p) must be a linear combination of the generators of the
kernel of operator (6) for k = S:

(7)

(8)

where the constants ccii and CÖk are, up to the moment, undefined.

We shall show that for each k E Z there exists exactly one solution with the
leading term (7). So, we fix some k (to be definite, we consider the case k =f 0) and
omit the corresponding indices.

Let us now proceed with the investigation of the second equation of (5). Sub­
stituting expression (7) into it, we arrive at the following equation for the function
Ul (<.p) (we recall that S = k):

[k2 + :;2] U\ ('I') = - [2k, + a:;2] [4e
ik

", + cö e-
ik

",].

Since the operator on the left in the latter formula is not invertible, for this equa­
tion to be solvable, its right-hand part must satisfy the following compatibility
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eondi tions4
:

(e
ik

"', [2k, +a :;2] [ete
ik

", +cö e-
ik

",] ) = 0,

(e-
ik

"', [2k, +a :;2] [et eik", +cöe-ik",] ) = O.

The two latter equations eao be rewritten as

(
k (2, - ak) 0 ) ( cci ) = O.

o k (21 - ak) cö

Sinee the veetor (et, cö) t- 0, we obtain

ak
'=2'

and the components et and cö of the vector (et, cö) may be chosen arbitrarily. So,
in this case, the right-hand side of equation (8) vanishes, and, hence, the general
solution to equation (8) is

(9)

Consider now the third equation from system (5). Substituting expressions (7)
and (9) for functions Uo (er) and UI (er) into this equation, for U2 (er) we obtain:

[k2 + :;2] U2 (cp) = - [k (ak + 2) + a :;2] (cje
ik

'" + c~e-ik",)

+~ak (ak +2) (et eik", +cö e-ik",) .

The eompatibility conditions for this equation give

+ ak (ak +2) + _ ak (ak +2) _
Cl = 8 CO, Cl = 8 Co .

One ean easily see that all the eonsequent equations ean be solved in the same
manner and that the obtained solution depends only on two arbitrary constants et

4Below, we use the notation
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and cö. So, the formal solution to equation (3) corresponding to any k E Z+ (except
for k = 0) is given by

uk(r,'f') _ ete-~r~[1+ak(a~+2)r+ ...]e;k"

__ ~ ~ [ ak (ak + 2) ] -iklp+eo e ,. r 1 + 8 r + . .. e .

It can be shown that the series involved into the latter expansion diverge, and,
heuce, to obtain the exact asymptotics one should use the resummation procedure.
It will be shown below, that in the case of a simple cusp such resummation can be
carried out with means of the usual Borel resummation procedure.

1.2 Cusp of order 2

Dur second example concerns a differential equation in a neighborhood of the cusp
point of order 2. To simplify the computations, we slightly modify equation (4) with
k = 2 and consider the following equation

We search for a solution to this equation in the form5

where the constants SI, S2, and I will be determined in the process of computations.
Similar to the above subsection, we obtain the recurrent system of equations for the
coefficients Uj (c.p) involved into the latter expansion. The first four of these equations
are

[S~ + :;2] Uo ('f') = 0,

[S~ + :;2] ud'f') = - [2S'Sd a:;2] Uo ('f'),

5See the footnote on page 5

9

(11 )

(12)



[S~ + :;2] U2 (~) - - [2S1Sd a :;2] U.(~)

- [S~ +2Sn +b:;2] Uo (~), (13)

[S~ + :;2] U3 (~) - - [2S1Sd a :;2] U2 (~)

- [S~ +2S2 b + 1) + b:;2]U.(~)
-SI (21' + 1) Uo (cp) , (14)

and all the subsequent equations have the form

[S~ + :;2] Uj (~) = - [2S1Sd a :;2] Uj_.(~)

- [S~ + 2S2 b +j - 2) + b:;2]Uj-2 (~)
-SI (21' + 2j - 5) Uj-3 (ep)
- [, (1' +2) + (21' - 3) (j - 4) + (j - 4) (j - 5)] U j -4 (cp)

for j = 4,5, ....
The solution to equation (11) goes quite similar to the previous subsection. The

resuIt is:

• The number 52 must belong to Z+, 5'2 = k.

• The function Uo (ep) must be a linear combination6 of the generators of the
kernel of operator k2 +~:

where the constants cci and c; are, up to the moment, undefined (ta be definite
we consider here the case k =I- 0).

The compatibility conditions for equation (12) (we recall that 52 = k) are

(e±;k"', [2S1k + a :;2] (crie;k", + CO e-;k",) ) = 0,

6In what followB we, again, fix the value of k and omit the corresponding index.
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which implies
2 ak

2S1k - ak = 0, or SI = 2'
The general solution to (12) under such a choice of SI is

Ul (r.p) = ci eilrt,p +Cl e-ik.p.

Up to this moment the computations do not much differ from those of the preceding
subsection. However, the eonsideration of equation (13) shows the difference between
the eases of a simple eusp and a cusp of order 2. Namely, if we write down the
eompatibility eonditions for this equation, we obtain

( e±ik'P,a (e + :;2) (ci eik'P +Cle-ik'P)

+ [a:P +2k, +b:;2] (et eik'P + cö e-ik'P)) = O.

Sinee the funetion U 1 (r.p) belongs to the kernel of the operator k2 + 8
8
;, the lat ter

relation ean be rewritten in the form

( e±,k'P, [a:P +2k, + b:;2] (ct eik'P + c;;- e-ik'P) )

which does not contain the constants cf and Cl at all. It is clear that for the latter
relation to be valid with nonvanishing constants et and C;, one have to choose the
constant f from the relation

that is,
bk a2k

'=2-8'
Under such choice of " the general solution to equation (13) is

U2 (cp) = 4" e
iklp +c2e-

iklp

Up to the moment, the constants er and cj, j = 0,1,2 remain undefined..To
determine ci and c1(the pair cci and c; are, in fact, the two arbitrary constants
which determine a solution to the homogeneous equation in question), let us consider
the eompatibility eonditions for equation (14). These eonditions read

( e±ik'P,2k (cieik'P +Cl e-ik'P) + a
2
k (bk _ a:k +1) (ct eik'P + c;;- e-ik'P) ) = O.
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The values of the constants ci and Cl computed from the latter relation are

± a (a'2k ) ±
Cl ="4 4 - bk - 1 CO •

So, the asymptotic solution to equation (10) is

et exp (--.!:.- - ak) rbk/'2-a'k/8 [1 + ~ (a'2
k

- bk _ 1) + ...] eikll'
2r'2 2r 4 4

+cö exp (--.!:.- - ak) rbk/'2-a'k/8 [1 + ~ (a'2
k

_ bk -1) + ...] e-iklp . (15)
2r'2 2r 4 4

Similar to the previous case, the resummation of the obtained series is nesessary
for obtaining exact asymptotics of solutions to equation (10). However, in contrast to
the case of the simple cusp, the resummation with the help of the 2-Borel transform
does not lead to aresurgent function with simple singularities, so that the asymptotic
information is lost during such aresummation. This fact is due to inhomogeneity
of the phase function

k ak
----

2r2 2r

of expansion (15) in the variable r. Below, we shall show that solutions obtained
in this subsection can be resummated with the help of resurgent representation,
introduced by the authors in [11].

2 Geometry of the problem

Let us desribe the form of general partial differential operators in a neighborhood
of the singular points of the above considered type. We write down these forms
having as models the Beltrami-Laplace operators near such points written down in
the preceding section.

We begin with the standard case of conical point ((4]). The conical point can be
described as the vertex of the cone [(n over the smooth manifold 0:

Kn = (0 X [0,1])/(0 X {O}),

and differential operators in a neighborhood of such a point has the form

A (a a)H=r-mH r,w,r
ar

'8w '

12
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where m = ordH is an order of the operator H. In tbe latter expression, the
coordinates (r,w) corresponding to the decomposition (16) were used. Namely, r is
a coordinate along the directrice of the cone, r E {O, 1], and W = (w1 , ... ,wk

) are
local coordinates along O.

Similar, having in mind expression (2) for the Beltrami-Laplace operator, we
see that the point m is a point of a cusp type of order k if the manifold near this
point ha.s (topologically) the cone structure (16), and differential operators in a
neighborhood of such a point have the form

iJ = r-(k+l)m H (r w rk+l~ !..-) (17)
" 8r' 8w .

For the simple cusp this formula becomes

A -2m ( 2 8 8)H=r H r,w,r
8r

'8w

Similar considerations for the edges of the cusp type are as folIows.
Chose as a model the direct product of the circular cusp K of order k by the

straight line R 1
:

M=KxR1
•

The natural Riemannian metrics on the manifold M is given by

ds2 = (1 + (k + 1)2 r2k ) dr2 + r 2k+2dep2 + dx2.

So, the Beltrami-Laplace operator on such a manifold has the form

-2k-2 { 1 ( k+l 8)2 k(k + 1)2 r 3k

11. = r 1+(k+l)2 r 2k r or {1+(k+l)2 r2k )2

8
2 ( k+l 8 )2}+8ep2 + r Bx '

where x is a coordinate along R 1. To write down the general form of a partial
differential operator in the general case, let us represent the manifold in question
near the considered edge in the form

M = Ko x X = (0 x [0,1])/(0 x {O}) x X,

and introduce the corresponding coordinates (r, w, x). Then the general form of a
differential operator near tbe edge of order k is

iI = r-(k+1)m H (r w x r k+1~ .!!..- r k+1 !..-)
, " 8r' 8w' 8x'

13



and in the case of simple cusp edge

" -2m ( 2 ß ß 2 ß )
H = r H r,w,x,r ßr' ßw,r ßx .

(18)Hu = 0

The aim of the present paper is to investigate the asymptotic bebavior of solu­
tions to the differential equation

near singular points of the manifold M.
One has to keep in mind tbat, as it was already mentioned in Section 2 during

the consideration of the examples in the preceding section, the cases of a simple cusp
and of a cusp of higher order (both in point and edge type) are essentially different
from tbe viewpoint of the asymptotic behavior of solutions.

3 Formal theory

Dur main goal is the construction and investigation of asymptotic expansions of so­
lutions to homogeneous differential equations near singular points of tbe underlying
manifold having the cusp type. As it was shown in Section 2, tbe equation has the
form

r-(k+1)m H (r w r k+1~ .!..-) u= 0
" ßr' ßw

(19)

near such points. Here m is an order of the operator iI and (r, w) are coordinates
on M associated with tbe following representation of this manifold:

M = ([0,1] x O)j({O} x n)

near tbe cusp of order k. So, ware coordina.tes on a smooth manifold n, and
r E [0,1].

Equation (19) can be rewritten in the operator form

... ( k+1 d )H r,r dr u=O, (20)

where iI is a differential operator whose coefficients are, in turn, differential opera­
tors on the smooth manifold n of corresponding orders.

From purely technical resons, we introduce a parameter h ioto equation (20),
thus rewriting it in the form

il (r hrk+1 .!!-) u= o·, dr ' (21)

14



initial equation (20) can be obtained from (21) with the help of the substitution
h=l.

Consequently, the exposition in the present section goes as follows. In the first
subsection, we shall obtain general formulas valid for arbitrary values of k. The
second subsection is aimed at concretization of these formulas for fixed values of the
parameter. Finally, in the third subsection we present a procedure of the explicit
computation of coefficients of asymptotic expansion (starting from the equation
itself) .

3.1 General asymptotic expansion

Let UB search for solutions to equation (21) in the form

00

u (r) = etS(r)<p (r, h) = etS(r) I: hi'Pi (r),
i==O

where

(22)

<pj : [0, 1] -+ E

is a function with values in same functional space7 on the manifold !1.
Expansion (18) has the form of a WKB-expansion in the small parameter h. At

the same time, the parameter h is clearly not small, and the verification of such
(convenient enough) expansion is in the fact that, as itwill be shown apostenori,
the order of functions r.pj (r) increase unboundedly with j, and, hence, (18) is in fact
an asymptotic expansion as r -+ O.

So, substituting expansion (22) into equation (21) and using the evident relation

we obtain the following relation for the series <p (r, h):

Expanding the operator involved into the latter relation in powers of hand equating
tbe corresponding coefficients to zero, we arrive at the following recurrent system of

70ne can use Sobolev spaces H' (0) as the space E. Since the choice of these spaces is not
essential for us in the sequel, we shall not concretize them here.
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equations for the coefficients epj (r) of the series "I' (r, h):

iI (r, P (r )) "1'0 (r ) = 0,

iI (r, P (r) ) "1'1 (r) = _[OB (r,P(r» (rk+l~)
8p dr

1 k+l lPB dP (r)]
(23)+ 2"r 8p2 (r, P (r)) dr "1'0 (r) ,

j

iI (r, P (r) ) "1'1 (r) = -L Piepj-i (r) , j = 2,3, ... ,
i=1

where P (r) = r k+1 S' (r), and the operator PI equals

'" _8iI( P())(k+l:!"-) ~k+18'2iI( p())dP(r)
rt - 8p r, r r dr + 2r 8p'J r, r dr· (24)

(25)

To begin with, let us consider the first relation from (23). Sinee we are interested
to construet nonlrivial asymptotic solutions of the form (22), we have "1'0 (r) =f:. O.
Hence, the operator

(26)iI(r,P)

must have a nontrivial kernel.
To analyse the condition of degeneracy of operator (25), let us consider the

analytic family

of operators on the manifold n as an analytic family in p for each fixed r. Sinee the
initial operator is an elliptic one, the conditions of the finite-meromorphic invert­
ibility of this operator are fulfilled. This means that:

1. The operators iI (r, p) are Fredholm ones for each values of r, p.

2. For each r > 0 there exists a Po such that the operator iI (r,Po) is invertible.

It is known (see, for example, [4]) that under the above conditions there exists
an inverse if-I (r,p) for operator (26), meromorphically dependent on p. Denote by

p=p(r)

the equation of the set of singularities of the operator iI-1 (r,p) (the spectrum of
operator family (26)). In general, the function p(r) is a multivalued one.

16



Suppose, for simplicity, that all poles of the family iI-1 (r, p) are simple up to the
point r = O. Then it is evident that the function P(r) splits to univalent branches

P = Pi (r), i = 1, 2, ... ,

such that the functions Pi (r) are regular functions in r (they are analytic for analytic
iI (r,p), and smooth for smooth iI (r, p)).

Remark 1 The latter assumption means that we are working in the situation of nondegenerate
Lagrangian manifolds. The condition of the degeneracy of the operator H (r ,p) determines a germ
at r = 0 of the Lagrangian manifold (p088lbly, with singularities) p = p (r) in the phase space
(r,p). The assumption that the function p = p(r) splits into regular brauches means exactly that
this germ is split into the union of nondegenerate Lagrangian manifolds.

Now we have

where
r k+1 S; (r) = Pi (r), /f'Oi (r) E Ker H(r, Pi (r)) .

In what follows we fix some branch Pi (r) omitting the subscript i.
Later on, we remark that, under the above assumptions, the operator

iI (r,p(r))

(27)

has zero index, so that the dimensions of the kernel and the cokernel of this operator
coincide with each other. To simplify the presentation below, we suppose that

dirn KeriI(r,p(r)) = dirn Coker H(r,p(r)) = 1,

and denote by U (r) and V (r) the generators in the spaces Ker iI (r, P (r)) and
Coker iI (r,p(r)), respectively.

So, we have
/f'o (r) = 00 (r) U (r) , (28)

where the function 00 (r) is, up to the moment, unknown.
Let us proceed with the investigation of the subsequent equations in (23). As we

shall see below, the functions !.pj (r) can be represented as series over powers of r:

00

/f'j (r) = raja L ajlr' .

1=0

The number SjO will be called the order of the function !.pj (r).
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An operator P will be called an operator of (power) order I if the order of the
function P<p (r) is not less than So +I for any function <p ( r) of order8 so. The power
order of an operator P will be denoted by ordp P (subscript p stands for "power").

The following affirmation takes place:

Lemma 1 The operators Pi involved into relations (23) are operators 0/ power order
ik. Besides, all these operators beginning from i = 1 can be represented in the form
rk+1Pi.

Proof. It is clear that the operators Pi are determined from the relation

m

- ,,~.- L-J f"'t,

i=O

Po = H (r,p(r))

where the numbers over the operators denote the order of their action (see, e. g.
{20], {21]). Besides,

and the operator PI is defined with relation (24). Clearly, we have

ordPo = 0,

ordP1 = k.

Let us carry out the proof by induction over the order m of the operator H. Clearly,
our assertion is valid for operators of order 1. Leder on, it suffices to prove the
assertion for operators of order m + 1 with the symbol of the form H 1 (r, p) p if that
it is already proved for operators of order m. If

then, due to the inductive hypothesis, we have ordp pP) = ik. Then we have

8More precisely, we shaB use the real power order of the operator, that ia, the maximal of aB
orders described above.
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where

Since

(29)

then, clearly,
'" • { "'(I) "'(I) } .ordp Pi = mln ordp Pi ,ordp Pi- 1 + k = lk

as required. The last affirmation of the Lemma is a direct consequence of formula
(29).

Let us consider now the second equation of system (23). Since under the above
choice of the function S (r) the operator

iI(r,rk+1S'(r)) = H(r,p(r))

is not invertible, for this equation to be solvable its right-hand part must satisfy the
following compatibility conditions:

Substituting expression (28) for the function 'Po (r) into the last relation, we obtain
the transport equation for the unknown Go (r):

[ (
8iI ) d ( 8il dU (r) )V (r), 8p (r, p(r) ) U (r) dr + V (r), 8p (r, p (r )) dr

1 ( 8
2iI dp (r) )]+2 V (r), 8p2 (r,p (r))~U (r) Go (r) = 0,

which is solvable in regular functions under the assumption that

(30)

(31)

The value Go (0) remains undefined and determines an (arbitrary) multiplicative
constant which is naturally involved into a solution to homogeneous equation (21).
The power order of the function Go (r) is, c1early, equal to zero.

Let us proceed with the consideration of the rest transport equations. To be
definite, we consider this process on the example of the third equation from system
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(23) for j = 2. Clearly, if the compatibility condition (30) holds, the general solution
to the second equation from (23) is

(32)

where 4'i (r) is some particular solution to this equation (having, evidently, tbe power
order k +1), and a1 (r) is an arbitrary (up to the moment) function. Substituting
expression (32) to the equation

we obtain an equation for the function r.p2 (r) in the form

il (r,p(r)) r.p2 (r) = i\ {al (r) U (r)] + i\ {4'; (r)] + 1'2 [r.po (r)]. (33)

The compatibility condition for the last equation reads

(V (r) ,1'1 [al (r) U(r)] + i\ [r.p; (r)] + P2 [r.po (r)]) = O.

The latter equation can be rewritten in the form

[
/ aB ) d / aB dU(r))\ v (r), op (r,p(r)) U (r) dr + \ V(r), op (r,p(r)) dr

1 / a2 ft )] ... ..+2 \ v (r), Op2 (r,p(r)) U (r) "I (r) = -PI [<p~ (r)]- P2[<Po (r)] , (34)

where Pj are operators introduced in Lemma 1. Clearly, the last equation is solv­
able with respect to a1 (r) in regular functions. Later on, since the power order of
operators PI and P'J equals -1 and k - 1, respectively, the function on the right in
the last equation has power order k - 1. Hence, there exists a unique solution to
(34) with power order kj this solution is determined by the Cauchy data a1 (0) = O.
Now the general solution to equation (33) is written down in the form

-r.p2 (r) = a2 (r) U (r) + r.p; (r) ,

the function 4'; (r) being of power order 2k. We remark also that the power order
of the function r.p1 (r) giyen by (32) equals k.

The continuation of the above described procedure leads us to the following
affirmation:
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Proposition 1 There exists a formal solution u (r) to equation (21) of the form
(22) such that the functions <Pj (r) haue power order j k in the variable r. This
solution is defined uniquely up to a multiplicative constant and is an entire function
0/ the variable k.

From this proposition it follows that expansion (22) (for h = 1) is an asymptotic
expansion in r near r = 0 ooly for Re k > 0, since only in this case the terms of
series (22) are graduated hy descent as r -+ O. Moreover,

'I:<Pj (r) = rJ ,pi (r)

with "pj (r) possessing a standard Taylor expansion in powers of r.

3.2 The analysis of the asymptotic expansion

The aim of this suhsection is to analyse the ahove asymptotic expansion9

00 00

u (r) = eS(r) L 'Pj (r) = eS(r) L ,J1:1f'j (r)
j=O j=O

(35)

for different values of k and to reduce this expansion to a more standard form.
The matter is that the functions S(r) and <Pj(r) cannot he uniquely determined hy
expansion (35). Actually, if the function S can he represented in the form

where S2 is a regular function of the first power order near r = 0, then one can
expand exp (S2(r)) in powers of r thus rewriting expansion (35) in the same form
hut with another action Sl(r). To standartize an asymptotic expansion one should
extract the singular part of the action S(r) in sorne standard form and then consider
asymptotic expansions with this standard form of the action.

To realize this program, we hegin with the investigation of the function S (r). In
accordance to formula (27) ahove, we have

rl:+ 1S' (r) = p (r) ,

where the function p (r) is regular at r = O. The latter equation evidently has a
unique solution up to an additive constant, and we fix this constant hy putting

r

S (r) = S (r) = Jr-k-1p(r) dr

ro

9From now on we put h = 1.

21



with some ro from the interval (0, 1). 0 oe ean see that S (r) is evidently an enti re
funetion in k for any fixed value of r.

For more detailed investigation of the funetion S (r) we expand the funetion p (r)
under the integral sign in the above expression for S (r) into the Taylor series in r:

00

p(r) = Lpj,J
j=O

and integrate the obtained integral term by term (this proeedure is eorrect for suf­
fieiently small values of ro and r, namely, both ro and r must belong to the domain
of eonvergenee of the above power series.) The result is

r 00

S (r) = Jr-
k

-
1 L pj"; dr

rc j=O

k-l j_1:

= -LPj~_ .+pl:lnr+A+S1(r), (36)
j=O J

where A is some eonstant and SI (r) is a regular funetion at r = 0 of power order at
least one.

Substituting the latter relation into expansion (35) and expanding exp [SI(r)]
and all amplitude funetions in powers of r, we arrive at the expansion

u (r) = exp {-t r~jPj_k} rPk f r'ut. (37)
j=1 J 1=0

This is exaetly the formal asymptotie solution to equation (20).

3.3 Explicit computation of the coeflicients

In this subseetion, we present the method of computation of the eoeffieients of
expansion (37) direetly from equation (20). Besides, to list the effeets which may
oeeur during the eonsideration of asymptotie expansions in the ease of an edge of
the eusp type, we have included the eorresponding eomputations into the seeond
subsubseetion of this subsection.

3.3.1 Isolated cusp point

1. Consider first the case of a simple eusp

H = H (r,w,r2 :r'~) u = o.

22
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We suppose that the following condition is valid:
The operator (38), included into the considered equation is an elliptic one.
In particular, this yields that the family

H(O,W,T,~),TEC

is meromorphically invertible.
In accordance to formula (37) above, we search for the solution to equation (38)

in the form
00 00

U (r,w) = e-Slrr'Y L ,JUj (w) = e-5/ r L ,4-hUj (w).
j=O j=O

Substituting the latter expression into (38), one obtains

H (
:2 ß ß) [ -SIr~ -i+'Y ()] =r,w,rßr'ßw e ~' UjW

-5/rH ( 5 'l ß a)~ -i+-r ()e r,w, +r ßr'8w ~' Uj W = o.

(39)

Since both multiplication by rand the operator r:28/8r enlarge by 1 the power
00

order of terms of the series L: rj+'Yuj (w), it is natural to expand the operator
j=O

H (r,w, 5 + r2:r' 8~) into the Taylor series in rand r28/8r:

where

(
8 ) 1 8i'+i" H ( 8 )

Hi'i" w,5, 8w = i/li"! 8ri' 8Ti" 0, W, 5, 8w .

In particular,

Hoo (w,S, ~) = H(o,w,S, :w) .
As a result, equation (38) will be transformed to the form

~ r (j + I + i") -i-h+i'+i"H"'1I ( S~) .()= 0L...-J r ( . ) T- I I w" 8 U) W •
.., '''-0 J + I W

),1 ,t -
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Equating the coefficients of powers of r to zero, we arrive at the following recur­
rent system for computing the unknowns Uj (w):

00 r (j' +, + i") ( a ) .L f(/+,) Hi'i" w,S'öw U;-(w} =0, J =0,1, ... ,
j'+i'+i"=j

where the sum is taken over nonnegative values of indices j', i', i".
Let us write down several equations from (41) in the explicit .form:

Hoouo (w) = 0,

H00U 1 (w) - - [Ji10 +, Ji01] Uo (w) ,

HOOU 2 (w) = - [klO +(, + 1) HOl] Ul (w)

[

A A ,(,+1) A ]

- H20 +, Hll + 2 H02 U2 (w) ,

(41)

(42)

(43)

(44)

where Hij = Hij (w, 5, 8/8w).
Equation (42) shows that to construct a nontrivial solution to equation (38) it

is nesessary that:

• The number 5 is chosen in such a way that the operator (40) has an untrivial
kernel (we suppose that S is chosen in this way in the sequel) .

• The function Uo (w) belongs to the kernel of the above mentioned operator.

Due to the condition posed in the beginning of this subsection, under the above
conditions the operator (40) has finite-dimensional kernel and cokernel. Moreover,
the dimensions of these two spaces coincide with each other. Denote by

the base in Ker Hoo , and by
{Vl, ... ,VN }

the base in Coker Hoo. Then, due to relation (42), one evidently has

N

Uo (w) = L cjUj (w).
j=l
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(47)

Let us now turn our mind to the consideration of equation (43). For this equation
to be solvable, its right-hand part

- [H10 + ...,. HOl] Uo (w )

is to be orthogonal to the functions (45), which form a base of tbe cokernel of the
operator Hoo . Taking into account formula (46), we arrive at the following system
of homogeneous equations for constants c~ involved into the expansion (46):

N

L (Akj + ...,. Bkj ) c~ = 0, k = 1, ... N j

j=l

Here the matrices Akj and Bkj are defined by relations

Akj = (Vdw), HIO (w, s, :J Uj),

Bkj = (Vdw),H01(W,S'a~)Uj).
So, for a nontrivial solution of the initial equation to exist, the number , must be
chosen from the relation

(48)

and the vector J = (c?, ... ,c~) must satisfy (47). Then the general solution to
equation (43) is given by

N

Ul (w) = u; (w) +L c}Uj (w),
j=l

(49)

where ui (w) is some particular solution of (43).
As above, arbitrary constants cJ in the relation (49) must be chosen from the

compatibility conditions of the next equation (44). It is not hard to show that this
condi tion has the form

N

L (Akj + (...,. + 1) Bkj)cJ = bk, k = 1, ... , N, (50)
j=l

and that the numbers bJc are uniqely determined by the vector & and the function
ui (w) computed on the earlier stage of the process. Under the assumption that the
number (...,. + 1) is not a root of equation (48), equat ion (50) is uniquely solvable
with respect to the numbers cJ, j = 1, ... N.

The continuation of tbe described procedure leads us to the following result.
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Theorem 1 Let lor each S Irom the spectrum 0/ the operator Hoo , equation (48)
has N different solutions (/1, ... , IN), and there exists no pair 01 these solutions
which differ by an integer. Then each pair (S, ,j) 01 the described type detennines
a nontrivial solution to equation (38) 0/ the form (39)10

2. Let us consider now a cusp of higher multiplieity. Since all effects can be seen
on the case k = 2, we shall consider this case:

( 38 8)
H r,w,r 8r' 8w U = o. (51 )

As above, we shall search for asymptotic solutions to equation (51) in the form
(which is exactly expansion (37) for k = 2)

The procedure similar to that described above, leads us to a recurrent system of
equations; first four of these equations are

Hoouo (w) =
HOOUI (w) -

HOOU2 (w) -

0,

- [H IO + SI HOl] Uo (w) ,

- [H IO + SI HOl ] UI (w)

[
1 '" .. 1 '" ..]

+ 2H20+SIHll+2H02+1HOl uo(w) ,

HOOU3(W) = - [H IO + SI HOl] U2(W)

+ [~E20 +SI Eil + ~SiH02 +(, + 1) HOl] Ul (w)

+Auo (w),

(52)

(53)

(54)

(55)

where the operators Hij = Hij (w, S2, 8/8w) are defined as above, and A is some
operator (the exact form of this operator is not essential for what folIows).

Let us begin our analysis with equation (52). As above, from this equation
follows that the point 8 2 is a spectral point of the operator family

Hoo = Hoo (w, T, 8/8w) , (56)

IOThe reader easily finds out that the assumptions of this theorem ean be signifieantly weekend.
For example, one ean eonsider the ease when the poles of fIÖ0

1 are of more that first order.
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and the function Uo (w) is an element of the kernel of the corresponding operator of
this family. Similar to the above described case, this family is meromorphically one
invertible in T. Denoting by

{U., ... ,UN }

the base in the kernel of operator (56) for T = 8 2 , and by

the base in the cokernel of this operator, we obtain

N

Uo (w) = L C~Uj (w)
;=0

(57)

(58)

with some constants c~, j = 1, ... 1 N.
Later on, the compatibility condition for equation (53), that is, the orthogonality

of its right-hand part to the function system (57) has the form

or
N

L (Akj + StBkj) c~ = 0, k = 1, ... N.
;=0

(59)

The latter relation shows that the number 8 1 have to be a root of the equation

(60)

and the vector & = (c~, ,c~) have to be a solution to the corresponding equa-

tion. Denoting by (SP), ,S~N») the roots of (60) and by iJ; = (c~;, ... ,c~n,

i = 1, ... ,N the corresponding solutionsll to equation (59) (for simplicity we sup·
pose that the roots of (60) are simple) we arrive at the set of N solutions to equation
(53)

N

u~ (w) = u~· (w) +L cJkUj (w)
;=0

llClearly, these solutions are determined up to a multiplicative constant.
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Each of these solutions correspond to its own value of S~k). We remark that the
particular solution u~· (w) to equation (53) with the right-hand part

N

""' [ .. (k)"] ok- L, H IO +SI HOl Cj Uj (w)
i=O

can be expressed a.s
N

U~· (w) = L cjkW}' (w),
i=O

where Wf (w) are some fixed solutions to the equation

.. k [ .. (k)"]HooWj (w) = - HlO + SI HOl Uj (w).

So, we have
N N

u~ (w) = L cjkW/ (w) +L c)kUj (w).
i=O i=O

(61)

Let llS consider now equation (54). The compatibility condition for this equation
lS

( [
.. (k)"]VI (w) ,- H IO + SI HOl U1 (w)

[
lA (k) .. 1 ( (k») 2 .. ..] )+ "2H20 + SI H ll +"2 SI H02 + ,HOl Uo (w) = O.

Substituting expressions (58) for Uo (w) (here &= eÖk ) and (61) for U1 (w) in the
latter equation, we rewrite the compatibility conditions in the form

N N
""' (A. S(k)B.) lk - ""' (C . D·) Ok • - 1 NL..J IJ + 1 I} Cj - - L..J IJ +, IJ Cj , J - , ... , ,
i=O i~

(62)

where the matrices A'j and B'j are defined a.s above, and Glj and D1j are given by
the formulas

( [
.. (k)"] kGlj = VI (w), BIO +SI HOl Wj (w)

+ [~H20 + slk)Hll + ~ (S~k)r H02] Uj (W») ,

Dlj = (VI (w), HOlUj).
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(63)

We remark that the matrix on the left in (62) is degenerated. Its (one-dimen­

sional) kernel is determined by the vector eOk • Clearly, this matrix has also a one­

dimensional cokernel (the fact that both kernel and cokernel of A lj + S~k) Blj have
dimension one follows from the a.bove assumption that the roots of equation (60)

are simple). Denote by tfik the row-vector determining the cokernel of the latter
matrix. Now the compatibility condition for equation (62) with respect to e}k can
be rewritten in the form

N

L 'tk (Clj + jD,j ) eJk = O.
j,I=O

Besides, the general solution to this equation is

elk = e11• + ceOk (64)

with some (up to the moment undefined) constant C. Equation (63) allows one to
determine the constant ; under the assumption that

N

L Jtk DljeJk =f O. (65)
i,I=O

It is not hard to show that the constant C involved ioto expression (64) for elk is
determined from the compatibility condition of (55) in the unique way. Moreover,
a.ll consequent equations of the recursive scheme for the functions Uj (w) are also
uniquely solvable. The verification of this fact is left to the reader.

Therefore, the following statement is valid.

Theorem 2 Let equation (60) has N different solutions (SP), ... ,S~N)) for any

52 from the spectrum 0/ this /amily. Later on, suppose that inequality (65) holds
for each k. Then for each pair (52, S~) 0/ the above described type there exists a
nontrivial solution to equation (51) 0/ the fonn

Sk 00

Uk (r,w) = e-~-7r'"'fk L r1Uj (w),
j=O

where rk is a solution to equation (63).

The contents of this section shows the signifieant difference between the case
of a simple cusp and the case of a cusp of higher multiplicity. Namely, in the

case of higher multiplicity the phase -A - ~ of asymptotie expansion is not a
~r r

homogeneous function of r. As we shall see below, this difference essentially affects
the construction of the real asymptotic expansions.
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3.3.2 Edge of the cusp type

In this subsubsection, we shall make sorne rernarks on the investigation of partial
differential equations on manifolds with singularities of the cusp edge type. As
we have already told in Section 2, the topology structure of such manifolds in a
neighborhood of the edge is

M = Ko x X = (0 x [0,1])/(0 x {O}) x X,

where X and 0 are smooth manifolds and differential operators have the form

iI = r-(k+l)m H (r w x r k+1~ ~ rk+l~)
, " 8r ' 8w ' 8x'

Considerations similar to that of the previous suhsubsection using the asymptotic
expansion of the form

00

u(r,w,x) = e-S/rr""L,Juj(w,x)
j=O

(in the case of a simple cusp), or

(66)

(67)

(for a cusp of the multiplicity 2) leads us to the following equation for the main
coefficient of the asymptotics Uo (w, x):

Hoo (w, x, S, 8/ßw) Uo (w, x) = O.

It is not hard to notice that in this case the analytic family

Hoo (w, X, T, fJ/fJw) = H (o,w, X, T, ~,0) (68)

of elliptic operators depends in addition on the coordinates x along the edge. As a
consequence, the spectrum of the operator family in question depends also on these
coordinates:

S=S(x),

the function S (x) being, in general, multivalued. The ramification points (in x) of
the spectrum, called loeal points 0/ the /amily, supply us with additional difficulties
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in the process of consideration of formal asymptotics. Actually, in a neighborhood
of a Cocal point the asymptotic expansion of solutions to the equation

(
18 8 1 8 )

H r,w,x,r 8r' 8w,r 8x u(r,w,x) = 0

does not have the form (66), (67). However, in the ease when there is no focal
points in the edge X, the above presented theory can be worked out with evident
modifications.

On the opposite, if foca! points of the family (68) do exist on tbe edge X, then
to construet the asymptotics one should use asymptotic expansions of tbe type of
analytic functionals or of the type of Maslov's canonical operator (see [22], [23]).
We shall not consider these quest ions in the present paper.

4 Construction of the resurgent solutions

In tbe previous sections we have constructed formal asymptotic expansions for so­
lutions to homogeneous differential equations on manifolds having cusp-type singu­
larities. However, as it is well-known, the series involved into such expansions are
as a rule divergent. Therefore, to construct asymptotic solutions to corresponding
problems, it is nesessary to resummate these series. In this section we shall prove
that formal series of the form (37) obtained above, are summable with the appro­
priate choice of the resummation method. This means that these functions occurs
to be resurgent ones (see, e. g. [11]).

We consider bere the resummation procedure in the two cases12 k = 1 and k = 2.
It occurs that in the ease k = 1 tbe standard resummation procedure based on the
Borel-Laplace transform supplies us with the representation of solutions which gives
the full picture of asymptotic behavior of this solution near the considered cusp
point. At tbe same time, for cusps of higher order (in fact, even for k = 2) the
application of the Borel-Laplace transform occurs to be inappropriate. The matter is
that under tbe action, say, 2-Borel transform the corresponding function in the dual
space is not more a function with simple singularities, and tbe information about
the asymptotic behavior of solutions occurs to be "hidden" in such a representation.
In this case one should llse tbe resurgent representation introduced by the authors
in [11].

12We consider here ooly the case of an isolated point of the CUBp type.
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Figure 2. The standard integration contour.

Remark 2 We recall that the mentioned resurgent representation has the form

u (r) = Je-'U (r,s) ds,

r

where U (r, s) is an endlessly-continuable function (that is, having the discrete set
of singularities on its Riemannian surface), and r is a contour encircling some point
of singularity of U (r, s) and coming to infinity along the direction of the positive
real axis (see Figure 2). We say that the function U (r , s) has simple singularities
near its singular point oS = S (r) if it can be represented in the form

Go (r) ~ (8 - S (r))j
U(r,s)= s-S(r) +ln(s-S)~ j! aj+dr )

near this point. In this case, the asymptotic expansion of the function u (r) is given
by

u (r) ~ eS(r) L Gj (r),
j=O

so that the behavior of the function U (r, s) near a point of singularity determines
the asymptotic expansion of the function u (r) as r ~ O. The details about resurgent
representation and the functions with simple singularities the reader can find in the
above cited book.
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4.1 Case of a simple cusp

Consider the formal Borel transform U (p, w) of the formal series (39):

The latter function satisfies the equation

[
.. ( 8 ) ( 8 ) -1 aB ( a)H O,w,p, 8w + 8p 8r O,w,p, 8w

(8)-2.. (( 8)-1 8)]
+ 8p H1 8p ,w,p, 8w U (p,w) =°

which can be obtained from equation (38)

.. ( 'J a a)
H r,w,r 8r'8w u=O

(69)

(70)

by application of the Borel transform (we have used the expansion of the latter
equation into the Taylor series in r up to the second order:

[ .. ( :l 8 8) aiI ( :l 8 a) :l" ( 2 8 8)]H 0, w, r 8r' 8w + r 8r 0, W, r 8r' 8w + r H1 r, w, r 8r' 8w u = o.

It is convenient to rewrite equation (69) in the operator form 13

[
.. (a )-1 ab (a )-:l .. (( a )-1 )]H(O,p)+ 8p a;:-(O,p)+ ap H1 ap ,p U(p)=O, (71)

where all the operators considered are acting on functions determined on the man­
ifold n. To investigate the asymptotic behavior of solutions to equation (70) one
should:

13More preeisely, we eonsider the operator

aB the operator iI (r, r 2 f), aeting on functions with values in the Sobolev spaee seale on the
manifold O. The same eoneernes all other operators involved into the eonsidered equation.
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• Prove the existence of an endlessly-continuable solution to equation (71) and
investigate the position of singularities of this solution.

• To investigate the asymptotics in smoothness of the constructed solution at
any point of its singularity.

For simplicity, we suppose that
The inverse R(z) 0/ the operator iI (0, z) has a simple poles only and that the

kernel (and, hence, the cokemel) 01 the operator H(0,0) is one-dimensional.
Later 00, we consider the case when the point z = 0 ia a spectral point of the

family iI (0, z). The latter condition does not anyway lead to the loss of generality
since in the opposite case it is sufficient to multiply the solution to the initial equation
by the function exp (-Sfr) with appropriate value of S.

The following affirmation takes place.

Theorem 3 Under the above lormulated conditions there exist endlessly-continuable
solutions to equation (71), with the singularity 01 the lorm

00

U(p) =p"1LCj~
j=O

at the origin. The number 1 in the laller relation is determined Irom

\ V, ~~ (0,0) U ) + I \ V, ~~ (0,0) U ) = 0,

where U and V are generators 01 the kernel and cokernel 0/ the operator H(0,0),
respectively.

Now the resurgent analysis method shows that the above constructed formal
asymptotic expansions are summable.

The rest part of this subsection is aimed at the proof of Theorem 3.
Proo! It is convenient to write down the equation for the Borel transform of the

function v (r,w) which is connected with the solution u (r,w) of the initial problem
by the relation

u (r,w) = r"f v (r,w).

(Below we shall show that the value of I must be determined from the last relation of
the theorem, hut temporarily we rest this value undefined.) Similar to the previous
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or

section, we obtain the following equation

for the function V (p,w) = B [v (r,w)]. Let us perform one more modification of the
latter equation putting

v(r,w) = (l+rB)u(r,w),

V (p) = (1+ (;pr1

B) W (p) ,

where the operator B will be determined later. The resulting equation for W is

We notice that due to the above assumptions the following relation takes place:

[
" ] -1 Ro

H(O,p) =-p+R1 (p), (73)

where 11.0 is a finite-dimensional operator, and R1 (p) is regular at p = O. Let us
search for the solution of equation (72) in the form

(We remark that the last summand does not vanish since equation (72) is considered
as an equation in hyperfunctions. This summand equals p- 1UO (p) +U1 (p), where
U1 (p) is a regular function, and Uo (p) is an element of the kernel of the operator
iI (O,p)). We arrive at the following equation for IV (p):

{

-I [ " " ]8 8H 8H " "" -1
1 + (ßp) a;:- (0, p) +l' ßp (0, p) + H (0, p) B [H (0, p)]

(8)-2 ((8)-1 ) -I}+ ßp H3 ßp ,p [H(O,p)] W(p) = F(p),
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where the function F (p) has simple singularities at p = 0:

00

F(p) = lnp LF;pi.
;=0

To investigate the form of singularities of the function U(p), it is sufficient to
notice that the operator

(:J -1 Ha ( (~) -1 ,p)

involved into equation (72) has the form

where the convolution is taken over the variable p, and the function H4 (p, p') equals

if the expansion of the function H3 (r, p) in powers of r is

H3 (r, p') = L,Jhj (p') .
,=0

(75)

We note that function (75) is an entire function in p for any fixed p.
Let us try now to define the number '"'( and the operator iJ in such a way that

the operator

[
aH ab " "][" ]-1a;-(O,p)+'ap(O,p)+H(O,p)B H(O,p) , (76)

involved in the left-hand part of (74), is regular at p = 0. Due to (73), the singular
part of this operator is

-1 [ab ab A ]P ar (O,p) + l' ap (O,p) + H (O,p) B ~.
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Let P be a projector to the image of the operator k (0,0). The operator

ak aba;:- (O,p) +...,. ap (O,p)

can be rewritten in the following form:

ab aka;:- (0, p) +...,. ap (0, p) [
ak ak]- P a;:- (O,p) +...,. ap (O,p)

[ab ak]+ (1 - P) a;:- (O,p) + i ap (O,p) .

Choose the number 1 from the condition

[
ak ak](1 - P) a;:- (0, p) + 1 ap (0, p) l4J = 0.

For tbis choice to be possible, it is nesessary that the inequality

( v, ~~ (0,0) U) = 0,

holds (see tbe previous section).Here, as above, U and V are generators of the kernel
and cokernel of the operator H (0,0), consequently. Now we put 14

... [ ... ] -1 [ak aiI]B = H (0,0) P a;:- (0,0) + l' 8p (0,0) .

The reader will easily verify that with such choice of i and B operator (76) is regular.
So, tbe equation (74) for W takes the form of a VoIterra equation

where the operator 61 (p) is regular for p = 0, and the operator 62 (p) has a simple
polar singularity at this point. The end of the proof of the theorem can be carried
out witb the belp of a standard method of successive approximations.

l4.The operator H (0,0) is understood here as an operator from the subspace complementary

to the image Ro.to tbe image of il (0,0). Then, the composition [il (0, 0)] -1 P (and, hence, the

operator B) ia well-defined.
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(77)

4.2 Case of a cusp of higher multiplicity

As we have already mentioned, the ca.se k = 2 is, in essence, a" general one, and we
restrict ourselves by the consideration of this case.

We recall (see formula (37) above) that formal solutions to equation (20) for
k = 2 have the form

00

u (r) = exp ( - Po
2

- P. ) rP2 L r'u,.
2r r '=0

The main difference between this C&Se and the case considered in the previous
subsection is that if we represent the solution u(r) in the form of the 2-Borel trans­
form

u(r) = Jexr{ - 2~2} U(p) dp
r

where the contour r is chosen similar to the contour for resurgent representation
(see Figure 2 above), then the function U(p) fails to have simple singularities. The
reason for this phenomenon is that, as we have mentioned above, that the phase
function (action) of asymptotic expansion (77) is not a homogeneous function in r.
So, we use the change of the unknown which reduces our function to the case of
homogeneous action, then investigate this function with the help of the 2-Laplace
transform15, and, finally, show that the initial function can be written down as
aresurgent representation (see Remark 2 above) with the function U(r, s) having
simple singularities.

So, to have the possibility to use 2-Laplace transform for the construction of a
function with simple singularities, one should perform the change of the unknown

u (r) = exp ( -~.) rP2 v (r) . (78)

Similar to the formal theory, we shall investigate a solution corresponding to
same fixed value of Po, which is chosen as

p=p(O),

where p = p (r) is some branch of the spectrum of family (26).
Let us represent equation (20)- in the form

[

A (3 d ) A (3 d ) 2A (3 d ) 3A ( 3d )]Ho r dr + rH. r dr + r H2 r dr + r H3 r, r dr u (r) = 0

150n this stage, a lot of computations are similar to that of Subsection 4.1, and we shall omit
the corresponding details.
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and substitute the function u (r) in the form (78) in it. We have

Therefore, after the substitution the equation is reduced to the form

Ho (rPi + r
2
P2 + r

3~) +rHI (rPd r
2
P2 + r

3~)

+r2H2 (rPI + r
2
P2 + r

3~ ) + r
3H3 (r, rpl + r

2
P2 + r

3~ ) v(r) - O.

Expanding operators

"" ( 2 3
d ).Hj rpl + r P2 + r dr ,J = 0,1,2

ioto the Taylor series in r up to the third power, we arrive at the equation

{"" (3 d ) ["" (3 d ) ßHo ( 3d )]Ho r dr + r H I r dr + PI ßp r dr

2 [ "", ( 3 d ) aHo ( 3 d )]+r H2 PI, r dr + P2 ßp r dr

3""'( 3d
)}+r H3 r, r dr v (r) = 0,

where

We choose the numbers PI and P2 in such a way that the operators

aod
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have no singularity at the point considered. As we have already seen below, to do
this one have to use one more change of the unknown. For k = 2 such a change has
the form

v (r) = (1 + rBI +r
282) w (r), (80)

where BI and 82 are same (unknown, up to the moment) operators in the functional
space E. Substituting (80) into (79), we derive the equation for w (r) in the form

{ '" (3 d ) [", (3 d ) aHo ( 3d ) ... (3 d) ... ]Ho r dr + r H1 r dr + Po ap r dr + Ho r dr BI

2[... "( 3d ) aHo ( 3d ) ... (3 d) ... ]+r H2 PI, BI, r dr + P2 ap r dr + Ho r dr B 2

+r3 iI; (r,r3 :r)}w(r) = 0,

where

(81)

The last equation is alredy prepared for the application of the 2-Borel transform.
Applying this transform, we arrive at the following equation for the Borel image
W (p) of the function w (r):

{

1/2 [ ... ]... a -... aHa ... ...
Ho (p) + (ßp) Hdp) +PI ßp (p) + Ho (p) BI

1 [ '" ]
a -... ... aHa ... ...

+ (ßp) H; (PI, BI,p) +P'l ßp (p) + Ho (p) B2

(
a) -3/2... (( a) -1/2 )}+ ap H; ap ,p W(p)=O.

We reduce the latter equation to an equation of the Volterra type by putting

W (p) = iJ;1 (p) W1(p) + iJ;1 (p) 0

(the last summand on the right does not vanish since the equation is considered in
hyperfunctions). For W1 (p) we obtain
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(82)

with some right-hand part F (p) having apolar singularity of the first order at
p = Po. Equation (82) is an equation of the Volterra type. The coefficients of
this equation have polar singularities of the first order at p = Po. As above, for
the solution to this equation obtained by the successive approximation method to
have simple singularities, it is nesessary to require that the operator coefficients of
(8/8p)-t/'l aod (8/8p)-t are regular at p = Po. Since, under the above assumptions,

Höt (p) = ~ + R1 (p)
p- Po

with R1 (p) regular at P = Po, the coefficient of (8/8p)-t/2 can be written down in
the form

1 [ A 8Ho A .. ]H t (Po) +PI-8 (Po) + Ho (Po) BI Ra + {regular operator} .
P- Po P

We have to choose the number PI and the operator BI in such a way that the
operator in tbe square brackets on the left in tbe latter relation vanishes.

Since tbe image of the operator Ro coincides with the kernel of the operator
Ho (p), this image is a one-dimensional subspa.ce generated by the vector U = U (0).
Hence, jf we choose Pt from the relation

(v, [HdPo)+P\O:O(Po)] u) =0

(which is possible since (V, aa~Q (Po) U) f; 0, see relation (31) for r = 0), then the

image of the operator

will be contained in the image of the operator Ho (Po) and, hence, we ean determine
the operator BI by the relation
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It is dear that for such choice of the operator BI the coefficient of (8j8p)-1/2 in
equation (82) is regular at p = Po.

Let us consider now the coefficient of the operator (8j8p)-1 in equation (82). It
equals

(83)

where PI and BI are already fixed. The procedure of the choice of the number P'J
and the operator B2 from the condition of regularity of operator (83) is literally the
same as the procedure of the choicze of Pt and BI above. We lea.ve the description
of this procedure to the reader.

Now equation (82) can be solved with the help of the successive approximation
method. As a result, we obtain the following affirmation:

Proposition 2 There exist a unique solution to equation (82) which is analytic
everywhere except for poles 01 the operator lamily Ho (p) and which has simple sin­
gularities at the point Po.

We emphasize that the latter proposition does not imply that the corresponding
solution u (r) to equation (20) occurs to be aresurgent function with simple sin­
gularities in the sense of 2-Laplace transform. From the other hand, the following
statement ta.kes place:

Theorem 4 For each pole Po 01 the operator family Ho (p) there exists a solution
u (r) to equation (20) 01 the form (77), which is aresurgent lunetion with simple
singularities in the sense of the resurgent representationl6

u (r) = Je-'V; (s, r) ds.
r

(84)

Proof As it follows from Proposition 2, the function w (r), which is 2-Laplace
transform of the solution W (p) to equation (81) is aresurgent function with simple
singularities in the sense of 2-Laplace transform. Clearly, the same is true for the
function v (r) defined via w (r) by relation (80). This means that the function v (r)
admits a representation of the form

v (r) = Je-:;'V (p) dp,
r

(85)

16See Remark 2. The definition of the resurgent representation and its main properties the
reader can find in the book [11].
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where the function V (p) is a function with simple singularities. Representation (85)
can be easily rewritten in the form of resurgent representation (84). To complete
the proof of the theorem, it remains to note that the operators of multiplication by
exp (-Pt/r) and rP'l involved into representation (78) of the function u (r) preserve
the dass of resurgent functions with simple singularities (the first of these operators
realises the shift in the s-plane, and the second just changes the powers of r involved
into the considered expansion).

To conclude this section, we remark that the constructed resurgent solutions
dearly coincide with results of resummation of formal silutions obtained in subsec­
tion 3.3. This follows from the fact that the computational procedure for coefficients
of formal expansion is unique.
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