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Abstract. We give a survey of new characterizations of finite solvable groups and the
solvable radical of an arbitrary finite group which were obtained over the past decade.
We also discuss generalizations of these results to some classes of infinite groups and their
analogues for Lie algebras. Some open problems are discussed as well.
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1. Introduction

The present survey is motivated by a spectacular progress achieved during the past decade
in revisiting some problems concerning finite solvable groups. Not only do we present several
new theorems but rather put emphasis on new approaches with origin outside group theory
(arithmetic geometry, dynamical systems, algebraic groups, computer algebra) which led to
these results.

Let us quote the main results:

Theorem A ([BGGKPP1], [BGGKPP2]). Let

v1(x, y) := x−2y−1x, . . . , vn+1(x, y) := [xvn(x, y)x
−1, yvn(x, y)y

−1], . . .

A finite group G is solvable if and only if for some n it satisfies the identity vn(x, y) ≡ 1.

Fritz Grunewald suddenly passed away on March 21st, 2010. Let his memory be blessed.
1
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Theorem A′ ([BWW]). Let

s1(x, y) := x, . . . , sn+1(x, y) := [y−1sn(x, y)y, sn(x, y)
−1], . . .

A finite group G is solvable if and only if for some n it satisfies the identity sn(x, y) ≡ 1.

Theorem B ([GGKP4], [GGKP5], [Gue], [FGG]). Let G be a finite group. Let C be a
conjugacy class of G consisting of elements of prime order p ≥ 5. Then C generates a
solvable subgroup if and only if every pair of elements of C generates a solvable subgroup.

Corollary C ([GGKP4], [GGKP5], [Gue], [FGG], [LXZ]). A finite group G is solvable if
and only every pair of conjugate elements of G generates a solvable subgroup.

Various related topics are included in the paper. First, with some effort, one can extend
the above cited theorems to certain classes of infinite groups satisfying natural finiteness
conditions. Second, one can try to get characterizations for the solvable radical of a finite
group, or an infinite group satisfying some finiteness conditions, in spirit of Theorems A and
A′. Third, most of group-theoretic statements under consideration admit natural analogues
for finite-dimensional Lie algebras.

The paper consists of three parts. In the first one (Sections 2 and 3) we recall interrelations
between Engel properties and nilpotency, explain parallels between the nilpotent and solvable
cases and outline a method for reducing characterization problems for solvable groups to
certain statements for simple groups.

Sections 4 and 5 constitute the core of the paper. Here new results are formulated and
proofs are sketched. We discuss main ideas and methods dominating the whole area of
research. Among those, one can single out two approaches for which we have chosen the
nicknames “Engel-line” and “Thompson-line”. They can also be christened as an explicit
and implicit way of description, respectively (compare Theorems A and A′ with Corollary
C to feel the difference). For the Engel-line, we focus our attention on explicitly written
sequences and formulas allowing one to define quasi-Engel elements. The role these elements
play for the solvability property is similar to that of Engel elements with respect to the
nilpotency property. As to the Thompson-line, the emphasis is put on the so-called radical
elements which, generally speaking, possess the property to generate a solvable subgroup
together with arbitrary elements of the group. Thus these elements are characterized not
by explicit formulas but by their generation properties. In other words, we want to check
the solvability property on subgroups with fixed (desirably, as small as possible) number
of elements (desirably, satisfying certain additional properties, say, being conjugate). From
such point of view, the Thompson-line can be regarded as a generalization of both Burnside’s
philosophy (if understood as checking certain properties of a group on the cyclic subgroups)
and the Baer–Suzuki approach (consisting in checking properties of a group on its conjugacy
classes). More details can be found in the body of the paper.

The last part of the paper (Sections 6 and 7) deals with various ramifications along with
some open problems. In Section 6 we consider generalizations of the results previously
obtained for finite groups to some classes of infinite groups. We also touch similar questions
for finite-dimensional Lie algebras. In Section 7 we concentrate on numerous open problems
which seem to us quite important and tempting.

2. From nilpotent groups to solvable groups

In this section we recall some well-known relations between the Engel and nilpotency
properties. They are extremely important in various structure problems of group theory
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and have been extensively studied during several past decades. We regard this topic as a
starting point in our research on parallel questions related to the solvability property, where
analogues of the Engel property are far less investigated.

2.1. Engel properties and nilpotency. Let L be a finite-dimensional Lie algebra over a
field k with Lie operation [ , ]. Define a sequence −→e of words in the free Lie algebraW2(x, y)
by e1(x, y) = [x, y] and, by induction, en+1(x, y) = [en(x, y), y]. The starting point of the
whole Engel theory is the following theorem [J1, Chap. II. Sec. 3]:

Theorem 2.1 (Engel). A finite-dimensional Lie algebra L is nilpotent if and only if it
satisfies one of the identities en(x, y) := [x, y, y, . . . , y] ≡ 0.

In a similar way, Zorn’s theorem [Zo], [Hu, Satz III.6.3] characterizes nilpotent groups in
the class of finite groups:

Theorem 2.2. A finite group G is nilpotent if and only if it satisfies one of the identities
en(x, y) := [x, y, y, . . . , y] ≡ 1, where en(x, y) belongs to the free group F2(x, y).

Here and throughout this paper the group commutator is [x, y] = xyx−1y−1, and [x, y, y] =
[[x, y], y], etc. So for finite groups the Engel property is equivalent to nilpotency.

The interest to Engel properties, in the context of infinite groups, has been revived in the
mid-1950s by R. Baer, K. Gruenberg and B. Plotkin who paid attention to the following
Burnside-type problem (see, e.g., [Plo5]):

Problem 2.3. Fix a natural n. Is a group G satisfying the identity en(x, y) ≡ 1 locally
nilpotent? In other words, is every n-Engel group G locally nilpotent?

Although this problem is most likely to have a negative solution (for sufficiently large n),
it remains open up to now.

Remark 2.4. Problem 2.3 has a positive solution for n = 2 ([Le]), n = 3 ([He]), and n = 4
([HVL]). It also has a positive solution for many classes of groups, see [BM], [Gr1]–[Gr3],
[KR], [Pla1], [Plo1]–[Plo6], [Wi1], [WZ], etc.

A more general problem consists in characterization of elements constituting the locally
nilpotent (Hirsh–Plotkin) radical of an arbitrary group G (see, e.g., [Plo5], [Ro2]), which is
another source for studying Engel properties. If G is finite (or, more generally, noetherian),
its locally nilpotent radical coincides with the nilpotent radical, i.e., the Fitting subgroup of
G, which, in turn, is described by Baer’s theorem [Ba1]:

Definition 2.5. An element g ∈ G is called (left)-Engel if for every x ∈ G there exists
n = n(x, g) such that en(x, g) = 1.

Theorem 2.6 ([Ba1]). The nilpotent radical of a noetherian group G coincides with the
collection of all Engel elements of G.

It has been proven that besides noetherian groups, the locally nilpotent radical coincides
with the collection of all Engel elements for solvable groups [Plo1], [Gr1], radical groups
[Plo2], groups with ascending normal series with locally noetherian quotients [Plo3], linear
groups [Gr3], PI-groups and locally compact topological groups [Pla1], etc. The interested
reader is referred to [Ro1], [Abd] for a comprehensive survey of Engel theory.

One should also note a result announced in [Blu] which provides an example of a non-Engel
group (i.e., the group in which not all the elements are Engel) generated by Engel elements.
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Bludov proved that there exist groups in which a product of Engel elements is not necessarily
an Engel element (cf. a question raised in [Plo5]). This means that the Engel elements do
not necessarily constitute a subgroup. The example of [Blu] is based on Grigorchuk 2-groups
[Gri].

The crucial fact allowing one to obtain fine Engel structure for a very wide class of groups,
including finite and noetherian groups, is the following theorem:

Theorem 2.7 ([Plo3]). Let g be an Engel element in an arbitrary group G, and suppose
that the subgroup H1 generated by g is not normal in G. Then there exists a sequence of
subgroups H1 ⊂ H2 ⊂ H3 . . . such that

(1) each Hi is nilpotent;

(2) Hi is normal in Hi+1;

(3) Hi+1 is generated by Hi and a conjugate of g not in Hi;

(4) the series breaks off at Hn if and only if Hn is normal in G.

Historically, there is a terminological ambiguity which may sometimes lead to confusion.
Note that in [Plo1]–[Plo6] Engel elements are called nil-elements. If in Definition 2.5 the
number n = n(y) does not depend on x ∈ G, then y is usually called bounded Engel (in [Plo1]–
[Plo6] such elements are called Engel elements). In what follows we use the terminology from
Definition 2.5.

Engel-type results provide a tool for recognition of the nilpotency property in terms of
explicit sequences in two variables defined by commutator formulas. Moreover, the Engel
sequence is convergent in the profinite completion F̂ of the free group F2(x, y) to the element
(pro-identity) which defines the provariety of pronilpotent groups (see, e.g., [Alm], [AMSV],
etc.). This characterization of nilpotency by two-variable formulas gives rise to a number
of applications (see, e.g., the monographs [Ro2], [Hu], [Plo4], [AmSt]). In particular, this
approach was used in the solution of the restricted Burnside problem by Kostrikin and
Zelmanov.

2.2. Solvability. Statement of the problem. To adapt the Engel theory to the case
where nilpotency is replaced with solvability, one should look for a replacement of Engel
elements with similar ones, whose behaviour with respect to the solvability property is the
same as the behaviour of Engel elements with respect to nilpotency.

Definition 2.8 ([Plo3], [BBGKP]). We say that a sequence −→u (x, y) = u1, u2, . . . , un, . . . of
elements from F2(x, y) is correct if the following conditions hold:

(i) for every group G and any a, g ∈ G we have un(a, 1) = 1 and un(1, g) = 1 for all
sufficiently large n;

(ii) if a, g ∈ G are such that un(a, g) = 1, then for every m > n we have um(a, g) = 1.

Thus, if the identity un(x, y) ≡ 1 is satisfied in G, then for every m > n the identity
um(x, y) ≡ 1 also holds in G.

Definition 2.9. For every correct sequence −→u in F2(x, y) define the class of groups Θ =
Θ(−→u ) by the rule: a group G belongs to Θ if and only if there is n such that the identity
un(x, y) ≡ 1 holds in G.

Definition 2.10. For every group G denote by G(−→u ) the subset of G defined by the rule:
g ∈ G(−→u ) if and only if for every a ∈ G there exists n = n(a, g) such that un(a, g) = 1.
Elements of G(−→u ) are viewed as Engel elements with respect to the given correct sequence
−→u . We call these elements −→u -Engel-like or, for brevity, −→u -Engel elements.
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Examples 2.11.

(1) If −→e = e1, e2, . . . , where

e1(x, y) = [x, y] = xyx−1y−1, . . . , en(x, y) = [en−1(x, y), y], . . . ,

then Θ(−→e ) is the class of all Engel groups. In the case of finite groups and in many
other cases described above the class Θ(−→e ) coincides with the class of nilpotent
groups. Clearly, −→e -Engel elements of any group G are usual Engel elements in G.
In particular, if G is finite, the set G(−→e ) coincides with the nilpotent radical of G.

(2) If −→u is defined by the following correct sequence of words:

u1 = xy−1, u2 = u1(xy, yx) = [x, y], . . . , un = un−1(xy, yx), . . . ,

then for finite groups the class Θ(−→u ) coincides with the class of all finite nilpotent-
by-two groups [BP].

Now, if we want to obtain a reasonable Engel-like theory for the solvability property, a
major question is as follows:

Problem 2.12. Is there an explicit correct sequence of words qn(x, y) in F2(x, y) such that
a finite group belongs to the class Θ = Θ(−→q ) if and only if it is solvable, and the solvable
radical R(G) of every finite group G coincides with G(−→q )?

In parallel to the Engel theory, the next question is:

Problem 2.13. Suppose Problem 2.12 has a positive answer. What classes of infinite groups
possess the same characterization?

Remark 2.14. Note that the solvable (locally solvable) radical of G, that is the unique
maximal (locally) solvable normal subgroup of G, may not exist in an arbitrary group G,
see [BKN].

In the last two decades of the 20th century, there were obtained several results concerning
characterization of solvable groups in terms of two-variable identities based on Engel words
(see [Ni1], [Ni2], [Br], [BN], [Gup], [GH], etc.). Namely, in [Ni1], [Ni2] it was proved that if
a finite group G satisfies for some n the identity e2 ≡ en, where {ei} is the sequence of Engel
words, then G is solvable. However, it is easy to find a solvable group satisfying no identity
of the form e2 ≡ en. For example, take G a finite nilpotent group of class 3 such that the
identity e2 ≡ 1 does not hold in G. Since e3 ≡ 1, the group G cannot satisfy any identity of
the form e2 ≡ em. However, G is solvable.

In [BN] it was proved that the identity e3 ≡ en can hold in certain finite simple groups
such as PSL(2, 4), PSL(2, 8), etc. Let us also mention a pioneer result of N. Gupta [Gup]:
any finite group satisfying the identity e1 ≡ en is abelian.

The first real progress in solving Problem 2.12 was obtained by Brandl [Br]. He proved that
there exists an implicit sequence in two variables {λn(x, y)} (i.e., a countable set of words)
such that a finite group G is solvable if and only if the identity λn(x, y) ≡ 1 holds in G for
all but finitely many indices n. In the subsequent paper [BrW] a more explicit sequence was
constructed. However, for each of these sequences there is no easily described relationship
between their consecutive terms. A further progress based on the same streamline of ideas
was recently obtained in [Wi5] (see Section 7, Theorem 7.3).

In fact, in [BrW] the question “whether finite solvable groups can be characterized by
sequences of words in a small number of variables which are derived from a simple recursive
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definition” was raised. An explicit sequence with four variables and a sequence with three
variables characterizing solvable groups were constructed in the same paper.

A kind of general passage from nilpotency to solvability is provided by the notion of a
radical group.

Definition 2.15 ([Plo2]). A group G is called radical if it has an ascending normal series
with locally nilpotent factors.

An arbitrary group G has the upper radical H̃P (G) (that is the unique maximal normal
radical subgroup) which appears to be the result of iteration of the locally solvable radical

HP (G). The quotient group G/H̃P (G) is semisimple with respect to the property of being

locally nilpotent, i.e. HP (G/H̃P (G)) = 1, see [Plo2] for details. If G is finite, noetherian,

or linear, H̃P (G) coincides with the solvable radical R(G) [Sup].

Although Theorems A and A′ give characterizations of the solvability property for finite

groups in terms of correct two-variable sequences
−−−−→
q(x, y) and the corresponding classes Θ(−→q ),

Problem 2.12 in full generality is still open (see Section 7, Problem 7.2). We should mention
that for the solvability property there is no tool parallel to that of Theorem 2.7, which works
in the nilpotent case. So the main efforts are focused on the class of finite groups and the
passage to the semisimple group G/R(G). In the latter case the whole classification theory
of finite simple groups works.

The proof of Theorem A involves surprisingly diverse methods of algebraic geometry,
arithmetic geometry, group theory, and computer algebra (note, however, a paper of Bombieri
[Bom] which can serve as an inspiring example of such an approach; a more recent illustration
of striking efficiency of arithmetic-geometric approach to group-theoretic problems can be
found in [BS1], [BS2]). We want to emphasize a special role played by problem-oriented
software (particularly, the packages Singular and MAGMA): not only proofs but even the
precise statements of our results would hardly have been found without extensive computer
experiments.

3. From solvable groups to simple groups

In this short section we describe a method allowing one to move certain problems in the
theory of solvable groups to some other problems in the theory of simple groups. Note
that this is in contrast to the class of nilpotent groups (and some other classes intermediate
between nilpotent and solvable, such as supersolvable groups).

Although the method is fairly standard and has been repeatedly used, we present it, for
the sake of completeness and reader’s convenience, in two slightly different setups: in the
problem of characterization of finite solvable groups by identities and in the problem of
characterization of the solvable radical of a finite group. In both cases the original problem
is reduced to another one requiring some classification of finite simple groups: a classification
of minimal nonsolvable groups (due to J. Thompson) in the first case, and full classification
in the second one.

3.1. Characterization of finite solvable groups by identities. We describe here the
initial steps of the approach taken in both [BGGKPP2] and [BWW]: the first two steps are
identical (they are considered in Sections 3.1.1 and 3.1.2, respectively, and the difference in
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the 3rd step is explained in Section 3.1.3). Correspondingly, the notation un(x, y) will be
used to designate either the sequence defined in [BGGKPP2]:

(3.1) v1(x, y) := x−2y−1x, . . . , vn+1(x, y) := [xvn(x, y)x
−1, yvn(x, y)y

−1], . . .

or the sequence defined in [BWW]:

(3.2) s1(x, y) := x, . . . , sn+1(x, y) := [ysn(x, y)y
−1, sn(x, y)

−1], . . .

Note that for both sequences un(x, y) = 1 implies um(x, y) = 1 for all m > n.

3.1.1. 1st step. Recall that we want to show that each of sequences (4.1) and (4.2) char-
acterizes finite solvable groups, i.e. a finite group G is solvable if and only if for some n
the identity un(x, y) ≡ 1 holds in G. By construction, the “only if” direction is obvious.
To prove the converse one, assume the contrary: there exists a finite group satisfying the
identity un(x, y) ≡ 1 which is not solvable. Let G denote a minimal counter-example, i.e. a
finite nonsolvable group of smallest order satisfying the identity un(x, y) ≡ 1.

The first observation is as follows: G is a simple group all of whose proper subgroups are
solvable.

Indeed, if H is a normal subgroup of G, then both H and G/H are solvable (because
any identity holding in G is inherited by all its subgroups and quotients and G is a minimal
counter-example), hence G is solvable too (as an extension of solvable groups), contradiction.

Therefore we can make use of J. Thompson’s list of minimal nonsolvable simple groups
[Th]:

• G = PSL(2, p), p = 5 or p ≡ ±2 (mod 5), p ̸= 3,
• G = PSL(2, 2p),
• G = PSL(2, 3p), p is an odd prime,
• G = Sz(2p), p is an odd prime,
• G = PSL(3, 3).

We thus have to prove that none of our identities holds in any of groups of Thompson’s
list.

3.1.2. 2nd step. We now want to use the most important structure property of sequences
(4.1) and (4.2): un = 1 implies um = 1 for all m > n. Thanks to this property, to prove the
needed statement it is enough to solve an equation

1 ̸= un(x, y) = un+k(x, y)

in G×G where G runs over Thompson’s list.

This simple observation allows us to move from identities to equations.

3.1.3. 3rd step. The approaches of [BGGKPP2] and [BWW] split here. We only explain
main ideas postponing details to Section 4.

In [BGGKPP2], a clever choice of the first word v1(x, y) (suggested by computer), allowed
one to prove that the simplest equation v1(x, y) = v2(x, y) has a nontrivial solution in G×G
for all G belonging to Thompson’s list. A streamline of the proof is as follows. For each G
from Thompson’s list choose a matrix representation over some finite field Fq. View matrix
entries as variables. Regard solutions of the equation v1(x, y) = v2(x, y) as Fq-points on the
corresponding algebraic Fq-variety V . It remains to prove, for each G, the existence of a
nontrivial (i.e. such that vn(x, y) ̸= 1) rational point on V .
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In the PSL(2, q)-case, the above mentioned clever choice of the initial word leads to a
dimension jump, and we get a curve. It remains to prove that it is absolutely irreducible,
compute its genus, and apply Weil’s estimate.

The Suzuki case is much harder. It requires Lefschetz’s trace formula for operators on
affine varieties (Zink–Pink–Fujiwara, former Deligne’s conjecture) and estimates for ℓ-adic
Betti numbers of these varieties.

All in all, here we move from group theory to arithmetic geometry.

The approach taken in [BWW] can be reformulated in the language of dynamical systems.
Instead of considering a particular equation sn(x, y) = sn+k(x, y), let us look for nontrivial
periodic points of the dynamical system on G × G arising from the word map (y, u) 7→
(y, [yuy−1, u−1]), or, in other words, for invariant sets disjoint from the “forbidden set”
IG = G× {1}. Once the existence of such a set is established, we are done. This dynamical
alternative is described in more detail in Section 4 and [BGK].

3.2. Characterization of the solvable radical. Suppose we want to character-
ize the solvable radical R(G) of a finite group G with the help of some prop-
erty P of (s + 1)-tuples of elements of G as follows: R(G) = S(G) :=
{g ∈ G : for every s-tuple x1, . . . , xs of elements of G the property P(x1, . . . , xs, g) holds}.
Then, under certain assumptions on P , one can reduce the validity of such a characterization
to the following statement:

(3.3) for every almost simple group G we have S(G) = {1}.

As a sample of such an argument, consider the case where the property P reads off as “the
group ⟨x1, . . . , xs, g⟩ is solvable” (cf. [GGKP3]). Note that essentially the same argument
can be applied for various ramifications of the property P as above (cf. [GPS], [GKPS],
[GGKP1]–[GGKP2], [GGKP4]–[GGKP5], [Gue], [FGG]).

Here is the argument. Assume that (3.3) holds and show that S(G) = R(G). As the
inclusion R(G) ⊆ S(G) is obvious, we only have to establish the opposite inclusion S(G) ⊆
R(G).

3.2.1. 1st step. It is easy to see that the set S(G/R(G)) is in one-to-one correspondence
with the collection of cosets S(G)/R(G) := {sR(G) : s ∈ S(G)}. Thus, factoring out R(G),
we may assume that G is semisimple (i.e. R(G) = 1). We have to prove that S(G) = 1.
Henceforth let G denote a minimal counter-example, i.e. a semisimple group of smallest
order with S(G) ̸= 1. Let 1 ̸= g ∈ S(G).

3.2.2. 2nd step. According to [Ro2, 3.3.16], any finite semisimple group G contains a unique
maximal normal centreless completely reducible subgroup CR(G) (by definition, CR means
a direct product of finite nonabelian simple groups) which is called the CR-radical of G.
Denote it by V . This is a characteristic subgroup of G. It is known that the centralizer of
V in G is trivial [Ro2, proof of 3.3.18(i)]. We call the product of the isomorphic factors in
the decomposition of V an isotypic component of G. Thus V = H1 × · · · ×Ht, where Hi is
an isotypic component.

3.2.3. 3rd step. Let us show that t = 1 (i.e. there is only one isotypic component). Assume
the contrary, i.e. V = N1 × N2, where N1 ∩ N2 = 1. Consider Ḡ = G/N1 and denote
R̄ = R(G/N1). Denote by ḡ and ¯̄g the images of g in Ḡ and Ḡ/R̄, respectively. Since Ḡ/R̄
is semisimple and ¯̄g ∈ R(Ḡ/R̄), we have ¯̄g = 1 (because G is a minimal counter-example),
and hence ḡ ∈ R(G/N1). Consider V/N1 ≃ N2. Then V/N1 ⊂ G/N1 is semisimple, and
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therefore V/N1 ∩R(G/N1) = 1. Since ḡ ∈ R(G/N1), we have [ḡ, v̄] = 1̄ for every v̄ ∈ V/N1.
Hence [g, v] ∈ N1 for every v ∈ V . Similarly, [g, v] ∈ N2 for every v ∈ V . Therefore [g, v] = 1.
Hence g centralizes every v ∈ V . Since the centralizer of V in G is trivial, we get g = 1.
Contradiction.

So we may assume that g acts as an automorphism g̃ on V = H1 × · · · × Hn, where all
Hi, 1 ≤ i ≤ n, are isomorphic nonabelian simple groups.

3.2.4. 4th step. Let us show that g̃ cannot act on V as a nonidentity element of the symmetric
group Sn. Denote by σ the element of Sn corresponding to g̃.

By definition, the subgroup Γ = ⟨g, xigx−1
i ⟩, i = 1, . . . , s, is solvable for any choice of

xi ∈ G. Evidently, the subgroup ⟨[g, x1], [g, x2]⟩ lies in Γ.

Suppose σ ̸= 1, and so σ(k) ̸= k for some k ≤ n. Take x̄1 and x̄2 of the form x̄i =

(1, . . . , x
(k)
i , . . . , 1), where x

(k)
i ̸= 1 lies in Hk (i = 1, 2). Then we may assume (x̄i)

σ =

(x
(k)
i , 1, . . . , 1), and so [g, x̄i] = (x̄i)

σx̄−1
i = (x

(k)
i , 1, . . . , (x

(k)
i )−1, . . . , 1).

By a theorem of Steinberg, Hk is generated by two elements, say a and b. On setting

x
(k)
1 = a, x

(k)
2 = b, we conclude that the group generated by [g, x̄1] and [g, x̄2] cannot be

solvable because the first components of these elements, a and b, generate the simple group
Hk. Contradiction with solvability of Γ.

So we can assume that g acts as an automorphism of a simple group H.

3.2.5. 5th step. Consider the extension of the group H with the automorphism g̃. Denote
this almost simple group by G1. As g ∈ S(G), we have g ∈ S(G1), and hence g = 1.
Contradiction.

So we achieved our goal by reducing the original problem to some statement on almost
simple groups. Several ways for proving such statements will be discussed in Section 5. Here
we present some crucial facts from the theory of finite simple groups (some of them recent
enough) which allowed us to put the things up to the end.

3.2.6. Some facts from the theory of finite simple groups. First of all, we want to emphasize
that we freely make use of the classification of finite simple groups (CFSG) which states
that apart from the alternating groups and groups of Lie type there are only 26 sporadic
groups (listed, say, in [CCNPW]). We also rely on the latest computer version of [ATLAS]
and apply it to our computations.

The first basic fact we repeatedly use is the following 2-generation theorem which was first
noticed by R. Steinberg for the groups of Lie type and then proved as a result of long-lasting
efforts of many mathematicians.

Theorem 3.1. Every finite simple group can be generated by two elements.

We also need a stronger result, the so-called “one-and-a-half generation” theorem, which
was proved for all almost simple groups in [GK] by probabilistic methods (cf. [Sh]) and in
[Ste] for all simple groups using only their structural properties.

Theorem 3.2. Let G be a finite almost simple group with socle L, and let 1 ̸= g ∈ G. Then
there exists x ∈ G such that ⟨x, g⟩ contains L. In particular, if G is simple then there exists
x ∈ G such that G = ⟨x, g⟩.

Yet another version of generation theorems, proved in [GS], is of great importance for
what follows.
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Theorem 3.3. For every element g ̸= 1 of an almost simple group G, L ≤ G ≤ Aut (L) (L
is a simple group), denote by α(g) the minimal number of L-conjugates of g which generate
the group ⟨L, g⟩. Then α(g) can be estimated from above by

• n, if L is a classical group such that the dimension n of its natural representation is
at least 5, unless L = Spn(q) with q even, g is a transvection and α(g) = n+ 1;

• ℓ+3, if L is an exceptional group of untwisted Lie rank ℓ except possibly for the case
L = F4(q) with g an involution where α(g) ≤ 8;

• n− 1 if L = An.

For small groups the estimates are as follows:

• if L = PSL(2, q) , q ≤ 4, g ∈ G is of prime order r, then α(g) ≤ 3 unless that either
(a) g is a field automorphism of order 2 and α(g) ≤ 4 except for α(g) = 5 for

q = 9, or
(b) q = 5, g is a diagonal automorphism of order 2 and α(g) = 4;
moreover, if r is odd, then α(g) = 2 unless q = 9, r = 3 and α(g) = 3;

• if L = PSL(3, q) and g is of prime order, then α(g) ≤ 3 unless g is an involutory
graph-field automorphism and α(g) ≤ 4;

• if L = PSU(3, q), q > 2 and g is of prime order, then α(g) ≤ 3 unless g is an inner
involution and α(g) = 4;

• if L = PSU(4, q) and g is of prime order, then α(g) ≤ 4 unless that either
(a) g is an involutory graph automorphism and α(g) ≤ 6, or
(b) q = 2 and g is a transvection with α(g) ≤ 5.

Finally, we shall need the following theorem of Gow.

Theorem 3.4 ([Gow]). Let G be a finite simple group of Lie type. Let C ⊂ G be a conjugacy
class consisting of regular semisimple elements. Then for every semisimple element 1 ̸= g ∈
G there exist x ∈ C and z ∈ G such that g = [x, z].

4. Engel-line

Our goal in this section is to sketch proofs of the characterizations of finite solvable groups
obtained in [BGGKPP1]–[BGGKPP2] and [BWW] (see Theorems A and A′ in the Introduc-
tion). The first part of the proof (common for the two characterizations) has been described
in Section 3.1. Recall that we are now reduced to proving the existence of nontrivial solu-
tions for certain equations in the minimal nonsolvable simple groups from J. Thompson’s
list. We maintain the notation of Section 3.1. In particular, vn(x, y) and sn(x, y) stand for
the sequences introduced in Theorems A and A′, respectively. Let G be one of the groups
PSL(2, q) (q > 3), Sz(2n) (n ≥ 3 odd), PSL(3, 3). The needed characterizations (Theorems
A, A′) are consequences of the following theorems.

Theorem 4.1. There exist x, y ∈ G such that

(4.1) v1(x, y) = v2(x, y) ̸= 1.

Theorem 4.2. There exist x, y ∈ G and positive integers n, k such that

(4.2) sn(x, y) = sn+k(x, y) ̸= 1.

Below we outline the proofs mainly following the original papers, combining arguments
thereof with some ideas from [BGK] which allow one to make exposition more unified and
consistent.
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4.1. Proof of Theorem 4.1. For small groups from the list it is an easy computer exercise
to verify Theorem 4.1. There are for example altogether 44928 suitable pairs x, y in the
group PSL(3, 3). So henceforth we assume that G is either PSL(2, q) or Sz(q).

Recall the general idea of our proof (see Section 3.1). For a group G from the list, using
a matrix representation over Fq we interpret solutions of the equation v1(x, y) = v2(x, y)
as Fq-rational points of an algebraic variety. Lang–Weil type estimates for the number of
rational points on a variety defined over a finite field guarantee in appropriate circumstances
the existence of such points for big q. Of course we are faced here with the extra difficulty of
having to ensure that v1(x, y) ̸= 1 holds. This is achieved by taking the x, y from appropriate
Zariski-open subsets only. See Sections 4.1.1, 4.1.2 for more details.

4.1.1. The case G = PSL(2, q). We shall explain here a more general setup which will also
shed some light on the somewhat peculiar choice of the word v1 in Theorem A.

Let w be a word in x, x−1, y, y−1. Let G be a group and x, y ∈ G. Define

(4.3) vw1 (x, y) := w, and inductively vwn+1(x, y) := [x vwn (x, y) x
−1, y vwn (x, y) y

−1 ].

Let R := Z[t, a, b, c, d] be the polynomial ring over Z in five variables. Consider further
the two following 2× 2-matrices over R.

x = x(t) =

(
t −1
1 0

)
, y = y(a, b, c, d) =

(
a b
c d

)
.

Let a be the ideal of R generated by det(y) − 1 and by the 4 polynomials arising from the
matrix equation vw1 (x, y) = vw2 (x, y), and let Vw ⊂ A5 be the corresponding closed set of 5-
dimensional affine space. Let further a0 be the ideal of R generated by det(y)−1 and by the
matrix entries arising from the equation vw1 (x, y) = 1, and let Vw0 ⊂ A5 be the corresponding
closed set. Our approach aims at showing that Vw \Vw0 has points over finite fields. We have
therefore searched for words w satisfying dim(Vw)− dim(Vw0 ) ≥ 1. We have only found the
following words with this property:

(4.4) x−2y−1x, y−1xy, yx−1y−1, yxy−1, x−1yxy−1x, x−1yx−1y−1x.

The extra freedom one might get by introducing variables for the entries of x does not
lead to more suitable results. Indeed, GL(2) acts (by conjugation) on the corresponding
varieties, and every matrix of determinant 1 except ±1 is conjugate (over any field) to a
matrix with entries like x.

For the last 5 of the words in (4.4) the corresponding closed sets Vw do not have absolutely
irreducible components which are not contained in Vw0 , and in fact the analogue of Theorem
4.1 is not true for them. For the first word w = x−2y−1x the closed set Vw has two irreducible
components. One of them is Vw0 , the second (denoted by S) has dimension 2 and is absolutely
irreducible.

Let φ : S → A1 \ {0}, φ(x, y) = a denote the projection onto the first entry of y, and

put C := φ−1(1). This means that we consider y of the special form y =

(
1 b
c 1 + bc

)
.

According to Weil’s bound, the number of Fq-rational points of the curve C is at least
q + 1 − 2pa

√
q − d where d is the degree and pa the arithmetic genus of C, the projective

closure of C. Computations give d = 10 and pa = 12. This implies that for q > 593 there exist
enough Fq-rational points on C to prove Theorem 4.1 in the case of the groups PSL(2, q).
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4.1.2. The case of the Suzuki groups. To prove Theorem 4.1, the Suzuki groups G = Sz(q)
(q = 2n, n odd) provide the most difficult case. In contrast to the PSL(2)-case, where
each group PSL(2, p) can be viewed as the fibre at the place p of the Z-scheme PSL(2,Z),
such a realization does not exist for G = Sz(q). Note that although Sz(q) is contained in
GL(4, q), it is not an algebraic subgroup. In fact the group Sz(q) is defined with the help
of a field automorphism of Fq (the square root of the Frobenius), and hence the standard
matrix representation for Sz(q) contains entries depending on q. We shall describe now how
our problem can still be treated by methods of algebraic geometry.

Let R := F2[a, b, c, d, a0, b0, c0, d0] be the polynomial ring over F2 in eight variables. Let
π : R → R be its endomorphism defined by π(a) = a0, π(a0) := a2, . . . , π(d) := d0, π(d0) :=
d2. Let F be the algebraic closure of F2 and consider a, . . . , d0 as the coordinates of eight-
dimensional affine space A8 over F. The endomorphism π defines an algebraic bijection
α : A8 → A8. The square of α is the Frobenius automorphism on A8. Let p ∈ A8 be a fixed
point of αn, then its coordinates are in F2n if n is odd and in F2n/2 if n is even.

Consider further the two following matrices in GL(4, R):

x =


a2a0 + ab+ b0 b a 1

aa0 + b a0 1 0
a 1 0 0
1 0 0 0

 , y =


c2c0 + cd+ d0 d c 1

cc0 + d c0 1 0
c 1 0 0
1 0 0 0

 .

The matrices x, y also define maps from A8 to GL(4,F). It can easily be checked that the
matrices corresponding to a fixed point of αn (n odd and n ≥ 3) lie in Sz(2n).

Let a be the ideal of R generated by the 16 polynomials arising from the matrix equa-
tion v1(x, y) = v2(x, y), and let V ⊂ A8 be the corresponding closed set. By a computer
computation we find

Proposition 4.3. We have

(i) dim(V) = 2;
(ii) π(a) = a.

Using Proposition 4.3, we see that α defines an algebraic map α : V → V . Our task now
becomes to show that αn (n odd and n ≥ 3) has a nonzero fixed point on the surface V .
Our basic tool is the Lefschetz trace formula resulting from Deligne’s conjecture proved by
Fujiwara [Fu]. To apply the Lefschetz trace formula we need to study the geometric structure
of V , find its irreducible components and their singular loci, etc. All this was done using
computer algebra packages (SINGULAR and MAGMA). In fact, we have

Proposition 4.4. Let a′ be the ideal quotient of a by a3c20, and let V ′ ⊂ A8 be the corre-
sponding closed set. Then V ′ is a unique 2-dimensional irreducible component of V. We
have α(V ′) = V ′, and V ′ is absolutely irreducible.

Let now U ⊂ V ′ be the complement in V ′ of the closed set given by the equation cc0 = 0.
We have

Proposition 4.5. The two-dimensional affine variety U is smooth, α-invariant, and abso-
lutely irreducible, and we have b1(U) ≤ 675 and b2(U) ≤ 222.

Here bi(U) = dimH i
ét(U ,Qℓ) are the ℓ-adic Betti numbers (ℓ ̸= 2). The estimates contained

in Proposition 4.5 are derived from results of Adolphson–Sperber [AdSp] and Ghorpade–
Lachaud [GL] permitting to bound the Betti numbers of an affine variety in terms of the
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number of variables, the number of defining polynomials and their degrees. Note that since
U is affine, we have b3(U) = b4(U) = 0. Since U is nonsingular, the ordinary and compact
Betti numbers of U are related by the Poincaré duality, and we have bic(U) = b4−i(U).

Let Fix(U , n) be the number of fixed points of αn acting on U . From the Lefschetz trace
formula applied to U and from Deligne’s estimates for the eigenvalues of the endomorphism
induced by α on étale cohomology we get

|Fix(U , n)− 2n| ≤ b1(U) 23n/4 + b2(U) 2n/2.

An easy estimate shows that Fix(U , n) ̸= 0 for n > 48. The cases n < 48 are checked with
the help of MAGMA.

Remark 4.6. More sequences for which Theorem 4.1 holds were produced in [Ri]. We
conjecture after long computer experiments that Theorem 4.1 holds for any sequence formed
like in (4.3) from any initial word not of the form u1 = (x−1y)k (k ∈ N).

4.2. Proof of Theorem 4.2. As in the previous section, the case G = PSL(3, 3) is settled
by a direct computation. The cases G = PSL(2, q) and G = Sz(q) are treated separately.
We shall explain the case G = PSL(2, p) (p > 3 prime) in some detail referring the interested
reader to the original papers for complete proofs in the remaining cases.

The main idea consists in considering a dynamical system on G×G arising after iterating
the self-map φ : G × G → G × G defined by φ(y, u) = (y, [y−1uy, u−1]). More precisely,
taking s0(x, y) = x, sn+1(x, y) = pr2(φ(y, sn(x, y))), we arrive at the sequence of words in
F2(x, y) appearing in the statement of Theorem A′. Any periodic point of this dynamical
system which lies outside the “forbidden” set G× {1} gives a needed nontrivial solution of
equation (4.2). To prove the existence of such a periodic point, one can make use of the trace
method going back to classical works of Vogt, Fricke, Klein, Magnus (see, e.g., [Ho], [CMS]
for modern exposition). Here are the main steps of the proof, the idea of which is implicitly
contained in [BWW] and is presented in full detail and in much more general context in
[BGK].

4.2.1. 1st step. It is convenient to replace G = PSL(2, p) with its simply connected cover

G̃ = SL(2, p). Again, we shall consider the corresponding dynamical system on G̃ × G̃

looking for orbits outside the forbidden set G̃× {1}.

4.2.2. 2nd step. Recall the following classical fact (cited from [Ho]):

Theorem 4.7. Let F = ⟨a1, . . . , an⟩ denote the free group on n generators. Let us embed F
into SL(2,Z) and denote by tr the trace character. If u is an arbitrary element of F , then
the character of u can be expressed as a polynomial

tr(u) = P (t1, . . . , tn, t12, . . . , t12...n)

with integer coefficients in the 2n − 1 characters ti1i2...iν = tr(ai1ai2 . . . aiν ), 1 ≤ ν ≤ n,
1 ≤ i1 < i2 < · · · < iν ≤ n. �

Note that the theorem remains true for the group G̃ = SL(2, p) (and, more generally, for
SL(2, R) where R is any commutative ring, see [CMS]).
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4.2.3. 3rd step. We include the dynamical system as above into the following commutative
diagram:

(4.5)

G̃× G̃
φ̃−−−→ G̃× G̃

π
y π

y
A3
s,u,t

ψ−−−→ A3
s,u,t,

where the trace map ψ, whose existence follows from Theorem 4.7, is given explicitly by
ψ(s, u, t) := (f1(s, u, t), f2(s, u, t), t) with f1(s, u, t) = tr(φ(x, y)), f2(s, u, t) = tr(φ(x, y)y).

4.2.4. 4th step. We prove that the projection π is a surjective map (note that in [BGK] such
a surjectivity theorem is proven under very general assumptions).

4.2.5. 5th step. We show that ψ has a fixed point lying outside the projection of the above
mentioned forbidden set. This is proved by viewing diagram (4.5) as the special fibre at the
place p of the corresponding commutative diagram of morphisms of Z-schemes (denoted by
the same letters):

(4.6)

G × G φ̃−−−→ G × G

π
y π

y
A3

Z
ψ−−−→ A3

Z,

where G = SL(2,Z). We then consider the scheme W of fixed points of ψ. It turns out
to be a curve consisting of three irreducible components: a straight line, corresponding
to the forbidden set, and two absolutely irreducible curves, each of those is a curve of
genus one with three punctures. We then use the Weil estimates for either of these two
components to show that W has rational points for p big enough (small p’s are treated
separately by straightforward computations). Again, this argument is presented in [BGK]
in greater generality.

4.2.6. 6th step. We put everything together. Let a be a fixed point under ψ which lies
outside the image of the forbidden set (it exists by Step 5). Then the fibre at a is fixed
under φ (by commutativity of diagram (4.5)) and nonempty (by the surjectivity theorem of
Step 4). As the fibre is finite, it contains a needed φ-periodic point outside the forbidden
set, and we are done.

5. Burnside–Thompson line

Since this Section is related to the Burnside philosophy, we start with a short historical
note (see [Ko], [VL], [O2], [Ze1], [Ze2], [Ze3], [KS] and references therein). The General
Burnside problem asks: is a torsion group locally finite? In 1964 Golod constructed infinite
finitely generated residually finite torsion groups, thus giving a negative answer to the general
Burnside problem. Another Burnside problem deals with the identity xn ≡ 1; namely, is
every group of finite exponent locally finite? A negative solution for the Burnside problem
was obtained by P. Novikov and Adian, and later by A. Olshanskii and Rips. Denote by
B(r, n) the free group with r generators in the Burnside variety xn ≡ 1. The restricted
Burnside problem asks whether the group B(r, n) has a unique maximal finite quotient. The
final (positive) solution of the restricted Burnside problem was obtained by Zelmanov. It is
mostly based on studying infinite-dimensional Lie algebras and Engel or Engel-like identities
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(Kostrikin, Kostrikin–Zelmanov). These three Burnside problems have various applications
and give rise to numerous questions of Burnside type.

5.1. Burnside-type problems related to Thompson-type properties: two-
generated subgroups. Widely speaking, one can say that classical Burnside problems
ask to what extent finiteness of cyclic (i.e. one-generator) subgroups determines finiteness
of arbitrary finitely generated subgroups of a group. In the Burnside–Thompson approach,
investigation of global properties of groups relies on the investigation of their two-generated
subgroups. This streamline is especially relevant with respect to nilpotency or solvability
of groups. For example, Zorn’s theorem [Zo] implies that a finite group G is nilpotent if
and only if every two-generated subgroup of G is nilpotent. Baer proved [Ba2] that G is
supersolvable if and only if every two-generated subgroup of G is supersolvable.

A similar result for two-generated subgroups with respect to the solvability property is
provided by a remarkable theorem of J. Thompson [Th], [Fl1]:

Theorem 5.1. A finite group G is solvable if and only if every two-generated subgroup of
G is solvable.

The proof of this theorem does not use the full strength of classification of finite simple
groups (though the original proof in [Th] heavily relies on their properties). The next step
in the same direction is to study the situation with the solvable radical of a finite group and
to obtain for it some counter-parts of theorems on the nilpotent radical of a finite group.

Baer’s theorem provides an explicit characterization of the nilpotent radical of a finite
group in terms of Engel elements. It also implies an implicit characterization of the nilpotent
radical in terms of two-generated subgroups. We formulate this fact as a small proposition.
For any x, y ∈ G denote by

⟨
y⟨x⟩

⟩
the minimal normal subgroup in ⟨x, y⟩ containing y.

Proposition 5.2. Let G be a finite group. The nilpotent radical N(G) of G coincides with
the collection of all g ∈ G such that for any x ∈ G the subgroup

⟨
g⟨x⟩

⟩
is nilpotent.

Proof. Let g ∈ N(G). Take an arbitrary x ∈ G and consider H = N(G) ∩ ⟨x, g⟩. We have
H ≤ N(G), so H is nilpotent. On the other hand, H is a normal subgroup in ⟨x, g⟩ and
g ∈ H. Since

⟨
g⟨x⟩

⟩
is the minimal normal subgroup containing g, we have

⟨
g⟨x⟩

⟩
≤ H.

Since H is nilpotent,
⟨
g⟨x⟩

⟩
is nilpotent too.

Conversely, suppose that g has the property that the subgroup
⟨
g⟨x⟩

⟩
is nilpotent for any

x ∈ G. Evidently, for any x ∈ G the commutator [x, g] belongs to
⟨
g⟨x⟩

⟩
. Since

⟨
g⟨x⟩

⟩
is

nilpotent, the Engel series [[x, g], g, . . . , g] terminates at 1. Thus g is an Engel element and
therefore, according to Baer’s theorem, belongs to N(G). �
Definition 5.3. Let G be a group. We say that g ∈ G is a radical element if for any x ∈ G
the subgroup generated by x and g is solvable.

For the solvable radical of a finite group the following extension of Thompson’s theorem
holds:

Theorem 5.4 ([GKPS]). Let G be a finite group. The solvable radical R of G coincides
with the collection of all radical elements in G.

Remark 5.5. If we return to the nilpotent case, it turns out the elements radical with
respect to nilpotency do not cover the whole nilpotent radical (Fitting subgroup) of G: the
collection of elements g ∈ G such that for any x ∈ G the subgroup generated by x and g is
nilpotent coincides with the hypercentre of G [RM]. (We thank R. Meier for this remark.)
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The proof of Theorem 5.4 is rather short since, in contrast to the proof of Theorem 5.1,
it invokes the classification of finite simple groups. The whole difficulty is hidden in the
“one-and-a-half generation theorem” for almost simple groups, see Theorem 3.2.

Proof. Using arguments from Subsection 3.2, one can reduce the proof of Theorem 5.4 to
the following statement:

Lemma 5.6. Let G be a finite almost simple group. Then G does not contain nontrivial
radical elements.

The latter fact is a direct consequence of the “one-and-a-half generation” theorem. �

The result of Theorem 5.4 was conjectured by P. Flavell in 1997 [Fl4] (see also [Fl5]).
After obtaining in [Fl1] a short proof of Thompson’s theorem, he raised a natural question
what happens if we keep one of the generators fixed and conjectured that we arrive at the
solvable radical.

Theorem 5.4 also trivially implies another conjecture from the same paper: a Sylow p-
subgroup P of the finite group G is contained in the solvable radical of G if and only if ⟨P, x⟩
is solvable for all x ∈ G. Indeed, this theorem implies the same result for any subgroup of a
finite group.

Remark 5.7. Even for the above mentioned weaker conjecture of Flavell’s there is still no
classification-free proof (note, however, a certain step in this direction made in [Wa]).

It is clear that an element g ∈ G is radical if and only if the group ⟨g⟨x⟩⟩ is solvable for all
x. So Theorem 5.4 can be reformulated in the same terms as Proposition 5.2:

Proposition 5.8. Let G be a finite group. The solvable radical R(G) of G coincides with
the collection of all g ∈ G such that for any x ∈ G the subgroup

⟨
g⟨x⟩

⟩
is solvable.

Here is another consequence of Theorem 5.4:

Corollary 5.9. Let G be a finite group, let g ∈ G, and let
⟨
gG

⟩
denote the minimal normal

subgroup of G containing g. Then
⟨
gG

⟩
is solvable if and only if the subgroup

⟨
g⟨x⟩

⟩
is

solvable for all x ∈ G.

This corollary can be viewed as a hint to possible generalizations of Burnside-type ques-
tions with respect to a particular element of a group. Namely, instead of trying to deduce
properties of the whole group G assuming certain properties of two-generated subgroups, we
now fix an element g ∈ G, assume that its behaviour with respect to any element x ∈ G
is prescribed, and ask if the normal closure of g in G satisfies the same properties. This
local-global behaviour is a kind of Burnside-type problem. We shall now put this staff in a
setting more suitable for generalizations.

Let X be a class of groups. Let G be a group.

Definition 5.10. An element g ∈ G is called locally X-radical if ⟨g⟨x⟩⟩ belongs to X for
every x ∈ G. An element g ∈ G is called globally X-radical if

⟨
gG

⟩
belongs to X.

So we have local and global properties. Obviously, if the class X is closed under taking
subgroups, then a globally X-radical element is automatically locally radical.

The main problem is to determine classes X for which the converse property holds. Propo-
sition 5.2 and Corollary 5.9 state that if X is the class of nilpotent/solvable groups and G is
finite, then every locally X-radical element is globally X-radical.
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Remark 5.11. An attempt for even further generalization of the approach described above
to so-called Fitting pseudovarieties of groups was undertaken in a recent preprint [AMSV].

5.2. Finite groups: general situation. Let S be a set of finite simple groups. Denote by
X = X(S) the class of finite groups G such that all composition factors of G belong to S. It
is easy to see that such an X is closed under taking normal subgroups, homomorphic images
and extensions. On the other hand, if a class X is closed under these three operations and
S is the set of all simple groups in X, then X = X(S).

It is clear that such an X is a radical class. This means that in every finite group G there is
a unique maximal normal subgroup X(G) belonging to X. We want to characterize elements
constituting X(G).

We will use basic properties of the generalized Fitting subgroup F ∗(G) of a finite group
G, see [As].

Theorem 5.12 ([GKPS]). Let X be a class of finite groups closed under homomorphic
images, normal subgroups and extensions (equivalently, let X be a class of finite groups with
composition factors in some set S of simple groups).

• If G is a finite group, then every locally X-radical element belongs to X(G).
• If, in addition, X is closed under taking subgroups, then X(G) coincides with the set
of all X-locally radical elements.

Remark 5.13. Theorem 5.4 is a particular case of Theorem 5.12 if X is the class of solvable
groups. In this case S consists of all cyclic groups of prime order. We can also consider
the classes of p-groups (p a fixed prime), π-groups (π a fixed finite set of primes), and other
interesting classes. However, Theorem 5.12 does not cover the class of nilpotent groups
where we have to use Baer’s theorem for X(G) = N(G) = F (G), the Fitting subgroup.

Proof. If X is closed under taking subgroups, then ⟨gG⟩ in X implies that ⟨g⟨x⟩⟩ is in X, and so
we see that the second statement follows from the first. We shall prove the first implication,
i.e., we have to prove that if G is a finite group and g ∈ G with ⟨g⟨x⟩⟩ in X for all x ∈ G,
then ⟨gG⟩ is in X.

So assume that G is a minimal counter-example to the first statement. This means that
there exists a locally X-radical element g in G with ⟨gG⟩ not in X. Consider properties of
this group G.

Reduction 1: Take an arbitrary locally X-radical element g in G such that ⟨gG⟩ is not in
X. Show that G = ⟨gG⟩. If not, set H = ⟨gG⟩ and suppose that H < G. Take an arbitrary
element h ∈ H. Then h =

∏
gi where all gi are conjugate to g. Hence all gi are locally

X-radical elements. Since H < G, all elements gi lie in the radical X(H). Then, clearly, h
lies in X(H). Therefore, ⟨gG⟩ = H = X(H) and H is in X, a contradiction, and we may
assume that G = ⟨gG⟩.
Reduction 2. G has a unique minimal normal subgroup. If not, G has two normal

subgroups N1 and N2 with trivial intersection. Consider N1N2/N2 ≃ N1. Since G/N2 lies
in X, we have N1 ∈ X. Since G/N1 ∈ X, we have G ∈ X, a contradiction. In particular, we
may assume that every two normal subgroups in G have a nontrivial intersection.

Reduction 3: X(G) = 1.

If not, pass to G/X(G) and so by induction gX(G) is in X(G/X(G)) = 1, whence g ∈ X(G).

Reduction 4: F (G) = Z(G).
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Assume the contrary, i.e. F (G) ̸= Z(G). Since each Sylow subgroup of F (G) is normal
in G, it follows that F (G) is a p-group for some prime p. Since G = ⟨gG⟩, it suffices to
show that g commutes with F (G). If not, then taking x ∈ F (G) with [g, x] ̸= 1 shows that
1 ̸= g−1gx ∈ (⟨g⟨x⟩⟩ ∩ F (G)), and so ⟨g⟨x⟩⟩ ∈ X has a composition factor of order p. Thus
F (G) ∈ X, and X(G) ≥ F (G) ̸= 1, a contradiction.

We now complete the proof. Since G is not abelian and G/Z(G) acts faithfully on F ∗(G),
there is a nontrivial component Q of G (otherwise, F ∗(G) = F (G) = Z(G) and G is abelian).

If Z(G) ̸= 1, then Z(G) ∩Q ̸= 1 (otherwise the normal closure of Q would be a minimal
normal subgroup).

We may assume that g does not commute with Q (for if g commuted with every component
of G, then so would G = ⟨gG⟩, a contradiction). Let H = ⟨Q, g⟩. Set N to be the (central)
product of the distinct conjugates of Q under ⟨g⟩. Then N is clearly perfect and H/N is
cyclic (generated by g). Also, Z(N) = Φ(N) ≤ Φ(H) (where Φ is the Frattini subgroup),
and N/Z(N) is a minimal normal subgroup of H/N . So applying [GKPS, Lemma 3.4] to
H/Z(N), we see that H = ⟨g, h⟩ for some h ∈ N .

We claim that H = J := ⟨g⟨h⟩⟩. Clearly, J is normal in H because it is normalized by
g ∈ J and by h (by definition). Clearly, H/J is abelian (since g ∈ J and so [h, g] ∈ J).
Thus, J contains [H,H] = N . Now H = ⟨Q, g⟩ = ⟨N, g⟩, so once N < J , since g is in J , we
have H = J .

Since H = ⟨g⟨h⟩⟩, all composition factors of H are X-groups. If Z(G) ̸= 1, then Z(G) is an
X-group, and if Z(G) = 1, then Q is an X-group, Q lies in X(G). In either case, X(G) ̸= 1,
a contradiction. �

Note one more result of Flavell [Fl5] of the same flavour:

Theorem 5.14. Let g be an element of the finite group G. Then
⟨
gG

⟩
is solvable of Fitting

height at most 2 if and only if the subgroup
⟨
g⟨x⟩

⟩
has this property for all x ∈ G.

5.3. Baer–Suzuki-type theorem for solvable groups. The classical Baer–Suzuki theo-
rem [Ba1], [Suz2], [AL] states that

Theorem 5.15 (Baer–Suzuki). The nilpotent radical of a finite group G coincides with the
collection of g ∈ G satisfying the property: for every x ∈ G the subgroup generated by g and
xgx−1 is nilpotent.

The Baer–Suzuki theorem allows one to improve the characterization of the nilpotent
radical given in Proposition 5.2 in the best possible way: instead of considering the subgroup⟨
g⟨x⟩

⟩
, it is enough to consider the subgroup ⟨g, gx⟩ because its nilpotency for any x ∈ G

already guarantees g ∈ N(G). In particular, this theorem implies

Corollary 5.16. A finite group G is nilpotent if and only if in each conjugacy class of G
every two elements generate a nilpotent subgroup.

Within last years a lot of efforts have been undertaken in order to describe the solvable
radical of a finite group and to establish a sharp analogue of the Baer–Suzuki theorem with
respect to the solvability property (see [Fl2], [Fl3], [GGKP1], [GGKP2]). In particular, the
following problem raised by Flavell is parallel to the Baer–Suzuki result:

Problem 5.17. Let G be a finite group with solvable radical R(G). What is the minimal
number k such that g ∈ R(G) if and only if the subgroup generated by x1gx

−1
1 , . . . , xkgx

−1
k

is solvable for every x1, . . . , xk in G?
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Problem 5.17 was solved in the independent papers [GGKP3] and [FGG]:

Theorem 5.18. The solvable radical of a finite group G coincides with the collection of
g ∈ G satisfying the property: for any three elements a, b, c ∈ G the subgroup generated by
the conjugates g, aga−1, bgb−1, cgc−1 is solvable.

Thus, an element of a finite group belongs to the solvable radical if and only if any
four its conjugates generate a solvable group. This statement may be viewed as a theorem
of Baer–Suzuki type with respect to the solvability property. Theorem 5.18 is sharp and
provides the best possible characterization: in the symmetric groups Sn (n ≥ 5) any triple
of transpositions generates a solvable subgroup.

Remark 5.19. Looking for a solution of Problem 5.17, Flavell proved [Fl1] that an el-
ement g belongs to the solvable radical R(G) if and only if the subgroup generated by
x1gx

−1
1 , . . . , xkgx

−1
k is solvable for every x1, . . . , xk in G, and one can choose k = 10. His

proof does not rely on the classification of finite simple groups. In the paper [FGG] he
managed to reduce the value of k to k = 7. Finally, in [Fl3, Cor. E] Flavell established the
assertion of Theorem 5.18 under the additional assumption that g is a {2, 3}′-element, i.e.
he proved that a {2, 3}′ element g ∈ G belongs to the solvable radical of G if and only if
every four conjugates of g generate a solvable group. The proofs of all these results use only
classification-free methods.

The original Flavell’s estimate k = 10 was improved in [GGKP1], [GGKP2] by k = 8. The
proof went through yet another description of R(G) in terms of commutators and heavily
relied upon the classification of finite simple groups. Both proofs of the sharp Theorem 5.18
(in [GGKP3] and [FGG]) also rely on the classification of finite simple groups.

5.4. Outline of the proof of Theorem 5.18. Our proof follows [GGKP2] and [GGKP3].

Notational conventions. Whenever possible, we maintain the notation of [GGKP2] which
mainly follows [St], [Ca1]. In particular, we adopt the notation of [Ca1] for twisted forms
of Chevalley groups (so unitary groups are denoted by PSUn(q

2) and not by PSUn(q)).
However, the classification of outer automorphisms follows [GLS, p. 60], [GL, p. 78]. In
order to avoid widespread misunderstandings we recall this classification. Let us call the
subdivision of automorphisms of Chevalley groups into inner, diagonal, field, and graph
automorphisms in the sense of [St], [Ca1], the usual one.

In the classification of finite simple groups a slightly different subdivision of automor-
phisms is used. Let G be an adjoint Chevalley group, untwisted or twisted (the cases where
G is a Suzuki or a Ree group are treated separately). Denote by Aut (G) the group of
automorphisms of G. Then ([GLS, Definition 2.5.13]):

1. Inner-diagonal automorphisms coincide with usual inner-diagonal automorphisms.

2. Field automorphisms are as follows:

2.1. If G is untwisted, then a “field” automorphism is an Aut (G)-conjugate of a usual
field automorphism.

2.2. If G = dG is a twisted group, then a “field” automorphism is an Aut (G)-conjugate
of a usual field automorphism of order relatively prime to d.

2.3. If G is a Suzuki or a Ree group, then a “field” automorphism is an Aut (G)-conjugate
of a usual field automorphism.

3. Graph automorphisms are as follows:
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3.1. If G is untwisted, then a “graph” automorphism is an Aut (G)-conjugate of a graph-
inner-diagonal usual automorphism with nontrivial graph part, except for the cases B2, F4,
G2 with the characteristics of the ground field p = 2, 2, 3, respectively, in which cases there
are no “graph” automorphisms.

3.2. If G = dG is a twisted group, then a “graph” automorphism is an element of Aut (G)
whose image modulo the group of inner-diagonal automorphisms has order divisible by d.

3.3. If G is a Suzuki or a Ree group, then there are no graph automorphisms.

4. Graph-field automorphisms are as follows:

4.1. If G is untwisted, then a “graph-field automorphism” is an Aut (G)-conjugate of a
usual graph-field automorphism where both components are nontrivial, except for the cases
B2, F4, G2 with the characteristics of the ground field p = 2, 2, 3, respectively, in which cases
all conjugates of usual graph-field automorphisms with nontrivial graph part are considered
as “graph-field” automorphisms.

4.2. If G = dG is a twisted group, then there are no graph-field automorphisms.

4.3. If G is a Suzuki or a Ree group, then there are no graph-field automorphisms.

In particular, in this sense a “graph” automorphism may be a composition of an auto-
morphism of the Dynkin diagram with an inner-diagonal automorphism, or (in the case of a
twisted form dL of a simple group L) a field automorphism of order divisible by d.

Recall that a finite group G is almost simple if it contains a unique normal simple group
L such that L ≤ G ≤ Aut (L).

Definition 5.20. Let k ≥ 2 be an integer. We say that g ∈ G is a k-radical element if for
any x1, . . . , xk ∈ G the subgroup H = ⟨x1gx1−1, . . . , xkgxk

−1⟩ is solvable.

The main step in our proof of Theorem 5.18 is

Theorem 5.21. Let G be a finite almost simple group. Then G does not contain nontrivial
4-radical elements.

The reduction from Theorem 5.18 to Theorem 5.21 is fairly standard, and follows the
scheme described in Subsection 3.2. Namely, let S(G) be the set of all 4-radical elements of
the group G. Obviously, R(G) lies in S(G), and we have to prove the opposite inclusion. We
may assume thatG is semisimple (i.e., R(G) = 1), and we shall prove thatG does not contain
nontrivial 4-radical elements. Assume the contrary and consider a minimal counter-example,
i.e. a semisimple group of smallest order with S(G) ̸= {1}. Then a slightly modified method
from Subsection 3.2 implies the result.

Let G be an almost simple group, L ≤ G ≤ Aut (L). The proof of Theorem 5.21 splits
into two cases.

Case 1. If G = L is simple, then Theorem 5.21 is an immediate consequence of [GGKP2,
Theorem 1.15]. Here we formulate this theorem in the following form:

Lemma 5.22. For any g ∈ L there exist three elements a, b, c from L such that the
commutators [g, a], [g, b], [g, c] generate a nonsolvable subgroup. In particular, the subgroup
⟨g, aga−1, bgb−1, cgc−1⟩ is nonsolvable too.

Proof. We provide the reader with a scheme of the proof referring to [GGKP2] for details. Let
G be a simple group. For every g ∈ G denote by ρ(g) = n the smallest number of elements
x1, x2, . . . , xn in G such that the subgroup ⟨[g, x1], . . . , [g, xn]⟩ is not solvable. Denote by
ρ(G) the biggest ρ(g), where g runs over G. In these terms we have the following result:
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Theorem 5.23. If G is a finite nonabelian simple group, then ρ(G) ≤ 3. If G is a group of
Lie type over a field K with charK ̸= 2 and K ̸= F3, or a sporadic group not isomorphic to
Fi22, Fi23, then ρ(G) = 2.

The proof of Theorem 5.23 goes through inspection of all simple groups.

1. Alternating groups. Let G = An, n ≥ 5. Then ρ(G) = 2.

Proof. For n = 5, 6, 7 the statement can be checked in a straightforward manner, so assume
n ≥ 8. Let us proceed by induction. Let g ∈ G, g ̸= 1. First suppose that g can be written
in the form

(5.1) g = στ, σ ∈ Am, σ ̸= 1, 5 ≤ m < n,

where σ and τ are disjoint (and thus commute). Then by induction hypothesis there exist
σ1, σ2 ∈ Am such that the subgroup generated by [σ, σ1] and [σ, σ2] is not solvable. Take
xi = σiτ , i = 1, 2. Then [g, xi] = [σ, σi], and we are done.

Suppose g cannot be represented in the form (5.1). Then we have one of the following
cases: either n is odd and g = (12 . . . n), or n is even and g = (12 . . . n− 2)(n− 1, n). In any
of these cases we take x1 = (123) and x2 = (345) and get ⟨[x1, g], [x2, g]⟩ ∼= A5. �

2. Groups of Lie type, char(K) ̸= 2 and |K| ̸= 3. Let first G be a group of rank 1.

Let G be one of the groups A1(q) (q ̸= 2, 3), 2A2(q
2) (q ̸= 2), 2B2(2

2m+1) (m ≥ 1), 2G2(3
2m+1)

(m ≥ 0). Then ρ(G) = 2.

The proof is quite technical and involves calculations based on different canonical decom-
positions in G (see details in [GGKP2, Proposition 4.1]). The uniform part of the proof
relies on a theorem of Gow [Gow] regarding conjugacy classes of semisimple elements in
Chevalley groups (see Theorem 3.4, compare with [EG1]). Certain steps require, however,
explicit matrix representations for the groups of rank 1 (see [HB], [KLM]). As usual, groups
over small fields are considered separately.

Suppose now that the rank of G is greater than 1.

Let G be a Chevalley group of rank > 1 over a field K with charK ̸= 2, K ̸= F3. Then
ρ(G) = 2.

In this case we use the Levi decomposition of G together with arguments from [GS1]
(based on the notions of generalized Bruhat cells and generalized Coxeter elements) in order
to reduce to rank 1 case.

3. Groups of Lie type, char(K) = 2 or |K| = 3.

Let G be a nonsolvable Chevalley group over a field K, where either charK = 2 or K = F3.
Then ρ(G) ≤ 3.

The proof goes by reduction to the case of groups of rank at most 3 and involves more
technicalities. In particular, the case G = 2F4(q) requires separate consideration. Some
groups of small ranks are treated by MAGMA.

4. Sporadic groups.

Let G be a sporadic simple group. Then ρ(G) = 3 for G = Fi22, F i23 and ρ(G) = 2 for all
the remaining groups.

The proof goes case by case. Apart from theoretical arguments, MAGMA calculations
for rechecking them (in all the cases except for the M=Monster) are used. In particular, to
prove whether a subgroup under consideration is not solvable, the Hall criterion: a group
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H is nonsolvable if and only if it contains nonidentity elements a, b, c of pairwise coprime
orders such that abc = 1, is quite convenient.

Both in the theoretical proof and in the computer-aided one, we rely on the ATLAS
classification of conjugacy classes of maximal cyclic subgroups [ATLAS]. The proof for
M also relies on the classification of conjugacy classes. However, all other arguments are
theoretic. We reduce the statement to checking the elements g of prime orders p each of
those (except for p = 41) can be included in some proper simple subgroup of M [No]. The
case p = 41 is treated separately using the fact that the normalizer NM(⟨g⟩) = 41 · 40 is a
maximal subgroup of M [ATLAS].

We also use the fact that Fischer’s groups Fi22, F i23 are generated by 3-transpositions
(see [Fi]) and thus contain a nontrivial 2-radical element. �

Case 2. Let G be almost simple but not simple, i.e., L < G ≤ Aut(L), L is simple. We
only have to consider outer automorphisms g of L and find three elements a, b, c from L such
that the commutators [g, a], [g, b], [g, c] generate a nonsolvable subgroup.

For alternating and sporadic groups, the group of outer automorphisms is rather small. So
these groups are treated with straightforward considerations. If L is a group of Lie type, the
cases when g is an inner-diagonal, field, graph, or graph-field automorphism are considered
separately. The first case is treated in [GGKP2] (see the discussion at the end of Section 4 of
this paper for groups of small Lie rank), so we only need to complete the induction arguments.
Field, graph, and graph-field automorphisms are treated using their classification. Here we
mainly follow the approach of [GS], see Subsection 3.2.6, Theorem 3.3, which either gives the
appropriate values of α(g) or provides tools for the careful case-by-case analysis of particular
groups and particular types of automorphisms (see [GS], [GGKP3] for details).

5.5. Baer–Suzuki-type theorem for solvable groups. Elements of prime order
bigger than 3. As we have seen from Theorem 5.18, the sharp analogue of Baer–Suzuki
theorem for solvable groups requires four conjugates generating a solvable group. It is clear
that elements of small order are troublesome which prevents from decreasing the number of
conjugates in Theorem 5.18. For example, if we take an involution g ∈ G, g2 = 1, then any
two conjugates of g generate a dihedral group, which is metabelian. Hence two conjugates
are not enough to characterize the solvable radical.

Flavell [Fl2] observed that if we take a transvection g in the group SLn(3), n ≥ 3, i.e.,
an element of order 3, then we have a similar phenomenon. Indeed, let C be the conjugacy
class containing g. The element g and an arbitrary xgx−1 generate a group acting trivially
on a subspace of codimension at most 2. Hence ⟨g, xgx−1⟩ is solvable since it has a normal
abelian subgroup A such that ⟨g, xgx−1⟩ /A is isomorphic to a subgroup of the solvable group
GL2(3). However, SLn(3), n ≥ 3, is not solvable and is generated by C.

So he mentioned in [Fl2] that one can expect a better analogue of the Baer–Suzuki theorem
to hold for the elements in R(G) of prime order greater than 3. The following result confirms
this expectation:

Theorem 5.24 ([GGKP4], [GGKP5] and [Gue]). Let G be a finite group. An element g of
prime order ℓ > 3 belongs to R(G) if and only if for every x ∈ G the subgroup H = ⟨g, xgx−1⟩
is solvable.

Theorem 5.24 has an immediate consequence (Theorem B of the Introduction):
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Corollary 5.25 ([GGKP4], [GGKP5], [Gue], [FGG]). Let G be a finite group. Let C be
a conjugacy class of G consisting of elements of prime order p ≥ 5. Then C generates a
solvable subgroup if and only if every pair of elements of C generates a solvable subgroup.

Combining this with Burnside’s pαqβ-theorem, we obtain the following corollary (Corollary
C of Introduction) which is parallel to Corollary 5.16:

Corollary 5.26 ([GGKP4], [GGKP5], [Gue], [LXZ]). A finite group G is solvable if and
only if in each conjugacy class of G every two elements generate a solvable subgroup.

Remark 5.27. Note a result of the same spirit [Shu] the proof of which heavily relies on
Corollary 5.26: a finite group is solvable with Fitting height at most h if and only if every
pair of conjugate elements generates a solvable subgroup whose Fitting height is at most h.

Remark 5.28. The proof of Theorem 5.24 uses the classification of finite simple groups. The
proof of Corollary 5.26 can be obtained without classification using only the above mentioned
J. Thompson’s characterization of the minimal nonsolvable groups. Indeed, suppose G is
minimal counter-example to Corollary 5.26. Then G must be a simple group due to the
minimality condition, G must be a minimal simple group in the sense of Thompson for the
same reason, and G must contain an element g of prime order ≥ 5 because of Burnside’s
pαqβ-theorem. So if Theorem 5.24 is valid for the minimal simple groups, then we come up
with a contradiction. So we do not need the classification in order to prove Corollary 5.26.
Moreover, as noticed in [LXZ], the statement of Corollary 5.26 can be obtained by a direct
inspection of the groups on Thompson’s list (so one can dispense with going through a much
harder assertion of Corollary 5.25).

Remark 5.29. The proofs of Theorem 5.24 given in [GGKP5] and in [Gue] are quite dif-
ferent. The proof in [GGKP5] was growing up among the ideas of the theory of algebraic
groups while the one from [Gue] relies on deep facts from classification of finite simple groups
and related topics.

In fact, Guest also obtained a further refinement of Theorem 5.24 (see [Gue, Theorem
A∗]). Namely, he proved

Theorem 5.30 ([Gue]). Let G be a finite almost simple group with socle G0. Suppose that
g is an element of odd prime order p in G. Then one of the following holds.

(i) There exists x ∈ G such that ⟨g, xgx−1⟩ is not solvable.
(ii) p = 3 and (g,G0) belongs to a list of exceptions given in Table 1. Moreover,

there exist x1, x2 in G such that the subgroup
⟨
g, x1gx

−1
1 , x2gx

−1
2

⟩
is not solvable, un-

less G0
∼= PSUn(2), PSp2n(3). In any case, there exist x1, x2, x3 in G such that⟨

g, x1gx
−1
1 , x2gx

−1
2 , x3gx

−1
3

⟩
is not solvable.

5.6. Outline of the proof of Theorem 5.24. The proof sketched below follows the scheme
of [GGKP5]. We reduce Theorem 5.24 to the following statement:

Theorem 5.31. Let G be a finite almost simple group, and let g ∈ G be of prime order > 3.
Then there is x ∈ G such that the subgroup generated by g and xgx−1 is not solvable.

The reduction is fairly standard and follows the scheme of Subsection 3.2, so the rest of
the section is devoted to an outline of the proof of Theorem 5.31.

We refer to the property stated in Theorem 5.31 as Property (NS) (for “nonsolvable”):

(NS) For every g ∈ G of prime order > 3 there is x ∈ G such that the subgroup
generated by g and xgx−1 is not solvable.
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G0 g
PSLn(3), n > 2 transvection
PSp2n(3), n > 1 transvection
PSUn(3), n > 2 transvection
PSLn(2), n > 3 reflection of order 3
PΩϵ

n(3), n > 6 g a long root element
El(3), F4(3),

2E6(3),
3D4(3) g a long root element

G2(3) g a long or short root element
G2(2)

′ ∼= PSU3(3) transvection

Table 1. List of exceptions to Theorem 5.30

We prove, using case-by-case analysis, that every almost simple group G, where L ≤ G ≤
AutL, satisfies (NS).

5.6.1. Alternating groups and sporadic groups.

Lemma 5.32. Let L = An, n ≥ 5, be the alternating group on n letters. Then G satisfies
(NS).

Proof. Clearly it is enough to consider the alternating groups: as Aut (An) = Sn for n ̸= 6
and [Aut (A6) : A6] = 4, any element of odd order in Aut (An) lies in An. So let G = An,
n ≥ 5. For n = 5 the proof is straightforward, so we may proceed by induction. We may
thus assume that g acts without fixed points, so n = kℓ, where ℓ stands for the order of g,
and g is a product of k disjoint cycles of length ℓ. If k = 1, we can conjugate g = (12 . . . ℓ)
by a 3-cycle z = (123) to see that ⟨g, zgz−1⟩ = Aℓ. For k > 1, we conjugate g by a product
of k 3-cycles. �
Lemma 5.33. Let L be a sporadic simple group. Then G satisfies (NS).

Proof. As the group of outer automorphisms of any sporadic group is of order at most 2, it
is enough to treat the case where G is a simple sporadic group. Here the proof goes, word
for word, as in [GGKP1, Prop. 9.1]. Namely, case-by-case analysis shows that any element
g ∈ G of prime order ℓ > 3 is either contained in a smaller simple subgroup of G, or its
normalizer is a maximal subgroup of G. In the latter case it is enough to conjugate g by an
element x not belonging to NG(⟨g⟩) to ensure that ⟨g, xgx−1⟩ = G. �

5.6.2. Groups of Lie rank 1. We start with the following well-known fact.

Proposition 5.34. Let G be a finite almost simple group of Lie type, and let g ∈ G be an
element of prime order ℓ > 3. Then g is either an inner-diagonal or a field automorphism
of L.

Proof. See [GL, p. 82, 7-3] and [LLS, Proposition 1.1]. �
Proposition 5.35. Suppose that the Lie rank of L is 1. Then G satisfies (NS).

Proof. Let g ∈ G be of prime order > 3. We check that there is x ∈ L such that the subgroup
of G generated by g and gx is not solvable.

In the cases L = PSL2(q), q ≥ 4, and L = PSU3(q
2), q > 2, it is enough to use arguments

from [GS].
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If L is a Suzuki group 2B2(2
2m+1), m ≥ 1, or a Ree group 2G2(3

2m+1), m > 0, we only
have to consider the cases where g ∈ G is a semisimple element of L (since g is of prime order
> 3 and cannot be unipotent), or a field automorphism (since every outer automorphism is
a field automorphism).

1. Suzuki–Ree case, g is semisimple. Suppose g is a semisimple element of order greater
than 3. Then g is regular [Ca1], [KLM]. We then use the description of maximal subgroups
of G and the structure of the normalizers of maximal tori ([Suz1], [SS], [We], [LSS], [LN],
[We], [LSS]) along with Gow’s theorem [Gow].

2. Ree case, g is a nontrivial field automorphism.

The Ree groups 2G2(3
2m+1), m > 0, are not minimal and contain a subgroup isomorphic

to PSL2(q), normalized but not centralized by g. Thus there exists x ∈ L such that ⟨g, gx⟩
is not solvable.

3. Suzuki case, g is a nontrivial field automorphism.

For the Suzuki case L = 2B2(2
2m+1), m ≥ 1, where an explicit construction for x required

in (NS) is a hard task, we use a slightly modified counting method from [GS, Lemma
3.1]. �

5.6.3. Groups of type 2F4. If g ∈ G is a unipotent element of prime order > 3, then it
is easy to reduce the problem to the case of Lie rank 1. The same idea works if g is a
field automorphism of L. The case where g is semisimple is treated similarly to Case 1 of
Proposition 5.35 using the list of [Ma] and Gow’s theorem [Gow].

5.6.4. General case. In order to complete the proof of Theorem 5.24, we have to prove

Theorem 5.36. Let L be a simple group of Lie type of Lie rank ≥ 2, L ̸= 2F4(q
2), and let

L ≤ G ≤ AutL. Then G satisfies (NS).

If g ∈ G is a field automorphism of L, then it normalizes but does not centralize a smaller
rank group, and we are done. Thus, in view of classification of automorphisms of prime
order (see Proposition 5.34), it is enough to prove the following:

Theorem 5.37. Let L = L(K) be a simple group of Lie type, rank(G) ≥ 2, K a finite field,
char(K) = p. Let σ be a diagonal automorphism of L, and let G = ⟨σ, L⟩. Let g ∈ G be
of prime order q > 3. Then G satisfies (NS), i.e., there exists x ∈ G such that the group
⟨g, xgx−1⟩ is not solvable.

In contrast with the rank 1 case, in the proof of Theorem 5.37 we avoid considerations
related to the specific subgroup structure of the groups in question and use some basic results
on algebraic groups instead.

Let g ∈ G be of prime order ℓ > 3. Our aim is to prove property (NS) using a kind of
induction by parabolic subgroups of G and the corresponding Levi subgroups. For the sake
of convenience, we replace induction by studying the minimal counter-example to (NS).

This means that we suppose that the property (NS) does not hold for some group G. We
may assume for G the following property (MC stands for “minimal counter-example”):

MC:

(a) G is a finite almost simple group which does not satisfy (NS);

(b) [G,G] = L is a simple group of Lie type different from 2F4;
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(c) if H is a group satisfying conditions (a) and (b), then the order of [H,H] is greater
than or equal to the order of G.

Throughout below g ∈ G is an element of prime order ℓ > 3 such that the group
⟨g, xgx−1⟩ is solvable for every x ∈ L (such an element exists according to hypothesis
(a)). We will consequently study the properties of (MC).

Recall that the group L can be represented in the form

L = [G(K),G(K)] = Gsc(K)/Z(Gsc(K))

where Gsc is a simple, simply connected linear algebraic group defined over a finite field K
and G = Gad is the corresponding adjoint group.

We prove that for every pair ⟨σ, L⟩ there exists a reductive group G over K satisfying the
following conditions:

• the derived group G′ is simply connected;
• G′(K)/Z(G′(K)) = L;
• there is τ ∈ G(K) such that ⟨τ,G′(K)⟩/Z(⟨τ,G′(K)⟩ = ⟨σ, L⟩.

We then note that the group G lies in Gad(K).

Now we are able to study the minimal counter-example. The first reduction is as follows:

Lemma 5.38. The element g ∈ G = ⟨σ, L⟩ ≤ G(K) does not belong to any proper parabolic
subgroup of G(K).

Proof. We use parabolic induction whose base is Theorem 5.35. �

The next two reductions are as follows:

Lemma 5.39. The element g does not normalize any unipotent subgroup V of G(K).

Lemma 5.40. The element g ∈ G = ⟨σ, L⟩ ≤ G(K) ≤ G is a regular semisimple element
of G.

The proof of Lemma 5.39 uses a construction of Borel–Tits ([BT],[BuW], or just [GLS,
Theorem 3.1.3]). The proof of Lemma 5.40 relies on Lemma 5.39 and general facts from
[Ca1] regarding centralizers of g.

Recall that a Coxeter element wc of the Weyl group W = W (Φ) with respect to Π is
a product (taken in any order) of the reflections wα, α ∈ Π, where each reflection occurs
exactly once.

Using arguments from [GS] and [EG2], one can prove that g is of the form g = vẇc where
wc is the Coxeter element of the Weyl group of Gad(K) and v ∈ U ≤ G.

By [GGKP2], for any g = vẇc there is x ∈ G such that [g, x] = u ∈ U.

Put H = ⟨g, xgx−1⟩. Suppose H is solvable. Denote by Hpℓ a pℓ-Hall subgroup of H, and
let A be a maximal abelian normal subgroup of Hpℓ. Denote by Ap the p-Sylow subgroup
of A. One can prove that g does not normalize any unipotent subgroup of G. This, in
particular, implies that Ap = 1, because Ap is normalized by g. Hence |A| = ℓs.

The next fact about the structure of the minimal counter-example is as follows. Let
F � Gad be a reductive subgroup defined over K, and suppose g ∈ F = F (K). Consider F 0,
the identity component of F . Then F 0 is a K-defined connected reductive group. Suppose
that F 0 is not a torus. Then g ∈ F leads to a contradiction and therefore:
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The element g cannot lie in any proper reductive subgroup of Gad other than a torus. This
leads to a crucial reduction:

Proposition 5.41. If Γ is a minimal counter-example, g ∈ Γ, then the reductive group G
corresponding to G is either the linear group GLℓ or the unitary group Uℓ.

Each of these cases is considered separately and in both of them it turns out that g is
represented by a monomial matrix, which leads to a contradiction by Lemma 5.32. �

6. Generalizations and analogues: linear groups, PI-groups, noetherian
groups, Lie algebras

In this section, we obtain extensions of our earlier results for some classes of infinite groups.
Throughout, let vn(x, y) and sn(x, y) denote the sequences introduced in Theorems A and
A′, respectively.

6.0.5. Linear groups.

Theorem 6.1 ([BGGKPP2]). Suppose that G ⊂ GL(r,K) where K is a field. Then G is
solvable if and only if it satisfies an identity vn(x, y) ≡ 1 (respectively sm(x, y) ≡ 1) for some
n, m.

Proof. The “only if” part is obvious. The “if” part is an immediate consequence of Theorems
A and A′ combined with Platonov’s theorem [Pla1] stating that every linear group over a
field satisfying a nontrivial identity is solvable-by-finite. (In fact, the assertion of the theorem
also follows from the Tits alternative [Ti].) �
Remark 6.2. The sequences vn(x, y) and sn(x, y) can be replaced in Theorem 6.1 by one
of the sequences from [Ri].

Let Solv(G) denote the sets of elements introduced in Theorem 5.4 and Theorem 5.18.
Namely, Solv(G) is either

(∗) the set of g ∈ G such that ⟨g, x⟩ is solvable for any x ∈ G, or

(∗∗) the set of g ∈ G such that ⟨g, aga−1, bgb−1, cgc−1⟩ is solvable for any a, b, c ∈ G.

Theorem 6.3 ([GKPS], [GGKP3], [FGG]). Suppose that G ⊂ GL(n,K) where K is a field.
Then R(G) = Solv(G).

Proof. First of all, every element fromR(G) belongs to Solv(G) sinceR(G) is a characteristic
subgroup of G.

We shall prove the opposite inclusion, i.e., Solv(G) ⊆ R(G). Let H be the subgroup
generated by Solv(G). It is enough to show that H is solvable. Take a finitely generated
subgroup H1 = ⟨g1, . . . , gs⟩ where gi ∈ Solv(G), i = 1, . . . , s. Then H1 is approximated by
finite linear groups Gα = H1/Nα, ∩Nα = 1 in dimension n [Ma]. Each Gα is finite and is
generated by the images of gi which lie in Solv(Gα). Thus Gα is solvable by Theorems 5.4
and 5.18.

Therefore H1 can be embedded into a cartesian product D of finite solvable groups Gα.
The solvability class of Gα is bounded by the rank of the linear group G. Since the class of
solvable groups of fixed solvability class is closed under cartesian products, we conclude that
D is solvable, hence so isH1. We now observe that every finitely generated subgroup ofH lies
in some H1 and is thus solvable. This means that H is locally solvable. It remains to apply
a theorem of Zassenhaus [Za] saying that any locally solvable linear group is solvable. �
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The same scheme applied to Corollary 5.26 implies the following result:

Theorem 6.4 ([GGKP4], [Gue]). Let G ⊂ GL(n,K) where K is a field. Then G is solvable if
and only if in each conjugacy class of G every two elements generate a solvable subgroup. �

Theorem 5.24 also remains true for linear groups. In particular, it implies

Proposition 6.5 ([FGG]). Let G ⊂ GL(n,K) where the characteristic of the field K is
either 0 or p > 3. A unipotent element g belongs to R(G) if and only if every two conjugates
of g generate a solvable subgroup. �

Theorem 6.1 is true not only for linear groups but also for other classes of groups with the
Tits alternative (see [BFH], [Mc], [Iv], [BG], etc.). For example, mapping class groups with
the law vn(x, y) ≡ 1 or sn(x, y) ≡ 1 are solvable in view of the following result:

Theorem 6.6. [Mc, Theorem A] Let G be a subgroup of a mapping class group Γ. Either
G contains an abelian subgroup of finite index, or G contains a nonabelian free group.

The same situation holds for the group of outer automorphisms of a free group Out(Fn).

Theorem 6.7. [BFH, Theorem 7.0.1] Suppose that H is a subgroup of Out(Fn) that does
not contain a free subgroup of rank 2. Then there exist a finite index subgroup H0 of H, a
finitely generated free abelian group A, and a map Φ: H0 → A such that KerΦ is a UPG
(unipotent, polynomial growth) subgroup.

Theorem 6.1 follows from [BFH, Theorem 1.0.3] which states that a UPG subgroup of
Out(Fn) that does not contain a free subgroup of rank 2 is solvable. Note that the groups
Out(Fn), n > 3, provide an example of nonlinear and non-PI groups which satisfy the Tits
alternative.

6.0.6. PI-groups.

Definition 6.8. A group G is called a PI-group if G is a subgroup of the group of invertible
elements of an associative PI-algebra over a field.

Below we collect some useful facts about PI-groups (also known as PI-representable groups
[Pi]), see [Plo6] and references therein.

Linear groups are a particular case of PI-groups since every matrix satisfies a polynomial
identity (see [J1], [Row]). PI-groups provide a class of groups with positive solutions of
Burnside-type problems. Namely, every torsion PI-group is locally finite (see [Pr], [To2]).
Every nil-PI-group is locally nilpotent, the set of all nil-elements coincides with the locally
nilpotent radical HP (G) (see [Pla2], [To1], [To2], [Plo5], [Plo6]). Thus, a PI-group G is
locally nilpotent if and only if every two-generated subgroup is nilpotent or, moreover, in
each conjugacy class of G every two elements generate a nilpotent subgroup.

Every PI-group G has a unique maximal locally solvable normal subgroup R(G) called the
locally solvable radical of G, and the locally solvable radical of a finitely generated PI-group
is solvable [Pi]. (For arbitrary groups the locally solvable radical may not exist, and for
arbitrary PI-groups the locally solvable radical is not necessarily solvable.)

Every PI-group G is an extension of a locally nilpotent group by a linear group over a
cartesian sum of fields. More precisely, G has the following invariant series: 1 ▹ H0 ▹ H ▹ G
where H is a locally nilpotent normal subgroup, H0 is generated by the nilpotent normal
subgroups in G, H/H0 is nilpotent and G/H is a linear group over a cartesian sum of fields
[Plo6].

Recall that every group has the upper radical H̃P (G) (see Definition 2.15).
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Theorem 6.9 ([GKPS], [Ala], cf. [Plo6]). If G is a PI-group, then R(G) = H̃P (G) =
Solv(G).

Proof. Case 1. If G ≤ GLn(P ), where P is a field, then R(G) = Solv(G) by Theorem 6.4.

Case 2. If G ≤ GLn(K), where K =
⊕

s Ps is a cartesian sum of fields, then a reduction
to the previous case is straightforward.

Case 3. General case. Let us first show that R(G) ⊆ Solv(G) for the case (∗). Let
g ∈ R(G), h ∈ G. We shall check that G0 = ⟨g, h⟩ is solvable. We have g ∈ R(G) ∩ G0

and, consequently, g ∈ R(G0). By [Pi], the locally solvable radical of a 2-generated group is
solvable. So the group G0 is solvable as a cyclic extension of a solvable group. The inclusion
for the case (∗∗) holds trivially.

Coincidence of the radicals R(G) = H̃P (G) mostly relies on the fact that in every PI-
group G there is a locally nilpotent subgroup H such that G/H lies in GLn(K) where K is
a cartesian sum of fields.

We are now able to prove that Solv(G) ⊆ R(G). Let g ∈ Solv(G). Denote by ḡ ∈ G/H
its image under the natural projection. Then ḡ ∈ Solv(G/H) and, hence, ḡ ∈ R(G/H) due

to Case 2. Thus ḡ ∈ H̃P (G/H). Since H is locally nilpotent, then g ∈ H̃P (G) = R(G). �

Theorem 6.9 has a consequence which can be viewed as a natural generalization of Thomp-
son’s theorem:

Corollary 6.10. A PI-group G is locally solvable if and only if every two-generated subgroup
of G is solvable. In particular, a finitely generated PI-group G is solvable if and only if every
two-generated subgroup of G is solvable.

Remark 6.11. In linear groups the locally solvable radical is solvable. From Theorem 6.9 it
follows that in PI-groups the locally solvable radical is solvable modulo the locally nilpotent

radical. Indeed, H̃P (G)/HP (G) is solvable [Plo6], and H̃P (G) = R(G) by Theorem 6.9.

Corollary 6.12. If G is a PI-group, then the normal subgroup
⟨
gG

⟩
is locally solvable if

and only if the element g is radical. In particular, if G is a finitely generated PI-group or a
linear group, then

⟨
gG

⟩
is solvable if and only if the element g is radical.

Theorem 6.13 ([Ala]). If a PI-group G satisfies an identity vn(x, y) ≡ 1 (respectively
sm(x, y) ≡ 1) for some n, m, then G is locally solvable.

Proof. Suppose that G satisfies an identity vn(x, y) ≡ 1 (or sm(x, y) ≡ 1). Then the group
G/H, where H is a locally nilpotent normal subgroup, also satisfies this identity and lies
in

∏
sGLn(Ps) where all Ps are fields. By [Pla1], all the images of G/H in GLn(Ps) are

solvable-by-finite and by Theorem 6.1 they are solvable. It can be seen that the derived
lengths of all images are uniformly bounded. Hence, the group G/H is also solvable. For
PI-groups, the extension of a locally solvable group by locally solvable is also locally solvable
(this is not the case for arbitrary groups, see [Mi]). So the group G is locally solvable, since
H is a locally solvable group, and G/H is solvable. �

Corollary 6.14. A finitely generated PI-group G is solvable if and only if it satisfies an
identity vn(x, y) ≡ 1 (respectively sm(x, y) ≡ 1) for some n, m.
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6.0.7. Noetherian groups. As we know, theorems describing the nilpotency property in terms
of Engel elements are valid not only for finite but also for arbitrary noetherian groups. So
it is quite natural to ask whether the same is true with respect to various characterizations
of the solvability property described above. This problem in full generality is still open.
However, for Hirsch groups (i.e., for finite extensions of polycyclic groups) the counter-
parts of Theorems 6.1 and 6.4 hold ([Ala]). Indeed, these groups are solvable-by-finite
and thus conditions guaranteeing solvability in the finite case determine solvability of the
whole group. Note that not every noetherian group is polycyclic-by-finite because of Tarski
monsters constructed by A. Olshanskii [O1].

6.0.8. Lie algebras. Let L be a finite-dimensional Lie algebra over a field k. Denote by [, ]
the Lie operation. For t ∈ L the linear operator ad t : L→ L is defined by (ad t)x = [t, x].

By the solvable radical of L we mean the largest solvable ideal R of L (Bourbaki [Bou]
and Jacobson [J1] call R the radical of L). By the nilpotent radical of L we mean the largest
nilpotent ideal N of L (Jacobson [J2] calls N nil radical, and Bourbaki [Bou] calls it just the
largest nilpotent ideal).

Here we collect facts about explicit two-variable sequences which are related to solvability
of finite-dimensional Lie algebras. We start with definitions which are similar to the case of
groups.

LetW2 = W (x, y) be the free two-generator Lie algebra. An element g of a Lie algebra L is
called Engel if for every a ∈ L there exists n = n(a, g) such that en(a, g) = [a, g, g, . . . , g] = 0
(i.e. (ad g)na = 0). If every element of L is Engel, then L is called unbounded Engel. If L
satisfies the identity en(x, y) ≡ 0, it is called Engel.

Definition 6.15 ([Plo3], [BBGKP]). We say that a sequence −→u = u1, u2, u3, . . . , un, . . . of
elements from W2 is correct if the following conditions hold:

(i) For every Lie algebra L and elements a, g ∈ L we have un(a, 0) = 0 and un(0, g) = 0
for all sufficiently large n.

(ii) if a, g are elements of L such that un(a, g) = 0, then for every m > n we have
um(a, g) = 0.

Thus, if the identity un(x, y) ≡ 0 is satisfied in L, then for every m > n the identity
um(x, y) ≡ 0 also holds in L.

Definition 6.16. For every correct sequence −→u in W2(x, y), define the class of Lie algebras
Θ = Θ(−→u ) by the rule: a Lie algebra L belongs to Θ if and only if there is n such that the
identity un(x, y) ≡ 0 holds in L.

Definition 6.17. For every Lie algebra L denote by L(−→u ) the subset of L defined by the
rule: g ∈ L(−→u ) if and only if for every a ∈ L there exists n = n(a, g) such that un(a, g) = 0.
Elements of L(−→u ) are viewed as Engel elements with respect to the given correct sequence
−→u . We call these elements −→u -Engel-like or, for brevity, −→u -Engel elements.

The correct sequence −→w , where

w1(x, y) = [x, y], . . . , wn(x, y) = [[wn−1, x], [wn−1, y]], . . .

and [ , ] stands for the Lie bracket in a Lie algebra, determines the class Θ(−→w ) of finite
dimensional solvable Lie algebras over an infinite field k, char(k) ̸= 2, 3, 5. Indeed:
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Theorem 6.18. [GKNP] Let w1(x, y) = [x, y], wn+1(x, y) = [[wn(x, y), x], [wn(x, y), y]].
Then a finite-dimensional Lie algebra L defined over an infinite field of zero characteristic
or positive characteristic greater than 5 is solvable if and only if for some n the identity
wn(x, y) ≡ 0 holds in L.

Proof. Obviously, if L is solvable, then it satisfies an identity of the form wn(x, y) ≡ 0 since
for any X,Y ∈ L the value wn(X, Y ) belongs to the corresponding term of the derived series.
Conversely, suppose that L satisfies the identity wn ≡ 0. We have to show that L is solvable.

1st step. The identity w(x, y) ≡ 0 also holds in the Lie algebra L = L⊗k k defined over an
algebraic closure k of k, so one can assume that k is algebraically closed.

2nd step. If L is not solvable, then Lss = L/R(L) is semisimple and nonzero. If char(F ) = 0,
denote by {Eα, Hα, E−α} the standard basis of sl2. Then [Eα, E−α] = Hα, [Hα, Eα] = 2Eα,
[Hα, E−α] = −2E−α. Set x = Eα, y = E−α. Then

w1 = Hα, w′
1 = 2Eα, w′′

1 = −2E−α,
w2 = −4Hα, . . . ,

i.e. wn = mHα with m ̸= 0. Thus for any n we have wn(Eα, E−α) ̸= 0.

3rd step. Let now char(k) = p > 5. In the restricted case (see [SF, 2.1] for the definition),
we can use the classification theorem of [BlW] in order to mimic the proof in characteristic
zero. If L is not restricted, one needs more subtle arguments using [Blo, Th. 9.3] and [We,
Cor. 1.4]. Details can be found in [GKNP]. �
Remark 6.19. A. Premet informed us that one can modify the proof to be valid for all
p > 2.

Define yet another correct sequence −→v by v1(x, y) = x and, by induction, vn+1(x, y) =
[vn(x, y), [x, y]]. Then vn+1(x, y) = (−ad [x, y])nx = en(x, [x, y]).

Theorem 6.20. Let L be a finite-dimensional Lie algebra over a field k of characteristic
zero. Then L is solvable if and only if for some n the identity vn(x, y) ≡ 0 holds in L.

Proof. If L is solvable, then, since char(k) = 0, L′ = [L,L] is nilpotent [J2, Cor. II.7.1].
Hence every pair z, t of elements of L′ satisfies (ad t)mz = 0 where m = dimL′. On putting
z = [x, [x, y]], t = [x, y], we get vm+2(x, y) = 0. In the opposite direction, the proof repeats
the arguments of the previous theorem. �

For the solvable radical of a finite-dimensional Lie algebra over a field k of characteristic
zero, we have the following descriptions in terms of sequences:

Theorem 6.21 ([BBGKP]).
(i) Let L be a finite-dimensional Lie algebra over a field k of characteristic zero. The

solvable radical R(L) coincides with the set of all −→v -Engel elements of L.
(ii) Let L be a finite-dimensional Lie algebra over an algebraically closed field k of charac-

teristic zero. The solvable radical R(L) coincides with the set of all −→w -Engel elements
of L.

Remark 6.22. The sequence −→v is strictly adjusted to the case of Lie algebras over a field
of characteristic zero. Indeed, the key point in the proof of Theorem 6.20 and of item 1 of
Theorem 6.21 is the fact that if L is solvable then [L,L] is nilpotent. This is no longer true
in positive characteristic. For an explicit counter-example to the corresponding statements
in positive characteristic see [BBGKP], Example 3.10.
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As for the sequence −→w , in [BBGKP] the following statement is proved

Theorem 6.23. Let L be a finite dimensional Lie algebra over an uncountable field k of
characteristic zero. Then its solvable radical R coincides with the set of all −→w -Engel elements
of L.

Theorem 6.23 also does not hold in positive characteristic because simple Lie algebras may
contain nonzero −→w -Engel elements:

Example 6.24. Let L = W (1; 1) be the Witt algebra defined over a field k of characteristic
p. Recall (see, for example, [SF, 4.2, p. 148]) that L is of dimension p with multiplication
table defined on a basis {e−1, e0, e1, . . . , ep−2} as follows:

(6.1) [ei, ej] =

{
(j − i)ei+j if − 1 ≤ i+ j ≤ p− 2,

0 otherwise.

If p > 2, the algebra L is simple [SF, Thm. 2.4(1) on p. 149]. However, if p > 3, it contains
nonzero −→w -Engel elements. Indeed, let g = ep−2, and let x = α−1e−1 + · · ·+ αp−2ep−2 be an
arbitrary element of L. From formulas (6.1) it follows that

w1(x, g) = α−1ep−3 + α0ep−2.

For p > 3 this implies [w1(x, g), g] = 0 and hence w2(x, g) = 0. Thus y is a −→w -Engel element,
and statement (ii) of Theorem 6.21 and Theorem 6.23 do not hold for L.

Theorem 6.21 implies that (cf. Theorem 5.4):

Theorem 6.25. Let L be a finite-dimensional Lie algebra defined over a field k of character-
istic zero. Then the radical R(L) coincides with the set of elements g ∈ L with the following
property: for any x ∈ L the subalgebra generated by x and g is solvable.

Proof. If y ∈ R(L), then for any x ∈ L the subalgebra generated by x and y contains a
solvable ideal with one-dimensional quotient and is therefore solvable.

Let now x be an arbitrary element of L. Since the subalgebra generated by x and y is
solvable, it satisfies the identity vn(x, y) ≡ 0 for some n, and we are done. �
Remark 6.26. In view of Remark 6.22, the proof presented above cannot work in positive
characteristic. The idea to use “one-and-a-half generation” for Lie algebras, which looks
more promising in view of [Io] where this property was proved for any simple Lie algebra
over C, breaks down because of the recent results of J.-M. Bois. It turns out that although
one-and-a-half generation holds for the modular analogues (for p > 3) of the classical simple
Lie algebras, as well as for the graded Cartan type Lie algebra W (1,n) [Boi1], this is no
longer true for the simple graded Cartan type Lie algebras of the remaining types [Boi1],
[Boi2].

So it seems that the following result, which holds in arbitrary sufficiently large character-
istic, is the limit of our hopes:

Theorem 6.27. Let p > 3 be a prime, and let F be an infinite field of characteristic p.
Let L be a finite-dimensional Lie algebra over F . Assume that every pair of elements in L
generate a solvable Lie algebra. Then L is solvable.

The proof of Theorem 6.27 relies on the following result of Schue [Sc] (see also Premet–
Strade [PS]):
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Lemma 6.28. Let p > 3 be a prime, and let F be an algebraically closed field of characteristic
p. Let L be a finite-dimensional Lie algebra over F such that every proper subalgebra of L
is solvable. Then L/R(L) ∼= sl(2), where R(L) is the solvable radical of L.

Remark 6.29. As in the case of finite groups, many properties of Lie algebras close to
solvability can be checked on two-generated subalgebras (see [BTV] for some results of this
flavour).

7. Problems

The problems below are mostly formulated and discussed in [GPS], [BGK].

7.1. Engel-like sequences and finite groups. We believe that one of the most important
conceptual questions left open after discovery of two-variable sequences characterizing finite
solvable groups (Theorems A and A′) is the following: for a sequence of words in the free
group on two generators, to what extent the property to characterize the class of finite
solvable groups is a property of general position, and what type of the dynamic behaviour of
the corresponding word maps is typical? This question is of “nonbinary” type and does not
admit the answer of type “yes-no”. More precisely, a possible goal is to prove (or disprove)
that for a sufficiently wide class of correct sequences the property to characterize the class of
finite solvable groups holds in “general position” and is determined by its dynamics in the
free group.

Question 7.1. Suppose that a sequence −→u = u1, u2, . . . , un, . . . of elements of F2 satisfies
the following conditions:

(i) un(a, 1) = un(1, g) = 1 for all sufficiently big n, every group G, and all elements
a, g ∈ G;

(ii) if G is any group and a, g are elements of G such that un(a, g) = 1, then for every
m > n we have um(a, g) = 1;

(iii) no element of −→u equals 1 in F2;

(iv) there exists N such that for all n > N the word un(x, y) belongs to the n-th derived

subgroup F
(n)
2 of F2.

Is it true that if a finite group G satisfies an identity un(x, y) ≡ 1 for some n, then it is
solvable?

Extensive MAGMA computations show strong numerical evidence of a positive answer
to Question 7.1, at least for the class of sequences −→u studied in [Ri]: u0 := f ,. . . , un :=
[gung

−1, hunh
−1], . . . , where f, g, h stand for some words from F2.

The situation with a description of the solvable radical of a finite group in terms of correct
sequences still remains unclear. The main problem is as follows:

Problem 7.2. Is there an explicit correct sequence of words qn(x, y) in F2(x, y) such that
the following two conditions hold:

(i) a finite group G is solvable if and only if for some n the identity qn(x, y) ≡ 1 holds in
G (i.e., a finite solvable group belongs to the class Θ = Θ(−→u ));
(ii) the radical R(G) of a finite group G coincides with the set of q-Engel elements, i.e.

the set of g ∈ G such that qn(x, g) = 1 for all x ∈ G and some n = n(x, g) (in other words,
R(G) = G(−→u ))?
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Although (ii) implies (i), we state these problems separately since question (ii) is much
harder (recall that Theorems A and A′ provide sequences satisfying (i); however, it is not
clear if they are suitable for Problem 7.2(ii)).

Recently J. Wilson proved [Wi5] that there exists a sequence qn of words in two variables
satisfying (i) and (ii). However, this sequence is not explicit in the sense that it does not
have a simple recursive definition, as required in Problem 7.2. More precisely, the proof
in [Wi5] is based on the result from [BrW] where an implicit sequence qn satisfying (ii) has
been constructed. This sequence can also be used in order to characterize R(G) for finite (or,
more generally, linear) groups. In fact, qn can be chosen correct, and the following stronger
existence theorem is proved:

Theorem 7.3 ([Wi5]). Let G be a finite (or linear) group. There exists a profinitely con-
vergent sequence qn = qn(x, y) of words in the free group F2(x, y) such that R(G) = G(−→q ),
i.e., the radical R(G) of a finite group G coincides with the set of −→q -Engel elements.

Profinite convergence of qn means that it has a limit in the profinite completion F̂2(x, y)
of the free group F2(x, y). Theorem 7.3 is also valid for PI-groups ([Ala]).

Remark 7.4. The statement of Problem 7.2 should be compared with [Lu, Prop. 3.4], where

it is proved that for any integer d ≥ 2 the free prosolvable group F̂d(S) can be defined by a
single profinite relation.

Remark 7.5. Here are some other miscellaneous characterizations of the solvability property
and of elements of R(G), where G is finite.

A finite group is solvable if and only if no nontrivial element g is a product of 56 commu-
tators of pairs of conjugates of g [Wi2].

The elements of the radical R(G) of a finite group G can be characterized by a formula
(independent of G) in the first-order logic [Wi4].

From the probabilistic point of view, a finite groupG is solvable if with probability> 11/30
two randomly chosen elements generate a solvable subgroup [GW], see also [Wi3].

Another probabilistic characterization has been obtained in [NS]. Let G be a finite solv-
able group of order m and let w(x1, . . . , xn) be a group word. Then the probability that
w(g1, . . . , gn) = 1 (where (g1, . . . , gn) is a random n-tuple in G) is at least p−(m−t), where p
is the largest prime divisor of m and t is the number of distinct primes dividing m. This
contrasts with the case of a nonsolvable group G, for which Abért [Abe] has shown that the
corresponding probability can take arbitrarily small positive values as n tends to infinity.

A counter-part of Problem 7.2 for Lie algebras is as follows:

Problem 7.6. Let L be a finite-dimensional Lie algebra over an algebraically closed field k
of characteristic p > 2. Is there an explicit correct sequence of words qn(x, y) in the free Lie
algebra W2(x, y) such that the solvable radical R(L) coincides with the set of all −→q -Engel
elements of L?

7.2. Burnside-type problems related to Engel-like sequences. Theorem 6.18 on
finite-dimensional Lie algebras leads to a similar question in the infinite-dimensional case.
Namely, the remarkable Kostrikin–Zelmanov theorem on locally nilpotent Lie algebras [Ko],
[Ze2], [Ze3] and Zelmanov’s theorem [Ze1] give rise to the following Burnside-type problems
for Lie algebras.
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Problem 7.7. Suppose that L is a Lie algebra over a field k, the wn are defined by the
formulas of Theorem 6.18, and there is n such that the identity wn(x, y) ≡ 0 holds in L. Is
it true that L is locally solvable? If k is of characteristic 0, is it true that L is solvable?

It would be of significant interest to consider similar problems for groups. Recall that G
is called an Engel group if there is an integer n such that the Engel identity en(x, y) ≡ 1
holds in G. Suppose a sequence qn(x, y) is chosen as in Theorem A, i.e., qn(x, y) = un(x, y),
or as in Theorem A′, i.e., qn(x, y) = sn(x, y). We call G a quasi-Engel group (with respect
to the sequence qn(x, y), or just quasi-Engel) if there is an integer n such that the identity
qn(x, y) ≡ 1 holds in G.

The following problems imitate the analogous problems for Engel groups.

Problem 7.8. Is every quasi-Engel group locally solvable?

Remark 7.9. The answer to this question is most likely to be negative, as it is expected for
the question about local nilpotency of Engel groups.

It is quite natural to consider restricted versions of Problem 7.8 as is considered for the
Burnside problem. Let Qn be the quasi-Engel variety defined by the identity qn ≡ 1. Let
F = Fk,n be the free group with k generators in the variety Qn.

Problem 7.10. Is there a solvable group with k generators F 0
n,k in Qn such that every

solvable group G ∈ Qn with k generators is a homomorphic image of F 0
n,k?

In fact, one should prove one of the following three statements equivalent to Problem 7.10:

Problem 7.11.
• Is the intersection of all co-solvable normal subgroups Hα in F also co-solvable?
• Do all locally solvable groups from Qn form a variety?
• Is every residually finite, quasi-Engel group locally solvable?

Remark 7.12. For Engel groups, the restricted Burnside problem has a positive solution
[Wi1], [Plo6].

Consider the class of profinite groups. J. S. Wilson and Zelmanov [WZ] proved that every
profinite Engel group is locally nilpotent. So a relevant question is

Problem 7.13. Is every profinite quasi-Engel group locally solvable?

Remark 7.14. In the case of an affirmative solution of Problem 7.2, the corresponding se-
quence qn(x, y) should be chosen for the definition of quasi-Engel groups and for the problems
listed above.

There is also a bunch of Burnside-type problems related to Thompson-type properties and
weak Engel-type properties. In fact these are the problems related to two- and one-and-a-half
generation for infinite groups and infinite-dimensional Lie algebras. See [GPS] for details.
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