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ON THE STRUCTURE OF NOETHERIAN SYMBOLIC REES ALGEBRAS

S. Goto, M. Herrmann, K. Nishida, O. Villamayor

Let A be a Noetherian local ring and I an ideal of A . In
this paper we use a slightly generalized notion of a symbolic power

I(n) (n)

of I and consider R = nQOI . First we characterize the

property of R to be Noetherian by an equimultiplicity condition of

I(k) . The main purpose of this note is to explore

some symbolic power
the problem when R, R' = g I(n) and G = @ I(n)/&(n+1) are Cohen-
neZ nz0

Macaulay or Gorenstein algebras in the case that A is a normal domain
and htl =1

1. Introduction

Let A be a Noetherian local ring and § a prime ideal of A .

The Noetherian property of the symbolic Rees algebra R = ngop(n) was

studied by many authors (e.g. [91, [10], [16], [18],[20], [21]).

In this paper we use a slightly generalized notion of a symbolic power

L e

for any ideal I and consider R = . We are interested

@
nz0
in the Cohen-Macaulay .and Gorenstein property of R .

First we characterize the property of R to be Noetherian by an

(k)

equimultiplicity condition of some symbolic power . Under this

aspect the problem was already studied in the case that dim(A/I) = 1
([10, Corollary], [16, Theorem 4]). Here we will show that for any ideal

I of an unmixed local ring A the symbolic Rees algebra R 1is Noethe-

(k) (k)

rian if I is equimultiple (i.e. the analytic spread of I coinci-

(k)

des with htI ) for some k (see (3.3).). The converse is also true

if A/I(n) is Cohen—Maéaulay for large n (see (3.6}.)

The main purpose of this note is to explore the problem when R ,

(n) ’ (n)
LI =
R 221 and G gOI

algebras in the case that A is a normal domain and htI= 1 . In

1(n+1) "are Cohen-Macaulay or Gorcenstein
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Theorem (4.1) we show that the following statements are cquivalent:

R 1is Cohen-Macaulay,
R' 1is Colen-Macaulay,

G is Cohen-Macaulay,

provided that the order of the class [I] of I 1in the divisor class
group Cl(A) of A 1is finite. For the characterization of the Goren-

stein property we describe in Theorem (4.5) the relations between the
canonical classes [KA] , [KR] and [KR,] of A, R and R' respec-

tively as follows:

(Kg) = (1) + [K,] ,

[Kge) = [K,] .

From the first equation we get that a Cohen-Macaulay ring R 1is Goren-
stein if and only if K, = I* := HomA(I,A) . The second cquation implies
that a Cohen-Macaulay ring R' or G 1is Gorenstein if and only if A

is so.

In section 5 we give some examples. In particular we consider the

following three conditions on A :

(1) ~ A 1is quasi-unmixed,
(ii) A is reduced,

(11i1) A 1s a Nagata ring.

These conditions imply that A is unmixed but not vice versa. Now our

examples show that if we replace the condition "A is unmixed” by any

two of the conditions (i}, (ii), (iii), then Theorem (3.3) is no more

true.
Throughout this paper we use the following notations:

(1) A is a Noetherian ring. If A 1is local we denote by m the
maximal ideal of A and by A the m-adic completion. We denote by

Q(A) the total quotientring of A .

(2) If I 1is a proper ideal of A we denote the ordinary Rees ring
nZ‘OlntnczA[t] , where t 1is an indeterminate, by R(I) , and the exten-—

ded Rees algebra.’ z " tnc:A[t,t—1] by R'(I)
" n€z
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(3) For a given 2Z-graded ring R we denote the k—-th Veronescan

subring by R(k)

(4) We denote by 2(a) the analytic spread of an ideal a 1in a

local ring A .

(5) If a 1is an ideal of a Noctherian ring A we put

e o n n . n
A" (@) ngX)ASSA(A/ﬂ )} , where & means integral closure of a , and

A*(a) = H;LOASSA(A/an) (see [14]).

(6) TFor a Krull domain A we denote the divisor class group of A
by Cl1(A) , and [a] 1is the class in Cl(A) of an ideal a in A .
For a finitely generated A-module M of rankAM =n , we define
detM = [(R M)**] |, where ( )* means the A-dual.

(7) 1If a ring A has a canonical module we denote it by Ky

Acknowledgement. We are thankful to Y. Yoshino for suggestions and

some stimulating discussions during the preparation of this work.

2. Preliminaries.

In this section we recall several results which play a key role in
our investigation of symbolic Rees algebras. For some of them, in
particular for (2.10) and (2.11), we give new proofs based on Itoh's
paper [4].

Throughout this section I and J are ideals of A .

Definition (2.1). We say that a family F = {Fn}nez of ideals of

A 1is a filtration of A if F satisfies the following conditions:

(1) FnDFnﬂ for any n€ZzZ .

. (2) Fnch:Fn+m for any n,m€2

When this is the case we put

R(F) = ) F_t"c alt]
nz0o "

and
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R'(F) = | F_ ¢ < ale,e™ ')
n€z

Then R'(F) = R(F)[u] , where u = t_1

Definition (2.2). A filtration F = {F } is said to be an
n)n€z

I-filtration (resp. I-stable) 1if F,21I" for any n€2 (resp. there
is an integer r such that F = Ln_rFr for any n2r .). Obviously

F 1is an I-filtration if and only if F1:>I .

Lemma {(2.3). Let F = {Fn}nEZ be an I-filtration. Then the follo-

wing conditions are equivalent:

(1) F is I-stable.
(2) R'(F) 1s module-finite over R'(l)
(3) R(F) 1is module-finite over R(I)

(4)  There exists an integer r such that FncIn_r for any ngzr.

Proof. (1)= (4) and (3)=(2) are trivial.

. n r n . ..
: t 1
(4) = (3): Since néant <R(I)t  , we know that néan is finitely

generated over R(I)

(2)=(1): Let R'(F) be generated by s homogeneous elements

n n
s .
c1t seresC t (ciE Fn.’niE:Z) over R'(I) . We put
i s
_ Z n-n,
r = max{n1,...,ns} . Then if nzr , we have Fn = i=1I c; €
n-r n-r

c 1 F «F , hence F =1 F .
T n n r

Lemma (2.4). Let F = {FR}HEZ be any filtration. Then the

following conditions are equivalent:

(1) R(F) 1is a Noetherian ring.

(2) [R(F)](k) is a Noetherian ring for any k>0 .

3wy

is a Noetherian ring for some k>0 .
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"Proof. (1)=(2): follows from [3, Chapter III, 1.3, Proposition 2].

(2)=(3): Trivial.

. k
1): S1< . = " .
(3)= (1) Let i<k and put L, = EOFnk+1t Then
k=1 i (k)
R(F) = iEOLit and L, is Noctherian as an ideal of [R(1)]

Hence R(F) 1is module-finite over [R(F)](k)

Definition (2.5). For ideals I and J in A let I1:<J> =

= ,U !i =n. . ez .
ial[I H J"] . Then F {I : <J>i}n€z is an I-filtration of A .

And we write RJ(I) := R(F) and R&(I) := R'(F) .

The Noetherian property of RJ(I) and R&(I) was studied by
Schenzel in [19], [21]. In the rest of this section we will deal with
these algebras from another point of view. For that we use the method
of ideal transforms, and within this frame the results of Itoh ([4])

will be essential. So we follow his notations.

Definition (2.6). Let T(I,A) = {xEﬁQ(A)l I"xcA for some n:»O}.

If A 1is a local ring with the maximal ideal m , then we denote

T(m,A) by AP .

Then we have the following two results of Itoh:

Proposition (2.7). ([4, (1.16)]) Let A be a residue ring of a

local Cohen-Macaulay ring such that depth A 21 . Then A% is a finite

A-module if and only if dim(A/p) 22 for every p€Ass,(A)

Proposition (2.8). ([4, (3.2)]) The following conditions are

equivalent:

n T(I,A) 1is a finite A-module.

(2) A= AssA(Q(A)/A)er(I) is a finite set and (Ap)g is a

finite Ap-module for every peEa .

The next lemma gives the link between R&(I) and an ideal trans-

form of R'(I)
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Lemma (2.9). Let & = JR'"(I) + uR'"(I) . Then we have:

R' (1) = T(a,R' (1))

Proof. Let Q = Q(R'(I)) . Then R‘(I)C:A[t,t—l]C:Q . We take any
PYET@E,R"(I)) 1i.e. antpc:R'(I) for some n>0 . Then
uanR'(I)CA[t,t_l] , SO tpEA[t,c—I} . Furthermore, since J @cR'(I) ,
all coefficients of ¢ are in 1IM: J" for some n , 80 we have
(DER’J(I) . Conversely, take any IPER'J(I) . For n 1large enough we
get unlfJE_A[t-1]cR'(I) and 'ancR'(I) . Therefore aRwER'(I) for

some & , hence YET(a,R'(1))

Theorem (2.10). (c.f..[19, (6.4) )]) Let A be a local ring with

the maximal ideal m . Then the following conditions are equivalent.

(1) Rm(I) is module-finite over R(I)

(2) (1R +p/p) <dim(R/p) for any peAssh

Proof. First we note that, since (II1 : <m>)ﬁ = Inﬁ : <mfs , We
may assume that A 1is complete. Put a = mR'(I) + uR'(I)’ . Then by
(2.3) and (2.9) condition (1) holds if and only if T(a,R'(I)) is module-
finite over R'(I) . In this proof we put R' = R'(I) and Q'='Q(R")

(1)=(2): Assume that there is a prime ideal p € AssA such that
(I +p/p) = dim(A/p) . Then we know by [14, (4.1)] that
m/p €A (1 +p/p) , hence we find by [14, 't3.18)] a prime ideal P ¢A*(u$)
such that PnA/p = m/p , where §:= R'(I +p/}:|). . Since
dimSP = Q,(uSP) =1 by [14, (4.1)], we have PEMinS(S/uS)

Let ¢ : R' —> S be the natural surjection and put p* = kery,

"P' = 1})_1(P). . Then P'€Ass(R'/uR') cAss(J/R') , and therefore

P'C Ass(Q/R') NV(a) . This implies that (R'(I)P,)g is module-finite
‘over R'(I)P, by (2.8). Since }J*R'P,EASS(R'P.) , we have

d_im(R'P,/p*R'P,) 22 by (2.7). Hence we obtain dimS, 22 , which

is a contradiction.
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(2)=(1): Let A := AssR,(Q'/R') ﬂV(ﬂ)CAssR,(R'/uR') . Since A
is a finite set, it is enough to show that dim(R'P,/Q) 22 for any
QE Ass R'P, by (2.7) and (2.8).

Now we assume that there exists a prime ideal QEASS(R'P.) such
that dim(R'P,/Q) S1 . Then Q = }J*R'P, for some P E€AssA , where
p* denotes the kernel of the natural surjection
¢ : R' —> 8 =R'"(I+p/p) . We put P = Y(P') . Then dimS, 51
Since u€P , we have PE€Min(S/uS). This implies P € A*(uS) . Hence
we get m/p = PNA/pEAY(I+p/p) and 50 L+ p/p) = dim(A/p)

But this is a contradiction to condition {2).

Theorem (2.11). (c.£.[19, (5.6)]) The following conditions are

equivalent:

() RJ(I) is module-finite over R(I)

(2) (1A + Q/Q) <dim(A¥/Q) for any PEV(I)AV(J) and any

p Y
Q€ Ass/A\p

Proof. (1)=(2)%* By (2.3) there exists an integer r such that

In—r:In : <J> for any ngzr . Let pEV(I)NV(I) . Then

In-r‘t\p:DInAp 1 <J Ap> DInAp : <}JAp> . Therefore R]JA (1 A}J) is

B
module-finite over R(IA}]) by (2.3). So we get E(Iﬁ;+QlQ) <
< dim (K;/Q) for any QEAss/A\F by (2.10).

(2)=(1)* We put R' = R'(I) and a = JR' + uR' . Then we have
T(a,R') = R' (I) by (2.9). Let A = Assp, (QR')/R) NV(a) <
c AssR,(R'/uR') , which is a finite set. We take any P€A and put
p=PNA . Then p€V(I)NV(I) , and from (2.10) and the assumption

we conclude that (IA]J) is module-finite over R'(IAp) . This’

Rl

- RA
"

implies that T(PR'p,R'p) 1is module-finite over R's . Then

T(a,R') is module-finite over R' by (2.8).



GOTO et al.

3. Finite generation of symbolic Rees algebras.

-Throughout this section T 1is a proper ideal of a Noetherian ring
A and S denotes a multiplicative subset of A such that
INS =¢.
(n)

= InA NA for each n€Z and

Definition (3.1). We write I S

we put R = R({I(n)-}nez).

First we give a generalization of [20, Theorem (2.1)].

Theorem (3.2). Let A be a Noetherian ring and I an ideal of

A . Then the following conditions are equivalent:

(n) n . . .

= @

(10 R nZOI t is a Noetherian ring.

(2) There is a positive integer k such that )?,(I(k){;-k Q/Q) <
< dim{\;/Q for any pEV-(I(k)) with pNS # ¢ and for any
QEAss Ky .

(3) There is a positive integer k such that [I(k)]n = I(kn)
for any ne

&) There is a bositive integer k such that [I(k) "= I(kn)

for all n>>0 .

Proof. (1)=(3) comes from [3; Chapter III, 1.3 Lemma 2], and
(3) = (4) is trivial.

(2)=>(1): Put a=1(k) . Then ansS =¢ and a

any nao . Hence R(k) = R({a(n)} nEZ) . Let F = A*(a) » i.e.

(n) = I(kn) for

there is a positive integer r such that F = AssA(A/an) for any
n2r . Put F' = {pEF |pNS # ¢} . We define an ideal J of A by

t
J = REF
A if F' = ¢
Then ari :<J>ca(f‘) for all ne€eZ and an: <J>= a(n) for nzr .
Hence we get RJ(a)cR(k) and [RJ(a)]n = [R(k)]n for any rzr .
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Now the condition (2) of the theorem implies that RJ(a) is Noetherian

by.(2.11), so R(k) is also Noetherian. Hence R 1is Noetherian by
(2-4)0

(4) = (2): Put a = I(k) . Let p€V(@) and pNS # ¢ . Then for
any n >>0 we have a" = a(n)jan : <p>D a" and so a" <p> = a"

Hence Rp(a) is Noetherian. Then we get (2) by (2.11).

As a corollary we obtain the following thecorem.

Theorem (3.3). Let A be an unmixed local ring and I and ideal
of A . If R(I(k)) = ht:(I'(k)) ‘for some k21 , then R 1is Noetherian.
(k)

Proof. Let peEV(L
lity (2) of (3.2). Note that for any QEAss/P:; we have

) and RNS # ¢ . We have to show the inequa-

2(1“‘)’{; + /@ 52y = hear®) sdim(a) = dincAyQ)
Therefore it is enough to show that ht(I(k)) <dim A}J . If ht I(k) =
= dimAp , then p€ Min(A/I(k)) and so PNS = ¢ . This is a
contradiction.

Proposition (3.4). Let A be a local ring. If A/Irl is Cohen-
Macaulay for all n21 , then &(I) = dimA - dim(A/I) . Hence, if A

is quasi-unmixed, we have &£(I) = htI , i.e. I 1is equimultiple.

Proof, Put s = dimA/I and choose a subsystem of parameters

ai,...,as for A so that ays.

for A/I . Then as a

L form a system of parameters
REERELN is an A/In-sequence, we get

qi" = gn 1" for all n21 , where q = (a1,...,aSV)A . Therefore
G(I)/qG(I) =G(I+q/q) and this implies &(I) = dim(A/q) = dimA-s =

a2 dimA -dim(A/I)

Corollary (3.5). Let A be a local ring as in (3.4) and

- . . . . ) r
F {Fn}nEZ any filtration of A . If R(F) is Noetherian and A/ 0

is Cohen-Macaulay for n >0 , then R,(Fk) = ht(Fk) for some k .
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Proof. By assumption, there is a positive integer k such

that (Fk)n = Fkn for all nz21 . Therefore, taking k large enough,

we may assume that A/ (Fk)n is Cohen-Macaulay for any ne& 1 . Then

2(F) = he(F) by (3.4).

From (3.3) and (3.5) we get the following theorem.

Theorem{3.6). Let A be an unmixed local ring and supposc that

(n)

A/I"" is Cohen-Macaulay for n>>0 . Then R 1is Noetherian if and
only if 21y = ne(@ (@

) for some k21

In the rest of this section we assume the following situation,

labelled by (*):

(*) (A,m) 1is a Noetherian normal local domain of dimA = d>0 and

ht I = 1 . When this is the case we choose in particular §S = A\pg}:p s

where F = {}JEH1(A) l Icp} , and H](A) denotes the set of height
one prime ideals of A . Then we define I(n) and R as in (3.1).
Moreover we denote by R' and G the extended symbolic Rees algebra
(n) g (), (n+1)
T
R' ({1 }nEZ V7)1

) and the associated graded ring 95
respectively.

Remark. Note that I(n)

. . . (n) n N
* = =
situation (*), since I (}IEFI A}J) nA

is the divisorialization of In in the
n
pQHt(A)I b

Theorem (3.7). 1In the situation (*) we assume that A is an un-—

mixed local ring of dimA22 and that A}l is factorial for all
P E Spec AN {M} . Then R is Noetherian if and only if R,(I(k)) <dimA

for some k .

Proof. Let PREV(I)~ {m} and PNS # ¢ . So htpPp22 and A;J is
I(I{)A]:I must be principal for any k since it is
a divisorial ideal of Ap by the fore-going remark . Hence we have for

any QE;!“ass/»"‘\}.1 and k>0 :

factorial. Therefore

b8 - o/ s 2R = 1 <ainhy = ainfie
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since % is unmixed. Therefore we get the claim of the theoremy(3.2)
and [14, (4.2)].

Now we characterize the property of R to be Noetherian by the
order of the class [I] of I in Cl(A) , which is denoted by
(11} .

Theorem (3.8). 1In the situation (*), R is Noetherian if |[I]] < .

(n)

The converse holds if A 1is a quasi-unmixed local ring and A/1L

is Cohen-Macaulay for n>>0 .

First we show :the following lemma.

Lemma (3.9). Let k be a positive integer and assume that
i(k = aA with a€A . Then the following assertions hold:
() at:k is a non-zero divisor on R and G .

@ R/acR =01 Me... o1

(3 clatc = a/1M @ 1(1)/1(2) o ...0 1D /1) .

Proof. For any n20 we write n = ik+j with 120 and

0Sj<k . Then we get I(n) = alI(J) . This proves (2) and (3). To
‘ (n)

k . ..
show that at is a non-zero divisor on G , we.assume that x€1T

ax,EI(k+n+1) . Since k + n + 1 = (i+1)k+j+1 , we have I(k+n+1) =

(3+1)

= al”I(JH) 1+ . Then

and so ax = a y for some y€l

(n+1)

i k. ..
X = alyEI . Therefore at is a non-zero divisor on G (and

of course on R too).

Proof of (3.8). The first assertion follows immediately from

(2) of (3.9). Conversely, let R be Noetherian and assume that A 1is
(n)

is Cohen-Macaulay for n>>0 . By (3.5) we

(k)

quasi-unmixed and A/I
have l(I(k) =1
so |[11} <k .

for some k>0 . Then I must be principal, and

Corollary (3.10). In the situation (*) we assume dimA = 2 . Then

R 1is Noetherian if and only if [[I]]| < .

i1



GOTO et al.

4. Cohen-Macaulay and Gorenstein propertics.

Throughout this section A and 1 satisfy the condition (*) of
section 3. Assuming |{I]]| < =, we first investigate the Cohen-Macaulay
property of the algebras R, R' and G defined in (*). Then we describe
the relations between the canonical classes of A, R and R' , which
lead in particular to a characterization of the Gorenstein property of
R, R' and G . Note that the divisor class groups of R and R" are

available since these algebras are Krull domains (See (4.3).).

Theorem (4.1). Suppose that k = |[I]| < ©, Then the following

statements are equivalent:

(1) R is a Cohen-Macaulay ring.
(2) R' 1is a Cohen-Macaulay ring.

(3) G is a Cohen-Macaulay ring.

(4) I(n) is a maximal .Cohen~Macaulay module over A (i.e. a
Cohen-Macaulay module over A with the same dimension as A )
for 0Sn<k .

(5) I(n) is a maximal Cohen-Macaulay module for any né€Z .

Proof. By assumption there is an element a€ A such that I(k) = aAd.

(1)e=(4): By (3.9) R 1is Cohen-Macaulay if and only if
T := R/at“R = A ® I(I) 8... @I(k_” is Cohen-Macaulay. Note that any
system of parameters for A 1s a homogenecous system of parawmeters
for T . Therefore conditions (1) and (4) are equivalent.

(4)==>(5): We take any n€Z . Then I(n)

the ideals A, I(l),...,I(k-”

is isomorphic to one of

as we have seen in the proof of (3.9).

(2)+=(3): The element u =t is a homogeneous non-zero divisor
on R' and we have R'/uR' =G . Hence R' 1is Cohen-Macaulay if and

only if G is Cohen-Macaulay.

(5)=(3): We conclude from (5) that depthA(In)/I(n+1)) = d-1 for

any n€Z . Therefore A/I(I) is a Cohen-Macaulay ring and
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(1)

ia a maximal Cohen-Macaulay module over A/L , 1.e.

I(n)/I(nH)

G/.'ath = A/IU) [+ I(i)/l(z) 6...0 I(k—”/l(k) is a Cohen-Macaulay ring.
. , . k .
Moreover G 1is a Cohen-Macaulay ring too since at is a non-zcro

divisor on G by (3.9).

(2)=(4): Condition (2) implies R'u = A[t,t_1] is a Cohen-Macaulay
ring, hence A must be Cohen-Macaulay and dim(A/I(1)) = d-1
Furthermore we know that G/ath = A/I(D o 1(1)/1(2) ®... @I(k-l)/]l(k)

is a Cohen-Macaulay ring by (3.9), therefore depthA(I(n)/I(nH)) =d-1
for 0Sn<k . Then. 1(1), 1(2), I(k_t)

“« ey

are maximal Cohen-Macaulay

A-modules by the depth-lemma applied to the exact sequence

0—> 1) 5 (o (), (net)

—> 0 , q.e.d.

(n)

If dimA =2 then 1 is always a maximal Cohen-Macaulay

I(n)

A-module for all n€Z , since 1s the divisorialization of

1" . This yields the following Corollary.

Corollary (4.2). If dimA =2 and |[[1]]<® , then R, R' and

G are Cohen~Macaulay rings.
To characterize the Gorenstein property of R,,R' and G we first
calculate the canonical classes of R and R'

We start with a lemma.

Lemma (4.3). Under the general assumptions of the section the

following assertions are true:
) R .and R' are Krull domains.
(2) If P€H1(R) or P€H1(R') , then ht(PNA)S1 .
(3) 1If P€H1(R) and PNA # 0, then (PNAR,= PR, .

(4) 1f P€H1(R) and QGHI(R) with PNA=QNA #0,
then P =Q .

Proof. (1) Since I(n) = (N InAp) NA , where

REF
F = {p€H1(A) |Icp} , we have
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T = n t _ N t -1
(#? R (pepr)nA[t] and R (pEFR p) nale,e ']
For any p€H1(A) there is an element a€A such that IAp = az“s].1 R
hence . R;J = %[at] and R'p = Ap[at,t_1] . These two rings are Krull

domains. Therefore R and R' are Krull domains by (#) and [3, Chapter.
VII, 1.3, Example 3].

(2) We only consider the case where P€H1(R') . (The same proof
works for P€H1(R) .) For every }J€H1(A) we put
wip) = {Q €H (R") | Q" NAcp} . Then by (#) we find the following

defining family of discrete valuation rings for R'

(pLeJF{R'Q' l Q' €w(p)}> U{A[t,t"]Q ‘ QEH1(A[t,t_1})}

Now, if P€H1(R') , we have the following two cases:

(1) R', = R'

P Q' for some Q'€w(p) with PEF .

(ii) R'. = Ale,c ]

p for some QEH](A[t,t—1])

Q
For (i) we obtain PNA =Q'NAc)p and for (ii) we have PNA=QNA .
In both cases we get ht(PNA) 1

(3) 1f P€H1(R) and PNA #0 we put § =PNA . Then
pGHl(A) by (2). Since Rp

that pRFESpec RF and 0 # }:IR;JCPRP . Hence }JRp = PRP and so

is a pelynomial ring over Ap , we know

PR, = PR, .

(4) This follows from the proof of (3).

By (2) of (4.3) the inclusions AcR and AcR' satisfy the
condition PDE of Samuel ([3, Chapter VII, 1.10]). Hence there are
natural homomorphisms 1 : Cl1(A) —> Cl(R) and
i' : Cc1(A) —> C1(R') . The next proposition describes these homo-

morphisms.
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Proposition (4.4). (c.f.[22, Proposition 2.6]) With the assumptions

as above the following statements hold:

(1) 1 1is an isomorphism.

(2) 1i' 1is a splitting monomorphism,

Proof. (1) Let T = A~{0} . Then Cl(RT) = 0 since RT is a
polynomial ring over the quotient field of A . This implies
Cl1(R) = <[P] |P€H1(R) , PNA # 0>, see {3, Chapter VII, 1.10]. On
the other hand, if PEHI(R) and PNA # 0, then P := PNAE H1(A)
and 1([p]) = [P] by (4.3) and [3, Chapter VII, 1.10, Prop. 14]. Hence
i is surjective. To show that 1 is injective we assume [a] € Keri,

where A 1is a divisorial ideal of A . Then there is a homogeneous

element fER such that aRP = R for all I‘EIII(R) . Now take

P

pe H1(A) . Since Rp is flat over A , aRp is also divisorial.
So we have aR}1 = fR_ . Therefore f€A and A_ = fA

B Y p
[al] =0

. This implies

(2) Let j : Cl{(R'") —> Cl(R'u) be the homomorphism induced from

1, we

the inclusion R'C:R'u-, where u = t:_I . Since RKI = Alt,t
identify Cl(R11) with Cl1{A) , s. [3, Chapter VII, 1.10, Prop. 18].
Then the composition Jjei' 1s an identity map. Hence 1i' 1is a splitting

monomorphism,

Now we describe .the relations between canonical classes of A ,

R and R'

Theorem (4.5). (c.f. [8, Theorem (c)]). Suppose that A 1is a homo-

morphic image of a regular local ring and R 1is Noetherian. Then the
canonical modules KA’ KR and KR' exist and we have the following

equalities:

(1) [Kp] = (1) + [K,]
() [Kpi] = [K,]

Here we regard [I] and [KA] as elements of Cl(R) (resp. CI1(R'))

via the group homomorphisms i (resp. 1i' ).

15
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To prove (4.5) we recall the following fact, which is well-known.

Lemma (4.6). Let A be a discrete valuation ring and M a fini-
tely generated free A-module with a free basis h1,...,hn . Suppose L

is an A-submodule of M generated by ByreersB such that M/L 1is a

n
torsion A-module. If g. = .L a,.h.(a..€A) for 1S Sn , then
] 1=1 1] 1 1]

zA(M/L) = v(det[aij]) ,

where v denotes the normalised additive valuation of A .

We divide the proof of (4.5) into two steps:

Proof of (4.5). in case that I(l) = 1' for all i€Z : Let

I-= (31,...,an)A with a, #0 for 12i1sn, and let Xl,...,xn,Y
be indeterminates. We may assume n 22 . We denote the kernels of the
surjections

AlX,,...,X ] —>R with X, |l—> a.t
n 1 1

1

and

. -1
AlX ,...,Xn,Y] —> R' with Xi |—> a t, Y }— u=t

1

by J and J' respectively.

Claim 1. The following equations hold:
. 2
(1) det(J/J7) = —[KR} + [KAR] .

(i) der(3'/(N%) = -[k,] + (KR']

Proof. The equation (i) was already shown in the proof of [8,
Theorem, {c)] . The same technique as in [8] works for (i1i): Actually
there is a regular locél ring S together with an epimorphism S —> A
by assumption. Let J1 and J2 be the kernels of the natural surjec-
tions S[X,,...,X ,Y] —> A[X ,...,X ,¥] and S[X,,...,X ,Y]~-->R'

Then by tensorizing with S the sequence 0 —> J1 —_ .J2 —> J' —> 0
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gives rise to a complex of R'-modules

0 ——> JI/Jf 8 R' —> J2/J§ — 3 ut— o0

which is split exact at prime ideals P€H1(R') . So we obtain (ii)
by [8, Lemma p. 183].

Claim 2. The following equations hold:
. 2
(1) . det(J/J°) = -[1IR]

(i) det'/(n%) = 0
Proof. (i) We .put B = A[XI,...,XD] , M = J/J2 and

g: =aX, ~a.X €J for 1s5ign-1
1 ni 1n

Let L be the R-submodule of M generated by the classes of
-8yse--58 4 in M . Since JC = (g1,...,gn_])C , where C = BRQ(A) .

and since 8yree- form a regular sequence on C , we get

» 8
n-1
MgQ(R) = L%‘Q(R), and the rank of this vector space over Q(R) is

n-1 . Hence we get:

detM = - -} ()Pl
PEH, (R)

where T = M/L (see [3, Chapter VII, §§ 4.5]). We want to show that
(*x1) E(TP) = VP(IR) + (n-Z)vP(an)

for any PEHI(R) , where v, 1is the valuation with respect to P .

P
For that it is enough to consider the case where IAp = anAp or
IA;:I = an-1Ap , where g = PNA . (Note htp =1 by (2) of (4.3)).

If IA = a A_, then there exists an element o«. €A such that
g np : LR

a. = a.a_ for all 1sisn-1 . We put
1 in

h, = X, ~a.X €JB for tsisno-1
1 i i'n ]

Since JBp = (h1,.

we know that MP is RP-free and the images of h

n-1
10

. ’hn—I)Bp and since h1 yeasyh form a Bp-sequence,

. ’hn-1 in MP
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form a free basis over RP + On the other hand we have a h, =g, ,
n i

s i
l.e.
n
n
(81’g2"°"gn_1) = ( hlihzt""hn_.l) .

n.

Therefore £(TP) = (n—1)vP(an) by (4.6), and this implies (®*1) gince
VP(IR) = vP(an) .

Next we assume IA_ = a A . Then there exists an element o, €A
R n—-1q i B

such that a; = a.a for 15isn . In this case we put

i n-1

h, =X, - a,X €JB for 1sisn-2 s
i i"n B

= X -
hn-1 n anxn—l € JB}J

Then we have

(815058, 908, 1) = (hysenosh o0
1...—an_2—an_1

By the same argument as before we get 9.(TP) = VP(an-1) + (n—Z)VP(an)

and this implies (*1), since v (an_l) = vP(IR) . This proves (i) of

P
claim 2 since [a?1 2R] =0 .

(i1) Now we put B A[X1,...,Xn,Y]. . M=J'/(J')2 and

. aX, -aX for 1£18n-1 ,
i n i in

4]
1]

g =XY- a both contained in J'

Let L be the R'-submodule of M generated by the classes of

grer+»8, 1D M . Then
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detM =- X MTP) (P] ,
P€H1(R')

where T = M/L . We want to show
* - -
(*2) l(TP) (n I)VP(an)

for any PEHI(R') . For that it is enough to consider the case where

IAp = anAp and IA;J = an—lA}l , wWhere § = PF'IA .

If IA_ = a A_ , there exists an element o, €A such that
p np i p
a. =a.a for 1sisn-1 . We put
1 1in
h, = X.-a.X for 121n-1 ,
i i in

h =XY-a .
n n n

. 1 = .
Since JB}1 (h1""’hn)Bp and since h,,..

we know that MP is R'P—free,and the images of h

.,hn form a Bp—sequcnce,
EEEE ,hn in M
form a free basis over R'P . On the other hand we have

P

n
(g1,coc’gn_1,gn) = (hI,---,hn_1,hn) . an
1
Therefore R,(TP) = (n—1)vP(an) by (4.6).
Next we assume IA,J = a A. . Then there exists an element . €A
n-14 1
such that a; = oa.a _, for 151isn . In this case we put
hi=xi—aixn—1 for 1s1sn-2 |,
hn—1 = Xn T %1 *
hn - Xn—1Y - an-l
Then we have an
. an
(g1!"‘an_2’gn_1’gn)=(hIQ“"hn_z‘lhn_1’hn) -a....-a -a Y
1 n-2 n-1
0 ... © 0 a
i n
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By t = -
y the same argument as before we get R.(TP) (n 2)vp(an) + VP(an—-1an)

and this implies (*2),since a =a . This .proves (ii) of claim 2.

o
n-1n

Combining claim 1 and claim 2 we get (4.5) in the case where
1D ol forann i€z .

Proof of (4.5) in the gencral case. Since R 1is Noetherian, there
(k))n _ I(kn)

exists a positive integer k such that (I for nz1 .

(1) We put S = nEZOI(kn) tkn . Then we are in the previous special

(k)

case and therefore [KS] = [as] + [KAS] , where @& = I . Hence

KS§R§*5 (aKAS)**(R) for some L£€Z , where ( )* means the S-dual.

It is easy to see that & = -k by passing to Sp for a prime ideal
}IEHI(A) . On the other hand, since R 1is module-finite over S , we

E I (kn+1i) tkn

have KRE Hom g (R,KS) . Now we put Si = for 0Sisk-1.

nz0
k-1 i k=1
Then R = .£. S.t & .8 §.(-i) and so
1=0 "1 1=0 i
k-1
- ~ X% -
KR = i_SO MS (Si,(ﬂKAS) ) (i-k)

Therefore we may regard the canonical module of R as

— . » v k_i
K= I ls;[szak,sh ;s ,

where F = Q(R) . For any PEHI(R) the ideal §p = PNA has htp st .

Therefore we find elements a,b€A such that Ip = aAp , (KA)F = bA
k 1
Then we get aKASp a bSp and (Si)p = a Sp , and therefore
k=1 k-1 k-1
(KR)p 150 a bSpt (IKARt)p and (KR)P (IKARC)P

B

This implies [KR] = [IR] + [KAR] .

(2) We use the same method as in (1): Let §' = nizl(kn)tkn .

Then [KS.] = [KAS'] by the previous special case in the proof of (4.5).

Hence KS' = (KAS')** , ()* means the S'-dual. Now we put

Si = é I(kn_l)tkn for 0sisk-1 . Then we get

S!t:—]'EL.(él 5'(i) and so
1=0 "1

20
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k=1

~
02
([ == |

R ¥ Hom (S}, (K,8")*%) (-1)

0
Therefore we may regard the canenical module of R' as
k-1

= U [ - ] . ' 1
K izo[[sF, (s' :,Kk,S'] gsi) ¢t

where F'= Q(R') . For any PEZH1(R') consider the ideal g = PNA .

Similar to (1) we find elements a,b€A such that KASQ = bSﬁ and
S G D - R S S '
Si a Sp . Hence (KR')p igo-a bSp t KARp and so

(KR')P = KARE . This implies [KR'] = [KAR'] y q.e.d. (4.5).

Remark (4.7). If k = |[I]|<«, one can show the relations (1)

and (2) of (4.5) without using the condition that A 1s a homomorphic

image of a regular local ring, provided A has a canonical module. The
Z I(nk)tnk

nz0

_ring over A . Therefore we have immediately KSE;KAS(-k) , and then

reason is that in this situation §S = is a polynomial

the same method works as before.

Finally we come to the characterization of the Gorenstein property
of R, R and G .

Theorem (4.8). Let A be a homomorphic image of a regular local

ring. Then the following assertions are equivalent:
QD) R 1s a Gorenstein ring.
(2) R is a Cohen-Macaulay ring and I*:zKA , where I*==HomA(I,A).

Proof. By (1) of (4.5) we have

[Kg) =0 == [1] + [K,] = 0
o= [K,] = =[1] = [1#]

= *
= KA 1

This proves the equivalence of (1) and (2) of (4.8).
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Theorem (4.9). Let A be a homomorphic image of a rgular local

" ring. Then the following assertions are equivalent:

@D R' 1is a Gorenstein ring.
(2) R' 1is a Cohen-Macaulay ring and A is a Gorenstein ring.
(3) G is a Gorenstein ring.
(4) G is a Cohen-Macaulay ring and A 1s a Gorenstein ring.

Proof. (1)e=(2) follows from (2) of (4.5). (1)==>(3) and

(2)e==>(4) are trivial since R'/uR'=G .

Finally we collect some results under the condition |[I]| < =.

Proposition (4.10). Suppose |[I]|< « , Then the following state-

ments are equivalent:

(1) R (resp. C) is a Gorenstein ring.
(2) I* = KA (resp. A is a Gorenstein ring) and I(l)

mal Cohen-Macaulay A-module for all 120 .

1s a maxi-

Proof. This follows from (4.1), (4.5) and (4.7).

Corollary (4.11). Suppose that dimA = 2 and |[I]| < «. Then

the following are true:

(1) R 1is a Gorenstein ring if and only if I*s;KA .

(2) G 1s a Gorenstein ring if and only if A 1s a Gorenstein ring.

Proposition (4.12). Let A be a Gorenstein ring and |[[I]| < «.

(1)

Then R 1is Gorenstein if and only if I is principal.

Proof. Let k = |[I]| . If R {is Gorenstein, then LRI P

(k=1)

& K,zA and so 1 if principal., Hence k = 1 . Conversely if

T oNA
1(1) is principal, then R 1is a polynomial ring over A.. Therefore

R 1is Gorenstein.

Proposition (4.13). Let k = I[I]|< o, If A has a canonical

module KA and if KAE I , then the following conditions are cquiva=-

lent:
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(1) R 1is a Gorenstein ring.
(2) ., ks 2 and I(n) is a maximal Cohen-Macaulay A-module for
n= 0,1

Proof. (1)=(2): We have [KA] = [I] by the assumption K2 .
On the other hand. we conclude from (1) and .(4.10) that [KA] = - [1]
Hence [I] = -1[{I] and so 2[{1] =0.

(2)=(1): Since [1] =-1[1] = {1*] , we have K, 1=1* . Hence
R is Gorenstein by (4.10).

Proposition (4.14). Suppose that |[I]| <®. If R is a Colen-

Macaulay ring, then the following statements are equivalent:

(N () is a Gorenstein ring for some n>0

(2) The canonical module K, of A exists and [KA]EI<[I]>'.

Proof. (1)=(2): By (4.10) we have [KA] = - [I(n)] = -n[1]
(2)= (1): There is an integer i such that {KA] = i[I] . Let

k = |[1]| and take a positive integer n so that k divides n+1i .

Then [I(n)} + [KA] = (n+i)[I] = 0 . Hence R(n) is Gorenstein by
(4.5), (1).

Proposition (4.15). Suppose that dimA =2 and A has a cano-

nical module KA with k = |LKA]|< o, If I = Kik-I) , then R 1is

a Gorenstein ring.

Proof. R 1is Cohen-Macaulay by (4.2). Moreover we have

[1] = (k—1)[KA] = -[KA] . Hence R 1is Gorenstein by (4.10).

5. Examples and remarks.

Throughout this section A 1is a Noetherian local ring with the

maximal ideal m .

First we consider the following three conditions on A

23
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(1) A is quasi-unmixed.
(ii) A 1is reduced.

(iii) A 1is a Nagata ring.

These condtions imply that A 1is unmixed. Therefore Theorem (3.3)

is also true if we replace the assumption "A . is unmixed" by the con-
ditions (i), (ii), (iii). But in this situation we can give a simpler
proof for the claim of (3.3) provided that the residue class field of

A 1is infinite. (We use the same notations as in definition (3.1):

(k)

We choose a minimal reduction J of a =1 and put
n _kn
T := ngo Jt

principal class, we know by [17, Theorem 2.12} that
0 . T . -0
AssA(ﬁ/J = MlnA(ﬁ/J ) = MlnA(A/a) for n>0 , where J denotes the

. Since A 1is quasi-unmixed and J is an ideal of the

integral closure of J . This implies in particular that any element

s€ES 1is a non-zero divisor on ﬁ/a . Therefore we have

anASﬂA = a"% and so. a(n) C;ﬁ . This shows

T < R(k) cTc A[tk] ,

where T 1is the integral closure of T in A[tk] . If hta >0 ,

then Q(T) = Q(A[tk]) ; therefore R(k) is module-finite over T since

w o,

A 1is a reduced Nagata ring. If hta =0 , then R since A

(1)

is reduced. In both cases is Noetherian, hence R itself is

Noetherian by (2.4).

The following three examples show that the claim of (3.3) under
the assumptions (i),(ii),  (iii) becomes false if any of these three

conditions 1s omitted.

(n)

From now on we denote by R the n-th symbolic power of a

(n) n
= na .
p p Ap

given prime ideal § of A 1in the usual sense, i.e.

Example (5.1). Let (A,Mm) be a two dimensional Nagata domain

with the normalization A such that A/A=A/m . Suppose that A has
exactly two maximal ideals M and N with htM =1, htN =2 and
MNN = M , Furthermore we assume that M is a principal ideal and N
includes a prime element y . Such an example exists by [15, Appendix

E 21]. Note that A 1is not quasi-unmixed by [15, 34.6]; otherwise
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A has to satisfy the second chain-condition, hence A has to
satisfy the first chain-condition. That would be a contradiction
to the fact that M and N have different heights., We put P = yX

and B =P0A . Then htP =1 and the following assertions hold:

(1) }J(n) =P™ for nz1 .
2 2@™) =1 for nzi

(3 Ra= @ }l(n) is not a Noetherian ring.

Proof. (1) Since AF’ = (K)P = KP , we have PnAp = PDKP for
ne&l . Therefore
p(™ o }InApﬂA = P“KPHA =p"nA=pr"nM =M
(2) Let M = xA . Then we get from (1) (]J(n))2 = a}:l(n) , where

a=;\-:yn , and a€MNN =m .

(3) Assume that R 1is Noetherian. Then there is.a positive inte-
(}I(k))2 = ]J(Zk) . This implies p2? = pPy by

(1), hence M?'KM = MFM , a contradiction.

ger k such that

Example (5.2). Let S=k[[X,Y,2]] be a formal power series ring
over a field k and let A = S/(XZ,X-Y) =: k[[x,y,z]] . Then A 1is

a quasi-unmixed Nagata ring, but not reduced. We put P = (x,2z)A .

Then PEH](A) and the following assertions hold:

(n) = (x,zn)A for nz1

(1) P
2y 2™y = for nz |

(3) R = nQIP(n) is5 not a Noetherian ring.

Example (5.3). We use the noations of (5.2). Since depthA =1

’

there is a local domain (R,1) such that R=a by [11, Theorem 1].
Then R is quasi-unmixed and reduced, but not a Nagata ring (other-
wise A = R would be reduced.). Let a = (x,y)A + m? . Then
R/aAaNR=zA/a , since a 1s M-primary. We get aﬂRin , hence there
is an element f€n such that f£f€aNR . Then m = (x,y,f)A .



26 . GOTO et al.

Replacing 2z by f we may assume z€R from the beginning. Now we

‘put P =PNA . Then htpR =1 and the following assertions hold:

(1) P(n) o p<n)A for nz1

(2) 2(Il(n)) = 1 for nz1

(3) S := @ }I(n) is not a Noetherian rin

‘= neo &-
. (n) .

Procf. (1) Since A/}J A is Cohen-Macaulay, we have
Ass (A/Fl(n)A) = Min (A/;J(n) . On the other hand v(3‘™a)cv(z"a) =
= {P,m} . Hence Ass (A/}I(n) = {P} and so ]J(n)A is P-primary.

(n) (n) . (n), _,n, _ n
Therefore we have p A=P , since § AP = P AP =z AP .

(n) (n)

(2) since (R/n) & R(x™) = (a/m) g (agrp™))= a/m g re™)

we get Z(p(n)) = R.(P(n)) = 1,

(3) Assume that S 1is Noetherian, then SgAER = n@O P(n) is

Noetherian. But this contradicts to (3) of (5.2).

The next example shows that the "only if" part of (3.6) is not

(n)

true in general unless A/I is Cohen-Macaulay for n>>0

Example (5.4). Let A = k[[X,Y,Z,W]) /(XY-2zW) = ki[x,y,z,w] ,

where k[[X,Y,Z,W]] 1is a formal power series ring over a field k .
We put p = (x,Z)A . Then p€H1(A) and the following assertions hold:

(1) F(n) = }ln for nz1

(2)  2(p) =2

(3) A/}Jn is not a Cohen-Macaulay ring for n22 .

Finally we construct a Gorenstein symbolic Rees algebra using

the invariant theory.

Example (5.5). Let S = C[X,Y] be a polynomial ring and let

R = t]:[}(B,}(ZY,XYZ,Y3 . We put p = (X3 XZY XY )R . Then the symbolic

]
(n)
R = ng1p

Rees algebra is a Gorenstein ring.
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Proof. Let w be a primitive cubic root of unity and let G be

the subgroup of GLZ(E) generated by o =(‘6 2) . Then it is well-

known, that R = SG . We put P = XS . Thercfore we obtain

F(n) = PnﬂR(=(Pn)G) for nz21 , i.e.

R = R(p)®

Since R(P) = C[X,Y,Xt] and o acts on Xt as o(Xt) = wXt ,

we get
rp)C = oix,v,xe1

where Xt 1s taken with degree one. Hence R must be a Gorenstein

ring by [23, Theorem 1].
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