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ABSTRACT. By applying an algorithm designed before, wc cornplete the description for all
the left cells of the affine Weyl group W a of type F4 by finding a representative set of its
left cells together with all its left cell graphs (or with all the 8.Ssociated essential graphs)
in each of its two-sided cells. The gencralized 'T-invariants of left cells of W a are exhibited
graphically. A group-theoretical interpretation is given on the numbers of left cells of W a

in sorne two-sided cells. Thus so far the left cells of all the affine Weyl groups of ranks less
than or equal to 4 have been known explicitly. Some techniques are developcd in applying
the algorithrn. As a consequence, we cornplete the verification of a conjecture concerning
the characterization of left cells of Weyl groups and affine Weyl groups.

It is designed in [21] and then improved in [24] for an algorithm of finding a rep

resentative set of left cells (an l.c.r. set for short) of W in a two-sided cell, where W

is a Coxetcr group belonging to a certain fanlily of crystallographic groups, the latter

includes all the Weyl groups and all the affine Weyl groups. By applying this algorithm,
~ ~

I described all the left ceIls of the affine Weyl groups of types 0 4 and D4 , and also all the

left cells r with a(r) = 3,4,5 in the affine Weyl group of type F4 (see [24], [22]' [21]).

Subsequently, three of my students, Zhang Xin-fa, Rui He-bin and Tong Chang-qing,

achieved SOlne progress on this respect also by applying this algorithm, where Zhang
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tional Science Foundation of China and the Sciencc Foundatioll of thc University Doctorial Program
of CNEC.
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gave an explicit description for all the left cells in the affine Wcyl group of type .84 [27],

Rui for all the left cells r with a(r) = 3 in any irrcducible affine Weyl group [14], and

Tong for aH the left cells of the Weyl group of type E 6 [26J. In the present paper, we

shaH apply this algorithm to complete the description of the lcft cells of the affine Weyl

group of type F4 . This, togcther with the earlicr results of thc others [15], [10), [1), [6),

completes the description of the left cells for all thc affine Weyl groups of ranks::; 4.

Some techniques are developed in applying thc aigoritlllll (see sections 3 and 4). We

find a representative set of left cells togethcr with its lcft cell graphs (or with all the

associated essential graphs) in each two·sided cell of Wu . The generalized T-invariants

of left cells of Wa are exhibited graphically. A group-theoretical interpretation is given

on thc numbers of left cells of Wa in some two-sided cells, which involves both the

Lusztig map and Bala-Carter correspondencc among two-sidcd cells of Wa , unipotent

conjugacy classes of the complex algebraic grollp G of type F4 , and the G-c1asses of pairs

(L, PLI), where L is a Levi subgroup of C, Pu is a distinguished parabolic subgroup

of semisimple part L' of L. As a consequence, we :;hall complete the verification of a

conjecture concerning the characterization of left cells of Weyl groups and affine Weyl

groups wmch was proposed in [21J and partly verifiecl in [23).

The content of the paper is organized as follows. S0111e known results on cells of a

Coxeter group, in particular of an affine Weyl group W a are stated in section 1. Then

in section 2, we recall the algorithm of finding an l.c.r. set of Wa in a two-sided cell and

also state SOlne results and terminologies which are needed in applying the algorithm.

In section 3, some techniques of applying the algorithm are developed, which will be

frequently used for finding an l.c.r. set of thc affine Weyl group Wa (F4 ) in a given

two-sided cell. We illustrate them by several examples. We find an l.c.r. set together

with all the left cell graphs (or with the corresponding essential graphs) for Wa (F4 ) in

section 4. Finally, in scction 5, we cOInplete the vcrification of the above-mentioned

conjecture.

§1. Same results on cells.
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1.1 Let W = (W, S) be a Coxeter group with S its Coxeter generator set. Let::; be

the Bruhat order on W. For w E W, we denote by i(w) the length of w. Let A = Z[uJ

be the ring of polynomials in an indeterminate u with integer coefficients. For each

ordered pair y, w E W, there exists a unique polynolnial Py,w E A, called a Kazhdan

Lusztig polynomial, which satisfies thc conditions: Py,W = 0 if y 1: w, Pw,w = 1, and

degPy,w ::; (1/2)(i(w) - i(y) -1) ify < w. Let J-L(w,y) = J-L(Y,w) be the coefficient of

u(1j2)(l(w)-l(y)-1) in Py,w for y < w. We denote y-w if tt(y, w) #- O.

Checking the relation y-w for y, w E W usually involves very complicated com

putation of Kazhdan-Lusztig polynomials. But it becoutes easy in some special case:

if x, y E W satisfy Y < x and l(y) = l(x) - 1, then we have y-x. Another result

concerning this relation will be stated in Proposition 2.7.

1.2 The preorders ::;, ::;, ::; on W and the associated equivalence relations rv,rv, rv on
L R LR L R LR

Ware defined as in [7]. The equivalence classes for rv ( resp. rv, rv ) on W are called
L R LR

left cells ( resp. right cells, two-sided cells ).

1.3 An affine Weyl group Wa is a Coxeter group which can be realized geometrically

as folIows. Let G be a connected, adjoint reductive algebraic group over C. We fix a

maximal torus T c G. Let X be the character group of T and let <P c X be the root set

with.6. = {ab' .. ,al} a choice of simple root systenl. Then E = X ®z lR is a euclidean

space with an inner product ( , ) such that the Weyl group (Wo, So) of G with respect

to T acts naturallyon E and preserves its inner proclllct, where So is the set of simple

refiections Si corresponding to the simple roots ai, 1 ::; i ::; P. We denote by N the

group of all translations TA (A E X) on E: TA sends x to x + A,. Then the semidirect

product W a = Wo t>< N is called an affine Weyl group. Let K be the dual of the type

of G. Then we define the type of Wa by K. Sometilnes we denote Wa by Wa(K) to

indicate its type K. There is a canonical hOlllolllorphislll frolll Wa to Wo: w I-t w.

Let -0:0 be the highest short root in <I>. We define So = 8 00T-00' where soo is

the refiection corresponding to ao. Then the generator set of W a can be taken as

S=SoU{So}.

1.4 The alcove form of an element w E Wa is , by definition, a <I>-tuple (k(w, a))oElP
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over Z sllbject to the following conditions.

(a) k(w,-a) = -k(w,a) for any a E <1>;

(b) k(e, a) = 0 for any Cl E <1>, where e is the identity element of W a ;

(c) If w' = WSi ( 0 ::; i ::; i ), then

k(w', a) = k(w, (a)sd + E(a, i)

with

€(a,i) = { ~1
if a =I- ±ai;

if a = ai;

if Q' = -ai,

where Si = Si if 1 ::; i ::; i, and So = sOo ( see [16, Proposition 4.2] ).

By condition (a), we can also denote the alcovc fonn of w E Wa by a cI>+-tupie

(k(w, 0:)) 0 E lJ>+ .

1.5 Condition 1.4, (c) actllally defines a set of operators {Si I 0 ::; i ::; i} on the alcovc

forms of elements of Wa :

These operators cOllld be described graphically. ASSlllne that Wa has type F4 and that

the indices of simple roots are compatible with the following Dynkin diagram:

1
o

2 4
o

We denote a root Q' = ~:=1 aiQ'i by its coordinate form (al, a2, a3, a4) and arrange the

entries of a <1>+-tupie (ko )oE4>+ in the following way.

(1.5.1)

k(2,4,3,2)
k(2,4,3,1)
k(2,4,2,1)
k(2,2,2,1)

k k(2,2,1,1) (0,2,2,1)
k(0,2,l,1) k(2,2,1,0)
k(O,O,l,l) k(0,2,1,0)
k(O,O,O,l) k(O,O,l,O)

~(2,3,2,1)
(1,3,2,1)

k{1,2,2,1)
k(1,2,l,l)

k k(1,2,1,0) (1,1,1,1)
k kk(O,l,l,l) k(l,I,I,O)

(0,1,1,0) (1,1,0,0)
k(O,I,O,O) k{1,o,o,O)
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Then the actions of si, 0 ::; i ::; 4, on a <1>+-tupIe

a rn
b n
c ]J

w d q
e

~
r s

!J. t u
1- J v w
k [ x y

are listed as in the following table.

s So S1 S2 S3 S4

-h -m+1 * n * * * * b *--e -y * m * p c * a *-d --w * * d n b q * *-e --u f * c s e p * rws -b * -8 -T 9 d * t * * 'lL q d 9 * * h * q u

* -a * -q e II s v 1- * * T { * * w 1 e v s

* * * -p * u x 9 [ * y * x u 9 t *
* * * -n * * w -y- * j ---":c-1 w i -[-1 v * -/;;-1 i * *

5

where the entries in the * positions remain unchangecl.

1.6 For w, w' E W a , we say that w' is a left extension of w if [(w') = [(w) + l(w'w- I ).

Then we have the following results on the alcove fonn (k (w, 0') )0 E.p of w E W a .

Proposition [16, Propositions 4.1,4.3]. (1) l(w) = L:aE'!l+ Ik(w,O')], where the nota

tion lxi stands fOT the absolute value of x;

(2) n(w) = {Si I k(w,O'i) < O}.

(:I) w' is a left extension 0 j w ij and only if the inequalities k (w' ,Q) k (W l 0') 2 0 and

Ik(w', 0')1 2 lk(w, a)1 hold fOT any a E <1>.

1.7 Now let W be either an affine Weyl group or a finite Weyl group. Lusztig defined

a fllnction a: W --+ N which satisfies the following propcrties:

(1) a(z) ::; v = 1<1>1/2, for any z E W, where <P is the rüot systenl associated to W as in

1.3;
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(2) x ::; y ==> a(x) 2:: a(y). In particular, x "-! y ==> a(x) = n(y). So we may define
LR LR

the a-value a(r) on a ( left, right 01' two-sidecl ) cell r of W by a(x) for any x E f.

(3) a(x) = a(y) and x ::; y ( resp. x ::; y ) ==> X rv y ( resp. x rv y ).
L R L R

(4) Let w/ be the longest element in the subgroup W[ of W generatecl by I for any

I ~ S with W/ finite. Then a(w[) = l(w[).

The above properties of function a were shown by Lusztig in his papers (9], [11].

Now we state some more properties of this function, the first two of which are sinlple

conscquences of properties (2), (3) and (4).

Let W(i) = {w E W I a(w) = i} for any non-negative integer i. Then by (2), W(i) is

a union of some two-sided cells of W.

To each elenlent x E W, we associate two subsets of S as below.

L(X) = {s E S I sx < x} and R(x) = {s E S I X8 < x}.

(5) If W(i) contains an elenlent of the fonn w/ for sonle I c S, then {w E W(i) I R(w) =

I} forms a single left cell of W.

(6) By thc notation x = y . z (x, y, z E W), we Inean x = yz and lex) = l(y) + l(z). In

trus case, we have x ::; z, x:::; y anel hence a(x) 2:: a(y), a(z). In particular, if 1= R(x)
L R

( resp. 1= L(x) ), then a(x) 2:: i(wd.

(7) W(i) is a single two-sided cell of W if i E {O,l, v} (see (1)). As sets, W(i) (i = 0, 1, v)

can be described as below. W(o) = {e}, e, the identity element of W. W(l) consists of

all the non-identity elenIents of W cach of which has a unique reduced expression (see

[8]). W(v) consists of all the elements of W which have 110 zero entry in their alcove

forms (see 1.4). W(v) can also be deseribed to be the lowest two-sided cell of W with

respeet to the partial order:::; (see [18], [19]).
LR

(8) Now let W = Wa bc an affine Weyl group. Call an elenlcnt 8 E S special, if the

subgroup of Wu generatecl by S \ {8} is isomorphie to Wo (see 1.3). Thus the element

80 is always special. When W a is of type F4 , there is no othcr special element in S.

It is known that for any two-sided cell n #- {c} of Wa anel any special SES, the set

~ = {w E n IR(w) = {s}} is non-empty anel is a single left cell of Wa (see [13]).
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1.8 Let C and Wa be as in 1.3. Then the following rcsnlt of Lusztig is important to our

purpose.

Theorem [12, Theorem 4.8]. There exists a bijection U H> c(u) from the set 0/1J.nipo

tent conjugacy classes in C to the set 0/ two-sided cells in W a . This bijection satisfies the

equation a(c(u)) = dirn ~u, where u is any elernent in u, and dirn ~u is the dimension

0/ the variety 0/ Borel subgroups 0/ C containing u.

1.9 Let C, Wo and Wa be as in 1.3. Then Wo is a stardard parabolic subgroup of Wa .

It is known that for any w E Wo, the value a(w) computed with rcspect to Wo is equal

to that computed with respect to W a [9, Corollary 6.3]. Froln thc results of [2], [3], [9]

and [12], we know that the bijection in Theoreln 1.8 induces a bijection between the

set of special unipotent classes of C and the set of two-sided cells of Wo. Let Wo be

the langest element of Wo. Then the permutation x H> WOl; of Wo induces an order

reversing bijective map on the set of two-sided ceUs of Wo (see [7, 3.3]). Under this map,

the two-sided cells W(Q) = {e} and W(v) = {wo} are transposed, and the two-sided cell

W(I) of Wo is sent to the sccond lowest one. Here v = l(wo)·

1.10 Let Wa = Wa CF4 ) be the affine Weyl group of type F4 . Thcn according to

the knowledge of the unipotent classes of thc cornplex simple algebraic group of type

F 4 , we see from Theorem 1.8 that in W a , the set W(i) is non-empty if and only if

i E A = {o; 1,2,3,4,5,6,7,9,10,13,16, 24}. More prccisely, W(i) is a single two-sided

cell ifi E {O, 1, 2,4,5,7,10,13,16, 24}, and is a union oftwo two-sided cells ifi E {3, 6, 9}.

1.11 We see that there exist S0111e elements of thc fOrIn W/, I c S, in all the sets W(i)

of Wa (F4 ) , i E A \ {13}. By the results of [21] and by 1.7,(4),(7), at this stage we can

find a representative set of thc two-sided cells n of W(!(F4 ) with a(O) i= 6,9 as folIows.

W1234, where we have x E W(13) by 1.9, 1.10, and by thc fact WoX = S1 S 2 8 3 S 2 8 1 E W(1).

§2. An algorithm with same related results.

Here and later, the notation Wa always stands for an affine Weyl gToup with S its

Coxeter generator set. The main purpose of the prescnt paper is to describe the left



8 .Jian-yi Shi

cells of the affine Weyl gronp Wa of type F4 by finding its l.c.r. set together with all

its left cell graphs (or with the corresponding essential graphs). We need an algorithm

to do this, which was designed in [21] and then iInproved in [24]. This algorithm is

applicable to a certain family of crystallographic b'TOUPS induding all the Weyl groups

and a11 the affine Weyl gronps. In this section, we shall reca11 thc algorithm and some

related results in [21] and [24].

2.1 To each elenlent x E Wa , we associate a set E(x) of allieft cells r of Wa satisfying

the condition that therc is SOlue element y E r with Y~:I;, n(y) %n(x) and a(y) = a(x).

We have the following result.

Theorem [21, Theorem 2.1]. 1/ x ("V y in W a , then R(x) = n(y) and E(x) = E(y).
L

2.2 To each x E W a , we denote by M(x) the set of all elements y such that there are

a sequence of elements Xo = X, Xl, ... , X r = Y in Wa with r 2 0, where for every i,

1 ::; i ::; r , the conditions Xi~IXi E S and n(:ci-d~R(Xi) are satisfied.

2.3 A subset K c W a is said to be distinguished if K "# 0 and x f)I.J y for any x "# y in
L

K. The following are three processes on a non-empty set P C Wa (see [24]).

(A) Find a largest possible subset Q from thc set U M(x) with Q distinguished.
xEP

(B) Ta each x E P, find elements y E Wa such that V-lx E 5, R(y) ~ R(x) and

a(y) = a(x), add these elenlcnts y on the set P to form a set P' anel then take a largest

possible subset Q from P' with Q distinguishecl.

(C) Ta each x E P, find elements y E Wa such that y < x, y-x, R(y) ~ R(x) and

a(y) = a(x), add these elements y on the set P to form a set P' and then take a largest

possible subset Q from P' with Q distinguishcd.

A subset P of W a is called A-satumted (rcsp. B-saturatcd, rcsp. C-saturated), if

Process (A) (resp. (B), resp. (C) ) on P can't produce any element z satisfying z f)I.J x
L

for a11 x E P.

2.4 Say a set E of left cells of W a to be represented by a set K C W a if E is the set

of a11 left cells r of W a with r n K =j:. 0. K is called a representative set for E, if K

represents E with K distingllished.
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By [21, Theorem 3.1) and [7, 2.3fj, we see that a representative set of left cells (an

l.e.r. set for short) of W a in a two-sided eell n is exaetly a distinguished subset of n
whieh is A-, B- and C-saturated. So to get such a set, we may use the following

ALGORITHM [24, 2.7].

(1) Find a non-empty subset P of n ( Usually we take P to be distinguished for avoiding

unnecessary complieation whenever it is possible )j

(2) Perform Processes (A), (B) and (C) alternatelyon P until the resulting distin

guished set can't be further enlarged by these processes.

In general, Proeess (A) (resp. (B)) is easier to be performed than Process (B) (resp.

(C)) in applying the algorithnl. So we shall Inake thc priority first to Process (A)

and second to Process (B). In other words, in applying the algorithm, we always first

perform Process (A); Proccss (B) is performed only when, Process (A) alone can not

make any further progress; finally Proccss (C) is performed when uo progress can be

made only by Processes (A) and (B).

In applying Algorithm 2.4, we necd some results and ternünologies. Note that the

terminologies conccrning graphs are adopted [rom [24] which diffcr from those in [21].

From 1.7, (3) and Theoreln 2.1, we have the following rcsult on a set M(x).

Proposition 2.5 [24, Proposition 3.1]. (1) For any x E W a , the set M(x) is wholely

contained in some rigid cell 0/ W a .

(2) 1/ x I"V y in W a , then M(x) and M(y) represent the same set 0/ lejt cells 0/ W a .
L

2.6 In a Coxeter systenl (W, S), a sequence of elements of the form

...,.

rn-l terms

(2.6.1) ys, yst, ysts,
\,

is ealled an {s, t}-string ( or just eall it astring) if s, t E Sand y E W satisfy the

conditions that thc order o(st) of the product 8t is rn anel n(y) n {5, t} = 0.

It is easily seen that astring is wholely containcd in some right cell of W. For any

x E W a , we can re-define M(x) to be the nlinimal set containing x, subject to the
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requirement: any string (regarded as a set) Ineeting M(x) nlust be wholely contained in

M(x). Suppose that wc are given two {s, t}-strings Xl, X2, ••. , Xm-l and YI, Y2, ... ,

Ym-l with o(st) = m. We denote the integcrs J-L(Xi' Yj) (see 1.1) byaij for 1 ::; i,j ::;

m - 1. Then it is known that

Proposition 2.7 [8, 10.4]. In the above setup, the Jollowing assertions hold.

(a) When m = 3, we have al2 = a21, an = a22;

(b) When m = 4, we have a12 = a21 = a23 == a32, (Ln == a33, al3 == a31 and a22 ==

We have tbe following result corresponding to this.

Proposition 2.8 [21, Proposition 4.6]. Keep the setup 0/ 2.6.

(1) 1/ m == 3, then

(a)

(b)

Xl I'"V YI {=:::} X2 I'"V Y2;
L L

Xl I'"V Y2 {=:::} x2 I'"V YI.
L L

(2) 1/ m == 4, then

(a)

(b)

(c)

(d)

X I I'"V Y2 {=:::} X 2 I'"V YI <==> X 2 I'"V Y3 {=:::} X 3 I'"V Y2;
L L L L

X 1 I'"V YI {::::::::} X 3 I'"V Y3 ;
L L

Xl I'"V Y3 {=:::} X3 I'"V YI;
L L

x2 I'"V Y2 {=:::} either Xl I'"V YI 0, Xl I'"V Y3
L L L

2.9 Two elements X, Y E Wa form a primitive pair, if there exist two sequences of ele

ments Xo = X, Xl,' .. ,Xr and Yo == Y, Yb ... ,Yr in Wa such that the following conditions

are satisfied.

(a) Xi-Vi for all i, 0 ::; i ::; r.

(b) For every i, 1 :S i ::; r, thcre exist sonle si, ti E S such that Xi-I, Xi (and also

Vi-I, Vi)) are two neighboring terms in some {Si, ti}-string.

(c) Either R(x) cf: R(y) and R(Yr) cf: R(3;r), or R(y) cf: R(x) and R(xr) cf: R(Yr)

hold.

In this casc, we have x I'"V y by Proposition 2.5.
R
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Assurne that x, x' (and also y, y') are two neighboring tenns in some {s, t}- string

with x-v anel that at least one of x, y is a tenninal tenn of the {s, t}-string eontaining

it. Then by Proposition 2.7, we have x'-y'. In partieular, it is always the ease when

o(st) = 3. Thus, if in (b), we have in addition that at least one of Xi, Yi is a terminal

term of thc {Si, ti}-string eontaining it for any i, 0 ~ i < 1', thcn wc ean replaee eondition

(a) by the following weaker one in the definition of a priInitive pair:

(a') xo-Yo.

2.10 Hy a graph, we mean that a set of vertiees M togcther with a set of edges, where

each edge is a two-elements subset of M, and eaeh vertex is labelleel by a subset of S.

Let 9J1 and 001' be two graphs with their vertex sets M and M'. They are said to be

isomorphie, written 9]1 rv 9J1', if there exists a bijeetive Inap 1] from the set M to the

set M' satisfying the following two conditions.

(1) Thc labelling of w is the same as that of 1](w) for auy wEM.

(2) For w, z E M, {w, z} is an edge of 9]1 if anel only if {TJ(w), 1](z)} is an edge of

9]1' .

This is an equivalenee relation on graphs.

2.11 We define a graph 9Jl(x) associated to an element x E W a as follows. Its vertex

set is M(x). Its edge set consists of all two-clements subsets {y, z} c M(x) with y, Z

two neighboring terms of astring. Each vertex y E M(:r;) is labclled by the set R(y).

A left eell graph associatcd to an element x E Wa , written 9J1L (x), is by definition a

graph, whose vertex set ML(x) consists of all Ieft eells r of Wa with rnM(x) i=- 0. Two

vertices f, r' E ML(X) are joined by an edge, if there are two elenlents x E M(x) n f

and x' E M(x) n r' such that {x, x'} is an cdge of 9J1(x). Each vertex r of 9J1L (x)

is Iabelled by the comnlon labelling of elements of M(x) n f (This Inakes sense by [7,

Proposition 2.4]). Clearly, the graph ®.L(X) is always connecteel.

2.12 A subgraph 9J1 of 9J1(x) (x E W a ) is said to be essential, if there is an isomorphism

1] from 9J1 to 9J1L(X) with Y E 1](Y) for each vertex y of 001.

It is easily seen that when a subgraph 9J1 of 9J1(x) is essential, its vertex set must be
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distinguished. In partieular, the graph 9J1(x) itself is essential if and only if its vertex

set M(x) is distinguished. But it should be eareful that in general there does not always

exist an essential subgraph in 9Jt(x) (A counter-exanlple could be found in the two-sided

cell W(3) of the affine Wcyl group waCi54 ) or in W(l) of Wa(An), n > 1). However, we

shall see that for any x E Wa (F4 ), there always exists SOlIle essential subgraph of 9J1(x)

containing x as its vertex.

2.13 Let 91 and 91' be two graphs with N anel N' the corresponding vertex sets. We

say that 91' is opposed to 91 (up to isomorphism), written 91' = 91°P , if there exists a

bijective map 4> from the set N to N' satisfying that for any x, yEN,

(a) R(rjJ(x)) = S \ R(x)j

(b) {x, y} is an edge of 91 if and only if {rjJ(:D) , rjJ(y)} is an eelge of 91' .

Clearly, the relation of two graphs being opposeel is rnntual. So 91 = (91°P )OP.

2.14 By a path in graph 9J1(x) , we mean a sequence of verticcs zo, Z1, ... ,Zt in M(x)

such that {Zi-l, Zi} is an edge of 9J1(x) for any i, 1 ::; i ::; t. Two elements x, x' E Wa

have the same generalized r-invariant, if for any path Zo = x, Z1, ... , Zt in graph 9J1(x),

there is a path z~ = x', z~, ... ,z~ in 9J1(x' ) with R(zD = R(Zi) for every i, 0 ::; i ::; t,

and if the same condition holds when interehanging the roles of x with x'.

2.15 It lnay happen that for two elements x, y E Wa with x ~ y, thc graphs 9J1(x) and

OO1(y) are not isorllorphic (take x = 80 and y = 8180 in Wa (C4 ) for cxamplc). But we

have the following result.

Proposition [24, 3.10]. (a) The elements in the same left cell of W a have the same

generalized r -invariant.

(b) /f x f'V Y in W a , then the left cell graphs 9J1 L (x) and 9J1L (y) are isomorphie.
L

§3. Some techniques in applying the algorithm.

3.1 We shall apply the algorithm to find an l.e.r. set, togcther with allieft cell graphs

or with the corresponding essential graphs, in each two-sided cell n of Wa = Wa CF4 ).

This has been done for all the two-sided cells [2 with a(O) E {3, 4, 5} in IUY previous

paper [21]. On the other hand, an l.c.r. set in the two-sided cells W(i)' i E {O, 1,2, 24}
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have been faund befare (see (5], (8], (18] and (19]). Thus aetually we need anly deal with

the two-sided eells n of a(n) E {6, 7,9,10,13, 16}.

We shall use the notation i for the simple rcftectioll Si (0 ::; i :::; 4) in the subsequent

discussion.

3.2 First we choose the starting set P of the algorithm. Write y = 'WI" .y' with ly = C(y)

for any y E Wa . We prefer to (hut not havc to) choose thc elerncnts x for thc set P to

satisfy the following conditions.

(1) a(x) -l(WI~,) = min{a(y) -l(WI,,) I YEn}.

(2) Let A be the set of all thc elements y in n whieh satisfy condition (1) for y instead

of x. Then l(x' ) = min{l(y') I y E A}.

Thus the elements of the form W I, I eS, are the best candidates to be chosen into

P whenever they are contained in n.
Each W(i) (i E {7, 10, 16}) eonsists of a single two-sided eell, which contains a unique

elenlent of thc form W I, I eS, i. e. Wo 124, 'W0234 and Wo123, respectively. Thus in

dealing with the two-sicled cells W(i)' i E {7, 10, 16}, we can take the starting set P

of the algorithm to be {WOI24}, {W0234} and {WOI23}, respectively. The set W(6) (resp.

W(g)) consists of two two-sided cells. There are two elCluents of the form W I in the

set WeG) (resp. W(g)), Le. W012 and W0134 (rcsp. W234 anel W123)' We don't know

in advance whether or not these two elelnents are in thc same two-sided cello Thus in

dealing with a two-sided cell in W(6) (resp. W(D)), the starting set P ofthe algorithrn will

be taken as {WOI2} or {WOI34} (resp. {W234} 01' {WI23}) rather than {W012, W0134} (resp.

{W234, WI23})' Let x = W02341232143234 and y = W2341232143234. We havc y E W(13) by

1.11. We can show that {X-I, y-l} is a primitive pair (see 2.9). This implies x I"V y and
L

hence x E W(13)' So for the two-sided cell W(13)' wc sllall take {x} as thc starting set

P of the algorithm.

For any z E Wa , wc clenote by n(z) (resp. r(z)) thc two-siclcd cell (resp. the left

eell) of Wa containing z.

3.3 In applying the algoritrun, we shall first deal with the two-sided cell W(I6) , then

W(IO) , W(13)' O(WI23), Weg) \ n(WI23), W(7) , O(W012), W(6) \ O(WOI2) in turn. The
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reason for taking such an order is to makc it easier in pcrfornüng processes (B) and

(C), in particular in the determination of the a-valucs of the clmnents occurring in the

intcrmediate steps of these two processes.

3.4 Now we introduce some techniques which wc shall use in section 4: (1) to find an

essential subgraph fronl a graph of thc form 9Jl(x); (2) to detcnnine the a-value of an

elelnent; (3) to tell whether or not two sets of the fonn M(x) rcpresent the same set of

left cells. We illustrate our Inethods by sonlC examplcs.

3.4.1 To exalrune whether or not a graph VJ1 = VJ1(a) (0: E Wa ) is essential, we should

first consider the generalized r-invariants of vertices of 9J1. If thcy are all different,

then 9J1 is essential. If there are some pair of vertiecs of 9J1, say x, y, having the same

generalized r-invariant, then we should further compare the set ~(x) with ~(y). If for

all such pairs x, Y, we have ~(x) =1= ~(y), thcn 9J1 is still essential. For example, let

Ya = W0123 . 43234. Then Ya E W(16) by 1.7,(6),(7), 1.10 and by the alcove form of Ya.

Thc graph 9J1(yo) is isomorphie to 9J118 with Ya the vertex labclled by 102341 ( here and

later, thc graphs denoted by 9J1i , i ~ 1, are displayed at thc end of section 4). We want

to show that the graph 9J1(yo) itsclf is essential. By Proposition 2.15, (a), it is enough to

show that 101211 t~ in 9J1(yo) , where by abuse of notations, we identify a vertex with

its labelling in thc graph 9J1(yo), thc numbers inside a box represent the corresponding

elelnents in S, and the subscripts of boxes are llsed to clistinguish the positions of the

vertices with the same labelling (such an identification will bc llsed quitc oftcn later,

which will not cause any confusion in thc context). Assulue l(l o12 11) < .[(10126) for

the sake of definity. We Inay check that r(lo1241J E E(l012b) \ E(l01211) and hence

E(l01211) =1= E(l 012 6)· This implies 1012 11 t 1012 b by ThcorCln 2.l.

3.4.2 In examining whether or not a graph 9)1 = ®-(o:) is essential, it may happen

that there are more than oue pairs of verticcs {x, y} in 9J1 having thc same generalized

r-invariants. In such a case, it is not always nccessary to check the equation ~(x) =

E(y) for each pair {x, y}. We need only to check thc cquations on some pairs and

then apply Proposition 2.8 to get thc conclusion on the remains. For cxalnple, let

x = W0234 . 1232143234. Then x E W(13) by 3.2. Thc graph 9J1(x) is isomorphie to
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the one in Fig. 1 with the vertex x labelleel by 123411' We want to find an essential

subgraph 9J1e (x) in 9J1(x). Let y = ox anel z = 21 . y. Then x r-...J y r-...J Z by 3.2
L L

anel by the faet Z-l E M(y-1). We have 9J1(z) r-...J 9J16 . By Proposition 2.15, (b), we

sec that essential graphs 9J1e (x) anel 9J1e (z) should be isomorphie whenever they exist.

By eomparing 9J1(x) with 9Jt(z) anel by Proposition 2.15, (a), we ean take 9J1e (x) to

be a subgraph of 9J1(x) isomorphie to 9J1~t (The graph 9J1~P is obtained from ~ by

replacing the number set I in eaeh box by {o, 1, 2, 3, 4} \ I anel with the subseripts of

boxes unehanged whenever they are attaehed.

Fig. 1. 9J1(x)

3.4.3 Now we shall deal with a more eomplicated exalllple, where in addition of the

above task, we shall do two more things. One is to deternüne the a-values of SOlne

elements in virtue of primitive pairs. The othcr is to conelude a pair of elements a, ß

having the relation a r-...J ß by observing that one is a left extension of the other with
L
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a(a) = a(ß). Let z = W012 . 3421321. Then we claim a(z) = 6. For, let y = ZI, then y

is the vertex labelled by ~1 in OO1(WOI2) rv 001 17 , and z is the vertcx labelled by ~1 in

9)1(z) (see Fig. 2). So {V, z} is a primitive pair anel hcnce a(z) = a(y) = a(wo12) = 6.

In the graph 9)1(z) , the vertex labellcd by @!1 is a 1eft extension of that by @!]1' On

the other hand, let z, be the vertex labelled by [!]2 in 9J1(z). Thcn we can show that

r(z' . 4) E :E(z') \ E(z) and hence z r')I.J z' by Theorelll 2.1. Thus we have an essential
L

subgraph 9J1e (z) of 9J1(z) isolllorphic to 9J112 .

Fig. 2. 9J1(z)

3.4.4 Let x = W0234 . 1232143234. Then we havc x E W(13) by 3.2. The graph 9J1(x)

is displayed in Fig. 1. Assume that an l.c.r. set of Wa in thc two-sided eell W(16) has

been fonnd. Then we see that there is no graph in W(1G) of the form 9J1(a) whieh is

isomorphie to 9Jl(x).

This fact will help HS in finding an l.c.r. set of thc two-sieleel cell W(13)' Let Yo =

W0234 . 12321432310123432312340. Then the graph 9J1(Ya) is isomorphie to 9)123 with Ya

the vertex labelled by 1°3411' We claim Ya E W(13)' For, we have Yl = YoO E M(x)

anel that {Va, Yl} is a prinütive pair. We want to find an essential subgraph 9J1e (ya)

in OO1(Yo). Lct a, ß be the vertices of 9Jl(Ya) labelleel by 01 and lI6 respectively (see

00123 ), Then a = Ya . 123 and ß = Ya . 23123. We have 3210321 . a = 20321 . ß, denote it

by y. Then y is a conuuen lcft extension of a anel ß. We have 9J1(y) rv 9J1(yo). Now

we want to detennine the a-value of y. By 1.7,(6),(7), 1.10 and by the alcovc form of

y, we have a(y) E {13,16}. Let Yl = y32132 and Y2 = YI0. Then we have YI E M(y),

9J1(Y2) rv OO1(x) anel a primitive pair {Yb Y2}. So by thc above observation, we have
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a(y) = a(Y2) = 13. This implies Q I'V Y I'V ß by 1.7, (3). Therefore 9Jl(yo) eontains an
L L

essential subgraph 9J1e (Yo) isomorphie to 9J122 .

3.4.5 Snppose that we are given two isomorphie graphs, say 'TI1 anel 'TI2 . We want

to examine whether or not thcir vertex sets NI, N 2 reprcsent the same left eell set of

Wa . It is known that NI anel N 2 represent thc saUle lcft eell set if anel only if there

exist some vertices Qi of 'TIi (i = 1,2) with (Xl I'V (X2 (hence 0:1 anel 0'2 finst have
L

the same generalized r-invariant). Thus thc problem is redueed to ehecking whether

01' not the relation 0:1 I'V 0'2 holds for some ai E Ni. To elo this, we first ehoose
L

vertiecs O:i E Ni, i = 1,2, sueh that 0:1 anel CY2 have the same gcneralized r-invariant.

Thus 'TI1 anel 912 represent the salne set of left eells if (Xl I'V CY2. For example, let
L

a1 = W0234 . 12321432312012343, a2 = W0234 . 1232143234101234231230 anel a3 = W0234 .

123214323120123432341230. Then thc graphs OO1(ai) (i = 1,2,3) are all essential and

isomorphie to 0012 • We shall show that ai E W(13) for i = 1, 2, 3, that the left eell

set represented by M(ad is elisjoint with that by M(a2) and that M(a2) and M(a3)

represent the same set of left eells. Let Xl = al3, Ya = a24, Y = YoO anel YI = a34. Then

we can eheck that {Xl, all, {Yo, a2}, {y, YO} anel {YI' a3} are all primitive pairs. We also

see that YI E M(yo) and Xl, Y E OO1(x), where x E W(13) is defined as in 3.2. This implies

ai E W(13) for i = 1,2,3. Let bj (j = 1,2,3) be the vertex labelled by ~ in 9J1taj)

(see 9J12 ). To show M(al) anel M(a2) representing elisjoint left eell sets, it suffiees to

show bl r;V b2 . But this follows by Theorem 2.1 anel by the faet r(b2 ·4) E ~(b2) \ ~(bl)'
L

Finally, we want to show that M(a2) and M(a3) represent the same set of left eells. It

is enongh to show b2 I'V b3 . We have 3210321b2 = 02321b3 , denote it by w. Then W is
L

a eommen left extension of b2 anel b3 . By 1.7, (6), 1.10 and thc alcove form of W, wc

have a(w) E {13, 16}. Let Wo = W4, V = W032 anel Va = vo. Then it ean be eheekeel

that both {W 1 wo} anel {v, va} are primitive pairs, that Wo E M (v), and that 9J1(va) is

isomorphie to 9J1(x) in Fig. 1. By the observation at thc beginning of 3.4.4, this implies

a(w) = a(va) = 13 anel henee b2 I'V W I'V b3 by 1.7, (3). Our result follows.
L L

Remark 3.5 (1) Note that the elements y in 3.4.4 anel w in 3.4.5 are found in virtue

of alcove forms anel by Proposition 1.6, (3).
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(2) Besides the above techniques, sometinlcs wc usc thc property of distinguishcd

involutions of W a to detenninc whether 01' not two elements x, y in thc same {s, t}

string (o(st) = 4) with R(x) = n(y) satisfy the relation x ~ y. An element x E W a is

called distinguished, if lex) - a(x) - 28(x) = 0, where 8(x) = deg Pe,x' It is known that

any distinguished element of Wa is an involution and that cach left cell of Wa contains

a llniqlle distinguished involution. Denote by d(x) thc distingllished involution in thc

left cell containing x. Suppose that y . s, y' st, Y . sts is an {s, t}-string with o(st) = 4.

Written d(yst) = Ci' z· ß with 0'., ß in the grOllp generatcd by s, t and 5, t ~ L:(z) U R(z).

Then by [20, Proposition 5.12], we know that ys '" ysts if and only if {5Z, tz} = {zs, zt}.
L

This result can be used, for example, to conc111de that a graph isomorphie to 00115 is

essential in the two-sided cell [1 (W0134) .

§4. l.e.r. sets of the two-sided cells.

In the present section, we shall give an l.e.r. set, togcthcr with all the left cell graphs

(01' all tbe corresponding essential graphs) for each two-sided cell of Wa = Wa (F4 ).

Since the techniques applied are Inore 01' less siInilar to those in 3.4, we shall only give

very brief arguments in the most cases.

4.1 Let x = W0123, Y = X'4323, Yo = y'4, Yl = yO"12340, (LI = Yl' l , Z = YO·1232, Zo = Z'I,

w = YI - 2, Wo = W· 3, Y2 = W '1234, a2 = Y2' 0, 'Wl = Wo '12340, a3 = Wl '1, W2 = WI . 231,

a4 = W2 . 0, v = Y2 . 213, Vo = V· 4, U = v· 0, Uo = U - 1, h = Zo . 43230123214323, ha = h· 4,

j = uo . 210, ja = j - 4, Ul = j . 34, as = UI . 3, jl = j0321243, a6 = j1 . 0, j2 = jo . 321343,

a7 = j2 . 0, k = Uo - 21343210, ko = k . 1, kl = ko - 321304, aB = k1 . 3, m = j2 . 234,

bl = m'l, n = j2 '210, no = n-1, nl = no '324312343, b2 = nl '1,]J = nl' 21 and Po = p' 2.

Let 1= {x,YO,zO,wo,vo,uo,ho,jo,ko,no,po,ai (1::; i::; 8),b l (l = 1,2)}. We see that

each 0'. E I has some zero entries in its alcove form and satisfies .e(Ci) = {o, 1, 2,3}. This

implies I C W(16) by 1.10. By the techniques of 3.4, we can show that all the graphs

9R(0'.) (0'. E I) are essential. Thus we get thc following table.



Left Cells in Affine Weyl Group

a position of isom. cIs a position of iSOlU. cls
a in 001(0:) of 001(0:) a in OO1(a) of OO1(a)

x rornl DJ1
0P

(LI rm341 9)129

Yo ~ 00118 a2 rm341 0012

Zo ~1 0016 a3 ~ 9J12

Wo ~
DJ10p

a4 rm341 9J1223

Vo ~1 00126 (L5 ~ 0012

Uo ~1 m124 a6 ~ 0012

ho ~ 0013 a7 ~ 9Jt2
)0 ~ OO10P a8 ~ 001218

ko rornl 00123 bl fi34l 0019

no rornl 9)119 b2 fi34l 9)19

Po rrnl 9J12l

19

We can show that the set UM(a) forms an l.c.r. set of W(lG)'

aEI
4.2 Now consider the two-sided cell W(lO)' Let x = W0234, Y = X . 1232, Xl = X • 12340,

X2 - Xl . 21234213, Yo = Y . 1, al = Xl . 1, bl = X2 . 4, VI = Vo . 043, Z = Yo . 014,

Y2 Yo . 01234, W = y2 . 323123, a2 = Yl . 1, Zo = Z . 2, a3 = Y2 . 3, Wo = W . 0,

Wl = a3 . 2310. W2 = Wo . 431234, V = W2 . 21, a4 = 1lJl . 4, b2 = 1V2 . 1 and Vo = v . 2.

Then y, xI, X2 E M(x), YI, Y2, Z, W E M(yo) and WI, W2, V E M(wo). Wc can check that

{Y,Yo}, {XI,al}, {x2,bl }, {Yl,a2}, {z,zo}, {Y2,a3}, {w,wo}, {Wt, a4}, {w2,b2} and

{v, vo} are all primitive pairs. Let I = {x, Yo, Zo, Wo, Va, ai (1 :::; i :::; 4), bl (l = 1,2)}.

Then I c W(10)' By the tcchniques of 3.4, we see that 9J1( 0:) (0: E I) are all essential.

So we get the following table.

a position of isom. cIs a position of iSOlU. cls
a in 001(0:) of 9Jt(a) a in 9)1(0:) of 9J1(0:)

x ~ 9J1op
a2 rm341 001218

Yo ~1 9J13 a3 ~ 9Jh
zo ~ 9J123 a4 rm341 9J12

Wo ~, 00119 bl ~ 9)19

Vo rrnl 9)121 b2 fi34l 9J19

al rm341 9Jt2

It can be shown that tbe set UM(a) fonus an l.c.r. set of W(10)'

aEI
4.3 Next consider thc two-sided cell W(13)' Let X = W0234 . 1232143234, Xo X . 0,
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Xl = X12401234, al = Xl . 3, Y = X132312342, Yo = y' 0, a2 = Y04, Z = Xl . 23123, Zo = Z· 4,

Zl = Z01234031, a3 = ZI . 3, W = Z142, Wo = W . 4, W1 = 1J) • 34, a4 = Wl . 3, V = Z01243,

Vo = VI, VI = V0420, a5 = VI . 1, U = W113210, 'Uo = '/L • 2, UI = Uo . 32432, a6 = 1112,

h = Xo '1232, ho = 11,'1, V2 = VI' 21234234, bi = V2 '1, 'lL2 = '/LI '1243, b2 = U2 '4, j = 1124121

and jo = j . 2. Let I = {x, Xo, Yo, zo, Wo, vo, uo, ho, jo, ai (1 ~ i :s; 6), b, (l = 1,2)}. We

shall show I C W(13)' It is known already that x E W(13) (see 3.2). We also have

thc relations x1,Y,z E M(x), W,ZllWllV,U E M(zo), h E M(xo), V}'V2 E M(vo)

and 'U1,112,j E M(uo). On thc other hand, {x,xo}, {Xt, a1}, {Y,Yo}, {YO,a2}, {z,zo},

{z},a3}, {w,wo}, {wI,a4}, {v,vo}, {v1,as}, {u,uo}, {u1,a6}, {h,ho}, {v2,b1 }, {u2,b2}

and {j,jo} are all prinütive pairs. So I C W(I3)' By the tcchniques of 3.4, wc see

that for a E I, the graph 9)1(a) is essential if and only if a E {zo, Wo, Vo, 'Uo,jo, ai (1 :s;

i ~ 6), bl (l = 1,2)}. so for these a, we have 9J1e (a) = 911(a). On thc other hand, we

can find an essential subgraph 91te (ß) in each OO1(ß) , ß E {x, xo, Yo, ho}. We get the

following table.

a position of isom. cls a position of isom. cls
a in OO1e (a) of OO1e (a) a in 911c (a) of 9J1e(a)

x rml OO1op a1 rm34l 9)1225

Xo fö234l 9J1op a2 rö3l 001222

Yo f034l 00122 a3 rm34l 9112

Zo ~ Wh a4 rm34l 9]12

Wo rornl 9)123 as rm34l 9)12

Vo ~1 m't0p a6 @!1 m't218

Uo rornl m't19 b1 fi34l 9)19

ho [i2il m't25 b2 ~ m't9

Jo fl24l 9)121

Let Me(a) be the vertex set of thc chosen essential sllbgraph 9J1e (a) (such a notation

will be used throughout the remaining part of the papcr). Thcn we can show that the

set U Me(a) forms an l.c.r. set of W(13)'

(tEl
4.4 Let us consider the two-sided cell O(W123)' Let x = 'WI23, Y = x· 014, Z = X' 432101,

Yo = Y . 2, UI = Y . 3, Zo = Z . 2, ZI = Zo . 32343, a2 = Z14, 7lJ = Z1 . 1213, v = W . 21,

Wo = W . 4 anel vo = v . 4. Then y, Z E M(x) anel Zl, W, V E M(zo). We cau check
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that {V, Yo}, {y, all, {z, zo}, {Zll a2}, {w, wo} and {v, vo} are all primitive pairs. Let

I = {x, Yo, zo, Wo, vo, al, a2}. Then I C 0(W123)' It ean be shown that the graph 001(0:)

is essential if 0: E {zo, Wo, Vo, al, a2} anel is not essential if 0: E {x, yo}. By choosing

some essential subgraphs from these graphs, wo get the following table.

0: position of isonI. cls a position of isom. cls
0: in VJ1e (a) of 9J1e (o:) a in 9J1e (a) of VJ1 e (a)

x ~ 9J17 vo ~ 9J12l

Yo rm24l 9J122 (LI röl34l 9J12

Zo rm24l 9J119 a2 ro3l 9J12

Wo fl34l 9J19

We ean show that the union U Me(a) fonns an l.e.I'. set of 0(W123)'
aE!

4.5 Frorll the results in 4.4, we see that W234 rt 0 (11) 123) . This implies 0 (W234) -

W(9) \ 0(W123) by 1.10. Now we consider the two-sided eell 0(W234).

Let x = W234, Xl = X·I0213, Y = Xl'234, Z = Y'3231234, a1 = Xl'4, Yo = Y'3, Zo = Z'O,

Zl = Z024, Yl = Yo . 2123, a2 = Z1 2, b1 = Yl . 4, 'W = Zo '123421, Z2 = ZO' 2123, Z3 = z2 .2134,

Wo = W' 2, b2 = Z2'4 and b3 = Z3 '3. Then Xl, y, Z E M(x), Yl E M(yo) and w, Zl, Z2, Z3 E

M(zo). We can check that {Xl, all, {V, yo}, {z, zo}, {Zll (L2}, {Yl, b1}, {w, wo}, {Z2, b2}

and {z3,b3} are all prirnitive pairs. Let 1= {:D,Yo,zO,wO,ai (i = 1,2),bl (1::; l::; 3)}.

Then I c 0(W234)' We can show that 9J1(a) (0: E I) are all essential and hence get the

following table.

a position of isom. cls 0: position of isoIn. cls
0: in 9J1(0:) of VJ1(a) a in ®-(o:) of 9J1(0:)

x f234l 9J1l6 (L2 ro3l 9J12

yo ~1 9J1l 3 bl ~ 9J19

Zo ~1 9J115 b2 [§J 9J19

Wo fi24l 9J121 b3 fl34l 9J19

al röl34l ~))h

The set U M(o:) ean be shown to form an l.c.r. set of 0(W234)'
oE!

4.6 Next eonsider the two-sided cell W(7)' Let x = W0124, Y = X • 3, Z = X • 323431234,

W = x . 21, Yo = Y . 4, Zo = Z . 1 and Wo = W . 2. Then y, z, W E M(x). We ean check

that {y,Yo}, {z,zo} and {w,wo} are all primitive pairs. Let 1= {x'YO,zo,wo}. Thon
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this implies I C W(7). It can be shown that all the graphs OOt(a) (a E I) are essential.

Hence we have the following table.

a position of isom. cIs a position of isom. cls
a in 9Jt(a) of 9Jl(a) a in 9Jt(a) of 9Jt(a)

x fOi24l 9J119 Zo rrnl 0019

Yo rm341 0012 Wo fi24l 00121

We cau show that the set UM(a) forms an l.c.r. set of W(7)'

oE!
4.7 Now consider the two-sideel cell O(W012). Let x = WOl2, Y = X . 342132, Z =

X . 323432123, Yo = Y . 3, Zo = Z . 4, W = Yo . 14 anel Wo = W . 2. Then y, Z E M(x) and

W E M(yo). Oue cau check that {V, yo}, {z, zo} anel {w, wo} a.re a11 primitive pairs. Let

I = {x, Yo, Zo, wo}. Then I C O(W012)' We can show that a graph 9Jt(a) is essential

if a E {zo, wo}, and is not essential if a E {x, Yo}. Hence by choosing an essential

subgraph 9J1e (a) from 9Jt(a) for a E I, we get the following table.

a position of isom. cIs a position of isom. cls
a in 9J1e (a) of OO1e (a) a in OOte(a) of 9Jte (a)

x fOi2l 00117 Zn rrnl wtg

Ya f23l 9Jt12 Wo fi24l 9Jt21

It can be shown that the set UMe(a) fonns an l.c.I". set of O(WOI2)'

oE!
4.8 Finally consider the two-sided cell W(6) \ O(WOIZ). By 1.10, it is equal to O(W0134)

since W0134 r/; O(WOIZ) by 4.7. Let x = W0134, Y = X . 23, Yo = Y . 2, YI = Yo . 1423,

b1 = YI . 4, Y2 = Yo . 12432134, b2 = Y2 . 3, Z = Yl1421 and Zo = Z . 2. Then Y E M(x)

and Yb Y2, Z E M(yo). We can check that {V, yo}, {YI, bl }, {Y2, b2} and {z, zo} are all

prirnitive pairs. Let I = {x, Yo, Zo, bl , b2 }. Then I C O(WOI34)' We can show that all

001(a) (a E I) are essential. So we have the following table.

a position of isom. cls 0:' position of isorn. cls
a in 9J1(a) of 9Jt(a) er in 9J1(a) of 9J1(a)

x rm341 9)12 b1 ~ 9Jtg
Yo rtrnl 93115 b2 ~ 9319

Zo fi24l 9J121

We can show that thc set UM(a) fornis an l.c.I". set of O(WOI34)'

oE!
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4.9 To be eornplete, we shall also give an l.e.r. set for eaeh two-sided cell n with

a(O) ::; 5 01' a(O) = 24. These results are either obtained from my paper [21] (for the

two-sided cells of a-values 3, 4, 5) 01' by a direet ealculation (for thc two-sided eells of

a-values 0, 1, 2, 24). W(O) is the l.c.r. set of itsclf.

(1) Let x = 4 E W(1). Take an essential subgraph 9J1e(x) in 9J1(x) such that 9J1e (x) is

isornorphic to 9J1l with x thc vertex labelled by 0. The set Me(x) forms an l.e.r. set

of W(l)'

(2) Let x = 24 E W(2)' Take an essential subgraph 9Jle (x) in 9Jl(x) such that 9J1e (x) is

isomorphie to 9Jl4 with x the vertex labelled by~. Thc set Me(x) forms an l.c.r. set

of W(2)'

There are two two-sided eells with a-value 3: O(wod and 0(W34)'

(3) Let x = WOl and y = W024. Then the graph 9Jl(x) (rcsp. 9Jl(y)) is essential,

isomorphie to 9)15 (rcsp. 9J18), and has x (resp. y) as its vertcx labclled by @!] (resp.

1024D. The union M(x) UM(y) fonns an l.e.r. set of 0(W01)'

(4) Let x = W34. Then the graph 9J1(x) is essential, isoillorphic to 9)120, and has x as

its vertex labelled by~. The set M(x) forms an l.c.r. set of 0(W34)'

(5) Let x = W034, Y = W014 and z = W23 be in lV(4)' Then the graphs Dn(x), Dn(y) and

fm(z) are all essential, isomorphie to 9J19 , 9Jh1' 9J110 , rcspeetively. The elements x, y, z

are the vertices labelled by 1°341, 10141 and ~ in 9J19 , 9Jht, 9'Jt10 , respectively. The set

M(x) UM(y) UM(z) forms an l.c.r. set of W(4)'

(6) Let x = W023, b1 = X . 12343, Yo = x . 431232, Zo = b1 . 21 and b2 = Yo . 431. Then

the graphs 9J1(b1 ), 9J1(b2 ) and 9J1(ZO) are essential but 9J1(x) and 9J1(yo) are not. Let

I = {x, Yo, Zo, b1, b2 }. By choosing an essential subgraph OO1e (a) froln fm(a) for a E I,

we get thc following table.

a position of isom. cls Cl:: position of isorn. cls
a in 91te (a) of Dne(a) a in OO1e(a) of Dne(a)

x f023l 9]114 b1 fl34l 0019

Yo ~ 91tn b2 fl34l 0019

Zo fi24l 00121
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The set U Me{a) fonns an l.c.r. set of W(5)'

oE!

4.10 According to the results of [18], [19], we know that there are IWolleft cells of Wa

in the two-sided cell W(24) each of which is represented by a sign type over the symbol

set {+, -} (see [17) for the definition). It is known that there is a unique shortest

element in each of such left cells and that the l.c.r. set consisting of such elements can

be described explicitly as bclow.

M = {w E W(24) I sw t/:. W(24) for any s E .c(w )} (loe. eit.).

It can be shown that for any x E M, the graph m(x) is essential with M(x) ~ M. Thus

it remains to find all the left cell graphs of W(24)'

It is known that if X is a sign type over {+, -} anel if Y is obtained from X by

transposing the symbols + and -, then Y is also a sign type over {+, - }. Call Y the

opposeel sign type of X anel denote it by XOP. For a given left cell graph 9Jl in W(24)'

we cau replace each vertex (represented by a sign type) of 9J1 by its opposed sign type

to get another left cell graph of W(24) opposed to 9J1. Keeping this fact in mind, we can

describe the left cell graphs of W(24) as below. Define thc following sign types:

+ + + + + + + +
+ + + + + + + +
+ + + +

X 01 = + X 02 = + X03 = + X 04 = +
- + + - + - + - + - + - + + + -
+ + + + + + - + + +- + + + - + + + - + + + - + + +

+ - + - + - + -

+ + + + + + + +
+ + + + + + + +
+ + + +

X 05 = + X 06 = + X07 = + X 08 = +
- + + - + + + - + + + - - + + -
+ + - + + + + - + + - + + + + -
- + + + - + + + - + + + - + + +

+ - + - + - + -

+ + + + +
+ + + + + +
+ + +

X u = + X 12 = + X 13 = + +
+ - + - + - + - + - + -
+ + - + + + - + + + - +
- + + + - + + + - + + +

+ + + + + +
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+ + + + + +
+ + + + + + + +
+ + + + + +

X 21 = + X 22 = + X 31 = + X 32 = +- + + - - + + - - + - +
- + + + - + + + + - + - + - + -
+ + + - + + + - + + + - + + + -
- + - + + + + - + + + -

+ + + + + +
+ + + + + +
+ + + + + +

X 4 = + + X 5 = + X 6 = +
+ + + + - + + + - + + -
+ + + + + + + + + + + +
+ + + + + + + - + + + -
+ + + + - + - +

25

X 7 = + + _ + _ X 8 =
- + - + - +

- + - +
- + - +

X9 = + -
- + - +

- +
- +

Then 9J1L(Xp), 9J1L(Xr) with P E {Oh, li, 1j, 2k, m 1 1 ~ h ~ 8, 1 ~ i ::; 3,1 :s; j, k :s;

2,4 :s; m :s; 9}, form a conlplete set of left cell graphs of W(24). The corresponding

isoluorphism cIasses of the graphs 9J1L(XP ) are listed as bclow.

X position of isom. cIs X position of isom. cls
X in 9J1L(X) of 9J1L(X) X in 9J1L(X) of 9J1L (X)

XOh (1 < h < 8) föi34l 9112 X 5 f0124l 9Jt19

Xli (1 :s; i :s; 3) ~ 9]19 Xü rornl, 9)124

X 2j (1 < j < 2) rornl 00123 X7 f234l 9)13

X 3k (1 :s; k :s; 2) fll 001 18 X8 f234l 9Jt6
X 4 @] m121 X!) f234l 00126

4.11 It is worth to Inention that owing to the priority we Inade on the processes of thc

algorithlu (see 2.4), all the elements so far wc have got for our l.c.r. set of Wa (F4 ) are

only by Processes (A) and (B), none of theIn by Proccss (C).

4.12 Let 0 be a two-sided cell of W a = W a (F4 ). We denote by n(O) the number

of left cells of Wa in 0, by u(O) the corresponding unipotent cIass of the complex

algcbraic group G of type F4 nnder thc map in Theorem 1.8 (prescnted by its type

with the notation as in [4, Chapter 13], also see 4.13), and by A(O) = C(u)/C(u)O

the component group of the centralizer of an element 7L E u(O), the latter makes sense

since it is independent of the choice of u up to isonlorphism. Thcn by the above results,

Theorem 1.8 and the rcsults in [4, Chapter 13], we have the following table.
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S1 n(S1) u(S1) A(S1) n n(S1) u(S1) A(n)
W(O) 1 F4 1 O(W0134) 96 A2+AI 1

W(l) 5 F4(at} 82 W(7) 96 A 2 +AI 1
W(2) 14 F4(a2) 82 O(WI23) 168 A2 82

S1(WOI) 24 C3 1 S1(W234) 192 A2 1
S1(W34) 24 B3 1 WOG) 288 Al +AI 1

W(4) 42 F4(a3) 84 W (3 ) 432 Al 82
W(5) 96 C3(at} 82 W(6 ) 576 Al 1

S1(WOI2) 96 B2 82 W(24) 1152 1 1

Thus the total uUIuber of 1eft cells in Wa (F4 ) is 3302.

4.13 According to Bala-Carter Theorem, there is a bijective Inap between unipotent

conjugacy dasses of G and G-dasses of pairs (L, Pu), whcre L is a Levi subgroup of

G and PL' is a distinguished parabolic subgroup of the sCIuisinlplc part L' of L. The

unipotent dass corresponding to thc pair (L, PLI) contains the dense orbit of PL' on

its unipotent radical (see [4, Theorem 5.9.6)). Now for a two-sided cell 0 of Wa , let

(L, PLI) be the pair associated to the unipotent conjugacy dass u(S1) of G. Then the

type of u(O) listed in the above table just rccords such a correspondcnce. Let WL be

the Weyl group of L'. Then from thc above table, we see that the number n(S1) of left

cells in 0 is equal to IWol/IWLI if and only if the corresponding component group A(S1)

is trivial. Note that such a phcnomenon does not always OCC1IT in an irreducible affine

Weyl group. By the existing datum, we see that it occurs in thc affine Weyl groups of

type An, n 2:: 1, of rank:::; 4 with its type i= D4 , and in the two-sided cells n of Wa(Bt )

(f 2:: 3) or Wa(Cm) (m 2:: 2) with a(n) :::; 4, but not in thc affine Wcyl groups of types
-- ----
D n , n 2:: 4, E 7 and Es·

4.14 It has been shown in [25] that the Lusztig bijective nlap u --t c(u) from thc set

of unipotent conjugacy classes of the complex algebraic group G of type F4 to the set

of two-sided cells of W a CF4 ) is order-preserving: u is contained in thc dosure of u ' (in

the variety of unipotent eleInents of G) if anel only if c(u) :::; c(u') (see 1.8). For a
LR

two-sided cell 0 of Wa , let T(n) be the set of all subsets I of S such that I = .c(w) for

some wEn. Then wc can find the following fact in the group W a (F4 ): two two-sided
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cclls 0, 0' #- {e} satisfy the relation 0 ~ 0' if and only if T(O) 2 T(O'). This result
LR

may be expected to hold in any affine WeyI group.

4.15 The following are the graphs DJ1i , 1 ::; i :S 26, Inentioned in scctions 3 and 4.

9]11

0013
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§5. On a conjecture.

5.1 I proposed the following conjecture in thc paper [21, Conjecturc 2.3].

Conjecture. Let W be either a Weyl grou]} or an affine Weyl group. For x, y E W,

X I"V Y if and only ifR(x) = R(y) and E(x) = ~(y).
L

5.2 In my paper [23], I verified this conjecture hut with the following cases in Wa CF4 )

excluded: a(x) E e = {6,7,9, 10, 13, 16} and R(x) = R(y) E {{O,1,2},{a,4}}. Now

we can deal with these exeeptional cases. By Theorenl 2.1, wc need only to show the

direetion "~ ": if R(x) = R(y) and E(x) = E(y) then x 'i:' y. For the sake of definity,

we rnay assurne l(x) ~ l(y) without loss of gcnerality.

5.3 Let us assurne a(x) E e, :E(x) = :E(y) anel R(x) = R(y). By the condition

E(x) = E(y) (whieh is non-cmpty by our assumption), we have that x I"V y and that
LR

the elelnents x and y have the saUle generalizcd T-invariant. We lnay asslune that both

x and y belong to the l.e.r. set of O(x) chosen in §4 by replacing x and y by SOlne

elements in r(x) and r(y) respectively if nccessary. Hence we have Y E M(x). We

argue by eontrary. Assume x ')I.J y. If R(x) = R(y) = {012}, then by the results of §4,
L

we have a(x) = a(y) = 16, that the graph 9J1(x) is isomorphie to 91118 or 91126 , and that

x and y are thc vertices labelled by 101211 and~ rcspectively in 911(x). It eao be

shown that r(y . 4) E E(y) \ E(x). If 'R.(x) = 'R.(y) == {a4}, thcn one of the following

eases nlust oeeur.

(1) The graph 9J1(x) is isolnorphie to 9J115 , und x E O(W0134) U O(W234)j

(2) The graph 9Jt(x) is isolnorphie to 00116 , and x E O(W234)j

(3) The graph 9J1(x) is isomorphie to 9J113 , and x E O(W234)i

(4) The graph OO1(x) is isornorphie to ~~, and a(x) is eqllal to 10, 13 or 16.

It eau be shown that r(y ·1) E E(y) \ E(3;) in the eases (1), (3) and (4), and that

r(y·o) E E(y) \ E(x) in the ease (2). Thus in an thc ahove eases, we have E(x) #- E(y),

a contradietion. Therefore Conjeeture 5.1 is verified without auy exeeption.
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