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Abstract

The main goal of this paper is to de�ne the Chow weight struc-

ture wChow for the category DM c(S) of (constructible) Beilinson mo-
tives over any 'reasonable' base scheme S (this is the version of Vo-
evodsky's motives over S de�ned by Cisinski and Deglise). We also
study the functoriality properties of wChow (they are very similar to
those for weights of mixed complexes of sheaves, as established in �5
of [BBD82]).

As shown in a preceding paper, (the existence of) wChow auto-
matically yields the weight complex functor (it is a conservative exact
functor DM c(S) → Kb(Chow(S))). Here Chow(S) is the heart of
wChow; it is 'generated' by motives of regular schemes that are projec-
tive over S. We also obtain that K0(DM c(S)) ∼= K0(Chow(S)) (and
de�ne a certain 'motivic Euler characteristic' for S-schemes).

Besides, we obtain (Chow)-weight spectral sequences and �ltrations
for any cohomology of motives; we discuss their relation with Beilin-
son's 'integral part' of motivic cohomology and with weights of mixed
complexes of sheaves. For the study of the latter we also introduce a
new formalism of relative weight structures.
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Introduction

The goal of this paper is to prove that the Chow weight structure wChow (as
introduced in [Bon07] for Voevodsky's motives over a perfect �eld k) could
also be de�ned for the category DM c(S) of motives with rational coe�cients
over any 'reasonable' base scheme S (in [CiD09] where this category was con-
structed and studied, DM c(S) was called the category of Beilinson motives;
one could also consider the 'big' category of S-motives DM(S) ⊃ DM c(S)
here). The heart HwChow of wChow is 'generated' by the motives of regular
schemes that are projective over S (tensored by Q(n)[2n] for all n ∈ Z). We
also study the functoriality properties of wChow (they are very similar to the
functoriality of weights for mixed complexes of sheaves, as established in �5
of [BBD82]).

As was shown in [Bon07], the existence of wChow yields several nice conse-
quences. In particular, there exists a weight complex functor t : DM c(S) →
Kb(Chow(S)), as well as Chow-weight spectral sequences and �ltrations, and
virtual t-truncations for any cohomological functor H : DM c(S)→ A.

We also relate the weights for S-motives with the 'integral part' of mo-
tivic cohomology (as constructed in [Sch00]; cf. �2.4.2 of [Bei85]), and with
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the weights of mixed complexes of sheaves (as de�ned in [BBD82] and in
[Hub97]). In order to study the latter we introduce a new formalism of
relative weight structures.

We also obtain K0(DM
c(S)) ∼= K0(Chow(S)), and de�ne a certain 'mo-

tivic Euler characteristic' for S-schemes.
Now we (try to) explain why the concept of a weight structure is impor-

tant for motives. Recall that weight structures are natural counterparts of
t-structures for triangulated categories; they allow to 'decompose' objects of
a triangulated C into Postnikov towers whose 'factors' belong to the heart
Hw of w. Weight structures were introduced in [Bon07] (and independently
in [Pau08]). They were thoroughly studied and applied to motives (over
perfect �elds) in [Bon07]; in [Bon10a] a Gersten weight structure for a cer-
tain category Ds ⊃ DM eff

gm (k) was constructed; see also the survey preprint
[Bon09s].

The Chow weight structure yields certain weights for (any cohomology
of) motives. Note here: 'classical' methods of working with motives often
fail (at our present level of knowledge) since they usually depend on (vari-
ous) 'standard' motivic conjectures. In particular, the 'classical' method to
de�ne weights for a motif M is to construct a motif Ms such that H i(Ms) ∼=
WsH

i(X) (for all i ∈ Z and a �xed s). It is scarcely possible to do this
without constructing the so-called motivic t-structure for DM(−). For in-
stance, in order to �nd suchMs for motives of smooth projective varieties one
requires the so-called Chow-Kunneth decomposition; hence this completely
out of reach at the moment.

The usage of weight structures (for motives) allows to avoid these di�cul-
ties completely. To this end one instead ofH i(Ms) one considers Im(H i(wChow≤s+iM)→
H i(wChow≤s+i+1M)) (this is the corresponding virtual t-truncation of H ap-
plied toM ; see �4.3 below and �8.6 of [Bon07]). Here wChow≤rM for r ∈ Z are
certain motives which could (at least, when the base is a �eld) be described
in terms of M ; note in contrast that there are no general conjectures that
allow to construct motivic t-truncations and Chow-Kunneth decompositions
explicitly. Whereas this approach is somewhat 'cheating' for pure motives
(since it usually gives no new information on cohomology of motives); yet it
yields interesting results on mixed motives and their cohomology. The �rst
paper somewhat related to this approach is [GiS96] (this result was general-
ized in [GiS09]); there a weight complex functor that is essentially a (very)
partial case of 'our' one was introduced (and related to cohomology with
compact support of varieties).

Another example when constructions naturally coming from weight struc-
tures yield interesting results is described in Remark 3.3.2(4) below.

Now we mention (other) papers on relative motives that are related with
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the current one.
This text was written independently from the recent article [Heb10] (that

appeared somewhat earlier). The main results of loc.cit. are a little stronger
than our (central) Theorems 2.1.1 and 2.2.1(II). In particular, in Proposition
3.8 of ibid. the functoriality properties of wChow (as constructed in Corollary
3.2 of ibid.) with respect to motivic functors induced by not necessarily quasi-
projective morphisms of schemes (and also with respect to tensor products
and inner homomorphisms) were established. Quasi-projectivity was not
required there since Theorem 3.1 of ibid. yields the necessary orthogonality
property for a not necessarily quasi-projective morphism of schemes. Yet (to
the opinion of the author) the proof the latter theorem is more complicated
than the proof of (the parallel) Lemma 1.1.4 (below); besides, in loc.cit. we
also calculate morphism groups between shifts of ('basic') objects of HwChow.

The author should also note that he would have probably not noticed
that the category Chow(S) = HwChow has a reasonable description if not for
the papers [CoH00] and [GiS09]. In [CoH00] the de�nition of Chow motives
over S was given as a part of a large program of study of relative motives
and intersection cohomology of varieties (that relies on several hard 'motivic'
conjectures). In [GiS09] certain analogues of (our) Chow motives were used
in order to de�ne (a sort of) weight complexes for S-schemes (only for one-
dimensional S; cf. �3.1 below). Yet (to the opinion of the author) the results
of these two papers are somewhat di�cult to apply since these articles do not
treat (any) triangulated categories of 'mixed' motives over S; this prevents
applying them to cohomology of 'general' (�nite type) S-schemes.

This paper (also) bene�ted from [Sch10]. In ibid. a 'mixed motivic' de-
scription of Beilinson's 'integral part' of motivic cohomology (as constructed
in [Sch00]; see also �2.4.2 of [Bei85]) was proposed. The formulation of the
main result of [Sch10] uses the so-called intermediate extensions of mixed
motives; so it heavily relies on the (conjectural!) existence of a 'reason-
able' motivic t-structure for DM c(S); note that we describe an alternative
construction of this 'part' that does depend on any conjectures (in Remark
3.3.2(4) below).

Now we list the contents of the paper. More details could be found at the
beginnings of sections.

In section 1 we recall the basic properties of Beilinson motives and weight
structures. Most of the results of the section are taken from [CiD09] and
[Bon07]; yet we also deduce some new statements.

In section 2 we de�ne the category Chow(S) of Chow motives over S
(similar de�nitions could be found in [CoH00], [Heb10], and [GiS09]). By
de�nition, Chow(S) ⊂ DM c(S); since Chow(S) is also negative in it and gen-
erates it (if S is 'reasonable') we immediately obtain (using Theorem 4.3.2 of
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[Bon07]) that there exists a weight structure wChow on DM c(S) whose heart
is Chow(S). Next we study the 'functoriality' of wChow (with respect to the
functors of the type f ∗, f∗, f

!, f!, for f being a quasi-projective morphism
of schemes). Our functoriality statements are parallel to the 'stabilities'
5.1.14 of [BBD82] (we 'explain' this similarity in the following section). We
also prove that Chow motives could be 'lifted from open subschemes up to
retracts'; this statement could be called (a certain) 'motivic resolution of
singularities'. Next we prove that wChow could be described 'pointwisely'
(cf. �5.1.8 of [BBD82]). Besides, we describe an alternative method for the
construction of wChow (over arbitrary excellent �nite-dimensional Q-schemes;
these don't have to be 'reasonable'). This method uses strati�cations and
'gluing' of weight structures; this makes this part of the paper very much par-
allel to the study of weights of mixed complexes of sheaves in �5 of [BBD82].

Section 3 is dedicated to the applications of our main results. The ex-
istence of wChow automatically yields the existence of a conservative ex-
act weight complex functor DM c(S) → Kb(Chow(S)), and the fact that
K0(DM

c(S)) ∼= K0(Chow(S)). We also de�ne a certain 'motivic Euler char-
acteristic' for S-schemes.

Next we recall that wChow yields functorial Chow-weight spectral sequences
and �ltrations. A very partial case of Chow-weight �ltrations yields Beilin-
son's 'integral part' of motivic cohomology. Chow-weight spectral sequences
yield the existence of weight �ltrations for perverse cohomology of motives
(that is not automatic in the case when S is a Spec Z-scheme). We study
in more detail the perverse cohomology of motives when S = X0 is a variety
over a �nite �eld Fq. It is well-known that mixed complexes of sheaves start
to behave better if we extend scalars from Fq to F i.e. pass to sheaves over
X = X0×Spec Fq Spec F. We (try to) axiomatize this situation and introduce
the concept of a relative weight structure. Relative weight structures have
several properties that are parallel to properties of 'ordinary' weight struc-
tures. The category Db

m(X0) (of mixed complexes of sheaves) possesses a rel-
ative weight structure whose heart is the class of (pure) complexes of sheaves
of weight 0. Besides, the étale realization functor DM c(S) → Db

m(X0) is
weight-exact.

In section 4 we recall the de�nition of a t-structure adjacent to a weight
structure. Then we prove the existence of a (Chow) t-structure tChow for
DM(S) that is adjacent to the Chow weight structure for it. We also study
the functoriality of tChow and relate it with virtual t-truncations (for coho-
mological functors from DM c(S)).

The author is deeply grateful to prof. F. Deglise, prof. D. Hébert, prof.
M. Levine, and prof. I. Panin for their helpful comments; he is also very much
obliged to the o�cers and scientists of the Max Planck Instit für Mathematik
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for excellent working conditions.

Notation. Ab is the category of abelian groups.
For a category C, A,B ∈ ObjC, we denote by C(A,B) the set of C-

morphisms from A into B.
For categories C,D we write C ⊂ D if C is a full subcategory of D.
For a category C, X, Y ∈ ObjC, we say that X is a retract of Y if idX

could be factorized through Y (if C is triangulated or abelian, then X is a
retract of Y whenever X is its direct summand).

For an additive D ⊂ C the subcategory D is called Karoubi-closed in C
if it contains all retracts of its objects in C. The full subcategory of C whose
objects are all retracts of objects of D (in C) will be called the Karoubi-
closure of D in C.

M ∈ ObjC will be called compact if the functor C(M,−) commutes with
all those small coproducts that exist in C. In this paper (in contrast with
the previous ones) we will only consider compact objects in those categories
that are closed with respect to arbitrary small coproducts.

C below will always denote some triangulated category; usually it will be
endowed with a weight structure w (see De�nition 1.2.1 below).

We will use the term 'exact functor' for a functor of triangulated cate-
gories (i.e. for a functor that preserves the structures of triangulated cate-
gories). We will call a contravariant additive functor C → A for an abelian A
cohomological if it converts distinguished triangles into long exact sequences.

For f ∈ C(X, Y ), X, Y ∈ ObjC, we will call the third vertex of (any)

distinguished triangle X
f→ Y → Z a cone of f ; recall that distinct choices

of cones are connected by (non-unique) isomorphisms.
We will often specify a distinguished triangle by two of its morphisms.
For a set of objects Ci ∈ ObjC, i ∈ I, we will denote by 〈Ci〉 the smallest

strictly full triangulated subcategory containing all Ci; for D ⊂ C we will
write 〈D〉 instead of 〈ObjD〉. If C is the Karoubi-closure of 〈D〉, we will say
that it is generated by D (or by {Ci}).

For X, Y ∈ ObjC we will write X ⊥ Y if C(X, Y ) = {0}. For D,E ⊂
ObjC we will write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ C we
will denote by D⊥ the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Sometimes we will denote by D⊥ the corresponding full subcategory of C.
Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.

We will say that some Ci weakly generate C if for X ∈ ObjC we have
C(Ci[j], X) = {0} ∀i ∈ I, j ∈ Z =⇒ X = 0 (i.e. if {Ci[j]}⊥ contains only
zero objects).
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D ⊂ ObjC will be called extension-stable if for any distinguished triangle
A→ B → C in C we have: A,C ∈ D =⇒ B ∈ D.

We will call the smallest Karoubi-closed extension-stable subclass ofObjC
containing D the envelope of D.

Below all schemes will be excellent of �nite Krull dimension; morphisms
of schemes will always be separated and by default will be of �nite type.

We will sometimes need certain strati�cations of a scheme S. Recall
that a strati�cation α is a presentation of S as ∪Sαl where Sαl , 1 ≤ l ≤ n,
are pairwise disjunct locally closed subschemes of S; the closure of each Sαl
should be the union of some subset of Sαl . Omitting α, we will denote by
jl : Sαl → S the corresponding immersions.

1 Preliminaries: relative motives and weight

structures

In �1.1 we recall some of basic properties of Beilinson motives over S (as
de�ned in [CiD09]; we also deduce certain results that were not stated in
ibid. explicitly).

In �1.2 we recall some basics of the theory of weight structures (as devel-
oped in [Bon07]); we also prove some new lemmas on the subject.

1.1 Beilinson motives (after Cisinski and Deglise)

We list some of the properties of the triangulated categories of Beilinson
motives (this is the version of relative Voevodsky's motives with rational
coe�cients de�ned by Cisinski and Deglise).

De�nition 1.1.1. We will call a scheme S reasonable if there exists an
excellent (noetherian) scheme S0 of dimension lesser than or equal to 2 such
that S is (separated and) of �nite type over S0.

Proposition 1.1.2. Let X be an (excellent �nite dimensional) scheme; f :
X → Y is a (separated) �nite type morphism.

1. For any X a tensor triangulated Q-linear category DM(X) with the
unit object QX is de�ned; it is closed with respect to arbitrary small
coproducts.

DM(X) is the category of Beilinson motives over X, as de�ned (and
thoroughly studied) in �14 of [CiD09].
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2. The (full) subcategory DM c(X) ⊂ DM(X) of compact objects is ten-
sor triangulated, and QX ∈ ObjDM c(S). DM c(X) weakly generates
DM(X).

3. All DM(X) and DM c(X) are idempotent complete.

4. For any f the following functors are de�ned: f ∗ : DM(Y ) � DM(X) :
f∗ and f! : DM(X) � DM(Y ) : f !; f ∗ is left adjoint to f∗ and f! is
left adjoint to f !.

We call these the motivic image functors. Any of them (when f
varies) yields a 2-functor from the category of (noetherian separated
�nite-dimensional excellent) schemes with separated morphisms of �-
nite type to the category of triangulated categories. Besides, all motivic
image functors preserve compact objects (i.e. they could be restricted to
the subcategories DM c(−)); they also commute with arbitrary (small)
coproducts.

5. For a Cartesian square of �nite type separated morphisms

Y ′
f ′−−−→ X ′yg′ yg

Y
f−−−→ X

we have g∗f!
∼= f ′! g

′∗ and g′∗f
′! ∼= f !g∗.

6. For any X there exists a Tate object Q(1) ∈ ObjDM c(X); tensoring
by it yields an exact Tate twist functor −(1) on DM(X). This functor
is an auto-equivalence of DM(X); we will denote the inverse functor
by −(−1).

Tate twists commute with all motivic image functors mentioned (up to
an isomorphism of functors).

Besides, for X = P1(Y ) there is a functorial isomorphism f!(QP1(Y )) ∼=
QY

⊕
QY (−1)[−2].

7. f ∗ is symmetric monoidal; f ∗(QY ) = QX .

8. f∗ ∼= f! if f is proper; f !(M) ∼= f ∗(M)(s)[2s] if f is smooth and quasi-
projective (everywhere) of relative dimension s, M ∈ ObjDM(Y ).

If f is an open immersion, we just have f ! = f ∗.
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9. If i : S ′ → S is an immersion of regular schemes everywhere of codi-
mension d, then QS′(−d)[−2d] ∼= i!(QS).

10. If i : Z → X is a closed immersion, U = X \ Z, j : U → X is
the complementary open immersion, then the motivic image functors
yield gluing data for DM(−) (in the sense of �1.4.3 of [BBD82]; see
also De�nition 8.2.1 of [Bon07]). That means that (in addition to the
adjunctions given by assertion 4) the following statements are valid.

(i) i∗ ∼= i! is a full embeddings; j∗ = j! is isomorphic to the localization
(functor) of DM(X) by i∗(DM(Z)).

(ii) For any M ∈ ObjDM(X) the pairs of morphisms j!j
!(M) →

M → i∗i
∗(M) and i!i

!(M) → M → j∗j
∗(M) could be completed to

distinguished triangles (here the connecting morphisms come from the
adjunctions of assertion 4).

(iii) i∗j! = 0; i!j∗ = 0.

(iv) All of the adjunction transformations i∗i∗ → 1DM(Z) → i!i! and
j∗j∗ → 1DM(U) → j!j! are isomorphisms of functors.

11. For the subcategories DM c(−) ⊂ DM(−) the obvious analogue of the
previous assertion is ful�lled.

12. Let Sred be the reduced scheme associated to S. Then for the canonical
immersion v : Sred → S the functor v∗ is an equivalence of categories.

13. If S is reasonable (see De�nition 1.1.1), DM c(S) (as a triangulated
category) is generated by {g∗(QX)(r)}, where g : X → S runs through
all projective morphisms (of �nite type) such that X is regular, r ∈ Z.

14. Let S be a scheme which is the limit of an essentially a�ne projective
system of schemes Sβ. Then DM c(S) is isomorphic to the 2-limit of
the categories DM c(Sβ); in these isomorphism all the connecting func-
tors are given by the corresponding motivic inverse image functors (cf.
Remark 1.1.3(2) below).

15. If X is regular (everywhere) of dimension d, i : Z → X is a closed em-
bedding, p, q ∈ Z, then DM(X)(QX , i!i

!(QZ)[p](q)) ∼= DM(Z)(QZ , i
!(QX)(q)[p])

is isomorphic to Chowd−q(Z, 2q − p) ⊗ Q(= Grγd−qK
′
2q−p(Z) ⊗ Q). In

particular, this morphism group is zero if p > 2q.

Proof. Almost all of these properties of Beilinson motives are stated in the
introduction of ibid.; the proofs are mostly contained in �1, �2, and �14 of
ibid.
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So, we will only prove those assertions that are not stated in ibid. (ex-
plicitly).

For (3): Since DM(X) is closed with respect to arbitrary small coprod-
ucts, it is idempotent complete by Proposition 1.6.8 of [Nee01]. Since a
retract of a compact object is compact also, DM c(X) is also idempotent
complete.

Since i! = i∗ if i is an open immersion, and i∗(QS) = QS′ , it su�ces to
prove (9) for i being a closed immersion. In this case it is exactly Theorem
3 of [CiD09].

We should also prove (11). Assertion 10 immediately yields everything
expect the fact that the (categoric) kernel of j∗ : DM c(X)→ DM c(Y ) is con-
tained i∗(DM

c(Z)). So, we should prove that i∗(ObjDM(Z))∩ObjDM c(X) =
i∗(ObjDM

c(Z)). This is easy, since i∗i∗ ∼= idDM(Z) and i∗i
∗ preserves com-

pact objects.
Assertion 13 is immediate from Corollary 14.3.9 of ibid. (cf. Corollary

14.3.6 of ibid.).
It remains to prove (15). Combining (12.4.1.3) and Corollary 13.2.14 of

ibid., we obtain that the groups in question are isomorphic to the q-th factor
of the γ-�ltration of KZ

2q−p⊗Q (of the K-theory of X with support in Z). By
Theorem 7 of [Sou85], this is the exactly the d − q-th factor of the γ-factor
of K ′2q−p(Z)⊗Q.

Remark 1.1.3. 1. In [CiD09] for a smooth f : X → Y the object f!f
!(QY )

was denoted byMY (X) (cf. also De�nition 1.3 of [Sch10]; yet note that in
loc.cit. cohomological motives are considered, this interchanges ∗ with ! in
the notation for motivic functors). We will not usually need this notation
below (yet cf. Remarks 2.1.2(1) and 3.3.2(4)).

2. In [CiD09] the functor f ∗ was constructed for any (separated) mor-
phism f not necessarily of �nite type; it preserves compact objects (see
Proposition 14.1.5 of ibid.). Besides, for such an f and any separated �nite
type g : X ′ → X we have an isomorphism f ∗g!

∼= g′!f
′∗ (for the corresponding

f ′ and g′; cf. part 5 of the proposition).
Below the only morphisms of in�nite type that we will be interested in

are limits of immersions (more precisely, we will need the natural morphism
jK : K → S from a Zariski point K of some scheme S to S).

Now note: if f is a pro-open immersion, then one can de�ne f ! = f ∗. So,
one can also de�ne j!

K that preserves compact objects; the system of these
functors satisfy the second assertion in part 5 of the proposition (for a �nite
type separated g).
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3. A nice exposition of the properties of Beilinson motives (that also
follows [CiD09]) could be found in �2 of [Heb10].

The following statements were not proved in [CiD09] explicitly; yet they
follow from Proposition 1.1.2 easily. Below we will mostly need assertion I1
in the case when g is projective; note that in this case g∗(QY ) ∼= g!(QY ).

Lemma 1.1.4. I1. Let Y be a regular scheme everywhere of dimension d;
let f : X → S and g : Y → S be �nite type quasi-projective morphisms,
r, b, c ∈ Z.

Then DM(S)(f!(QX)(b)[2b], g∗(QY )(c)[r + 2c]) ∼= CHd+b−c(X ×S Y,−r)
(cf. Proposition 1.1.2(15) for the de�nition of the latter). In particular,
f!(QX)(b)[2b] ⊥ g∗(QY )(c)[r + 2c] if r > 0.

2. Let i : S ′ → S be an immersion of regular schemes everywhere of
codimension d; let g be smooth. Denote Y ′ = YS′ and g′ = gS′. Then
i!g∗(QY ) ∼= g′∗(QY ′)(−d)[−2d].

II Let S = ∪Sαl be a strati�cation. Then for any M,N ∈ ObjDM(S)
there exists a �ltration of DM(S)(M,N) by certain subfactors of DM(Sαj )(j∗l (M), j!

l(N)).

Proof. I1. By Proposition 1.1.2(6), we can assume that b = c = 0 (to this
end we should possibly replace X and Y by (P1)n(X) and (P1)m(Y ) for some
n,m ≥ 0).

Next, we have DM(S)(f!(QX), g∗(QY )[r]) ∼= DM(Y )(g∗f!(QX),QY [r])
since f ∗ is left adjoint to f∗. Applying part 5 of loc.cit., we obtain that the
group in question is isomorphic toDM(Y )(f ′! g

′∗(QX),QY [r]) = DM(Y )(f ′! (QX×SY ),QY [r])
(here f ′ = fY ).

We denote X ×S Y by Z. Let P be a smooth quasi-projective Y -scheme
containing Z as a closed subscheme; we denote by i : Z → Y and p : P → Y
the corresponding morphisms. We can assume that P is everywhere of some
dimension d′ over Y .

Then we have DM(Y )(f ′! (QZ),QY [r]) = DM(S)(p!i!(QZ),QY [r])
∼= DM(P )(i!(QZ), p!(QY )[r]) (here we apply the adjunction of p! with p

!). By
part 8 of loc.cit., the group in question is isomorphic toDM(P )(i!(QZ), p∗(QY )(d′)[r+
2d′]) ∼= DM(P )(i!(QZ),QP (d′)[r+2d′]). It remains to apply part 15 of loc.cit.

2. i!g∗(QY ) ∼= g′∗i
′!(QY ) by part 5 of loc.cit. (here i′ = iY ). Hence using

part 9 of loc.cit. we obtain the result.
II We prove the statement by induction on the number of strati�cation

components.
Suppose that Sα0 is open in S. Then the remaining Sαl yield a strati�cation

of S \ Sα0 . We denote S \ Sα0 by Z, the (open) immersion Sα0 → S by j and
the (closed) immersion Z → S by i.

Now we apply part 10 of loc.cit. We obtain a (long) exact sequence · · · →
DM(S)(i∗i

∗(M), N) → DM(S)(M,N) → DM(S)(j!j
!(M), N) → . . . . The

11



adjunctions of functors yield DM(S)(i∗i
∗(M), N) ∼= DM(Z)(i∗(M), i!(N))

and DM(S)(j!j
!(M), N ′) ∼= DM(Sα0 )(j∗(M), j!(N)).

Now, by the inductive assumption the group DM(Z)(i∗(M), i!(N)) has a
�ltration by some subquotients of DM(Sαl )(j∗l (M), j!(N)) (for l 6= 0). This
concludes the proof.

1.2 Weight structures: short reminder

De�nition 1.2.1. I A pair of subclasses Cw≤0, Cw≥0 ⊂ ObjC will be said to
de�ne a weight structure w for C if they satisfy the following conditions:

(i) Cw≥0, Cw≤0 are additive and Karoubi-closed in C (i.e. contain all
C-retracts of their objects).

(ii) Semi-invariance with respect to translations.

Cw≥0 ⊂ Cw≥0[1], Cw≤0[1] ⊂ Cw≤0.
(iii) Orthogonality.
Cw≥0 ⊥ Cw≤0[1].
(iv) Weight decompositions.
For any M ∈ ObjC there exists a distinguished triangle

B[−1]→M → A
f→ B (1)

such that A ∈ Cw≤0, B ∈ Cw≥0.
II The category Hw ⊂ C whose objects are Cw=0 = Cw≥0 ∩ Cw≤0,

Hw(Z, T ) = C(Z, T ) for Z, T ∈ Cw=0, will be called the heart of w.
III Cw≥i (resp. Cw≤i, resp. Cw=i) will denote Cw≥0[−i] (resp. Cw≤0[−i],

resp. Cw=0[−i]).
IV We denote Cw≥i ∩ Cw≤j by C [i,j] (so it equals {0} for i > j).
V We will say that (C,w) is bounded if ∪i∈ZC

w≤i = ObjC = ∪i∈ZC
w≥i.

VI Let C and C ′ will be triangulated categories endowed with weight
structures w and w′, respectively; let F : C → C ′ be an exact functor.

F will be called left weight-exact (with respect to w,w′) if it maps Cw≤0

to C ′w
′≤0; it will be called right weight-exact if it maps Cw≥0 to C ′w

′≥0. F is
called weight-exact if it is both left and right weight-exact.

VII Let H be a full subcategory of a triangulated C.
We will say that H is negative if ObjH ⊥ (∪i>0Obj(H[i])).
VIII We call a category A

B
a factor of an additive category A by its (full)

additive subcategoryB ifObj
(
A
B

)
= ObjA and (A

B
)(M,N) = A(M,N)/(

∑
O∈ObjB A(O,N)◦

A(M,O)).
IX For an additive B we will consider the category of 'formal coprod-

ucts' of objects of B: its objects are (formal)
∐

j∈J Bj : Bj ∈ ObjB, and
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Mor(
∐

l∈LBl,
∐

j∈J Cj) =
∏

l∈L(
⊕

j∈J C(Bl, Cj)); here L, J are index sets.
We will call the idempotent completion of this category the big hull of B.

Remark 1.2.2. 1. If B is a full subcategory of an additive C, and C is idem-
potent complete and closed with respect to arbitrary small coproducts, then
there exists a natural full embedding of the big hull of B into C. Note here:
if C is triangulated and closed with respect to arbitrary small coproducts,
then it is necessarily idempotent complete (see Proposition 1.6.8 of [Nee01]).

2. A simple (and yet useful) example of a weight structure is given by the
stupid �ltration on K(B) ⊃ Kb(B) for an arbitrary additive category B. In
this case K(B)w≤0 (resp. K(B)w≥0) will be the class of complexes that are
homotopy equivalent to complexes concentrated in degrees ≤ 0 (resp. ≥ 0).
The heart of this weight structure (either for K(B) or for Kb(B)) is the the
Karoubi-closure of B in the corresponding category.

3. A weight decomposition (of any M ∈ ObjC) is (almost) never unique;
still we will sometimes denote any pair (A,B) as in (1) by (Mw≤0,Mw≥1).

Mw≤l (resp. Mw≥l) will denote (M [l])w≤0 (resp. (M [l − 1])w≥1); we will
also sometimes need w≤lM = Mw≤l[−l] and w≥lM = Mw≥l[−l].

We will call (any choices of) w≤lM , w≥lM , Mw≤l, andMw≥l weight trun-
cations of M .

Now we recall those properties of weight structures that will be needed
below (and that could be easily formulated). We will not mention more
complicated matters (weight spectral sequences and weight complexes) here;
instead we will just formulate the corresponding 'motivic' results below.

Proposition 1.2.3. Let C be a triangulated category.

1. (C1, C2) (C1, C2 ⊂ ObjC) de�ne a weight structure for C whenever
(Cop

2 , C
op
1 ) de�ne a weight structure for Cop.

2. Let w be a weight structure for C. Then Cw≤0, Cw≥0, and Cw=0 are
extension-stable.

3. Let w be a weight structure for C. Then Cw≤0 = (Cw≥1)⊥ and Cw≥0 =
⊥Cw≤−1 (see Notation).

4. Suppose that v, w are weight structures for C; let Cv≤0 ⊂ Cw≤0 and
Cv≥0 ⊂ Cw≥0. Then v = w (i.e. the inclusions are equalities).

5. Let w be a bounded weight structure for C. Then w extends to a bounded
weight structure for the idempotent completion C ′ of C (i.e. there exists
a weight structure w′ for C ′ such that the embedding C → C ′ is weight-
exact); its heart is the idempotent completion of Hw.
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6. Let H ⊂ ObjC be negative; let C be idempotent complete. Then there
exists a unique weight structure w on the Karoubi-closure T of 〈H〉 in
C such that H ⊂ Tw=0. Its heart is the Karoubi-closure of the closure
of H in C with respect to (�nite) direct sums.

7. For the weight structure mentioned in the previous assertion, Tw≤0 is
the envelope (see the Notation) of ∪i≥0H[i]; Tw≥0 is the envelope of
∪i≤0H[i].

8. A composition of left (resp. right) weight-exact functors is left (resp.
right) weight-exact.

9. Let C and D be triangulated categories endowed with weight structures
w and v, respectively. Let F : C � D : G be adjoint functors. Then F
is right weight-exact whenever G is left weight-exact.

10. Let C and D be triangulated categories endowed with weight structures
w and v, respectively; let w be bounded. Then an exact functor F :
C → D is left (resp. right) weight-exact whenever F (Cw=0) ⊂ Dv≤0

(resp. F (Cw=0) ⊂ Dv≥0).

11. Let w be a weight structure for C; let D ⊂ C be a triangulated subcat-
egory of C. Suppose that w induces a weight structure wD for D (i.e.
ObjD ∩ Cw≤0 and ObjD ∩ Cw≥0 give a weight structure for D).

Then w induces a weight structure on C/D (the localization i.e. the
Verdier quotient of C by D) i.e.: the Karoubi-closures of Cw≤0 and
Cw≥0 (considered as classes of objects of C/D) give a weight structure
w′ for C/D (note that ObjC = ObjC/D). Besides, there exists a full
embedding Hw

HwD
→ Hw′; Hw′ is the Karoubi-closure of Hw

HwD
in C/D.

12. Suppose that D ⊂ C is a full category of compact objects endowed with
bounded a weight structure w′. Suppose that D weakly generates C; let
C admit arbitrary (small) coproducts. Then w′ could be extended to a
weight structure w for C. Its heart is the big hull of Hw (as de�ned in
De�nition 1.2.1(IX)).

13. Let D
i∗→ C

j∗→ E be a part of gluing data. This means that D,C,E are
triangulated categories, i∗ and j∗ are exact functors; j∗ is a localization
functor, i∗ is an inclusion of the categorical kernel of j∗ into C; i∗
possesses both a left adjoint i∗ and a right adjoint i! (see Chapter 9 of
[Nee01]; note that this piece of data extends to data similar to those
described in Proposition 1.1.2(10)).
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Then for any pair of weight structures on D and E (we will denote
them by wD and wE, respectively) there exists a weight structure w
on C such that both i∗ and j∗ are weight-exact (with respect to the
corresponding weight structures). Besides, i! and j∗ are left weight-
exact (with respect to the corresponding weight structures); i∗ and j!
are right weight-exact. Moreover, Cw≤0 = C1 = {M ∈ ObjC : i!(M) ∈
DwD≤0, j∗(M) ∈ EwE≤0} and Cw≥0 = C2 = {M ∈ ObjC : i∗(M) ∈
DwD≥0, j∗(M) ∈ EwE≥0}. Lastly, C1 (resp. C2) is the envelope of
Objj∗(E

w≤0)∪Obji∗(Dw≤0) (resp. of Objj!(E
w≥0)∪Obji∗(Dw≥0); en-

velopes are de�ned in the Notation).

14. In the setting of the previous assertion, if wD and wE are bounded, then:
w bounded also; besides, Cw≤0 is the envelope of {i∗(DwD=l), j∗(E

wE=l), l ≤
0}; Cw≥0 is the envelope of {i!(DwD=l), j!(E

wE=l), l ≥ 0}.

15. In the setting of assertion 13, the weight structure w described is the
only weight structure for C such that both i∗ and j

∗ are weight-exact.

Proof. Most of the assertions were proved in [Bon07]; more precise references
to most of the proofs could be found in the proof of Proposition 1.3.3 of
[Bon10b].

We only have to prove assertions 9, 10, 14, and 15.
(9) follows immediately from assertion 3 (using the de�nition of adjoint

functors).
(10) is immediate from assertion 7 by assertion 2.
If wC and wD are bounded, then w also is by de�nition. The remain-

ing part of assertion 14 is immediate from Remark 8.2.4(1) of [Bon07] and
assertion 7.

(15): Suppose that the assumptions of assertion 13 are ful�lled, and con-
sider some weight structure v for C such that i∗ and j

∗ are weight-exact.
Since i∗ and j

∗ are weight exact, by assertion 9 we obtain: i! and j∗ are
left weight-exact; i∗ and j! are right weight-exact (with respect to the corre-
sponding weight structure). Hence the class Cv≤0 (resp. Cv≥0) is contained
in C1 (resp. in C2) in the notation of assertion 13. Since (C1, C2) does yield
a weight structure w for C (by loc.cit.), by assertion 4 we obtain that v = w.

Remark 1.2.4. Part 11 of the proposition could be re-formulated is follows.
If i∗ : D → C is an embedding of triangulated categories that is weight-exact
(with respect to certain weight structures for D and C), an exact functor
j∗ : C → E is equivalent to the localization of C by i∗(D), then there exists

15



a unique weight structure w′ for E such that j∗ is weight exact; HwE is the

Karoubi-closure of Hw
i∗(HwD)

(with respect to the natural functor Hw
i∗(HwD)

→ E).

2 The Chow weight structure: two construc-

tions and basic properties

In �2.1 we de�ne the category Chow(S) of Chow motives over S (similar def-
initions could be found in [CoH00], [Heb10], and [GiS09]). By our de�nition,
Chow(S) ⊂ DM c(S); since Chow(S) is also negative in it and generates it
(if S is reasonable; here we use the properties of DM c(S) proved in �1.1)
we immediately obtain (by Proposition 1.2.3(7)) that there exists a weight
structure on DM c(S) whose heart is Chow(S).

In �2.2 we study the 'functoriality' of wChow (with respect to the functors
of the type f ∗, f∗, f

!, and f!, for f being a quasi-projective morphism of
schemes). Our functoriality statements are parallel to the 'stabilities' 5.1.14
of [BBD82]; we will explain this similarity in the next section. We also prove
that wChow could be described 'pointwisely' (similarly to �5.1.8 of [BBD82]).

In �2.3 we describe an alternative method for the construction of wChow
for DM c(S) (for any Spec Q-scheme S that is not necessarily reasonable).
This method uses strati�cations and 'gluing' of weight structures; this makes
this part of the paper very much parallel to the study of weights of mixed
complexes of sheaves in �5 of [BBD82]. Actually, this method is the �rst one
developed by the author (it was �rst proposed in Remark 8.2.4(3) of [Bon07],
that was in its turn inspired by [BBD82]). We prove that this 'alternative'
method yields the same result as the method of �2.1 if S is reasonable. This
yields two 'new' descriptions of wChow (in this case).

2.1 Relative Chow motives; the 'basic' construction of
wChow

We de�ne Chow(S) as the Karoubi-closure of {f!(QX)(r)[2r]} = {f∗(QX)(r)[2r]}
inDM c(S); here f : X → S runs through all �nite type projective morphisms
such that X is regular, r ∈ Z.

Till �2.3 we will assume that all schemes that we consider are reasonable
(see De�nition 1.1.1).

Theorem 2.1.1. I There exists a (unique) weight structure wChow for DM c(S)
whose heart is Chow(S).
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II wChow(S) could be extended to a weight structure wbigChow for the whole

DM(S). HwbigChow is the big hull of Chow(S) (as de�ned in De�nition 1.2.1(IX);
see Remark 1.2.2).

Proof. I By Proposition 1.2.3(6) it su�ces to verify that Chow(S) is negative
and generates DM c(S). Negativity of Chow(S) is immediate from Lemma
1.1.4(I). Chow(S) generates DM c(S) by Proposition 1.1.2(13).

II Since Chow(S) generates DM c(S), and DM c(S) weakly generates
DM(S) (by part 2 of loc.cit.), Chow(S) weakly generates DM(S).

Hence the assertion follows immediately from assertion I and Proposition
1.2.3(12).

Remark 2.1.2. 1. In particular, the theorem holds for S being the spectrum of
a (not necessarily perfect) �eld k. For a perfect k this statement was already
proved in �6 of [Bon07]. Note here that DM c(Spec k) ∼= DMgmQ(k) for a
perfect k (in the notation of Voevodsky and loc.cit.), whereas p!QP (r)[2r]
yields a Chow motif over k (for any r ∈ Z and p : P → Spec k being
a smooth projective morphism; recall here that the 'ordinary' category of
Chow motives over k can be fully embedded into DMgm).

Besides, in [Bon09a] a related di�erential graded 'description' of motives
over a characteristic zero k was given. It was generalized in [Lev09] to a
description of a certain category of 'smooth motives' over S, when S is a
smooth variety over (a characteristic 0 �eld) k; the category of smooth mo-
tives is the triangulated category generated by motives of smooth projective
S-schemes.

2. Our results would certainly look nicer if we had a description of the
composition of morphisms in Chow(S) (note here that the morphism groups
between 'generating objects' of Chow(S) can be immediately computed using
Lemma 1.1.4(I)). The author conjectures that this composition is compatible
with the ones described �2 of [CoH00] and in �5.2 of [GiS09]. In order to
prove this Levine's method could be quite useful, as well as the description of
DM(S) in terms of qfh-sheaves (see Theorem 15.1.2 of [CiD09]). Moreover,
the methods of [Lev09] could possibly allow to give a 'di�erential graded'
description of the whole DM c(S) (extending the main result of [Lev09]).

The author plans to study these matters further.
3. In Theorem 3.1 of [Heb10] an orthogonality property (similar to those

in Lemma 1.1.4(I1)) was established for not necessarily quasi-projective f
and g. This yielded that {f!(QX)(r)[2r]} ∈ DM c(S)w=0 for any proper
(not necessarily projective!) f such that X is regular, r ∈ Z, and allowed
to generalize Theorem 2.2.1(II) (below) to not necessarily quasi-projective
morphisms.
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4. If S is not reasonable, we still obtain that Chow(S) is negative. Hence,
there exists a weight structure on 〈Chow(S)〉 whose heart is Chow(S) (since
Chow(S) is idempotent complete). The problem is that we do not know
whether Chow(S) is the whole DM c(S).

One can also prove the existence of a certain analogue of the Chow weight
structure over any not necessarily reasonable Spec Q-scheme S; see �2.3 be-
low. The main disadvantage of this method is that it does not yield an
'explicit' description of HwChow (though HwChow ⊃ Chow(S)).

2.2 Functoriality of wChow

Now we study (left and right) weight-exactness of motivic image functors.
These statements are very similar to the properties of pure complexes of
constructible sheaves. This is no surprise at all, see �3.6 below. Below
S,X, Y (and hence also Z, U , and all Sαl ) will be reasonable.

Theorem 2.2.1. I The functor −(1)[2](= ⊗Q(1)[2]) and its inverse −(−1)[−2] :
DM c(S)→ DM c(S) are weight-exact with respect to wChow for any S.

II Let f : X → Y be a (separated �nite type) quasi-projective morphism
of schemes.

1. f ! and f∗ are left weight-exact; f ∗ and f! are right weight-exact.
2. Suppose moreover that f is smooth. Then f ∗ and f ! are also weight-

exact.
III Let i : Z → X be a closed immersion; let j : U → X be the compli-

mentary open immersion.
1. Chow(U) is the idempotent completion of the factor (in the sense of

De�nition 1.2.1(VIII)) of Chow(X) by i∗(Chow(Z)).
2. For M ∈ ObjDM c(X) we have: M ∈ DM c(X)wChow≤0 (resp. M ∈

DM c(X)wChow≥0) whenever j!(M) ∈ DM c(U)wChow≤0 and i!(M) ∈ DM c(Z)wChow≤0

(resp. j∗(M) ∈ DM c(U)wChow≥0 and i∗(M) ∈ DM c(Z)wChow≥0).
IV Let S = ∪Sαl be a strati�cation, il : Sαl → S are the corresponding

immersions. Then for M ∈ ObjDM c(X) we have: M ∈ DM c(X)wChow≤0

(resp. M ∈ DM c(X)wChow≥0) whenever i!l(M) ∈ DM c(Sαl )wChow≤0 (resp.
i∗l (M) ∈ DM c(Sαl )wChow≥0) for all l.

V 1. For any S we have QS ∈ DM c(S)wChow≥0.
2. If Sred is regular, then QS ∈ DM c(S)wChow=0.

Proof. I Since wChow is bounded for any base scheme, in order to prove that
a motivic image functor is weight-exact it su�ces to prove that it preserves
Chow motives; see Proposition 1.2.3(10). The assertion follows immediately.

II Let f be smooth. Then we obtain: f ∗(DM c(Y )wChow=0) ⊂ DM c(X)wChow=0

by Proposition 1.1.2(5). Hence f ∗ is weight-exact (by the same argument as

18



above). We also obtain that f ! is weight-exact using assertion I and Propo-
sition 1.1.2(8) i.e we proved assertion II2. Besides, the adjunctions yield (by
Proposition 1.2.3(9)): f∗ is left weight-exact, f! is right weight-exact; i.e.
assertion II1 for f is ful�lled.

Now let f be projective. Then f!(DM
c(X)wChow=0) ⊂ DM c(Y )wChow=0

(since f! ◦ g! = (f ◦ g)! for any g, and f! commutes with Tate twists). By
Proposition 1.2.3(10) we obtain that f! = f∗ is weight-exact. Using the
adjunctions and Proposition 1.2.3(9) again, we obtain that f ! is left weight-
exact and f ∗ is right weight-exact. So, assertion II1 is ful�lled also in the
case when f is projective.

Assertion II1 in the general case follows since any quasi-projective mor-
phism is a composition of a closed (i.e. projective) immersion with a smooth
quasi-projective morphism.

III Since i∗ ∼= i! in this case, i∗ is weight-exact by assertion II1. j∗ is
weight-exact by assertion II2.

1. DM c(U) is the localization of DM c(X) by i∗(DM
c(Z)) by Proposition

1.1.2(11). Hence Proposition 1.2.3(11) yields the result (see Remark 1.2.4).
2. Proposition 1.1.2(11) yields: wChow(X) is exactly the weight structure

obtained by 'gluing wChow(Z) with wChow(U)' via Proposition 1.2.3(13) (here
we use part 15 of loc.cit.). Hence loc.cit. yields the result (note that j∗ = j!).

IV The assertion could be easily proved by induction on the number of
strati�cation components using assertion III2.

V Let Sred be regular; denote by v the canonical immersion Sred → S.
Then v∗(QSred

) ∈ DM c(S)wChow=0 by the de�nition of wChow. Now, v
∗ is an

equivalence of categories (by Proposition 1.1.2(12)) that sends QS to QSred

(see part 7 of loc.cit.). Hence (applying the adjunction) we obtain v∗(QSred
) ∼=

QS. So, we proved assertion V2.
In order to verify assertion V1 we choose a strati�cation S = ∪Sα such

that all Sαl red are regular. Since we have i
∗
l (QS) = QSl

∈ DM c(Sl)
wChow≥0 (by

assertion V2), assertion IV implies the result.

Remark 2.2.2. Assertion III1 yields that any object of Chow(U) is a retract
of some object coming from Chow(X). This fact could be easily deduced
from Hironaka's resolution of singularities (if we believe that the composition
of morphisms in Chow(−) could be described in terms of algebraic cycles;
cf. Remark 2.1.2(2)) in the case when X is a variety over a characteristic 0
�eld. Indeed, then any projective regular U -scheme YU possesses a projective
regular X-model Y (since one can resolve the singularities of any projective
model Y ′/X of YU by a morphism that is an isomorphism over U). The
author does not know any analogues of this argument in the case of a general
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(reasonable) X (even with alterations instead of modi�cations, since it does
not seem to be known whether there exists an alteration of Y ′ that is étale
over U).

So, assertion III1 could be called (a certain) motivic resolution of singu-
larities (over a reasonable X).

Now we prove that positivity and negativity of objects of DM c(S) (with
respect to wChow) could be 'checked at points'; this is a motivic analogue of
�5.1.8 of [BBD82].

Proposition 2.2.3. Let S denote the set of (Zariski) points of S; for a
K ∈ S we will denote the corresponding morphism K → S by jK.

Then M ∈ DM c(S)wChow≤0 (resp. M ∈ DM c(S)wChow≥0) if and only
if for any K ∈ S we have j!

K(M) ∈ DM c(K)wChow≤0 (resp. j∗K(M) ∈
DM c(K)wChow≥0); see Remark 1.1.3(2).

Proof. By Theorem 2.1.1(II) ifM ∈ DM c(S)wChow≤0 (resp. M ∈ DM c(S)wChow≥0)
then for any immersion f : X → S we have we have f !(M) ∈ DM c(X)wChow≤0

(resp. f ∗(M) ∈ DM c(X)wChow≥0). It remains to pass to the limits with re-
spect to immersions corresponding to points of S (see Remark 1.1.3(2)).

We prove the converse implication by noetherian induction. So, suppose
that our assumption is true for motives over any closed subscheme of S, and
that for some M ∈ ObjDM c(S) we have j!

K(M) ∈ DM c(K)wChow≤0 (resp.
j∗K(M) ∈ DM c(K)wChow≥0) for any K ∈ S.

We should prove thatM ∈ DM c(S)wChow≤0 (resp. M ∈ DM c(S)wChow≥0).
By Proposition 1.2.3(3) it su�ces to verify: for any N ∈ DM c(S)wChow≥1

(resp. for any N ∈ DM c(S)wChow≤−1), and any h ∈ DM c(S)(N,M) (resp.
any h ∈ DM c(S)(M,N)) we have h = 0. We �x some N and h.

By the 'only if' part of our assertion (that we have already proved) we
have j∗K(N) ∈ DM c(K)wChow≥1 (resp. j∗K(N) ∈ DM c(K)wChow≤−1); hence
j∗K(h) = 0. By Proposition 1.1.2(14) we obtain that j∗(h) = 0 for some open
embedding j : U → S, where K is a generic point of U .

Now suppose that h 6= 0; let i : Z → S denote the closed embedding that
is complimentary to j. Then Lemma 1.1.4(II) yields thatDM c(S)(i∗(N), i!(M)) 6=
{0} (resp. DM c(S)(i∗(M), i!(N)) 6= {0}). Yet i∗(N) ∈ DM c(Z)wChow≥1

(resp. i!(N) ∈ DM c(Z)wChow≤−1) by Theorem 2.2.1(II), whereas i!(M) ∈
DM c(Z)wChow≤0 (resp. i∗(M) ∈ DM c(Z)wChow≥0) by the inductive assump-
tion. The contradiction obtained proves our assertion.
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2.3 The 'gluing' construction of wChow (over any excel-
lent S of characteristic 0)

In this paragraph all schemes will be (excellent separated) Spec Q-schemes;
we do not assume them to be reasonable. Then we can de�ne the Chow
weight structure 'locally'. We explain how do this (using strati�cations and
gluing of weight structures (we call this approach to constructing wChow the
'gluing method'); the constructions and results of this section are quite sim-
ilar to those of �5 of [BBD82]).

First we will describe certain candidates forDM c(S)wChow≤0 andDM c(S)wChow≥0;
next we will prove that they yield a weight structure for DM c(S).

For a scheme X we will denote by ON (X) (resp. OP(X)) the envelope
(see the Notation) of p∗(QP )(s)[i+2s](∼= p!(QP )(s)[i+2s]) in DM c(X); here
p : P → X runs through all smooth projective morphisms to X, s ∈ Z,
whereas i ≥ 0 (resp. i ≤ 0).

Remark 2.3.1. It is easily seen (using Proposition 1.1.2) that for any mor-
phism g of schemes we have g∗(ON (Y )) ⊂ ON (X) and g∗(OP(Y )) ⊂
OP(X). Indeed, we have g∗p!(QP ) ∼= p′!g

′∗(QP ) = p′!(Q′P ) (we use the usual
notation for the base change of g, p, and P ).

Besides, if g is an immersion of regular schemes, we also have g!(ON (Y )) ⊂
ON (X), g!(OP(Y )) ⊂ OP(X); here we use Lemma 1.1.4(I2).

For a strati�cation α : S = ∪Sαl we denote by ON (α) the class {M ∈
ObjDM c(S) : j!

l(M) ∈ ON (Sαl ), 1 ≤ l ≤ n}; OP(α) = {M ∈ ObjDM c(S) :
j∗l (M) ∈ OP(Sαl ), 1 ≤ l ≤ n}.

We will call a strati�cation α of S (i.e. S = ∪Sαl ; see the Notation) regular
if all Sαl are regular. We de�ne: DM c(S)≤0 = ∪αON (α); DM c(S)≥0 =
∪αOP(α); here α runs through all regular strati�cations of S.

We will need the following statement.

Lemma 2.3.2. 1. Let δ be a (not necessarily regular) strati�cation of S; we
denote the corresponding immersions Sδl → S by jl. Let M ∈ ObjDM c(S).

Suppose that j!
l(M) ∈ DM c(Sδl )

≤0 (resp. j∗l (M) ∈ DM c(Sδl )
≤0) for all l.

Then M ∈ DM c(S)≤0 (resp. M ∈ DM c(S)≥0).
2. j∗(DM

c(V )≤0) ⊂ DM c(S)≤0 and j!(DM
c(V )≥0) ⊂ DM c(S)≥0 for any

immersion j : V → S.

Proof. 1. We use induction on the number of components of δ. The 2-
functoriality of motivic upper image functors yields: it su�ces to prove the
statement for δ consisting of two components.

So, let S = U ∪ Z, Z and U are disjoint, U is open (dense) in S; we
denote the immersion U → S and Z → S by j and i, respectively.
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By the assumptions onM , there exist regular strati�cations β of Z and γ
of U such that i!(M) ∈ ON (β) and j!(M) ∈ ON (γ) (resp. i∗(M) ∈ OP(β)
and j∗(M) ∈ OP(γ)).

We 'unify' β with γ and denote the regular strati�cation of S obtained
by α. Then 2-functoriality of −! (resp. of −∗) yields thatM ∈ ON (α) (resp.
M ∈ OP(α)).

2. We choose a strati�cation δ containing V ; so we assume that V = Sδ0 .
Then it can be easily seen that j!

lj∗ = 0 = j∗l j! for l 6= 0 and j!j∗ ∼= 1DM(V )
∼=

j∗j! (see Proposition 1.1.2(10)). Hence the result follows from assertion 1.

Proposition 2.3.3. I1. (DM c(S)≤0, DM c(S)≥0) yield a bounded weight
structure wChow for DM c(S).

2. DM c(S)wChow≤0 (resp. DM c(S)wChow≥0) is the envelope of p∗(QP )(s)[2s+
i] (resp. of p!(QP )(s)[2s − i]) for s ∈ Z, i ≥ 0, and p : P → S being the
composition of a smooth projective morphism with the immersion of a regular
subscheme into S.

II w(S) could be extended to a weight structure wbigChow for the whole
DM(S).

Proof. I We prove the statement by Noetherian induction. So, we suppose
that the statement is valid for all proper closed subschemes of S. We prove
it for S.

Obviously, (DM c(S)≤0, DM c(S)≥0) are Karoubi-closed in DM c(S) and
are semi-invariant with respect to translations.

Now, any two regular strati�cations have a common regular subdivision.
We apply Remark 2.3.1 and obtain: in order to verify orthogonality it su�ces
to prove for any regular α that OP(α) ⊥ ON (α)[1]. The latter statement
follows from Lemma 1.1.4 (parts I1 and II).

In order to verify assertion I1 it remains to prove: any M ∈ ObjDM c(S)
has some weight decomposition (with respect to (DM c(S)≤0, DM c(S)≥0)),
and that M ∈ DM c(S)≤m ∩DM c(S)≥n for some m,n ∈ Z.

We choose some generic point K of S, jK → S is the corresponding mor-
phism. Since K is a reasonable scheme, we have j∗K(M) ∈ 〈Chow(K)〉 (see
Proposition 1.1.2(13)) We �x some smooth projective varieties P ′i/K, 1 ≤
i ≤ n (we denote the corresponding morphisms P ′i → K by p′i) and some
s ∈ Z such that j∗K(M) belongs to the triangulated subcategory of DM c(K)
generated by {p′i!(QP ′i

)(s)[2s]}.
Now we apply Proposition 1.1.2(14). We obtain: there exists an open

embedding j : U → S such that: U is regular, the generic point of U is K,
and j∗(M) belongs to D. Here we denote by D the triangulated subcategory
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of DM c(U) generated by {pi!(QPi
)(s)[2s]}; pi : Pi → U are some smooth

projective 'models' of p′i (that exist if U is small enough).
Since idU yields a regular strati�cation of U , {pi!(QPi

)(s)[2s]} is negative
in DM(S)(U) (since OP(α) ⊥ ON (α)[1] for any regular α, as we have just
proved). Therefore (by Proposition 1.2.3(6�7)) there exists a weight structure
d for D such that Dd≤0 (resp. Dd≥0) is the envelope of ∪n≥0{pi!(QPi

)(s)[2s+
n]} (resp. of ∪n≥0{pi!(QPi

)(s)[2s − n]}). We also obtain that Dd≤0 ⊂
DM c(U)≤0 and Dd≥0 ⊂ DM c(U)≥0.

We denote S \ U by Z (Z could be empty); i : Z → S is the correspond-
ing closed immersion. By the inductive assumption, our method de�nes a
bounded (Chow) weight structure for DM c(Z).

We have the gluing data DM c(Z)
i∗→ DM c(S)

j∗→ DM c(U). We can
'restrict it' to a gluing data

DM c(Z)
i∗→ j∗−1(D)

j∗0→ D

(see Proposition 1.2.3(13)), whereas M ∈ Obj(j∗−1(D)); here j∗0 is the cor-
responding restriction of j∗. Hence by loc. cit. there exists a weight struc-
ture w′ for j∗−1(D) such that i∗ and j∗0 are weight-exact (with respect to
the weight structures mentioned). Hence there exists a weight decomposi-
tion M → A → B with respect to w′. Besides, there exist m,n ∈ Z such
that j∗0(M) ∈ DM c(U)≤m, j∗0(M) ∈ DM c(U)≥n, i!(M) ∈ DM c(Z)≤m, and
i∗(M) ∈ DM c(Z)≥n. Hence A,M [m] ∈ DM c(S)≤0; B,M [n] ∈ DM c(S)≥0;
see Lemma 2.3.2(1).

Now we apply Proposition 1.2.3(14) and obtain: if wChow(Z) could be
described as in assertion I2, then M possesses a weight decomposition whose
components belong to the corresponding envelopes over S. Hence assertion
I2 follows from the description of wChow over (characteristic zero) �elds by
Noetherian induction.

II: immediate from assertion I1; cf. the proof of Theorem 2.1.1.

Proposition 2.3.4. For the version of wChow constructed in this section, the
analogues of all parts of Theorem 2.2.1 as well as of Proposition 2.2.3 are
ful�lled.

Proof. The proof of part I (of loc.cit.) carries over to our situation without
changes. The same is true for part II for the case of a smooth f . Lemma
2.3.2 yields assertion II1 for the case when f is an immersion. The general
case follows from these two immediately.

The (analogues of) the remaining parts of Theorem 2.2.1 and Proposition
2.2.3 follow from (the analogue of) part II by the same method as the one
used in �2.2.
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Corollary 2.3.5. 1. We have Chow(S) ⊂ HwChow.
2. For a reasonable S the 'alternative' version of wChow (constructed

above) coincides with the version given by Theorem 2.1.1(I).

Proof. 1. It su�ces to verify that p!(QP ) ∈ HwChow for any regular P and
a projective morphism p : P → S. By the previous proposition, we obtain
Qp ∈ DM c(P )wChow=0; since p!

∼= p∗, we obtain the result.
2. Indeed, denote the 'old' version of wChow by v, and the 'alternative'

one by w. The previous assertion along with Proposition 1.2.3(10) yields that
idDMc(S) is weight-exact with respect to v and w. Hence part (4) of loc.cit.
yields the result.

Remark 2.3.6. 1. Actually, in the �rst draft of this paper (only) the gluing
method of constructing wChow was used (this approach was �rst proposed in
Remark 8.2.4(3) of [Bon07], that was in its turn inspired by [BBD82]). Next
the author proved part 1 of the Corollary. Then (in order to deduce our
main results) it remained to note that Chow(S) generates DM c(S). Luckily,
it was easy to prove the negativity of Chow(S) (without relying on the gluing
construction of wChow; see Lemma 1.1.4(I1)); so the proof was simpli�ed (for
a reasonable S; note still that the scheme of the proof of loc.cit. is similar
to that for the chain of arguments that yield the �rst part of the Corollary).
Yet in the case when S is a scheme over Spec Q, the gluing method gives us
two ('new') descriptions of wChow.

A disadvantage of the gluing method is that it does not yield an explicit
description of the whole DM c(S)wChow=0 (though we can describe it as the
intersection of DM c(S)wChow≤0 with DM c(S)wChow≥0).

2. Possibly, the results of this section could be extended (somehow) to
motives over general excellent schemes. Yet p!(QP )(s)[i + 2s] for smooth
projective P/X are not su�cient to de�ne the (corresponding) analogues
of OP(X) and ON (X) in this case (even in the case when the base is an
imperfect �eld). Probably, universal homeomorphisms of schemes should
(somehow) be included in the construction. The main problem here is to
verify that a 'weight-positive' (or 'weight-negative') motif over a generic point
K of S could be 'expanded' to a weight-positive (resp. weight-negative) motif
over some open U ⊂ S (such that K ∈ U).

3. Motives with Z-coe�cients are more 'mysterious' than those with Q-
ones; yet possibly one can construct Chow weight structure(s) for them also.
At least, the author hopes to achieve this for motives over (excellent sepa-
rated) Q-schemes (and also for motives with Z[1

p
]-coe�cients over varieties

over characteristic p �elds; cf. [Bon10b]).
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4. Actually, most of the arguments of this section work for motives over
schemes all of whose residue �elds are separable (so, we don't have to assume
residue �elds to be of characteristic 0). In particular, the gluing method could
be applied for S = Spec Z. Yet we will obtain functoriality of wChow only for
motivic image functors coming from smooth (quasi-projective) morphisms.
The problem here is the following one: when we decompose a morphism
X → Y into a composition of an immersion i : X → P with a smooth
projective morphism P → Y , we cannot assume that all the residue �eld of
P are perfect even if this is true for X and Y .

5. The author plans to (try to) reduce the conjecture on the existence of
the motivic t-structure for DM c(S) to the case when S is a �eld. To this
end a certain gluing argument (as well as the methods applied in [BBD82]
to the study of mixed complexes of sheaves) could be helpful.

3 Applications to cohomology and other mat-

ters

In �3.1 we study weight complexes for S-motives (and their compatibility
with weight-exact motivic image functors).

In �3.2 we prove that K0(DM
c(S)) ∼= K0(Chow(S)) (following [Bon07]),

and de�ne a certain 'motivic Euler characteristic' for (separated �nite type)
S-schemes.

In �3.3 we consider Chow-weight spectral sequences and �ltrations for
cohomology of S-motives (following �2.4 of [Bon07]). We observe that Chow-
weight �ltrations yield Beilinson's 'integral part' of motivic cohomology (see
�2.4.2 of [Bei85] and [Sch00]).

In �3.4 we verify that Chow-weight spectral sequences (in particular) yield
the existence of weight �ltrations for the perverse cohomology of motives
(that is not automatic in the case when S is a Spec Z-scheme).

In �3.5 we introduce the notion of a relative weight structures. The
axiomatics of those was chosen to be an abstract analogue of Proposition
5.1.15 of [BBD82]. Several properties of relative weight structures are parallel
to those for 'ordinary' weight structures.

In �3.6 we study the case when S = X0 is a variety over a �nite �eld.
In this case the category Db

m(X0,Ql) of mixed complexes of sheaves pos-
sesses a relative weight structure whose heart is the class of pure complexes
of sheaves. Since the étale realization of motives preserves weights, we ob-
tain that (Chow)-weight �ltrations for some cohomology theories could be
described in terms of the category Db

m(X0,Ql).
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In this section we will always assume that our base schemes are reason-
able. Yet for S as in �2.3 we also could have used the 'gluing' version of
wChow (the main di�erence is that we would have to put HwChow instead of
Chow(S) everywhere).

3.1 The weight complex for DM c(S)

We prove that the weight complex functor (whose '�rst ancestor' was de�ned
by Gillet and Soule) could be de�ned for DM c(S).

Proposition 3.1.1. 1. The embedding Chow(S)→ Kb(Chow(S)) factorizes
through a certain exact conservative weight complex functor tS : DM c(S)→
Kb(Chow(S)).

2. For M ∈ ObjDM c(S), i, j ∈ Z, we have M ∈ DM c(S)[i,j] whenever
t(M) ∈ K(Chow(S))[i.j] (see Remark 1.2.2).

3. For schemes X, Y let F : DM c(X) → DM c(Y ) be a weight-exact
functor of triangulated categories (with respect to the Chow weight structures
for these categories; so F could be equal to i! for a �nite type separated
projective morphism i : X → Y , or to j∗ for a �nite type smooth morphism
j : Y → X) that possesses a di�erential graded enhancement. Denote by
FKb(Chow) the corresponding functor Kb(Chow(X)) → Kb(Chow(Y )). Then
there exists a choice of tX and tY that makes the diagram

DM c(X)
F−−−→ DM c(Y )ytX ytY

Kb(Chow(X))
F

Kb(Chow)−−−−−−→ Kb(Chow(Y ))

commutative up to an equivalence of categories.

Proof. 1. By Proposition 5.3.3 of [Bon07], this follows from the existence of
a bounded Chow weight structure for DM c(S) along with the fact that it
admits a di�erential graded enhancement (see De�nition 6.1.2 of ibid.). The
latter property of DM(S) could be easily veri�ed since it could be described
in terms of the derived category of qfh-sheaves over S; see Theorem 15.1.2
of [CiD09] (and also cf. �6.1 of [BeV08]).

2. Immediate from Theorem 3.3.1(IV) of ibid.
3. We use the notation and de�nitions of �2 of [Bon09a] (that originate

mostly from [BoK90]).
Since DM c(X) = 〈Chow(S)〉, we can assume that DM c(X) = Tr+(CX),

where CX is a negative triangulated category such that H(CX) = Chow(X)
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(see Remark 2.7.4(2) of ibid.). Replacing DM c(Y ) by an equivalent cat-
egory, we may also assume (similarly) that DM c(Y ) = Tr+(CY ) where
CY is a negative triangulated category such that H(CY ) = Chow(Y ), and
F = Pre-Tr(F ′) for some di�erential graded functor CX → CY . Arguing
as in �6.1 of ibid, we obtain that it su�ces to apply Tr+ to the following
diagram:

CX
F ′−−−→ CYy y

H(CX)
H(F ′)−−−→ H(CY )

Remark 3.1.2. 1. The '�rst ancestor' of our weight complex functor was
de�ned by Gillet and Soule in [GiS96]. Weight complex for a general trian-
gulated category C endowed with a weight structure was de�ned in [Bon07].
Even in the case when C does not admit a di�erential graded enhancement,
one can still de�ne a certain 'weak' version of the weight complex; see �3 of
ibid. (and this version does not depend on any choices). It follows that for
M ∈ ObjDM c(S) the isomorphism class of tS(M) (in Kb(Chow(S))) does
not depend on any choices (see ibid.).

2. In [GiS09] a functor h from the category of Deligne-Mumford stacks
over S (with morphisms being proper morphisms over S) to the category of
complexes over a certain category of K0-motives was constructed; Gillet and
Soule considered base schemes satisfying rather restrictive conditions (mostly,
of dimension ≤ 1). We conjecture: for a �nite type separated morphism
p : X → S there is a functorial isomorphism h(X) → t(Mc(X)), where
Mc(X) = p∗p

!(QS). For S being the spectrum of a characteristic 0 �eld this
was (essentially) proved in �6.6 of [Bon09a]. Note here: though the category
of K0-motives is somewhat 'larger' than Chow(S), it very probably su�ces
to consider its 'Chow' part (this would be the category Chow(S) considered
in [CoH00]).

Note that our de�nition of a weight complex (forMc(X)) gives it much
more functoriality in X than it was established [GiS09]; we also study its
functoriality with respect to S, and relate it with cohomology (below).

Besides, we can restrict our de�nition of weight complexes to (motives
with compact support of) quotient stacks (cf. De�nition 1.2 of [GiS09]).
For a �nite G, #G = n, acting on a �nite type scheme X/S one can take
Mc(X/G) = aG∗Mc(X) ∈ ObjDM c(S) Here aG is the idempotent morphism

(correspondence)
∑

g∈G g

n
: X → X. Certainly, for G = {e} we will have

tQ(Mc(X/G)) = t(Mc(X)).
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3. Theorem 2.1.1 along with the results of [Bon07] also imply: tS could be
extended to an exact functor DM(S) → K(BChow(S)), where BChow(S)
is the big hull of Chow(S) (see De�nition 1.2.1(IX)).

4. One can also de�ne exact (and conservative) higher truncations func-
tors tS,N from DM c(S) to certain triangulated DM c(S)N for all N ≥ 0; cf.
�6.1 of [Bon09a]. Here tS,0 = tS; DM

c(S)N is obtained from a ('Chow(S)-
negative') di�erential graded description of DM c(S) by killing all morphisms
from DM c(S)wChow=0 to DM c(S)wChow=i for i < −N . So, DM c(S)N 'approx-
imate' DM c(S) (when N grows). tS,N would satisfy the analogue of Theorem
6.2.1 of ibid. Yet it seems that tS = tS,0 is the most interesting of the (higher)
truncation functors.

3.2 K0(DM
c(S)) and motivic Euler characteristic

Now we calculate K0(DM
c(S)) and study a certain Euler characteristic for

(�nite type separated) S-schemes.

Proposition 3.2.1. 1. We de�ne K0(Chow(S)) as the groups whose gener-
ators are [M ], M ∈ ObjChow(S) and the relations are [M

⊕
N ] = [M ]+[N ]

for M,N ∈ ObjChow(S). For K0(DM
c(S)) we take similar generators and

set [B] = [A] + [C] if A→ B → C → A[1] is a distinguished triangle.
Then the embedding Chow(S)→ DM c(S) yields an isomorphismK0(Chow(S)) ∼=

K0(DM
c(S)).

2. For the correspondence χ : X 7→ [p∗p
!QS] (here p : X → S is a �nite

type separated morphism) from the class of �nite type separated S-schemes
to K0(DM

c(S)) ∼= K0(Chow(S)) we have: χ(X \ Z) = χ(X)− χ(Z) if Z is
a closed subscheme of X.

Proof. 1. Immediate from (part I of) Theorem 2.1.1 and Proposition 5.3.3(3)
of [Bon07].

2. Denote the immersion Z → X by i, and the complimentary im-
mersion by j. By Proposition 1.1.2(10) for any M ∈ ObjDM c(X) we
have a distinguished triangle i∗i

!M → M → j∗j
!M (note that i! ∼= i∗

and j! = j∗). Now for M = p!QS this triangle specializes to the triangle
i∗(p ◦ i)!QS → p!QS → j∗(p ◦ j)!QS. It remains to apply [p∗(−)] and the
de�nition of K0(DM

c(S)) to obtain the result.

Remark 3.2.2. 1. Assertion 2 is a vast extension of Corollary 5.13 of [GiS09].
It allows to de�ne certain motivic Euler characteristics for (�nite type sepa-
rated) S-schemes.
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2. We hope that our results could be useful for the theory of motivic
integration.

Note in particular: we obtain that any (not necessarily weight-exact!) mo-
tivic image functorDM c(X)→ DM c(Y ) induces a homomorphismK0(Chow(X))→
K0(Chow(Y )).

Besides, in contrast to the 'classical' case (when S is a spectrum of a
perfect �eld) there does not seem to exist a 'reasonable' (tensor) product for
Chow(S). Yet DM c(S) is a tensor triangulated category; hence one can use
assertion 1 in order to de�ne a ring structure on K0(Chow(S)).

3.3 Chow-weight spectral sequences and �ltrations

Now we discuss (Chow)-weight spectral sequences and the corresponding
�ltrations for cohomology of motives. One could also easily dualize this to
obtain similar results for homological functors (see Theorem 2.3.2 of [Bon07]).
We note that any weight structure yields certain weight spectral sequences
for any cohomology theory; the main di�erence of the result below from the
general case (as in Theorem 2.4.2 of ibid.) is that T (H,M) converges always
(since wChow is bounded).

Proposition 3.3.1. Let A be an abelian category, let H : DM c(S) → A be
a cohomological functor.

For some M ∈ ObjDM c(S) we denote by (M i) the terms of t(M) (so
M i ∈ ObjChow(S); here we can take any possible choice of t(M)).

Then the following statements are valid.
1. There exists a spectral sequence T = T (H,M) with Epq

1 = Hq(M−p) =⇒
Hp+q(M); the di�erentials for E1(H,M) come from t(M).

2. T (H,M) is DM c(S)-functorial in M (and does not depend on any
choices) starting from E2.

3. Denote the step of �ltration given by (El,m−l
1 : l ≥ k) on Hm(M)

by F kHm(M). Then F kHm(M) = Im(Hm(wChow≤−kM) → Hm(M)); here
for wChow≤−kM one can take arbitrary choices of the corresponding weight
truncations of M .

Proof. Immediate from Theorem 2.4.2 of [Bon07].

Remark 3.3.2. 1. We obtain certain Chow-weight spectral sequences and
�ltrations for any cohomology of motives. In particular, we have them for
(rational) étale and motivic cohomology of motives.

2. T (H,M) could be naturally described in terms of the virtual t-truncations
of H (starting from E2); see �4.3 below.
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3. We obtain that any cohomology of any M ∈ ObjDM c(S) possesses a
�ltration by subfactors of cohomology of regular projective S-schemes.

4. The fact that Im(Hm(wChow≤−kM)→ Hm(M)) is DM c(S)-functorial
in M follows from the axioms of weight structures very easily (see �2.1 of
[Bon07]). Yet it has quite interesting consequences.

Let a scheme X be reasonable; in the notation of Proposition 1.1.2(10)
let M ∈ DM c(X)wChow=0, and denote j!(M) by N . Then by Theorem 2.2.1
we have j!(N), i∗i

∗(M) ∈ DM c(X)wChow≥0. Hence the distinguished triangle
j!(N)→M → i∗i

∗(M) (see Proposition 1.1.2(10)) yields a weight decompo-
sition of j!(N). Therefore for any cohomological theory H : DM c(S) → A
one has

F 0H∗(j!(N)) = Im(H∗(M)→ H∗(j!(N))). (2)

In particular, the right hand side of (2) is DM c(U)-functorial in N (and does
not depend on the choice of M if we �x N). Moreover, F 0H∗(j!(N)) yields
a DM c(U)-functorial extension of the right hand side of (2) (considered for
N of the form j!(M), M ∈ DM c(X)wChow=0) to the whole DM c(U). For
N ∈ DM c(U)wChow≥0 we also obtain that F 0H∗(j!(N)) could be described
as the image H∗(M ′) → H∗(j!(N)) for certain M ′ ∈ DM c(X)wChow=0. Note
here: N 6= j!(M ′) for any M ′ ∈ DM c(X)wChow=0 if N 6∈ DM c(U)wChow=0; yet
cf. Remark 2.2.2.

One may use this observation in order to de�ne the 'integral part' (i.e.
the subobject of H∗(j!N) that 'comes from a nice X-model' of N) in the
cohomology of motives over U (cf. [Bei85], [Sch00], and [Sch10]). Note here
that one could also consider N ∈ Chow(K) for K being a generic point of
U , since any such N could be lifted to a Chow motif over some U (K ∈ U , U
is open in S), by Theorem 2.2.1(III1) combined with Proposition 1.1.2(14).

Suppose now that M = p∗(QP ), where P is regular, p : P → X is
a projective morphism. Then N(= j!(M)) ∼= pU∗(QPU

) (by Proposition
1.1.2(5)). Hence, if a scheme PU/U possesses a 'nice model' over X, then (2)
(for N = pU∗(QPU

)) yields that the image of the H-cohomology of P in the
H-cohomology of PU is canonical and functorial. For a general PU one still
obtains a certain subobject of H∗(N) that is functorial in PU and equals the
image in H∗(N) of the H-cohomology of some regular X-projective scheme.

Arguing this way one obtains a description of the 'integral part' of motivic
cohomology of PU ; this is an alternative to Theorem 1.1.6 of [Sch00]. One
still has to do some work here in order to verify that H∗(M) and H∗(j!(N))
would become the motivic cohomology groups desired; yet this could be easily
veri�ed using Proposition 1.1.2(15) (in order to establish the functoriality of
the isomorphism in loc.cit. also certain results of �13 of [CiD09] should be
recalled). Note still that our description of the 'integral part' of cohomology is
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very short and does not rely on any conjectures (in contrast to the description
given in [Sch10]). The author plans to write down this reasoning in more
detail (later).

It could also be interesting to consider F lH∗(j!(N)) for l 6= 0.

3.4 Application to mixed sheaves: the 'arithmetic' case

Suppose that S is a �nite type Spec Z-scheme. Denote by H the étale real-
ization functor DM c(S) → DSH, where DSH = DSH(S) is the category
Db
m(S,Ql) of mixed complexes of Ql-étale sheaves as considered in [Hub97]

and in [BBD82]. We will assume below that H converts the motivic image
functors into the corresponding functors for DSH(−) (it seems that the ex-
istence of such a realization is not fully established in the existing literature;
yet a forthcoming paper of Cisinski and Deglise should close this gap).

We obtain that H sends Chow motives over S to pure complexes of sheaves
(of weight 0; see De�nition 3.3 of [Hub97]). Indeed, it su�ces to note that H
sends QX for a regular X to a sheaf of weight 0, whereas f! for a projective
f preserves weights of sheaves (here it su�ces to apply the corresponding
results of �5 of [BBD82]; cf. Proposition 3.9 of [Hub97]).

Now we takeHper being the perverse étale cohomology theory i.e. H i
per(M)

(for M ∈ ObjDM c(S), i ∈ Z) is the i-th cohomology of H(M) with respect
to the perverse t-structure of DSH (see Proposition 3.2 of [Hub97]). Then
TwChow

(Hper,M) for any M ∈ ObjDM c(S) yields: all H i
per(M) have weight

�ltrations (de�ned using De�nition 3.3 of loc.cit., for all i ∈ Z). Note that
this is not at all automatic (for perverse sheaves over S); see Remark 6.8.4(i)
of [Jan90]. Certainly, one can replace perverse sheaves over S here by Ql-
adic representations of the absolute Galois group of the function �eld of S;
cf. �6.8 of loc.cit.

3.5 Relative weight structures

In order to de�ne weights for mixed complexes of sheaves (over a �nite �eld),
we have to generalize the de�nition of a weight structure.

De�nition 3.5.1. I Let F : C → D be an exact functor (of triangulated
categories).

A pair of extension-stable Karoubi-closed subclasses Cw≤0, Cw≥0 ⊂ ObjC
for a triangulated category C will be said to de�ne a relative weight structure
w for C with respect to F (or just and F -weight structure) if they satisfy
the following conditions.

(i) 'Semi-invariance' with respect to translations.
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Cw≥0 ⊂ Cw≥0[1], Cw≤0[1] ⊂ Cw≤0.
(ii) Weak orthogonality.
Cw≥0 ⊥ Cw≤0[2].
(iii) F -orthogonality.
F kills all morphisms between Cw≥0 and Cw≤0[1].
(iv) Weight decompositions.
For any M ∈ ObjC there exists a distinguished triangle

B[−1]→M → A
f→ B (3)

such that A ∈ Cw≤0, B ∈ Cw≥0.
II We de�ne Cw≥i, Cw≤i, Cw=i, C [i,j], bounded relative weight structures,

and Cb similarly to de�nition 1.2.1.
We will call the class Cw=0 the heart of w (we will not de�ne the category

Hw).
We will use the same notation for weight truncations with respect to w

as the one introduced in Remark 1.2.2. We de�ne weight-exact functors for
relative weight structures as in De�nition 1.2.1(VI) (i.e. we do not mention
the corresponding F 's in the de�nition).

III Let H be a full subcategory of a triangulated C.
We will say that H is F -negative if ObjH ⊥ (∪i>1Obj(H[i])) and F kills

all morphisms between H and H[1].

Remark 3.5.2. 1. A weight structure is a relative weight structure with
respect to F = idC .

2. An F -weight structure is also a G ◦ F -weight structure for any exact
functor G : D → E (for any triangulated E). In particular, one can always
take F = 0. Hence we do not lose in generality by adding the F -orthogonality
axiom to the de�nition of relative weight structures.

Yet those properties of relative weight structures that do not depend on
the choice of F are certainly valid without this axiom. The main reason to
put the F -orthogonality axiom together with the weak orthogonality one is
that these conditions could be tracked down using similar methods.

3. The weak orthogonality axiom is a partial case of the higher Hom
decomposition condition that was studied in Appendix B of [Pos10]. Respec-
tively, Proposition 2 of loc.cit. generalizes our Proposition 3.5.3(8) considered
in the case F = 0.

Now we will extend to relative weight structures several properties of
weight structures. We will skip those parts of the proofs that do not dif-
fer much from the ones in [Bon07] (for 'usual' weight structures); we will
concentrate on the distinctions.
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Proposition 3.5.3. Let F : C → D be an exact functor (of triangulated
categories).

In all assertions expect 8 we will also assume that w is a relative weight
structure for C with respect to F .

1. (C1, C2) (C1, C2 ⊂ ObjC) de�ne an F -weight structure for C whenever
(Cop

2 , C
op
1 ) de�ne a relative weight structure for Cop with respect to F op;

here F op : Cop → Dop is the functor obtained from F by inverting all
arrows.

2. All C [i,j] are extension-stable.

3. Let l ≤ m ∈ Z, M,M ′ ∈ ObjC. Let weight decompositions of M [m]

and M ′[l] be �xed; we consider the corresponding triangles w≥m+1M
b→

M
a→ w≤mM and w≥l+1M

′ b′→M ′ a′→ w≤lM
′.

Then for any g ∈ C(M,M ′) there exists some morphism of distin-
guished triangles

F (w≥m+1M)
F (b)−−−→ F (M)

F (a)−−−→ F (w≤mM)y yF (g)

y
F (w≥l+1M

′)
F (b′)−−−→ F (M ′)

F (a′)−−−→ F (w≤lM
′)

(4)

4. In addition to the assumptions of the previous assertion, suppose that
l < m.

Then there also exists a commutative diagram

w≥m+1M
b−−−→ M

a−−−→ w≤mMyc yg yd
w≥l+1M

′ b′−−−→ M ′ a′−−−→ w≤lM
′

(5)

Moreover, (g, a, a′) determine F (d) uniquely; (g, b, b′) determine F (c)
uniquely.

5. For any M ∈ ObjC any choices of w≤iM (and of the arrows ai : M →
w≤iM for all i ∈ Z) could be completed to a weight Postnikov tower for
M (cf. De�nition 1.5.8 of [Bon10a]) i.e. for all j ∈ Z we can choose
some morphisms cj : w≤j+1M → w≤jM that are compatible with ai,
and for any choice of cj we have: M j = Cone(cj(M))[−j] ∈ Cw=0.
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6. We can choose a weight Postnikov tower for M such that w≤jM = 0
for j < j0 and = M for j ≥ j1 for j0, j1 ∈ Z, whenever M ∈ C [j0,j1].

We will call such a weight Postnikov tower a bounded one.

7. Let w be bounded, G be an exact functor C → C ′; suppose that C ′ is
endowed with a relative weight structure (with respect to some exact
functor F ′ : C ′ → D′).

Then G is left (resp. right) weight exact whenever G(Cw=0) ⊂ C ′w
′≤0

(resp. G(Cw=0) ⊂ C ′w
′≥0).

8. Let H ⊂ ObjC be F -negative. Then there exists a bounded weight
structure w on 〈H〉 in C such that H ⊂ Tw=0.

Proof. Assertions 1 and 2 are immediate from De�nition 3.5.1.
The proof of assertions 3 and 4 is similar to those of Proposition 1.5.1

(parts 1 and 2) of [Bon07]. The axiom (iii) of relative weight structure yields
that the composition morphism F (w≥m+1M) → F (w≤lM

′) vanishes. Hence
(the easy) Proposition 1.1.9 of [BBD82] yields the existence of (4).

Similarly, we obtain the existence of (5) if m > l. Moreover, any two
distinct choices of d (resp. c) are easily seen (see the proof of loc.cit.) to
di�er by s ◦ a (resp. by (b′ ◦ s)[−1]) for some s ∈ C(w≤lM [1], w≥m+1M

′).
Since F (s) = 0 (by axiom (iii) of relative weight structures), we conclude the
proof of assertion 4.

The argument needed for the proof of assertion 5 very similar to the one
used in the proof Theorem 2.2.1(11) of [Bon10a].

We put M ′ = M , l = j, m = j+1 in assertion 4; this yields the existence
of some cj. Since C

w≤j is extension-stable, it contains Cone cj. Completing

the commutative triangle M
aj+1→ w≤j+1M

cj→ w≤jM to an octahedral digram
(as drawn in loc.cit.), we obtain that Cone cj is also a cone of some morphism
w≥j+2M [1]→ w≥j+1M [1]. Since Cw≥j is extension-stable also, we obtain the
result.

(6): If w≤jM = 0 for some j < j0 (resp. = M for some j ≥ j1) then
obviously M ∈ Cw≥j0 (resp. M ∈ Cw≤j1). Conversely, if M ∈ C [j0,j1], then
nothing prevents us from choosing w≤jM = 0 for all j < j0 and = M for all
j ≥ j1.

(7): Certainly, if G left (resp. right) weight exact then G(Cw=0) ⊂ C ′w
′≤0

(resp. G(Cw=0) ⊂ C ′w
′≥0). Conversely, letM ∈ Cw≤0 (resp. M ∈ Cw≥0). By

the previous assertion, M possesses a bounded weight Postnikov tower with
M i = 0 for i > 0 (resp. for i < 0). The structure of the tower yields that M
belongs to the envelope of M i[−i]; this concludes the proof of the assertion.
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The proof of assertion 8 is similar to that of Theorem 4.3.2(II1) of [Bon07]
(also, one can assume that F = 0 here). We take the envelope of H[i]
for i ≥ 0 (resp. for i ≤ 0) for Cw≤0 (resp. for Cw≥0; see the Notation).
Obviously, Cw≤0 and Cw≥0 are Karoubi-closed, extension-stable, and satisfy
the condition (i) of De�nition 3.5.1(I). F -orthogonality of H easily yields
conditions (ii) and (iii) of loc.cit. It remains to verify that any object of C
possesses a weight decomposition with respect to w.

We de�ne the notion complexity for objects of C. For M ∈ ObjH[i] we
will say that M has complexity ≤ 0. If there exists a distinguished triangle
M → N → O, and M,O are of complexity ≤ i (they also could have smaller
complexity) we will say that the complexity of N is ≤ i+1. Since any object
of 〈H〉 has �nite complexity, it su�ces to verify: for a distinguished triangle
M → N → O if M,O possess weight decompositions (with respect to our
(Cw≤0, Cw≥0)), then N possesses a weight decomposition also.

By assertion 4, we can complete the morphism O[−1]→M to a commu-
tative square

O[−1] −−−→ (Ow≤0)[−1]y y
M −−−→ Mw≤0

Hence by the 3 × 3-Lemma (i.e. Proposition 1.1.11 of [BBD82]) we can
complete the distinguished triangle M → N → O to a diagram

M −−−→ Mw≤0 −−−→ Mw≥1y y y
N −−−→ N ′ −−−→ N ′′y y y
O −−−→ Ow≤0 −−−→ Ow≥1

(6)

(cf. Lemma 1.5.4 of [Bon07]). We have N ′ ∈ Cw≤0, N ′′ ∈ Cw≥0 (by the de�-
nition of these classes). Hence N possesses a weight decomposition indeed.

Remark 3.5.4. One also can glue relative weight structures similarly to Propo-
sition 1.2.3(13), and de�ne weight structures for 'pure' localizations as in part
(11) of loc.cit.

Proposition 3.5.5. I Let H : C → A be a cohomological functor, M ∈
ObjC. Fix (any choice of) a bounded weight Postnikov tower for H (see
Proposition (5(3.5.3))
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1. There exists a weight spectral sequence T with Epq
1 (T ) = Hq(M−p) =⇒

Ep+q
∞ (T ) = Hp+q(M).
2. Denote the step of �ltration given by (El,m−l

1 : l ≥ k) on Hm(M) by
F kHm(M). Then F kHm(M) = Im(Hm(w≤−kM)→ Hm(M)).

3. Suppose that H could be factorized through F . Then the weight �ltra-
tion F kHm(M) described above is C-functorial in M (and does not depend
on the choice of the tower).

II Let F : C → D, F ′ : C → D, and G : C → C ′ be exact functors. Let w
be an F -weight structure for C, w′ be an F ′-weight structure for C ′; suppose
that G is weight-exact.

1. G converts w-Postnikov towers into w′-Postnikov towers.
2. For a cohomological functor H ′ : C → A suppose that H ′ could be

factorized through F ′ and that H = H ′ ◦ G could be factorized through F .
Then in the notation of assertion I1, we have F kH ′m(G(−)) = F kHm(−).

Proof. I 1,2: Immediate from the standard properties of the spectral sequence
coming from a Postnikov tower; see the Exercises after �IV.2 of [GeM03].

3: Immediate from assertion 2 and Proposition 3.5.3(3).
II Obvious.

Remark 3.5.6. 1. Suppose that there exist t-structures tC for C and tD for
D such that F is t-exact. Suppose also that for M ∈ Ct=0 there exists a
choice of w≤0M and w≥1M belonging to Ht. Then the morphism F (M) →
F (w≤0M) is epimorphic in HtD. It follows: for the functor H = H

tD,op
0 ◦ F

the zeroth level of the weight �ltration of H(F ) = F (M) is just F (w≤0M).

Here H
tD,op
0 is the zeroth cohomology with respect to t with values in the

category opposite to HtD (we invert the arrow in order to make the functor
cohomological). So, such weight truncations are 'F -functorial when they
exist'; cf. Remark 1.5.2(2) and �8.6 of [Bon07]. Hence the corresponding
weight �ltrations are functorial also.

Yet it seems that in order to obtain stronger results (similar to those of
�5 of [BBD82]) on weight �ltration for objects of Ht one would require a
certain theory of t-structures compatible (in a certain sense) with relative
weight structures.

2. Unfortunately, it seems that weight spectral sequences given by the
Proposition don't have to be canonical (in general).

3. In part II2 of the Proposition we assumed that H = G ◦ F for some
functor G : D → A; yet we did not demand G to be additive (or cohomolog-
ical).
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3.6 Mixed sheaves over a �nite �eld

Now let S = X0 be a variety over a �nite �eld Fq; let X denote X0 ×Spec Fq

Spec F, where F is the algebraic closure of Fq. Let F denote the extension
of scalars functor DSH → Db

m(S,Ql). We consider the same H as in �3.4.

Proposition 3.6.1. 1. The category DSH(= Db
m(X0,Ql)) can be endowed

with an F -weight structure wDSH such that DSHwDSH≤0 (resp. DSHwDSH≥0)
is the class of complexes of non-negative (resp. non-positive) weights in the
sense of �5.1.8 of [BBD82] (note that we change the signs of weights here).
The heart of wDSH is the class of pure complexes of sheaves of weight 0.

2. H is a weight-exact functor (with respect to wChow and wDSH).

Proof. Proposition 5.1.14 of [BBD82] yields all axioms of F -weight struc-
tures in our situation expect the existence of weight decompositions. So, by
Proposition 3.5.3(8), it su�ces to verify that the category of pure complexes
of sheaves of weight 0 (note that it is idempotent complete) generates DSH.
This is immediate from Theorem 5.3.5 of [BBD82].

2. Immediate from Proposition 3.5.3(7) and the observations made in
�3.4.

Remark 3.6.2. 1. In particular, we obtain that any object M of DSH pos-
sesses a weight Postnikov tower whose 'factors' are pure complexes of sheaves.

2. So, it is no surprise that Theorem 2.2.1 is a motivic analogue of the
'stability properties' 5.1.14 of [BBD82].

4 Supplements

In �4.1 we recall the notion of a t-structure adjacent to a weight structure
(as introduced in �4.4 of [Bon07]).

In �4.2 we use Theorem 4.5.2 of ibid. to prove the existence of the Chow
t-structure for DM(S) that is adjacent to the Chow weight structure for it
(cf. Theorem 2.1.1(II)); we also establish certain functoriality properties of
this t-structure (with respect to the motivic image functors, when S varies).

In �4.3 we recall the notion of virtual t-truncations (for cohomological
functors from DM c(S)), and relate virtual t-truncations with tChow.

4.1 Adjacent structures

We recall the notion of adjacent weight and t-structures (that was introduced
in �4.4 of [Bon07]). For t-structures will will use notation and conventions
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similar to those of weight structures in �1.2 (see also �4.1 of [Bon07]). In
particular, we will denote the heart of t by Ht (recall that it is abelian);
ObjHt = Ct=0.

We will say that t (for C) is non-degenerate if ∩n∈ZC
t≤n = ∩n∈ZC

t≥n =
{0}.

De�nition 4.1.1. We say that a weight structure w is (left) adjacent to a
t-structure t if Cw≤0 = Ct≤0.

We will also need the following properties of adjacent structures.

Proposition 4.1.2. I Let C be endowed with a weight structure w and also
with an adjacent t-structure t.

1. The functor C(−, Ht) : Ht→ AddFun(Hwop, Ab) that sends N ∈ Ct=0

toM 7→ C(M,N), (M ∈ Cw=0), is an exact embedding of Ht into the abelian
category AddFun(Hwop, Ab).

2. Let t be non-degenerate. Then Ct=0 = {M ∈ ObjC : Cw=i ⊥M ∀ i 6=
0}.

II Moreover, let a triangulated category C ′ be endowed with a weight struc-
ture w′ and also with its adjacent t-structure t′. Let F : C → C ′ be an exact
functor.

1. F is left weight-exact whenever it is left t-exact.
2. Let G : C ′ → C be the right adjoint to F . Then F is left (resp. right)

weight-exact with respect to w and w′ whenever G is right (resp. left) t-exact
with respect to t′ and t.

III Let D ⊂ C be a full subcategory of compact objects endowed with a
weight structure wD (we denote its heart by HwD). Let C admit arbitrary
(small) coproducts and suppose that D weakly generates C. Then the follow-
ing statements are valid.

1. For the weight structure w for C given by Proposition 1.2.3(12) there
exists an adjacent t-structure; it is non-degenerate. Ht is isomorphic to
AddFun(HwopD , Ab) (via the functor N 7→ (M ∈ DHwD=0 7→ C(M,N))).

2. Suppose that wD′ and D′ ⊂ C ′ satisfy the conditions for wD and
D ⊂ C; denote the corresponding adjacent weight structure for C by w′ and
t′.

Let F : C → C ′ be an exact functor that maps D into D′; suppose that is
possesses a right adjoint G that maps D′ in D. Then the restriction of F to
D is left (resp. right) weight-exact with respect to wD and w′D′ whenever G

is right (resp. left) t-exact with respect to t′ and t.

Proof. I These are just parts 4 and 5 of Theorem 4.4.2 of ibid.
II1. Immediate from the de�nition of adjacent structures.

38



2. See Remark 4.4.6 of ibid.
III 1. Immediate from Theorem 4.5.2 of ibid.
2. Immediate from the previous assertions by adjunction (we use the

description of Ht).

4.2 The Chow t-structure for DM(S)

Now we study the t-structure adjacent to wbigChow.

Proposition 4.2.1. I Let S be an (excellent �nite dimensional) scheme that
is either reasonable or a Q-scheme.

1. There exists a non-degenerate t-structure tChow(S) on DM(S) that
is adjacent to wbigChow (the latter is given either by Theorem 2.1.1(II) or by
Proposition 2.3.3(II)).

2. HtChow(S) ∼= AddFun(Chow(S)op, Ab) (via the functor N 7→ (M ∈
DM c(S)wChow=0 7→ DM(S)(M,N))).

II Let f : X → Y be a quasi-projective �nite type morphism of schemes
that are easier reasonable or are Spec Q-schemes.

1. f ! and f∗ are left tChow-exact (with respect to the corresponding Chow
t-structures).

2. Suppose that f is smooth. Then f∗ is (also) tChow-exact.

Proof. I Immediate from the de�nition of wChow and wbigChow, and Proposition
4.1.2(I).

II The assertion follows easily either from Theorem 2.2.1(II) or from
Proposition 2.3.4 (depending on our assumptions on X and Y ) by apply-
ing the adjunctions; see Proposition 4.1.2(III).

Remark 4.2.2. So, for any N ∈ ObjDM(S) the Chow t-structure for DM(S)
allows to 'slice' the cohomology theoryH : M 7→ DM(S)(M,N), into 'pieces'
H i : M → DM(S)(M, tChow=iN); note that H i(N [j]) = {0} for any N ∈
ObjChow(S) ⊂ ObjDM c(S), j 6= i (see Proposition 4.1.2(I2)). One may call
these H i pure cohomology theories.

We will describe another (more general) method for slicing a cohomology
theory into pure pieces below; yet this method does not demonstrate that
the pieces of a representable cohomology theory are representable.
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4.3 Virtual t-truncations with respect to wChow; 'pure'
cohomology theories

Now suppose that we are given an arbitrary cohomological functor H :
DM c(S) → A, A is an abelian category. Virtual t-truncations (de�ned in
�2.5 of [Bon07] and developed further in �2 of [Bon10a]) allow to 'slice' H
into pure pieces H i. To this end we only use wChow (and have no need to put
H into some 'category of cohomological functors' DM c(S) → A, and de�ne
a t-structure for this category). Virtual t-truncations also yield a functorial
description of Chow-weight spectral sequences (starting from E2).

Now we just list the main properties of virtual t-truncations (in the case
when (C,w) = (DM c(S), wChow); the properties are the same as in the gen-
eral case).

Proposition 4.3.1. Let H : DM c(S)→ A and i ∈ Z be �xed.
1. For any M ∈ ObjDM c(X) there exist unique morphisms i1(M) ∈

DM c(S)(wChow≤i+1M,wChow≤iM) and i2(M) ∈ DM c(S)(wChow≥iM,wChow≥i−1M)
that �t into a commutative diagram

wChow≥iM −−−→ M −−−→ wChow≤i+1Myi2(M)

yidM

yi1(M)

wChow≥i−1M −−−→ M −−−→ wChow≤iM

(7)

here the horizontal arrows are compatible with (arbitrary �xed) weight de-
compositions of M [i+ j] (for −2 ≤ j ≤ 1).

2. The correspondences M → ImH(i1(M)) and M → ImH(i2(M)) yield
well-de�ned cohomological functors τ≤iH, τ≥iH : DM c(S)→ A (we call them
virtual t-truncations of H).

3. τ≤iH vanishes on DM c(S)wChow≥i+1; τ≥iH vanishes on DM c(S)wChow≤i−1.
4. H yields naturally an (in�nite) sequence of transformations of functors

· · · → (τ≥i+1H) ◦ [1]→ τ≤iH → H → τ≥i+1H → (τ≤iH) ◦ [−1]→ . . .

that yields a long exact sequence when applied to any M ∈ ObjDM c(S).
5. For any j ∈ Z we have a natural isomorphism τ≤i(τ≥jH) ∼= τ≥j(τ≤iH).
6. We have a natural isomorphism E−ii2 (T (H,M) ∼= τ=iH(= τ≥i(τ≤iH))

(see Proposition 3.3.1 for the de�nition of T (H,M)).
7. For N ∈ ObjDM(S), H = DM c(−, N) we have τ≤iH ∼= (−, tChow≤iN),

τ≥iH ∼= (−, tChow≥iN), and τ=iH ∼= (−, tChow=iN)

Proof. Assertions 1�5 are immediate from Theorem 2.3.1. Assertion 6 is
contained in Theorem 2.4.2 of ibid. Assertion 7 follows from Proposition
2.5.4 of ibid.
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Remark 4.3.2. 1. Note that H i = τ=iH vanishes on DM c(S)wChow=j for all
j 6= i, so H i are 'pure' (cf. Remark 4.2.2).

2. One can also describe the whole T (H,M) starting from E2 in terms of
(various) virtual t-truncations of H; see Theorem 2.4.2 of [Bon10a].
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