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Orbifold-uniformizing differential equations 11 

- Absence of accessory parameters -

by 

Masaaki Yoshida 

§O Introduction In this note, we show the absence of 

accessory parameters for some orbifo~d-uniformizing differential 

equations (DUDE). Accessory parameters for ordinary differen­

tial equations have a long history. For Fuchsian systems in 

several variables however, there are few studies about these. 

Only known result is their absence for Appell's hypergeometric 

differential equations ([Pi], [T]) and for some GUDE's C[Yl], 

[Y2]). Since the notion of accessory parameters is not so 

familiar, we shall explain it for some type of differential 

equations in several vaniables. And shall show their absence, 

in a weak form, for some GUDE's, which is proved by using a 

l~~lleralizedVof Weil-Mostow's rigidity theorem (c.L [R], [M]). 
ve'($iol'\ 

Tll make the story more understandable and to see the contrast 

bet\~een DUDE's in several rariables and those in single variable, 

The author is partially supportedVMax-Plank-Institut 

fur Mathematik. ~ 
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we shall briefly recall the situation in ordinary differential 

equations. 

The author wishes to express his hearty thanks to professor 

W.M. Goldman who kindly informed him the key lemma. 

§l Ordinary differential equations 

Consider the Fuchsian equation 

* + p(x)w = 0 

defined on M = CV{oo} with singular points on x = xl"'" xm = 00, 

where p(x) is a rational function. Let Wo and WI be two 

linearly independent solution of *. The multi-valued mapping 

• : M + [pI defined by x + wO(x) wl(x) is called the projective 

solution of * , which is determined up to projective transformations. 

Local property of * at x = x· 
J 

is described by a complex number 

aj' called the exponent of * at Xj' which is the square of the 

difference of the indicial equation of * at X •• 
J 

On the contrary, for given m (~3) complex numbers 

uI"'" am' there exists an differential equation * whose exponent 

at x. 
J 

is equal to a. .• 
J 

If m = 3 it is uniquely determined, 

III which case the equation * is equivalent to the hypergeometric 

eqllil t ion. If m ~ 4, some coefficients remain undetermined, 

vII i l'il are called by a curious name "accessory parameters". For 

mOl'C genaral or modern treatment see [Qh] and [Ok]. 
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§2 Fuchsian systems 

Let U be a domain in [n with cordinate x =: (xl"'" x n). 

Consider a completely integrable Fuchsian system 

n 
= L 

k=l 
k aw p .. (x) 
1) X k 

o + p .. (x)w 
1) 

n 
satisfying L Pitt = 0 (i=l, ... , n) with reqular singularity 

.2,=1 

along AU' where prj (i,j=l, ... , n, k=O,l, ... , n) are meromorphic 

on U. Note that this equation reduces to * in §l if n = 1. 

For n+l linearly independent solutions wO,w1 ' ... , wn of 

(E)U' we define the projective solution ,I! U -+ If'pn 't'U : \L by 

are said to be equivalent at p€- Uf\U' if there is a germ of 

biholomorphic mapping g from iJiU(p) to iJi U! (p) such that 

iJiUI == gOl/JU as a germ at p. An equivalence class is called the 

local behavior at p. 

Let M be a projective algebraic manifold of complex 

dimension n. A Fuchsian system (E) on M is a collection of 

equations (E)U for all open sets U in M such that 

iJi(j = lPU' on U{\U' up to projective transformations. The 

singular locus A of (E), which is by definition the union of 

Au for all U, is a 1~1hypersurface of M. 

Fo," J given system (E), we consider the set AP(E) of systems 

wh! .... h have the same local behalJior to that of (E) at all points 

0" A. so on M. The set AP(E) forms an algebraic variety 

(c. !'. [Yl ; § 4]) and will be called the space of accessory 

p, I j d III C t e r s 0 f (E) • 
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§3 Lattices in PUen,l) and OUDE 

Let rc PU(n,l) be a lattice acting on the unit ball 

n 2 
Bn ;; {( z 1 •..• , z ) E a:n I I I z . I < l}. Pu t 

n j =1 J 

M ;; Bn/f a compactification of the orbit space, 

TI Bn + M projection, 

A union of critical points of TI and M-(Bn/r) 

Assume that M is smooth then there exists a unique system (E) 

on M, called OUDE, such that the projective solution gives an 

inverse of n. For more details see [YI; §4], which can easily 

be generalized to n variables. 

We are interested in the variety AP(E). If n = 1, as we 

recalled in §l, AP(E) is a linear space of positive dimension 

unless r is a triangle group. (Some classical ploblems are 

proposed in [Po].) Unlike the case n = 1, we shall propose 

for n ~ 2, that {E} is isolated in AP(E). Before stating 

the theorem we want to note that, for OUDE, at a regular point 

p on A, the ramification index of • determines the local 
'\, 

behavior (cf. [Yl ; §3]). Let AP(E) be the set of systems 

11111 ch have the same local behauior to that of (E) a t all regular 

pulnts on A. The set }:P(E) is an algebraic set containing AP(E). 

Till urem. Let (E) be an OUDE on M as above. If n ~ 2, 

1 !'l~1l the component of l\P (E) including {E} is a point. 
'\, 

Remark. One can conjecture that AP(E) itself is equal to {E}. 
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Some examples ([T], [YI], [Y2]) support the conj ectuyc. 

§~ Proof. 

Let H be the fundamental group of M-A with base point P, 

A = UA. . ) 
1 

be the decomposition into irreducible components, ~. ~H 
J 

be a normal loop around A. and' be the ramification 
) bj . 

index of IjJ cJ~n~ Al . 
The group r is isomorphic to the quotlent of H by the minimal 

b. 
normal subgroup of H including all ~. ),S ([ K]). 

) 

'" Let {E(t)} be an analytic family in AP(E) such that 

E(O) = E, and Wet) = (woCt) , ... , wn(t)) be a system of linearly 

independent solutions of E(t) at P, depending holomorphically 

on t, such that W(O) gives an inverse of ~. The system Wet) 

defines a representation 

r(t) : H = ~1(M-A) ~ PGL(n+l, (), 

and, for t = 0, 

rCO) : H ~ r(~H/H[llb)) (PUen,l) (PGL(n+l, [). 

On account of the fixed local behavtor of Wet), along A.'s, 
) 

ret) is trivial on b 
H [ll ]. Thus ret) induces a representation 

r ~ PGL(n+l, [). On the other hand we have the fallowing 

([G], [JM]) If rePU(n,l) is a lattice, then every 

,Iet'ormation tilt: r ~ PGL(n+l, [) (where tPO is the inclusion 

r<..\lU(n,l) is a trivial deformation (Le. of the form 
-1 

o/lt K) = gttPO(x)gt ,where gt is a path in PGL(n+l, e)). 

In view of the PGL(n+I)-invariance of Schwarzian derivatives 

(L. f. [YI)). this implies E(t) = E(O). Q.E.D. 
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Orbifold-uniformizing differential equations III 

- Arrangements defined by 3-dimensional primitive 

unitary reflection groups -

by Masaaki YOSHIDA 

Let X be the complex projective plane and A be a curve in 

X. One can ask the following. "Are there any system of linear 

differential equations of given rank r( = the dimension of the 

solution space) with singularity only on A 1" Till now there are 

no theory to answer this question in general. It involves a non­

linear problem : To solve a non-linear partial differential equation, 

which is called the integrability condition. Or from topological 

point of view, one must study the existence of non-trivial repre­

sentations of the fundamental group ~1(X-A) into GL(r,C). 

In this paper I shall construct several systems on X of 

rank 3, which is the most interesting case, with regular singularity 

on some line arrangements, which has high symmetricity. To be more 

precise, let G be a 3-dimensional primitive unitary reflection 

group acting on X and A be the line arrangement on X defined 

by the group G. I shall construct, for each G, G-invariant system 

(E) of rank 3 with ramifying singularity along A. Each system 
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(E) involves one or two parameters. For special values of parameters, 

the systems (E) give orbifold-uniformizing differential equations 

([YI]) of the orbifolds obtained in (Ho] (cf. [Hi])' That is, the 

mapping defined by the ratio of three linearly independent solutions 

of the system (E) gives an equivalence between a covering of X, 

branching on A, and the unit ball in ~2. 

A part of the results of this paper was found when the author 

spend the academic year 1984-1985 at Max-Plank-institut fur Mathematik 

in Bonn. He wants to thank this institution for the hospitality 

and excellent conditions extended to 4im. It is my pleasure to 

thank Th. Hofer, E. Sato, P. Slodowy and H. Urakawa for helpful 

conversation, and L. Solomon and H. Terao for their kind letters. I 

would also like to thank Mrs. Y. Ukaji who helped the author to 

work with the computer, which was used in the first draft of this 

paper. 
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§l Basic facts for differential equations ([Yl ; §1,3,4], [Y3]) 

We consider the following completely integrable system 

(E) 2 k aw 0 
:.:: k~l Pij(x)~ + Pij(x)w i,j = 1,2 

with independent variables x = (xl ,x2) G 0: 2 and an unknown w. 

Let and be linearly independent solutions of eE) • 

The projective solution ~ of eE) is defined by the mapping 

Definition. A system (E) satisfying the condition 

(1.1) i :.:: 1,2 

will be saia to be of canonical form. 

Any sys~em (E) can be transformed, without changing the 

projective solution, that is by a suitable change of unknown 

w .... a{x)w, 

uniquely into a system of canonical form. The coefficients change 

as follows : 

k .... P~ .. .... o~ P./3 k P .. - O. P./3, 
1) 1) 1 J J 1 

(1.2) i,Lk:.:: 1,2 
0 0 a 2 k p .. .... P .. - --r P./3 + L Pk P. -/3 - P.P./9, 
1) 1) ax 1 J k=l 1) 1 ) 

where kronecker symbol and 
2 R-

after ($ is the P
k 

:.:: l PkL Here 
k=l 

we treat systems of canonical form only, unless otherwise stated. 

Let us change the independent variable x = I 2 
(x ,x ) into 

y == 
1 2 (y • y ). One obtains a system of non-canonical form. Transform 
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this system into the canonical form and let k Q .. (y) 
1) 

be its coef-

ficients. If Y is projectively related to x then one can show, 

by using (1.2), that 

k Q .. (y) = 
1) 

(1. 3) i,j,k = 1,2 

° Q .. (y) = 
1) 

Definition. A system (E) is said to have a ramifying singularity 

of exponent act 1) along xl = ° at (0,0) if a projective 

solution has the following expression 

where and u 

are not divisible by 

(x1)a). 

det 

are holomorphic functions at 

1 (1·f ° h 1 1 x a= , t en put og x 

(0,0) which 

instead of 

Proposition 1.1. (rY1 ; Proposition 3]) If a system 

Xl = ° at 

(E) has a 

ramifying singularity of exponent 
122 1 I x Pll(x), PZZ(x) and P2Z (x)/x 

a along 

are ho1omorphic at 

1 = ".! (a-I). 

(0,0) 

(0,0) and 

then 

Proposition 1.2. (Y1; Proposition 4]) If the coefficients of a 

system (E) are rational functions and if (E) 

singularity at infinity then the total degree of 

negative for i,j,k = 1,2. 

- 4 -
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§2 Integrability condition and tensor form w 

We shall study the integrability condition of the system eEl. 

Here after we shall use Einstein's convention and the following 

abriviation 

(P)k = !K P(x). 
ax 

Lemma 2.1. The system (E) is integrable if and only if 

(2.1) 

k k P.. = P .. 
1J J 1 

o P .. 
1) 

k = - (P")k + 
1) 

and if the expressions 

i,j = 1,2, k = 0,1,2, 

i, j = 1,2 

OR.O (P. .) k + P.. Pk 11 i , j , k = l, 2 
1) 1) N 

are symmetric with respect to (i,j,k). 

Proof. Differentiating the system (E), we have 

a3w R. R. 0 0 
-a~xk~a~x~i~a-x~j- = (Pij)k (w)R. + Pij (w)kR. + (Pij)kw + Pij(W)k 

Since the coefficient of (w)m should be symmetric with respect to 

(i,j,k), we have 

By the relation (1.1), one can check that the above expressions 

reduce to (2.1). Q.E.D. 
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This implies that the system eE) is determined only by the 

coefficients 

k P .. (x) 
1J 

i,j,k = 1,2. 

Since we know the transformation rule (1.3) 

say that the tensor 

of k {P .. }, we can 
1J 

determines the system (E). It is more converient, for later use, 

to put 

(2.2) 1 = p .. 
1J 

and to consider a tensor form 

(2.3) 
i . k 1 2- 1 

w = P. Ok dx ~dx)®dx (dx Adx) . 
1) 

i,j =: 1,2 

Since we assumed that (E) is of canonical form, one can easily 

check that {P. Ok} 
1J 

is symmetric. 

Let d denote the differentiation and A the anti-symmetrizer 

of two components. We make the following calculation. 

Put 

dw = (Pijk)R, 

A dw = (Pijk)R, 

(2.4) 
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then we have 

d k d b d ~ d c . . 
X A X X A x )dx~dxJ 

- Pik~ PJ"bc 1 2 1 2 ~ dx hdx dx Adx 

= -{(P~j)k + P~~ Pjk} dxixdx
j 

= P~. dxixdx j . 
1J 

Since we have 

o "" k 
dn = (Pij)kxdx1®dxJ~dx , 

o " "k b 1 2 1 w0n = Pijk Pab dx1®dxJ®dx ~xa~dx (dx Adx )- , 

e) 0 d i j k dXahdxb 
A w®n = p.. Pkbx x 0dx 0dx 1 2 

1Ja dx Adx 

b 0 i j k = - Pij Pkbxdx ®dx ~x , 

one concludes, by Lemma 2.1, that the system eE) is integrable 

if and only if the 3-tensor 

dn - A(w®n) 

is symmetric. Thus we have expressed the integrability condition 

of (E) free of coordinates. 

Proposition 2.2. Let w be the form corresponding to the system 

(E) by (2.2) and (2.3). The system eE) is integrable if and 

only if the 3-tensor 

(2,5) 

is symmetric. 

Proof. By the expression (2.4) we have only to check that 

A(w®A2(~w)) is symmetric, which is easy to show. 

Q.E.D. 
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§3 Primitive unitary reflection groups ([S-T]) 

Let V be a 3-dimensional complex linear space with positive 

definite Hermitian inner product, G C GL(V) be a primitive unitary 

reflection group and ITc PGL(V) be the group of homologies of G. 

Let Al, ••• ,Ak be the hyperplanes of V which occur as reflecting 

hyperplanes of elements of G. 

'Following is a table of such G'S with Shefard-Todd number, 

the name so called, the order IGI of G, the order IITI of G, 

the degrees dl ,d2 ,d3 of fundamental invariants, the numbers r. 
1 

of i-fold reflections and the number k of reflecting hyperplanes. 

No Name IGI IGI dl ,d2 ,d3 r 2 r3 k 

23 Icosa. 120 60 2,6,10 15 0 15 

24 Klein 336 168 4,6,14 21 0 21 

25 Hesse 648 216 6,9,12 0 2-12 12 

26 ext.-Hesse 1296 216 6,12,18 9 2·12 21 

27 Valentiner 2160 360 6,12,30 45 0 45 

x 
Let X be the complex projective plane V-{O}/a: , 

'IT 
. V-{O} + X . 

be the proje,ction and put 

Aj = 'lTAjJ j=l, .•• ,k 

k k 
A = U Aj , A = U 'A. . 

j =1 j=l J 

A is called the arrangement of lines in X defined by G. 
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§4 Tensor form n on V 

Let 
k 

A:: U"J.· 
j=l J 

be the arrangement of lines in x defined 

by a primitive unitary reflection group Gc GL(V). Let (E) be a 

system on X with at most ramifying singularity along A. We 

moreover assume that the system (E) is invariant under the action 

of IT. That is ,by (1.3), equivalent to assume the following 

identities 

for 

to 

Let 

k 3xa ax b azk 
P .. (z) = P~b(X) --.- --.- -- i J j J k = 

1J (lz 
1 az J axc 

all (J €. IT, where z = (J x. 

In §2, we introduced the tensor form w on 

the system (E). It is convenient to consider 

on V which is the lift of w by the map ~ : 
012 Y = (y ,y ,y) be a coordinate of V. Then 

m~ n R, -1 (4.1) n = QmnR,(y)dy--~dy ~dy y(y) , 

where 

1,2 

X corresponding 

a tensor form 

V-{O} -+ X. 

n is expressed as 

and the indices m,n and 1 run through 0,1,2. Note that 

{Qmn1} is again symmetric. If x = (xl ,x2
) is an inhomogeneous 

coordinate of x related to y by 

and w is expressed by x as (2.3), then we have 

Since n 

(4.2) 

1 2 0 I 2, 
Pijk(x ,x ) = Qijk(y ,Y ,Y ) 

is a pull back by ~, we have 

1 
y QmnR, = 0 m,n = 0,1,2. 

- 9 -
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Let tl(y), .•• ,tk(y) be the linear forms which define the 

We fix the coordinate 012 Y = (y ,y ,y ) 

linear forms tl(y), .•. ,tk(y) once for all and put 

and the 

In view of the argument in §l, one sees that the form n satisfies 

the fOllowing conditions. 

(4.3) The form n is invariant under the action of G. 

(4.4) Each Rn (y) 
NIDn 

is a homogeneous polynomial of degree k. 

- _ (-0 -1 -2) (4.5) For each j (j=l, •.• ,k), choose a coordinate y - y,y,y 

such that {yl = O} = A. and let ~ (-) be the coefficients of J ~mnt y 

n in the expression (4.1) with respect to the cordinate y and 

put 

m,n,t = 0,1,2. 

Then there is a constant a. such that the polynomials 
J 

~122(Y)' RZ22 (y)/yl 

and 

are divisible by yl. 
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§5 Result for Icosahedral, Klein and Valentiner group G 

Let G be the group with Shephard-Todd number 23,24 or 27, 

and n be a form on V sat~sfying the conditions (4.2), ... ,(4.5). 

Let Rmnt(Y) be the polynomial defined in §4 and put 

Of = Rmnt(y)dym®dyn®dyt. 

Lemma 5.1. 0' is a G-invariant symmetric polynomial form on V. 

Proof. In the table in §2, one reads that the group G is 

generated by 2-fold reflections. Any 2-fold reflection in G 

changes the signs of the polinomial K(y) and the form t(y). 

Therefore K(y)y(y) is G-invariant and so is 0' = O/K(y)y(y). 

Q.E.D. 

The group G acts transitively on the set of planes AI, •.. ,Ak " 

Thus we can put 

Let 0 denote the symmetric tensor product. That is, for example, 

n m tIn m tnt m dy 0 dy 0 dy = 1! (dy ®dy ®dy + dy ®dy ®dy 

+ dym0dyn®dyt + ••• ). 

Lemma 5.2. Let Aa' Ab and Ac be three mutually orthogonal 

planes in A. Then we have 

n'= (a-I) J(a,b,c)-l ~(y) (tadtc - t cdta )a(dtb)0 2 

b 
012 modulo t b , where J(a,b,c) = det (a(ta,tb,tc)/B(y ,y ,y )1 

P f Ch d " (-0 -1 -2) so that roo . oose a coor 1nate y = y,y ,y 

yO = t a , yl a t b , y2: te' Let Rmnt (y) be as in (4.5). Since 
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n(Y)n(y)-l is a constant which is equal to det (a(ta,lb,lc)/a 
012 (y ,y ,y )), we have 

The invariance of Q' under G implies in particular that it is 

invariant under the reflection with reflecting hyperplane Ab · 

This reflection is represented, under the coordinate y, by 

-0 -1 -2 -0 -1 -2) (y ,y ,y ) + (y ,-y,y . 

Therefore the above expression of Q' implies that 

-1 
Y 

if {m,n,.R,} = {I,p,q} p,q ,. 1 or {I,l,l}. 
-1 modulo y. 

On the other hand 

(4.5) 

(4 .2) 

tells us '[222 (y) == 0 

with respect to the cordinate 

-OR C- -2 R C-y mnO y) + y mn2 y) 

By these equalites, one knows that all 

ltllO(y) and RII2 (Y) are zero modulo 

two are related by the identity above, 

y 

Moreover, identities 

implies, for 

o modulo 

It" mn (y)'s 

-1 y . Since 

we have 

-1 
Y • 

but 

the 

m,n = 0,1,2, 

remaining 

R"IIO(Y) == - } (a-I) K(Y(YW2/yl modulo -1 y . 
Q.E.D. 

Lemma 5.3. For each plane Ab in A, there exist two planes Ab , 

and AbU in A such that the three planes Ab',Ab,Ab" are 

orthogonal each other and that the set of triples {Ab"Ab,Ab,,} 

(b=l, ... ,k) is G-invariant. 
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Icosahedral arrangement 

Proof. Let G be the icosahedral group. The picture above tells 

us that, for a given plane Ab J there exist uniquely two planes in 

A such that these three planes are orthogonal each other. Let G 

be Klein or Valentiner group and S be the set of triples of planes 

in A which are mutually perpendicular. For a given plane A
b

, 

there are four planes Aa,Ac,Aa"Acf in A such that 

{Aa"Ab,Ac '} S (c,f. IS-T]). In particular we have 

- 13 -

{Aa,Ab,Ac }' 

lsi = 2k/3. 



The group G acts on S. The isotropy subgroup of G at 

{Aa,Ab,Ac} has the subgroup H generated by the reflection with 

the reflecting plane Aa and the symmetric group ~ 3 which 

permutes the three planes. So we have IHI:: 23 3!. Since we have 

G 

G 

Klein 

Valentiner 

we can conclude that 

Consider the form 

lSI = 14 

lSi = 30 

IG/HI :: 7 

IG/HI :: 45, 

Q.E.D. 

Since the group G is generated by reflections with reflecting 

hyperplanes Al, ... ,Ak , one can easily check that QIt is G-invariant. 

On account of Lemma 5.1 and 5.2, one knows that 0'.- Q" is a 

G-invariant form such that 

0' - QII == 0 modulo R.b , b==l, .•. :J k. 

This implies that Cnt-QU)/KCy) is an anti-invariant 3-form with 

respect to dyO, dyl and dy2. Since there are no invariant of 

degree 3, as one can see in the table in §3, we can conclude 

that 0' == Q". We have almost proved the following theorem. 
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Theorem 1 Let V be a 3-dimensional unitary space with cordinate 
012 Y == (y , y , y ), G C GL (V) be a unitary reflection group with 

Shephard-Todd number 23,24 or 27, {A'}'-l k be the set of 
J J- ,---, 

reflecting hyperplanes, and tj(Y) be a linear form which defines 

Aj . Let X, (j C PGL (V) and Aj (X) be the proj ectification of V, 

G and Aj' respectively. For a given complex number a(~l), 

there exists uniquely a completely integrable G-invariant Fuchsian 

system E(a) of canonical form on X only with ramifying 

s~ngulality along Al, ..• ,Ak of exponent n. The corresponding 

form O(a) on V is given by 

O(a) 

where J(b',b,b") = det 

yOdyl"'dy2+yldy2",dyO+yZdyO"'dyl, and Abr,Ab" are two planes such 

that three planes Ab"Ab,Ab" are mutually perpendicular and that 

the set of triples {Ab' ,Ab,Abll } (b=l, ... ,k) is G-invariant. 
k The coefficients P .. (x) of E(n) with respect to an inhomogeneous 
1) 

coordinate x = exl,x2) = (Yl!YO' YZ!YO) are given by 

k ltb,dR.b"-R.b,,dR.b , E>2 
= (a-I) 1: J(b' ,b,b")- e(dR. ) 

b=l R.b b 

1 p .. (x) 
1J 

and (2.1) . 

1 2 = - Qijl(l,X ,x ) 

- 15 -
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Proof. First we show that the form neal on V is a 

back by 1T V-{O} -+ x. Let i a. be a vector field V = Y -1 ay 
and i (v) be the interior product operator with respect to 

Then the condition (4.2) is equivalent to 

i(v)Q(a} = O. 

If we notice that 

we have 

i(v)Q(n) 

+ d.tb®(.tb I d.tb"- .tb"d.tb ,).tb + d.tb~d.tb (R.b I R.b"- R.b".tb I)} 

2 k 
+ 3(n-l) L J(b',b,b") (.tb,d.tb,,-.II.b"dR.b') e d.ll.b · 

b=l 

pull 

on V, 

v. 

Cyclic change of indices (b',b,b") tells us that this expression 

is zero. 

Now we have only to show that the system E(a) is integrable. 

Let weal be the form on X corresponding to the form Ora), 

obtained by putting yO=l, yl=xl, y2=x2 . For notational simplicity, 

1 2 we use the same notation .II. a for .ll.a(l,x,x), and 

J(a,b) = det 

- 16 -



3y the caluculation below, one knows that the tensor dAdw(a) 

lS symmetric. 

ind since we have in general 

ole have 

Adw 
-1 k _12dR.b"€>dR.bJ(b,b')+dR.bedR.bJ(b",bf) 

= ~ r J(b' ,b,b") {---------=----------
3 b=l R.b 

2dR.b ,edR.bJ(b,b") + dR.b0dR.bJ(b' ,b") 

R.b 

R.b ,dR.b0dR.bJ(b",b) - R.b "dR.b0dR.bJ(b',b) 1 

(R.
b

) 2 J 

1 k 1 2dR.b"fldR.b0dR.bJ(b,bl)+dR.b0dR.b®dR.bJ(b",b') 
dAdw = a

3
- I J (b' ,b, b") - {-

b=l (R.b ) 2 

+ 
2dR.b ,E> dR.b0dR.bJ (b, b") + dR.bG dR.b0dR.b J (b t ,b") 

(R.b) 2 

dR.bE>dR.b&.iR.btJ(b",b) - dR.b0dR.b ®dR.b "J(b' ,b) 

(R.b ) 2 

- 17 -



J (b I ,b) 

Instead of calculating directely the tensor 

lea) : = d A2(w(a)Sw(a)) + A(w(a) e Adw(a)), 

we note that 

lea) = (a-I)2 1(0) 

and use the following fact due to Th. Hofer ([Ho], summary of the 

results is also in [Hi]). 

II There exists a discrete reflection group r c PU(Z,I) acting 

on the unit ball 

such that 

'" '" -(BZ - A) I r = X - A, 

where ~ is the union of reflecting lines of <reflections in f. 

Let n be the ramification index along Aj' which is independent 

of j, of the projection 

'" p BZ - A ~ X - A. 

Then the complete list of such f is given as follows". 

- 18 -



s - T number of G ramification index n 

23 2,5 

24 2,3,4 

27 2 

As is explained in fYl] , if such r exists, there is a 

unique system eE) on X with ramifying singularity of index 

a = lIn along A. The projective solution of eE) gives an 

inverse of p. By the uniqueness, this system must be our system 

Eel/n). This implies that E(l/n) is integrable and so that the 

tensor l(I/n) is symmetric. Thus I (a) is symmetric for all a. 

Q.E.D. 
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§6 Result for Hesse and extended Hesse group G 

Let G be the group with Shephard-Todd number 25 or 26, and 

IT be the projectified group, which is common for both groups. 

We want to construct IT-invariant systems with ramifying singularity 

at most along A. Although the method in §5 does not work in 

these cases, we can give the explicit form of them. We moreover 

show that they arc obtained, by the change of independent variables, 

from the classical systems known as Appell's hypergeometric 

differential equations Fl' 

Let o I 2 x = (x ,x ,x ) be a homogeneous coordinate of X. 

Following [S-T], we put 

and 

3 3 32 3 3 3 
16 (x) = ((xo) +(xl) +(x 2) ) -12((xOx1) +(x1x 2) +(x2xO)), 

° 3 1 3 I 3 2 3 2 3 0 3 
19 (x) = ((x ) - (x ) ) ((x ) - (x ) )( (x ) - (x ) ), 

I' (x) 
12 

o 3 1 3 2 3 03 3 2 33 0 2 3 = ((x) +(x ) +(x ) ) « (X) + (xi) +(x ) ) +216(x xIx) ), 

o I 2 
I I2 (x) = x x x 

2 
II 

a,b=O 
a 0 b 1 2 (00 x +00 X +x ), 

where w = exp 2ni/3. We have the relation 

We define, two kinds of line arrangements on A as follows. 

" Ax Iq = O. 

- 20 -



The former is the image of the set of reflecting hyperplanes of 

Hesse group (25) and is called Hesse arrangement. The image 
r II 

of those' of extented Hesse group (26) is AxVAx and is called 

extended Hesse arrangement. 

Let S be the quotient variety of X by the group G and 

P : X ~ S 

be the projection. The variety S is a weighted projective space 

of type (2,3,4), that is, 

where 

A€ a: - {O}, 

and the map p is given by 

I 

(p) 52 = 16 (x) , 53 = 19 (x) , s4 = I 1Z (x). 

The map p is ramifying along 

I I " " As :=p (Ax) and A s . - p(Ax) 

on S with indices 3 and 2, respectively. We have 

" As : 53 = O. 

Let Y 

coordinate 

be another projective plane with a homogeneous 

012 Y = (y ,Y ,y). Putting 

- 21 -



one finds that the symmetric group ,§ 4 acts on Y as permutations 
012 3 of four letters y,y,y and y. Let T be the quotient variety 

of Y by the group ~4 and 

q : Y + T 

be the projection. The variety T is again a weighted projective 

space of type (2,3,4) and, by the homogeneous coordinate t = 

(t 2,t3,t4), the map q is given by 

(q) 

o 1 2 3 
t4 = Y Y Y Y . 

The group $4 has fixed points on Y along 

I Ay .-

" Ay := 

of multiplicity 2. The branch locus of q 

" , J " := q(Ay ). 
AT .- q(Ay) and AT 

on T is given 

By compting the discriminant of the polynomial of degree 4 

I 

one knows the defining equation of AT. 

- 22 -
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2 2 
, 2 2 3 2 4t 4+t 2/3 2 4t4+t 2/3 3 

AT : ( t 3 - (- "3 t 2 ) + 3 (- "3 t 2 ) 3 ) - 4 ( 3 ) = 0, 

Putting the expression y3 = ° 1 
2 into -y -y -y (q), one has 

t3= (yO+y1) (y1+y2) (y2+yO) , 

" Thus we have the equation of AT' 

" AT . t = 0. . 3 
Let 1/1 be the map S -+ T given by 

Then 1/1 gives an isomorphism S -+ T which induces isomorphisms 

nate 

and 

The 

" Az 

I I "" 

As ~ AT and As ~ AT" 

Let Z be another projective plane with homogeneous coordi-

012 z = (z ,z ,z ), Put 

let 

(r) 

map 

with 

r 

A; (zO_z1)(z1_z2)(z2_z1) = 0, 

A~ zOz1 z2 = ° 
be the map Y -+ Z given by 

zO = (y1+y2)2, z1 = ( 2+ 0)2 Y Y , 

r, which is the quotient map by 

index 2. We have 

- 23 -
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Summing up, we have had the following diagram. 

I II I " 

(Y,Ay,Ay) (X,AX,AX) 

,/r q\" ,,/ P 

(Z,AZ,AZ) (T,AT,AT) (S,As,A s) 

I 2 2 2 3 2 

Here numerals below A's denote the braching indices of the corre-

sponding coverings. 

It is classically well known that for any system (E) on Z 

only with ramifying singularity along the complete quadrilateral 

I " 0 1 2 0 1 1 2 ? 0 AZ V AZ : Z z z ( z - z ) (z - z ) (z'" - z ) = 0, 

there exists a quadruple (a,b,b',c)€ ~4 such that (E) is equi­

valent to the Appell's hypergeometric equation (FI(a,b,bl,c)), 

which is satisfied by the hypergeometric series 

00 

FI (a,b,b ' ,c;z~z2) = I (a,m+n) (b,m) (b ' ,n) (zl)n(z2)m, 
n,m=O (c,m+n)(I,m)CI,n) 

where (a,m) = a(a+l) ... (a+m-l) and zO = 1. We have almost 

proved the following theorem. 

Theorem 2 Let (E) be a system on X only with ramifying 
, II 

singularity along the extended Hesse arrangement AX VAX' If the 

system (E) is invariant under the Hesse group IT, and a and 
, " 

B denote the exponents along Ax and Ax respectively, then the 

system is transformed by the change of independent variables 

z = roq-lotiJop(x) 
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into the Appell's hypergeometric equation (F}(a,b,b',c)) with 

the special values of parameters 

a = 1 - 2u/3 - S/2, b = b ' = 1/2 - S/4, 

c = 3/2 - Za/3 - B/4. 

Explicit form of the system is given, by inhomogeneous coordinates 

pi! = 

2 Pll = 

P~2' = 3a'/y + 8la'x3y 2(Z-x3_y3)/W - 3BtyZ(x3_l)(1+y3_Zx3)/ZH, 

where 

Remaining coefficients are obtained by (1,1) and (2,1). 

Remark 6.1. If one specializes the system (E), by putting 
, 

B=l, it has singularity only on Hesse arrangement Ax' This is 

the equation we constructed in [Yl). 

Proof. Since, by assumption, (E) is IT-invariant, the system 

(E) is defined on S, so on T. Lifting the equation on T 

by q, we have a system on Y with ramifying singularity along 
, " Ay and Ay with respective exponents 2a/3 and a. On the 

other hand we have 
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Lemma 6.2. ([YS]) Any system on Y only with ramifying 

singularity along 

is invariant under the group (1Inl)2, which acts on Y as 

012 Oil j 2 (y ,y ,y ) + (y ,£ Y ,£ Y ) i,j = l, ... ,n 

where £ = exp 2ni/n. 

Applying this lemma for n=2, to our system on Y, we find 

that the system is defined on Z and it has ramifying singularity 
, II 

along A2 and A2 with respective exponents 2a/3 and 812. 

It is well known that the .hypergeometric equation (F(a,b,b' ,c)) 

has exponents l+b'-c, l+b-c, b+b'-a, l-b-b', c-a-b', c-a-b along 

{Zl=O}, {z2=O}, {zO=O}, {zl=z2}, {z2=zO}, {zl=zO} respectively. 

Thus we have proved the first assertion of the theorem. To obtain 

an explicit form, one can transform the system (F(a,b,b t ,c)), 

with the special values of parameters as are in the theorem, by 

the change of independent variables 

x = p-lo~ -l oqor -l(z). 

There is a more clever way. Show firstly that the coefficients 

k Pij(x) (i,j,k=1,2) are homogeneous linear forms of ~ -1 and 

8-1. Next, put ~ =1 then it reduces to a system with singularity 

only on 

Apply Lemma 6.2 for n=3 then one knows that it is again a lift 

of some system (F(a,b,b',c)). As is mentioned in Remark 6.1, 

we know the system for 8=1. This completes the proof. 

- 26 - Q.E.D. 
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