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Program of the Conference on
'Abelian Varieties and Relations to
Number Theory, Geometry and Physics’

Part 1.

Monday, July 25th

10.00 - 11.00 J.-P. Serre:
Abelian varieties and their division points I
11.15 - 12,15 G. van der Geer:
The Schottky Problem
16.00 - 17.00 J.-B. Bost:
Quillen metrics on Riemann surfaces
17.15 - 18.15 F. Oort:

Supersingular abelian varieties

Tuesday, July 26th

09.30 - 1030 G. Wiistholz:
Transcendence applied to isogenies

11.00 - 12,00 E. Date:
Solvable lattice models and affine Lie algebras

12.00 - 12.15 Program discussion II
Afternoon Walk to Wallberg



Program of the Conference on

'Abelian Varieties and Relations to

Number Theory, Geometry and Physics'

Part II.

Wednesday, July 27th

09.30

11.00

16.00

17.15

21.00

10.30

12.00

17.00

18.15

J.-P. Serre:
Abelian varieties and their division points II

B. Edixhoven:
Hecke action on the component groups of the Néron
model of the Jacobian of a modular curve

H. Lenstra:
Primality testing

J.-P. Wintenberger:
p-adic Hodge theory for families of abelian varieties

Comncert

Giilsin Onay-Schappacher

F. Chopin Sonate en si mineur
C. Franck Prélude, Chorale et Fugue
A. Saygun Sonatine

Thursday, July 28th

09.00 - 09.50

T. Ibukiyama:
Supersingular abelian surfaces and automorphism
groups of lattices
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10.00 - 10.50 T. Katsura:
Quotients of abelian surfaces in characteristic p

11.00 - 11.50 A. Silverberg:
Fiber systems of polarized abelian varieties

13.00 Beginning of the sightseeing tour to Kloster Ettal
and Schloss Linderhof

Program of the Conference on
'Abelian Varieties and Relations to
Number Theory, Geometry and Physics’

Part III.

Friday, July 29th

09.30 - 10.30 D.W. Masser:
Isogenies of elliptic curves

11.00 - 12.00 N. Schappacher:
Kolyvagin's proof of the finiteness of E(Q) and the
Tate-Shafarevich group for certain E/Q

16.00 - 17.00  Ch. Soulé:
Another proof of Mordell's conjecture over function
fields (d'aprés P. Voijta)

17.15 - 18.15 I1.-P. Serre:

Abelian varieties and their division points III



Title: Green functions, regularized determinants on curves, and
theta functions

Author: Jean-Benoit BOST

Address: ENS, 45 rue d’'Ulm, 75005 Paris, France

Let X be a compact connected Riemann surface, of genus g 2 1. Using the Arakelov -
Green function G of X and the theta function of the jacobian of X, Faltings defines
metrics on the determinant of the cohomology of line bundles over X, and a new invariant
8 (X) (eR) of X ([F]). We discuss some relations between G, the theta function, & (X),
the Faltings metrics and the regularized determinant of the Laplace operator. These extend
classical formulae on elliptic functions (recovered when g=1).

Theorem 1 ([B]). There exists A (X) such that for any (x,y) € Xz, X#Yy

108G ) = & [log 911 p*" + A ()
O+x-y

In this formula, @ is the theta divisor in Pics_l(X), [l is the function Picg_l(X) - IR+
defined in [F], and W the translation invariant (1,1) form on Picg_l(X) Poincaré dual to ®.

Theorem 2 ([B]). Suppose g =2 and denote

® = {even theta characteristics} < Pic, (X)
A =272 T woi? o

Me®
HI = exp [ [log I012].

b Pic,(X) ]

Then 8 (X)=- 16log (2m) - log llA, |l - 4 log IHI.

If & is a holomorphic vector bundle on X, and if & and @, are equipped with (<38
hermitian metrics II-II§ and Il-llmx, we define the Quillen metric on det RI" (X;E) as in [D],
§1.2. When O is equipped with the Arakelov metric II-Il A (cf.[F]) and & =Q is equipped

with the trivial metric II~II0 (II1II0= 1), we denote, using the notations of [D],§1.2:

det'(9*9) W= det'd™9;

A =<1,1> .
X) —



Theorem 3 (compare [D] - [ABNMV)). Let § be a line bundle on X, and Il-IIg a
smooth admissible metric on & (cf.[F], §3). Denote -l the Faltings metric on
det RI'(X;E) associated to II-II6 (cf.[F], th.1 and p.401), and denote II-IIQ the Quillen

metric on det RU(X;E) defined using the metric IHl, on o, and the metric II-IIg on &,

X
We have:
& det'(0%9) 4.1
i =[ ( )A] T
Q AX) F
Theorem 4.
det'(J*E)A
3(X) = -6log ] +(2-29) M -2g log4£ . where

M=24{'(-1)- 3 +41log 2.

This result is closely related to a conjecture of Gillet and Soulé. Its proof uses a joint work
with J.M. Bismut, where we study the Quillen metric for degenerating families of complex

curves.
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Title: Solvable lattice models and affine Lie algebras
Author:  Etsuro DATE

Address: Dept. Math., College of General Education, Kyoto University,
Kyoto, 606 Japan

This talk is based on our work at Kyoto with M. Jimbo, A. Kuniba, T. Miwa and M. Okado.
We are studying solvable lattice models in 2-dimensions, and are interested in their
connection with the representation theory of affine Lie algebras. We calculate local state pro-
babilities of solvable lattice models by employing Baxter's corner transfer matrix method. In
the course we encounter the quantity which we call 1-dimensional (1D) configuration sum.
One of our results is that these 1D configuration sums are identified with the string functions
or the branching coefficients in the representation theory of affine Lie algebras. The latter are
known to be modular forms (of one variable). Thus we have the modular property related to
affine Lie algebras in the theory of solvable lattice models.

A 2-dimensional lattice statistical model on a 2-dimensional square lattice & is defined by
giving the following data

(1) Fluctuation variable ¢ on each bond and/or site with values in some set & (these are
called local states).

as - " u
(ii) Boltzmann weight for each configuration of local states around a vertex o+ v &

B
W(aBuv) (vertex model), or around a face ?ﬂ: <> W(abcd) (face model), or a

mixture of these.
site (vertex)

IR

ad

With these data we have a statistical model on the lattice &. Boltzmann weights describe
interactions of local states (here we are considering the simple cases of interactions).



One of the goals of the statistical mechanics is to calculate macroscopic quantities (like the
probabilities of the occurance of specified configurations) from the knowledge of the
microscopic quantities (like Boltzmann weights) in the limit 1! — e (the thermodynamic
limit). One of such is the local state probability (LSP) (for face models) (or 1-point function)
P(a) = Prob (01= a), that is, the probability of finding configurations such that the local

state at a specified site 1 takes a given state a. By Boltzmann's principle, this may be
evaluated as

P(a) = lim
@ &1

> 8(c =a) I W(oiojokol), ;Di

configurations faces

N|—

where Z = )y IT W(O'io.ckol) is the partition function. While taking the limit
configurations faces !

we fix the local states on boundaries of & to be in a ground state. This is a configuration
of local states that contributes to the partition function Z most.

For general (arbitrary) Boltzmann weights this calculation is very difficult to get limit.
Therefore the first task is to single out a nice class of lattice models for which we can, at
least, calculate Z or P(a). Through the works of Onsager, Baxter and others, the impor-
tance of the Yang-Baxter equation (YBE) (or the Star-Triangle relation (STR) depending on

the context) in this context has been recognized. The YBE (for the vertex case) for linear ope-
rators va' etc. is the condition of the commutativity of the following diagram:

V® V'@ V"
WWV w\:vv.v..(\f)
V'RVe v" V@ V'@V’
1® vaﬂ (U+V) Q WWN (U+V) ®1
Vev'ay V'@V V'
WV'V"(\M ‘A‘Vw @
V'@V'®V

Here V, V', V" are vector spaces. Matrix elements of these Wy » €tC. give us Boltzmann
weights. Here we allow that the operators W, » etc. depend on an extra parameter ue C
(spectral parameter). In other words, we consider 1-parameter family of lattice models. We
call the models defined through solutions of the YBE (STR) solvable models.



There are several known solutions of the YBE. Here we take solutions related to affine Lie
algebras Ag).B(,:) , C(,:’ , D(,:) found by Bazhanov, Jimbo and others. For simplicity, we

consider the case Ag) in the following. From this solution we construct a vertex model

whose local state takes values in the set of the weights of the vector representation of

n
s£(n+1,C), Gn'l = {no,...,nn}, n, =¢ - n:-_l jEO €, (80,...,En ONS) and whose

Boltzmann weights are given by the matrix elements of the solution of the YBE of this case.
Boltzmann weights depend on two parameters w,x (w being a multiplicative spectral

parameter). This model can be also formulated as a face model whose set of local states
consists of level 1 weights of the affine Lie algebra Ag) . As for the explicit form of the

Boltzmann weights of this model we refer to [1].

We calculate the LSPs of this face model. For this purpose we apply Baxter's corner transfer
matrix method (for which we refer to Baxter's book "Exactly solved models in statistical
mechanics” Academic 1982). This reduces the calculation of the LSPs which are in its
original form a sum over 2-dimensional configurations (on a 2-dimensional lattice) to 1D
configuration sums. This is a great simplification. Let us consider in the parameter region
x=0, Iwl<1. As a result of the application of the corner transfer matrix method we are lead to

the 1D configuration sum of the form
2 jH W, 70+
A = =1
f . m=2q ,

where ye the weight lattice of s£(n+1,C), n(m+1) =1, and n(l),...,n

@™ 1yn over e
with the condition 7" +...+1™ =y. The function H is given by H(,n)=0 ifp<v, 1
if g 2 v, where np,nv € Gn'l . In this parameter region x = 0, lwl<1, ground states are

constant on the NS-SW direction, and are labeled by the fundamental weights A. of Ay .
Thus they are given by 1-dimensional sequences of weights of level 1 p N (pg)), (p_,({)) =

Am, A= Au and m signifies m (mod.n+1).
This 1D configuration relates to the string function of A::) in the following way. By path
p=(@"),j21 we mean a sequence of local states such that n9(p) = p*V-p¥ e G‘)n_1 =
{no,...,nn}. Let A be a fundamental weight. We set

PA) = T P™ @A), P™ @A) ={plp?=pP j>m+1)
m=0 A

and define the degree of a path p by
o@ = 2 jHOY @07 E)-HO® 6,00 @,))).
J=
Let n e A* (A the Cartan subalgebra of A‘?)) and & be the null root of P&(\l) . We further

define



P(A), = (pe PO 1p - wp) 8=p}, P™ ), = P™ (A) A P(A), -
Then we have by definition

O (A) (m+1) M), oy B g pm) i
£, P -a&m T (ppia)= Z#ETA) O,

o (=5 HMO @I @,)).
m j=1 A A

Let L(A) be the irreducible highest weight module with the highest weight A and set
L(A)u = {ve L(A) | hv=pu(h)v for he h}. Then our theorem is

Theorem. dim L(A)u =# (P(A)p).

We conjecture that this kind of equalities holds for other solvable vertex models related to
affine Lie algebras and higher representations (for the precise statement we again refer to

(1D.

As aresult we have

-mm(

. A) i !
lim g " G- 8,0 p,) 19 = Zdim L), iq

m—yoo
The right hand side is nothing but the string function of Kac-Peterson. They showed string
functions enjoy nice modular property. Finally the LSP itself is given as

P@A) = Z dim L(A)_ x***/ T dim L), x4, p = At +A
i a-1 i n

There are also face models related to these vertex models whose local states are dominant
integral weights of a fixed level (say 2} and whose Boltzmann weights are parametrized by
elliptic theta functions. The 1D configuration sums Xm of these face models are obtained
from those of vertex models by folding them by the action of affine Weyl groups. Their limit
coincide with the branching coefficients for the pairs of affine Lie algebras, like
(1\(11) @ Al(l” , Af.ll) ). Namely we consider the tensor product L(§) ® L(n), where &, are

dominant integral weights of level £-1, 1, and decompose it by the diagonal action. In terms
of characters this amounts to xgxn = i: bgmg(_a (level a = £). The limits of Xm's coincide

b&na S.
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Title: Hecke action on the component groups of the Néron model
of the Jacobian of a modular curve

Author: Bas EDIXHOVEN

Address: Math. Inst., Budapestlaan 6, 3584 CD Utrecht, Netherlands

Pour N un nombre entier positif soit XO(N) Q la courbe modulaire sur @ paramétrant les
N-isogénies cycliques entre courbes elliptiques, et J 0(N) q 5@ jacobienne. L'algebre de

Hecke agit sur Jo(N)n donc aussi sur son modele de Néron J 0(N) sur 2. Soit p un
nombre premier et <DNp le groupe de composantes de la fibre géometrique J 0(N)p de J 0(N)

en caractéristique p.

Dans cet article nous démontrons que pour p >3 l'action de I'algebre de Hecke sur @, >

est "Eisenstein”. Cela veut dire que pour tout nombre premier £ ne divisant pas N l'opéra-
teur de Hecke T R agit sur d)N.p par multiplication par £ +1 (cf. [Ma], p.95). Ce résultat
est une généralisation d'un théoréeme de K. Ribet [Ri 1], [Ri 2] (Theorem 2.24), qui prouve
le méme résultat en supposant que la valuationde N en p estau plus 1. A dire vrai, Ribet
prouve son théoréme aussi pour p = 2,3. Parce que dans ce cas la méthode de Ribet est plus
efficace nous nous restreindrons au cas p > 3.

Pour prouver son théoréme Ribet utilise la description donnée par A. Grothendieck [Gro 1]
des groupes (DN o en termes de l'accouplement de monodromie sur le groupe de caractéres
de la partie torique de la réduction (semistable) de J 0(N) sur Zp. En se servant des résultats
de [De-Ra] sur la réduction de XO(N) modulo p il obtient une description combinatoire de

(DN , N termes de points supersinguliers en caractéristique p. Ce qui reste alors 2

démontrer est une proposition sur les automorphismes des courbes elliptiques super-
singuliéres.

Comme la méthode de Ribet ne marche qu'en cas de réduction semistable nous nous servons
de la description donnée par M. Raynaud [Ray] des groupes (DN , N termes de modeles sur

Z des X,M™N) 0 qui sont réguliers. De tels modeles sont connus dans le cas ol la valuation

en p de N estauplus 1[De-Ra], et dansle casou p>3 [Ed]. Pour £ un nombre
premier ne divisant pas N il faut montrer que l'opérateur de Hecke T L oSt défini en termes

des deux morphismes standards de XO(N i)n vers xo(N)ua' Afin de calculer l'actionde T ,

sur <DN nous étendons ces deux morphismes a certains modeles convenables sur Zp. Ces

)

calculs nous conduisent & démontrer la proposition (déja prouvée par Ribet dans le cas super-
singulier) mentionnée plus haut (cf. Lemme 2 de (4.2) ).



L'intérét de ce théoréme de Ribet est le réle qu'il joue dans [Ri 2], ol il est démontré que la
conjecture de Taniyama et Weil implique celle de Fermat. La question sur la généralisation
traitée dans cet article semble avoir ét€ posée par Mazur lors d'un exposé de Ribet sur [Ri 2].
Signalons toutefois qu'il reste encore & généraliser aux cas p = 2,3. '

Il est peut-€tre utile de remarquer que dans la démonstration que Taniyama-Weil implique

Fermat [Ri 2] on n'a besoin que d'une version faible du théoreme de Ribet. Cette version dit
que l'action de l'algebre de Hecke sur le sous-groupe de g-torsion de d>N est Eisenstein

pour tout nombre premier q > 3. D'aprés Mazur et Rapoport [Ma-Ra] ce sous-groupe est
cyclique et on a un générateur explicite: c'est un multiple de Z - Z' (dans leur notation). Il est

trés facile de calculer I'action d'un T, sur Z - Z'. Malheureusement il faut aussi remarquer

qu'il y a quelques petites erreurs dans les calculs de [Ma-Ra] (cf. (4.4.1) ), mais l'argument
de cet alinéa reste valable. Bien sir, il n'est pas utile d'affaiblir le théoréme de Ribet quand il
s'agit des conjectures de Serre.

J'aimerais remercier K. Ribet de m'avoir demandé si la généralisation de son théoré¢me était
vraie, de m'avoir envoyé une version préliminaire de son article [Ri 1], de m'avoir stimulé
d'écrire ce texte, et de ses commentaires.
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Title: The Schottky Problem
Author: Gerard VAN DER GEER

Address: Math. Inst., Amsterdam University, Roetersstraat 15,
1018 WB Amsterdam, Netherlands

The Schottky problem asks for characterizations of jacobian varieties among all principally
polarized abelian varieties. Schottky worked on this question (which goes back to Riemann
(1857) ). This talk deals with a set of possible answers - most of them recent - all related with
Schottky's original approach.

Let (A,©) be a principally polarized abelian variety (ppav) over a field of characteristic # 2.

Let L=0O (8).Let T be the theta group of L%2 The space H° (A,Lsz) has dimension 2&.
After choosing an isomorphism of the theta group T with the Heisenberg group which is the
identity on the scalars k* we can identify this space with the Schrodinger representation Ug

of the Heisenberg group H = H(g). (Here g = dim (A)). In particular, we have a canonical
basis 0_,ce (Z/2)® (the so-called second order theta functions).

The sections of L®2 define a morphism

F A" A-> ]P(Ug).
If the theta divisor © is irreducible then the degree of F 4, is two and the image of F, is the
Kummer variety of A.
Let Ag (resp. Ag(2,4) ) be the moduli space of ppav (resp. ppav with an isomorphism of T
with H) of dimension g. We have a morphism

F: As(2’4) - ]P(Ug) with F([A]) =F, (0).
Let RAg (resp. RAg (2,4) ) be the moduli space of principally polarized abelian varieties of

dimension g (resp. the same with an isomorphism of T with H ) plus a non-zero point of
order 2 (resp. of order 4). There is a natural morphism

G:RA (24)>P(U )

which gives for an abelian variety A plus some structure the position of the image of the non-
zero point of order 4 (say b) under F 4 - This point lies in a fixed space ]P(Ug_l) of 2b in
T/k* = A[2].
Forgetting the level we find morphisms

F :Ag - lP(Ug)/GB

G': RA8 - ]P(Ua_l) /Gg_l ,
where Gg is the Galois group of Ag (2,4) over As'

11



In case A is a jacobian Jac(C) something special happens. Let a be a non-zero point of
order two and let 6 — C be the associated double cover. If P = (ker [ Nm:Jac (C) —
Jac (C)])0 is the Prym variety of CoC (this is a ppav of dimension g-1 if g= genus of
C) then

G'([A,a]) = F([P]D). (Schottky-Jung) .
Schottky's idea was that this should only happen for jacobians. More precisely, one defines a
Schottky locus in RAg by

RS := G"' (Image of F),
and similarly, one defines a Schottky locus in As by

Sg= {[Al e Ag :Vae A[2], a0, [Aa] RSg ).

Let Jg be the (closure of the) jacobian locus in Ag. It is known that Js is an irreducible
component of Sg (by van Geemen) and that RJg (jacobians with a non-zero point of order
two) is an irreducible component of RS3 . One conjectures Jg = Sg (which would give an
answer to the Schottky problem). Donagi showed that RS8 contains other components than
just RJE. In order to state a precise conjecture, first note that the Satake compactification of
RAB has three irreducible boundary components (isomorphic to Ag_l, RAg_ . Ag_l and
denoted by o', 0" and o™). Donagi conjectured that in a toroidal compactification RA _ of
RAg one should have: :

. i e —_— = —_—
Conjecture: RSg—RJgua RAsu (RC x Ag_s)u (uk24RJg_ x A,

where RC is the closure of the locus of intermediate jacobians of cubic threefolds with an
"even" point of order two.

The philosophy here is simply that one throws in at the right hand side everything that one
knows of as being contained in RS g (One is willing to adapt the conjecture if there turns

out to be more!) However, the merit of this conjecture is that it implies various other conjec-
tures made in relation with the Schottky problem and explains their relationship.

The first Corollary of the Conjecture is : Sg = Jg .

By looking at the boundary of the moduli space one finds the following conjectures. Define
I"D0 ={se HO(A,L“) : mo(s) 24},

where m, denotes the multiplicity at the origin. Let V(I oo e the set of common zeroes of
the sections of 1"00 . One assumes © to be irreducible.
1) If A =1Jac(C) then V(FOO) =C- C for g#4 (plustwo points if g=4).

12



2) If A isnot a jacobian then V(I‘OO) = {0}.
3)  If A=Jac(C) then F,(A)NF@A (24))=F, FHC-0).
4)  If A isnota jacobian then F,(A) NF (F_\g (2,4)) =F,(0).

5)  Let C— C beadouble unramified cover with Prym variety P. Both P and Jac(C)

map to IP(US_ 1), the first by F A and the second by F.Ta.c & followed by a projection.

The intersection of the images is the image of SC/i with i the involution associated
to C > C.

The behaviour at 9" gives 1) and 2), the behaviour at M gives 3) and 4), while the
behaviour at 9" gives 5).

Conjectures 1),...,4) were already made several years ago in [vG-vdG], independently of the

above approach. Their status is : 1) is now Welters' theorem; 2) is true for the intermediate
jacobians of cubic threefolds (Donagi-vdG) and for g214 we know that V(' ) is finite for

the generic abelian variety [B-D-D-vdG]; 3) is known for g=3 [vG-vdG] and for g=4
[Donagi]; 4) is known for g=4 [Donagi]. These results give evidence at the boundary for
Donagi's Conjecture.

One can also consider infinitesimal versions of conjecture 2). This leads to : (assume k = C)
Conjecture: An indecomposable ppav is a jacobian if and only if we have a differential
equation of the form

(D‘l1 + lower order terms) 3 (":,z)|z 0 = 0,

where Df + ... is a polynomial in constant vector fields with D 7 0 and ¥ is the vector of

theta functions ﬁc(t,z).

This conjecture is stronger than Novikov's Conjecture which one gets by replacing (D;l +..)

by a specific polynomial
D{-D,D, +Dj +d.

(The K-P equation). This conjecture was solved by Shiota (in the affirmative sense).

The above conjectures are also related to trisecant properties of the Kummer variety. Other
relations can be obtained by studying Foo as A tends to a rank-1 degeneration.
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Title: Supersingular abelian surfaces and automorphism groups
of lattices

Author:  Tomoyoshi IBUKIYAMA

Address: Dept. Math., College of General Education, Kyushu Uni-
versity, Ropponmatsu, Fukuoka-City, 810 Japan

AIM: To give a general method how to get explicit automorphism groups of
all positive definite quadratic, hermitian, or quaternion hermitian
forms in a given fixed genus.

MOTIVATION: Theory of supersingular abelian surfaces / char. p developed by Kat-
sura-Oort. The above method was applied to this case where positive
definite binary quaternion hermitian forms are concerned.

1. Supersingular abelian surfaces.

Let E be a supersingular elliptic curve / f"p and put D = End(E)% 0. D is the definite

quaternion algebra / Q with discriminant p.ee. The theory of supersingular abelian surfaces

(i.e. those A s.t. A~ Ez) is more or less connected with the following group G:
G={geMD):g8=ngl,n@ge Q).

We consider three subgroups of G A of the form
U = G X (H U ) X P ’

where Uq = Gq N GLZ(Oq) (O : maximal order of D) and P = Up o Up , or Bp c Gp
(the standard parahoric subgroups of Gp ).

O ) U. =G nNnGL, (@)
U B, U e 20
p.1 P p.0

We denote these groups by U 1,‘U, o B according as P = Up 0° Up1 , Bp . BEach group
U por ‘uo corresponds to principal, or non principal genus of maximal lattices in D?,

respectively.
1) (Serre) (principal polarizations on Ez) / Aut (Ez) = ‘u.]\ G A/ G (bijective).
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2) (Katsura-Oort) (the set of irreducible components of As) = U 0\ G A/ G ,where As
is the locus of supersingular abelian surfaces in A?__ r

3) Takeacomponent V of A_which corresponds to U ol G, and principal polarization
C on E? which corresponds to U . gG. Then, (Ez,C) is on V, if and only if
U hG A UgG= 3. B\G A/ G has also some geometrical meaning, but omitted

here.

Not only the class number of ‘U (i.e. the number of double cosets in ‘U \ G A/ G), but also
the unit group of each class has geometrical meaning. Here, for the decomposition G A=

LIy giG, I‘i: = g'il 'U.gir'\ G is called unit group. For example, Aut (Ez,C), or
decomposition group of V in Al is given by the unit groups of ‘U.l , or ‘U.O ,

respectively.

2. Number theory (new mass formula) .

We consider the following general problems:
Let D be either the rational number field, a imaginary quadratic field, or a definite quaternion
algebra over @. Let V be a finite dimensional vector space /D and take a (hermitian) metric

h with respect to the unique positive involution of D on V. We assume that h is positive

definite. From a given genus & of O-lattices in V, denote by Ll,...,LH a set of complete

representative of classes in &, and put I‘i = Aut (Li) {metric preserving automorphisms).

Problem1:  Calculate H.
Problem 2 : For a given finite group I', count the number of I‘i such that Fi =T.

It is more or less known how to solve Problem 1 (Eichler, Selberg, Tamagawa, Hashimoto).
The method is trace formula, or a kind of mass formula. But Problem 2 is fairly different
from Problem I in nature. Roughly speaking, Problem 1 is a problem on linear represen-
tation, but Problem 2 1s on permutation representation, and permutation representation is not
determined by linear representation attached to it. So, we need a new formula, which is a
generalization of known formula by Hashimoto. Let r be a natural number. Embed G
diagonally into G' and regard G as a subgroup of G'. For ye G', denote by () g the G-

conjugacy class of ¥. Put

Hogro (1))
m ({7}, ) = & Ti)G

i=1

16



Theorem. There is a formula which tells us how to calculate m ({7} & &). Using this

"new" masses, we can solve Problem 2 by some induction steps. (We omit details here).
For example:

Theorem. As for 'uo in §1, I‘i/{:l:l} is isomorphic to one of the following groups:
2

(11,272, 213, (2/2)%,8,, A, S,. Dy, A

For all p, the number of I"i s.t. I"i =TI (I : one of the above) is explicitly given. (For

p S 31, this was obtained by Katsura-Oort by a geometric method).
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Title: Quotients of abelian surfaces in characteristic p
Author:  Toshiyuki KATSURA

Address: Dept. Math., Ochanomizu University, 2-1-1 Otsuka,
Bunkyo-ku, Tokyo, 112 Japan

Let k be an algebraically closed field of characteristic p, and let X be an algebraic variety
of dimension n over k. X is called a rational variety, if X is birationally equivalent to
the projective space IP" (k) of dimension n. X is called a unirational variety, if there
exists a generically surjective rational mapping ¢ from P" (k) to X. In particular, if there
exists a purely inseparable rational mapping ¢ of degree p from P" (k) to X, we call X
a Zanski surface. By definition, if X is rational, then X is unirational. If n =1, by
Liiroth's theorem, the converse holds. If n =2 and char k = p = 0, by Castelnuovo's cri-
terion of rationality, the converse also holds. However, if n=2 and char k =p > 0, the
converse does not necessarily hold. The first counterexample was given by Zariski in 1958.
We want to know the characterization of unirational surfaces in positive characteristic.

Proposition (Properties of unirational varieties). Let X be a non-singular complete
unirational variety. Then, we have the following:
1) q(X) : = dimension of the Albanese variety of X =0,

2) X is supersingular, i.e. the Picard number p(X) of X is equal to the second Betti
number bz(X) (Shioda),

3) the algebraic fundamental group J'IIIﬂl 8(X) is a finite group (Serre),
4) the order of Ttl"lg(X) is prime to p (Katsura, Crew, Ekedahl).

From the view point of classification theory, we have the following:

Kodaira dimension K(X) p=0 p>0

-00 rational + +
irrational ruled - -

0 abelian - -
hyperelliptic (quasi-hyperelliptic) - -
K3 - +
Enriques - +
1 elliptic (quasi-elliptic) - +

2 of general type - +



where + means that the class contains unirational surfaces, and - means that the class
does not contain unirational surfaces. We have examples of unirational surfaces for the
classes of + sign.

Now we are interested in K3 surfaces. We have the following conjecture to characterize
the unirational K3 surfaces.

Conjecture: (Artin and Shioda). For a K3 surface X, X is unirational if and only if X is
supersingular.

The "only if" part follows from Proposition 2). If p =2, then this conjecture is affirmative
(Rudakov-Shafarevich). Now, assume p 2 3. Let A be an abelian surface. Then for a
Kummer K3 surface Km(A), the conjecture is also affirmative (Shioda). We can give
a new proof of this result, using the locus of supersingular abelian surfaces in the
fine moduli scheme of principally polarized abelian surfaces with level n-structure
(n23, (np)=1).

Let G be a finite subgroup of Autv(A), where Autv(A) is the automorphism group of A

as an algebraic surface. If A /G is birationally equivalent to a K3 surface, we call the
minimal non-singular model of A /G a generalized Kummer surface, and denote it by
Km(A,G). We can classify such subgroups G for p27 or p=0. Assume p 2 7. Then,
we can show that Km(A,G) is unirational if and only if Km(A,G) is supersingular. This
result supports Artin-Shioda's conjecture. In case A 1is isomorphic to a product of two
supersingular elliptic curves, we can show that Km(A) is a Zariski surface, if p & 1
mod. 12, using a result on generalized Kummer surfaces.
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Title: Primality Testing
Author: H.W. LENSTRA, Jr.

Address: Dept. Math., University of California, Berkeley, CA 94720,
USA.

In this lecture an outline is given of the proof of the following theorem, which is due to
Adleman and Huang, after earlier work by Goldwasser and Kilian:

Theorem. The set of primes can be recognized in random polynomial time. The statement
means that there exists a function f: 2 0% 2 0> {0,1} such that:

1) there exists an algorithm calculating f(n,x) in time (log(n+r))0(1);
2) f(nr)=1>=nis prime,
3) there exists ¢ >0 such that:

n isprime = #{r:f(nr)=1 and (logr) < (log n)°}

2% # (r: (log 1) < (log n)°)-

One should think of n as the number to be tested for primality; of r as a long sequence of
"random bits"; of the output "f(n,r) = 1" as " n is prime"; and of the output "f(n,r) =0" as
"I do not know".

In principle, an algorithm as this can be used to test n for primality, as follows. Pick T,
log r < (log n)°, at random; and calculate f(n,r). If f(n,r) =1 then n is prime, and one
stops. Otherwise (if f(n,r) = 0), repeat with a different value of r. If this is done k times,
and each time f(n,r) =0, then it is for large k quite unlikely that n is prime, since by 3)
one expects f(n,r) =1 pretty soon, if n is prime. So in that case one is led to expect that
n is composite. To be sure, one can then run a compositeness test, which has the same
properties as above, but with "prime(s)” replaced by "composite (numbers)”. Such a
compositeness test has been known for a long time (Solovay-Strassen, Rabin).

Goldwasser and Kilian almost proved the above theorem, using the following result:
Theorem. Let ne Z, n > 1, ged(n,6) = 1. Suppose there exist an elliptic curve
E:Y?=X>+aX+b over Z/nZ, a point P=(x:y:1)e E(Z2/nZ), and an integer q
such that

q-P=0=(0:1:0), q>@"+1)>

Then: q prime = n prime.



Proof. Let pln be prime. The image P of P in E(]Fp) is non-zero, so P has order q.
Hence (n'*+1)%< q S#E(IFP) <@Wp+ 1%, so p>+n,and n is prime.

The algorithm of Goldwasser and Kilian now runs as follows. Whenever the algorithm to
be described needs a "random number”, one should use a beginning segment of the binary
representation of r for this purpose; this beginning segment is then "removed"” from r.
This is the only rdle played by r.

Step 1. Draw a,be Z/nZ atrandom, and let E be the corresponding elliptic curve.

Step II.  Use an algorithm of Schoof to determine a number m such that if n is prime
then #E(F )=m,and m < (Vn + 1)’.

Step IlI.  Check whether m factors as m =k-q, where k is the product of all small (<
(log n)*™, say) prime factors of m that one can find, k 2 2, q > (' + 12,
and q is "probably” prime (as indicated by running a compositeness test on
Q).

If m does not factor in this way, go back to step L.

Step IV. Draw P'€ E(Z/nZ) at random (this can be done, if n is prime), until one is
found for which P =k-P' is of the form (x:y:1) (if n is prime this should
happen very soon). Check that qP =0 (if gP#0 then n cannot be prime!).

Step V. Prove recursively that q is prime. (The depth of the recursion is logarithmic,

since q<m/2 g nf2).

If all steps have been completed successfully one announces that n is prime (f(n,r) = 1). If
one gets stuck, one spends too much time, one gives up (f(n,r) = 0).

That this algorithm satisfies 2) follows from the last theorem. The difficulty is to
2

prove 3). This comes down to proving that for prime n there are "many" (2 q I )0(,))
ogn

pairs a,b giving rise to an elliptic curve E for which #E(an) is prime. By results of

Deuring (giving the number of elliptic curves E for which #E(]Fn) equals a given
number) this is essentially equivalent to proving that intervals of the type (x, x + Vx)

contain "many" primes (I—")om) for all sufficiently large x. This is a well known
og X

open problem; so with the present status of analytic number theory the Goldwasser-Kilian

algorithm is not sufficient to prove the theorem. One can prove, however, that the algorithm
15

recognizes most primes, the number of exceptions (to 3)) <x being € x® ° for some
€ >0 and all sufficiently large x.
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To get around this problem, Adleman and Huang consider abelian varieties A over Z/nZ
of dimension 2. If n is prime, then #A(IE'n) lies in an interval of length = 8n>? around

n? ; such an interval, which is like (x,x + x3"4), does contain enough primes for all x, by a

result of Iwaniec and Jutila. This eliminates the analytic number theory problem, but it
creates many new ones. The most serious one is the following: the obvious analogue of the
second theorem above for abelian surfaces has the condition q > (nl/4 + 1)2 replaced by q
> (n”4 + 1)4 ; so the induction is going the wrong way! And in fact, if one uses abelian
surfaces just as Goldwasser-Kilian use elliptic curves, then q will usually be = nz, so
with twice as many digits as n. Adleman and Huang solve this apparently definitive
obstacle as follows: apply the "wrong induction” (replacing n by q) three times, so that
the primality proof for n has been reduced to the primality proof for a number = n¥:a
number that is much bigger, but that has the advantage of being random to a certain extent,
so that one is entitled to expect that the Goldwasser-Kilian algorithm is able to deal with it!

Other problems turn up as well if one transposes the Goldwasser-Kilian method to abelian
surfaces. Here are some changes that have to be made.

In step I, one must now choose a "random" abelian surface. Adleman and Huang do this
by picking f e (Z2/nZ) [X] of degree 6 at random, and letting A be the Jacobian
of Y?* = f(X).

In step II, one must replace Schoof’s algorithm by a generalization to all abelian varieties
that is due to J. Pila.

In step IIT and IV a simplification occurs: one may take k = 1, so that m itself is to be
subjected to the compositeness test,and P =P'.

Step V, as already remarked, should only be applied three times, after which one changes
to the elliptic curve method.

The final difficulty that Adleman and Huang had to master was the proof of 3). The
problem here is the unavailability of results analogous to those of Deuring for elliptic
curves. Adleman and Huang prove rather weak analogues of Deuring's results, which are
just sufficient for their purposes.
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Title: Isogenies of Elliptic Curves
Author: D.W. MASSER

Address: Dept. Math., University of Michigan, Ann Arbor,
Michigan 48109, U.S.A.

Let k be a number field, and for a Weierstrass elliptic curve E : y2 = 4x° - g,X- 8

defined over k write

w(E) = max (h(g)), h(g,), 2)

where h denotes the logarithmic absolute Weil height. We discussed the following results.

Theorem (D.W. Masser, G. Wiistholz). Given an integer d 2 1, there exists an effective
constant c, depending only on d, with the following property. Let k be a number field of
degree at most d, and suppose E, E* are elliptic curves over k that are k-isogenous.
Then there is a k-isogeny between them of degree at most c(w(E))4.

Corollary 1. The number of k-isomorphism classes of elliptic curves over k that are
k-isogenous to E is at most c (w(E))s.

Corollary 2. Each such isomorphism class contains an elliptic curve E* with

w(E*) < c, w(E).

For a prime £ let E , be the group of Z-division points of E, and write G , forthe
Galois group of k(E 1) over k.

Corollary 3. Suppose 2 > c3(w(E))4. Then the action of Gx on Ez is

semisimple. Further, if E has no complex multiplication, the action is irreducible,

This last corollary implies an effective version of a result of Bashmakov. Namely, for

d21,mz21 there is an effective constant C, depending only on d and m, with the
following property. Let P1""’Pm be independent points on E(k) with logarithmic Weil

. . P P
heights bounded above by some U2 1. Let H 2 be the Galois group of k(E v =L ..,
£ P

over k(E,). Then H, is isomorphic to E';‘ provided

Im m
£>Cmax {(wE)*, WENTUT J.



The proof of the main Theorem uses Baker's method in transcendental number theory
applied to the algebraic group ]32 X E*z-
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Title: Supersingular abelian varieties
Author: Frans OORT

Address: Math. Inst., Budapestlaan 6, 3508 TA Utrecht, Netherlands

1. Introduction.

We try to obtain information about moduli spaces of abelian varieties by studying
stratifications. We shall exploit extra structure in positive characteristics.

We mention a general idea:
Strategy: a) Find some "good" stratification A = Wa, o € I; index set partially

ordered by &> B & W, < W_ such that:

B
b) 3! last one W]ast ("easy...?") and

¢) describe every Wa in the neighbourhood of points of Wlml .

We give some properties based on earlier joint work with Tadao Oda (1977), with P. Nor-
man (1980) and with T. Katsura (1985 ~ 1987); we use methods by M. Eichler
(1937 ~ 1955), K. Hashimoto and T. Ibukiyama (1980 ~ 1983), and L. Moret-Bailly
(1981 ~ 1985).

Several ideas of this talk stem from joint efforts with T. Ekedahl (on stratifications), and
with Ke-Zheng Li (on polarized flag type quotients).

Notation: All fields considered contain le.

2. Stratification by p-rank.

Notation: If X is an abelian variety, then f(X) =f, if X[pl(k)= (Z/p)f with X[n] : =
Ker (xn: X - X). Fix ge 2>0, A8 o) ‘\/i = {[(X,..)] | f{X) £ i}. Note that

0<f<dim X (and all values appear), hence V0 c..C Vi c Vm cC..C Vg = 1—"\g .

We say that an elliptic curve E is supersingular, if f(E) =0 (i.e. E has no geometric
points of order p).
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Example: k=k o IF-'p , # {k-isomorphism classes of E | E is supersingular} = h = h(p,1)
is finite, and this number h can be computed as the class number h =H, (p,1) for the

order B =End(E) (for some fixed E) in the quaternion algebra B® Q) = Kp ., ramified
only at p and e (Eichler, Deuring, Igusa).

Theorem (Norman, Oort). Fix g; then
; 1 .
dim V, =2.g(g+1) - (g-i)
(all components have the same dimension, and much more is known).

Problem: Describe the stratification of A, given by the Vs, e.g. (ir)reducible? How do

components fit together etc. ?
We show below (Ekedahl, Oort, unpublished): Fix g=2,fix ne Zzl JJix i=1; then

v S A is irreducible.
21n

1,n

(again: V1 0 is the (coarse) moduli scheme of triples (X,A,0), where dim X =2, f(X) < 1,

A:X 5 X' and o isalevel-n-structure).

3. Stratification by formal isogeny types (fit).

Define the p-divisible Tate group scheme by

Y i
©X:=lim X[p]
1

Following Dieudonné and Manin this p-divisible group scheme can be written up to

isogeny as *rpX ~ (*), over k, where

<oa
(*)=f(G, + G, ) +sG, + ZG(nj‘mj) + G(mj’"j)
i

with n, 2 m, 21, (nj,mj) = 1. Here Ga is a formal group of dimension a, and (Ga b)l

(Serre dual) = Gb . The combination

£((1,0) + (0.1)) +s(L,1) + Z((n,;m) + (m,,n))
J
is called a formal isogeny type. This gives a stratification which (for g 2 3) is finer than the

p-rank stratification.
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Example: g =3 : The strata given by 3-(1,1) and by (2,1) + (1,2) together make V0 C

A, Wesawdim (V ,g=3)= %3 (3 + 1) - (3 - 0) = 3, but by Katsura, Oort (already Oda,
Oort) dim (locus 3-(1,1)) = 2, if A is an isomorphism, so locus 3-(1,1) G Vo‘

Remark/Question: Every fit gives a Newton polygon:

supersingular, s=dimX

N

'\\ordinary, f=dimX

Under specialization, the point on the old Newton polygon goes down. Any fit is "between"
ordinary (f = dim X) and supersingular (s = dim X). If (*) is under (*'), 3?
spezialization Xg"’ X0 such that thE N (*) and 'tPX o VT (*) (ie. can every

plausible spezialization be realized?).

4. Supersingular abelian varieties.

Theorem/Definition (Eichler, Deuring, Shioda, Deligne, Oort). k=k o F o E is

some supersingular elliptic curve over k:
8 TX~gG B~ X & X is supersingular),
b) X(pl=(e)® ©E'= X (& X is superspecial).

Here ap = Ker (F : (Ba - (Em). Note that E is supersingular iff E[p] = o Note that for
g <2 wehave f(X) =0« X is supersingular. But for g 2 3, we have f(X)=0 % X is

supersingular.

Note the curious aspect of the theorem: in general (in char. zero) a splitting of Lie X does not
imply in general any splitting of X, (in char. p) a splitting of 'th or of the p-Lie algebra

Lie X does not imply any splitting of X.
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Remark (Lenstra, Oort): If (*) is afit, (*) # g-(1,1) then there exists an absolutely simple
abelian variety X with 'ch ~ (*) (so supersingular is the only exception!).

2
Notation: d=d(g) = [&]
h(p,):= H1 (p,1) = #{k-isomorphism classes of E | E supersingular}
h (p.g) : = # ({uig = polarization on E®} /=) = H (p,1), g odd

h (p,g) : = # ({Hlh = polarization on EB, Kerpu =E8[p]} /=)= I-Ig (1,p), g even
(B = End (E), Hg(p,l) principal genus, ... etc.).

Wedenote by 4 A‘g . the supersingular locus. One expects:

2
? dim & =d(g) = [&],
# components of A = h(p,g).

Note: For "p—eo”,

h(p,1) ~ p/ 12 (Eichler, 1937),
h(p,2) ~ p-/2880 (Hashimoto, Ibukiyama, 1982),
h(p,3) ~ p®/2°3%57 (Hashimoto, 1983).

Examples: g=1, 7 is OK..
g=2, ? isO.K,; every component Wc 8 A2,l has W (normalization) =
]P], # components = h(p,2); in a fine moduli scheme A2 = A2 . they

intersect like (quite a lot is known: Katsura, Oort):

‘ Ig' \ ACAyin
X ~E?

X £E?

X=E?
# branches=g+1

g=3, 7 is O.K; construct C:=ZX"'+ X2 X2*) c P2, P — C the

P'-bundle given by P = Proj (© & O (1)); there exists a section S <P —C,
s.t. any component Wc 4 © A3 ) is given by , and \pu PoW, q,rp S)=



xu (point); no other curves are contracted for any te C(IF 2); along \yu(Lt)
Y

many components of 4 meet, outside U \{fp(Lt) no other components meet

Wu; if W’~l and Wp_ intersect along (L), = ), then X, 2X . elc.

L, ey WHC,G CA;

Y
/? \ 4

\"'-n-__ 4__—C

Most of these results are derived using (polarized) flag type quotients. Katsura, Li, Oort
hope to be able to show that (?) is correct for g =4.

Remark: A c Ag . (ie. principal polarization) is essential for results as in (?), e.g. the

supersingular locus for g = 3, p3 = degree (A) has components of dimension 3 #2 =
2

Sketch of the proof of "V . Az. in is irreducible”:
a) (ala Raynaud): Show that V in VO,n is quasi-affine (use thesis of Moret-Bailly).

b) (Ekedahl):In & c Ag |, One can connect (B8 A,0) = x, and E:A,o)=x by T,
where y: TN - AcC Ag. n’ \|1(P0) =X w(PN) =x and TN has N components, each

isomorphic to P L

From a) and b) : For all components W of V_ _ there exists some (E8A,00), and & is
1n

connected.

¢) Deformation theory at (E8A), E supersingular, gives the deformation spaces by T =

T,, T
( T: T: ), with le = T21 (without Dieudonné-modules, etc.), and HW =T is the

Hasse-Witt matrix. Conclude: locally at (E%,A,a) = x, we see that V1 is given by
det(T) =0, hence locally at x invertible, and it contains Vo= A. Now this holds at all

superspecial points.



Title: Kolyvagin’s proof of the finiteness of Mordell-Weil and
Tate-Shafarevich groups of certain elliptic curves over Q.

Author: Norbert SCHAPPACHER

Address: Max-Planck-Institut filr Mathematik, Gottfried-Claren-
Strasse 26, 5300 Bonn 3, Germany

Kolyvagin's recent striking theorem was presented following very closely Karl Rubin’s
exposition of it in his preprint (Max-Planck-Institut fiir Mathematik, Bonn, July 1988) of
which we take the liberty to copy the first two (out of 10) pages, as well as the final
bibliography.

Introduction,

This paper gives a complete proof of a recent theorem of Kolyvagin [3,4] on Mordell-Weil
groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic curve defined

over 0, and assume that E is modular: for some integer N there is a nonconstant map
defined over Q

n:Xo(N)—)E

which we may assume sends the cusp e to 0. Here XO(N) is the usual modular curve over

Q (see for example [8]) which over € is obtained by compactifying the quotient /T o(N )
of the complex upper half-plane ¥ by the group

I, ={[23] e SL(@):c=0 (modulo N }.

The points of XO(N ) correspond to pairs (A,C) where A isa (generalized) elliptic curve

and C is a cyclic subgroup of A of order N. Fix an imaginary quadratic field K in which

all primes dividing N split, and an ideal m of K such that O /m = Z/NZ. Write H for

the Hilbert class field of K and x, for the point in XO(N)(EI) corresponding to the pair
(C/O,, m7/0).

Fix an embedding of Q into C; then the theory of complex multiplication shows that
- _ — T
X, € XO(N)(H). Define Yy = Tc(xH) € EH), Yk = TrH /K(yH) € E(K),and y = Ye " Yk €
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E(K), where T denotes complex conjugation on K. Let W Q denote the Tate-Shafarevich

E/
group of E over Q.

Theorem (Kolyvagin [3,4]). Suppose E and y are as above. If y has infinite order in
E(K) then E(Q) and Weq @€ finite.

Remarks: 1. The proof of this theorem given below is organized differently from
Kolyvagin's proof, and somewhat simplified, but the important ideas are all
due to Kolyvagin and contained in [3,4].

2. It is not difficult to show, using the Hecke operator Wy that y has infinite
order if and only if both y, has infinite order and the sign in the functional
equation of the L-function L(E,s)is + 1.

3. The proof will give an annihilator of We o which, via the theorem of Gross
and Zagier [2], gives evidence for the Birch and Swinnerton-Dyer conjecture.

4. Observe that Kolyvagin's theorem makes no mention of the L-function of E.
To relate his result to the Birch and Swinnerton-Dyer conjecture one needs the
following:

Theorem (Gross and Zagier [2]). With E and y as above, y has infinite order in E(K)
if and only if L(E,1)# 0 and L‘(E.xK,l) # 0, where y is the quadratic character
attached to K.

Analytic Conjecture. If E is a modular elliptic curve and the sign in the functional

equation of L(E,s) is +1, then there exists at least one imaginary quadratic field X, in
which all primes dividing N split, such that L'E,,.,1) #0.

This analytic conjecture, as yet unproved, together with the theorems of Kolyvagin and
Gross and Zagier, would imply:

(*) For any modular elliptic curve E, if 1L(E,1) #0 then E(Q) and W are finite.

E/Q

Assertion (*) is known for elliptic curves with complex multiplication, by theorems of

Coates and Wiles [1] (for E(Q)) and Rubin [6] (for LUE.fQ)'
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Lecture 1.

Notation:

K finitely generated extension of @Q;

A abelian variety over K, of dimension g > 0,
2 prime number.

The Tate module V JA is defined as @Q 2 ® lim A [£%), where A[n] is the kernel of
(—
a

multiplication by n in A(K). The Galois group G, = Gal (K/K) actson V A; its image
K 2 &

G, isan X-adic Lie group, contained in GL(V A= Gng (Q o)- Tts Lie algebra ) .

depends only on A, not of K.

The purpose of the lecture has been to state a number of known results on the structure of
G p and 9 .

To state these, it is convenient to introduce the algebraic group H , = Zariski closure of G r
(Conjecturally, the connected component H‘; of H B should be the Mumford-Tate group

M, over Q 2 and there are many cases where this is known to be true, e.g. 5) below).

Results:

1)) H‘; is a reductive group; G, isopenin H, (Q); the Lie algebraof H, is 3.

2) The group [Bm of homotheties is contained in H .-

3) Any Q ‘-endomorphism of V ‘!A which commutes with H; (or 9 2 ) belongs to
Q o ®End, A

4) Therank of Hj is independent of £.

(These results are due to Faltings, Bogomolov, Zarhin and others).

5) Assume a) EndiA=Z .
b) g isodd,or g=2 or g=6.



Then H R is equal to Gszg/(D , » the group of symplectic similitudes, relative to the
alternating formon V A defined by a polarization of A.

In case 5), there is a more precise result (assuming K is a number field): the image of
GK - l;[ Gszs(lD , ) (adelic product) is open. In particular, the Galois group of the

X-division points of A is GSp, (IF,) for £ large enough. (Inthecase g=1,ie. A is
P 28" 2

an elliptic curve, this "large enough" can be made effective).

Note that the analogue of 5) for g =4 would be false, as an example of Mumford shows.
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Résumé de cours au College de France, 1984-1985 (4£-adic)
Résumé de cours au College de France, 1985-1986 (variation with £)

Lecture II.

To study the algebraic group H, = G;lg introduced in the first lecture, one makes use of the
following information:

a) If v isa place of the ground field K (assumed to be a number field), with vI£, then the
restriction of p , o the inertia subgroup Iv at v has a Hodge-Tate decomposition.

From this follows that H R contains (after a suitable field extension) a "half-Hodge"
1. 0
. . 4s s . . g .
torus, i.e. a multiplicative group Gm whose action on V , s ( 0 mg) (where 113 is
the unit matrix of size g).

b) Faltings' theorems tell us that H‘; is reductive, and that its commuting algebra is
]':an]z A®Q v
c) If v isaplace of K with good reduction, and v4 2, then the Tate module V A canbe

identified with V xKv , Where ;\v is the reduction of A at v. This identification is
compatible with the action of the decomposition group D_of v; the action of the inertia

group I is trivial, and D /I = 2 acts via the Frobenius element n of :&v.
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One thus gets an element L of G 2 CH, Q ) which is well defined up to conjugation,
and whose characteristic polynomial has coefficients in Q, and is independent of £. (Since
the T, , are dense in G 20 this gives a strong relation between the p 2's for various £'s).
If ev' , denotes the smallest algebraic subgroup of H, containing LA then Gv' L 18
obtained by scalar extension Q — Q 2 from an algebraic group Gv of multiplicative type,
defined over @, whose character group is the group generated by the eigenvalues of .
These Gv give precise information of H X For instance, if H y is connected (which is

true, e.g., if the 15-division points of A are rational over K), then Gv 2 is a maximal
torus of H, forasetof v of density 1 (this shows in particular that the rank of H, is

independent of £).

Using a), b), c¢) one can determine H , 1n various special cases, and prove in particular
(cf. lecture I) that H .= Gszgm 2 if Endﬁ A=2Z,and g isodd, 2 or 6.

Lecture III.

We study the variation of the Galois group with £.
1) The elliptic case.

Let E be an elliptic curve over a number field K without complex multiplication, i.e. such
that Endﬁ A = Z. It is known (Invent. Math., 1972) that there exists L(E,K) >0 such that,

forall £ > L(E,K), the Galois group G(£) of the 2-division points of E is isomorphic
to GL2 (F 2 ).

Thanks to the results of Faltings, the original proof can be much simplified (and it can also
be made effective, cf. Sém. Th. des Nombres, Paris, 1988). But an even better simplifi-
cation can be made, using the recent results of Masser-Wiistholz. One has to apply then to E
and E X E, both on K and on a quadratic extension of K. More precisely one eliminates

the Cartan subgroups and their normalizers according to the following pattern

E EXE
K split Cartan non split Cartan
K xK normalizer of normalizer of

split Cartan non split Cartan
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2) Group-theoretic preliminaries for handling dim A 2 2.

The main tool is a connection between subgroups of GLN (FF 1) and algebraic groups for N
fixed, and 2 large. By Jordan's theorem, a subgroup G of GLN (F x) whose order is

prime to £ is "almost abelian", i.e. has an abelian normal subgroup C with (G:C) <
Jordan (N), where Jordan (N) is a constant depending only on N (e.g. Jordan (2) = 60).
Hence, the main interest lies in subgroups G whose order is divisible by £; let G* be the
subgroup of G generated by its £-Sylow groups. A construction due to Nori (Invent.
Math. ~ 1986) attaches to G* an algebraic subgroup G+ of GL,, , namely the

subgroup generated by all the one parameter subgroups {e'~}, where X is a nilpotent
matrix with exp(X) e G* (this makes sense if £ 2 N). Nori proves that there is a constant

c(N) depending only on N such that the groups G* and (G**&(F 2))+ coincide, for 2

> c(N). When G acts in a semi-simple way, G*8 i5a semi-simple algebraic group and
(G“a]g (F 1))+ is the image of the rational points of the simply connected covering group of
G+,

This theorem allows us to use the standard methods of Lie theory almost as well as in the
£-adic case.

3) Statement of results.

(The notations A,K, ... are as before. I assume K is a number field, although the proofs
should extend to extensions of finite type of Q).

Theorem. Let p: G, — I;[ G, be the homomorphism defined by the surjective homo-
morphisms P,: GK - Gz Af K is large enough, the image of p is open in l;I Gj .
(i.e. the p I'S are almost independent).

Theorem. There is an exponent ¢ 21 such that p(GK) contains all homotheties in

A
* * .
Z =112 , Whichare c powers.
2

A
(It is likely that p(G,) contains a subgroup of finite index of 2" , but I have not been able

to prove it in general).

36



There are also several results of the "independence of 2" type. E.g. the rank of G 2 is
independent of £, and so is the finite group (G:IB) / (G;lg)o.

Assume now that A has no non trivial abelian subvariety of CM type. Then

a) The set of places v of A where Kv is supersingular has density 0.
b) If x is atorsion point of A of degree d(x), and of order N(x), one has

d(x) >> N(x)** for every €>0,
where the involved constant depends only on AK€,
The proofs of these results have not been published, but a detailed exposition was given at

the College de France in 1985/86; see also the "Résumé" in the Annuaire du College de
France 1986/87, pp. 95-99.
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The subject of the talk was a conjecture and a theorem on the finiteness of Mordell-Weil
groups of universal abelian varieties. One application of the main theorem is a new proof of
Shioda's conjecture [2], first proved in [4], that the Mordell-Weil group of the universal
principally polarized abelian variety (of dimension 2 2) with full level N (2 3) structure is
exactly the group of N-torsion points. For details see [6], and for related results see [1-5].

We first introduce some notation. Suppose V is a real vector space of even dimension,
E is a nondegenerate alternating bilinear form on V, and L is a lattice in V with
E(,L) € Z. Suppose I0 e GL(V), Ig =-1,and E(u, I0 v) is symmetric and positive

definite, and let K' be the centralizer of I, in the symplectic group Sp(V,E).Let G bea

connected, semisimple real Lie group defined over @ and of hermitian type, let K be a
maximal compact subgroup of G, and let p be a faithful representation of G in Sp(V,E),
defined and irreducible over @, and preserving the Cartan decompositions. Let I" be
an arithmetic subgroup of G, without torsion, and with p(I'’)L € L. Let A be the
complex manifold '\G /K and assume either dim A >1 or A is compact. Letting
W =T K L)\ (G/K x V), a fiber space over A, it is possible to realize W as a complex
manifold in such a way that the fiber over I'gK is the abelian variety whose underlying
complex torus is V /L with the complex structure p(g) I p(g)'l, and with polarization
given by E. The manifolds A and W can be realized as quasi-projective varieties. Let A
be the generic fiber. Then A is an abelian variety defined over the function field C(A). We
can now state the conjecture.

Conjecture: HYT',V) =0 & A(C(A)) is a finite group.

To state the theorem, we introduce two other fiber systems over A.Let R=T"\(G/K x V)
and Z =T \(G/K x L). Let S(W) (respectively S(R) ) be the sheaf of germs of

. . w . R
holomorphic sections of the fiber system i (respectively t ), and let S(Z) be the sheaf of

zZ
germs of locally constant sections of i . We have an exact sequence 0 - S(Z) - S(R) —

S(W) — 0 of sheaves over A.
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Consider the diagram:

0 - H'(A, S(Z)) » HA, SR) ) » H'A, sWw)) & H' (A, 5(Z)) — ...
l= Jt Bl =
0- HT,L) > HO(I‘.VQ) - HO(I“,VQ/L) - H'T,L S H\(T, Vg -

where the vertical inclusion f, defined by f(v + L) (I'gK) = (' X L) (gK, v), defines an
isomorphism from H(T, Vg/L) onto HYA, S(W))

torsion
Theorem. A (C(A)) is afinite group < HXT, V) =0 and aoPod=0.
Corollary. HYT,V)=0 and H'T, V) =0 = A (C(4) ) is finite.

The theorem follows from the lemmas below.

Lemma 1. A(C(A))=H%A, SW)).
Lemma 2. A(C(A)) isfinitely generated < H'(T, V) = 0.
Lemma 3. HYT,v)=0= HA, S(R)) =0.
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Dyson's Lemma. Let C be a projective curve of genus g over an algebraically closed
field k of characteristic zero, a,b € C (k) two rational points, x (resp. y) a local coordinate
ar a(resp.b),L aline bundle on CxC,s a holomorphic section of L, and dl, d2 two

positive integers. In a neighbourhood of § = (a,b) write s as a power series

s (x,y) = p a xiyj.
i20 "
20

Definition. The index of s at £ is

t(s8ddy) =sup {t]i/d) +ifd, <t=a, ; =0].
Theorem 1. Ler F =x,xC and F,=Cxy, .Choose m points ﬁl,..., ém on
C x C. Assume that
1) L.F1 < d1 , L.F2 < d2 .

il) s does not vanish identically on a fiber of one of the projections from CxC to C.

Let e be the maximum multiplicity of a component in div(s). Then

LL e¢LF
—_— +

Ad, 24,

m
LY @(¢sk.,d,d)s max(0,2g-2+m) .
2 i=1 12
To prove Theorem 1 one reduces to the case d, =d, by considering finite covers of C
ramified at a (resp. b). When d ; =4, the index is the multiplicity of the exceptional fiber

of the blow up of Cx C at § in the divisor of s (pulled back to this blow up).

Proof of Mordell's conjecture (sketch):
Let B be a smooth projective curve over k, F the function field of B, X — B a semi-
stable curve and C=X ® F; put g = genus (C).



Step 1: Assume g2 2. Let PP, : Cx C > C be the two projections, ® the sheaf of
differentials on C, and r>1 a rational number. Let A € Cx C be the diagonal and define

Y=(-V8)/2 §=1/Qg-2)"Vg + 1

a1=\](g+8)r a2=\J(g+8)/r.

L=0(A+(, -1)p, @)/ Qg-2)+(@,-1)p, @)/ (2g-2)).

Proposition 1. If r>2g(2g-2)/8, L is ample. (Proof uses Nakai-Moishezon).

Step2: Let :W=Xx X—>5B and V =q'1(b0) afiberof g, b20, d>0 integers, A
B
the closure of A, Q = Oy m the relative dualizing sheaf.
B =0(d(A+@-Dp(/Qg-2)+@,- 1) p, (A/Cg-2))).

Proposition 2. Let r be as in Proposition I and b > ¢, NT/8 (where c is a constant

depending on X). Then, for d large enough, HA(X, B) # 0. (Proof uses Riemann-Roch).

We shall apply Dyson's lemma to a section s of & with dl = dal and d2 = daz.

Step 3. According to Mumford there is a finite partition of C (F),

C(F)=SIU WU Sk
such that, if a,b lie in the same Si , the corresponding points in the Jacobian of C (by the
map a — [a] - [w] /(2g - 2) ) have a "bounded angle”. In particular if E . (resp. Ez) is
the closure of a (resp. b) in X, one gets a bound on El. E2 , hence abound on E. &5,

where E = p;' (El). p;(Ez) isacurve on W,

Step 4: Using the inequality from Step 3, the geometric construction describing the index

(extended over B), and intersection theory on the appropriate blow up, one gets a lower
bound for t(s, &, da , da,), when £ =(ab), a and b lying in the same set S..

Step 5: Combining this lower bound with the upper bound coming from Dyson's lemma,
one gets that, if the height h ) of a is bigger than the height h2 of b, there is an explicit

constant ¢ such that
h2 <h S ch2 .

Therefore each Si is finite and C (F) is finite. Furthermore, the number of elements in
C (F) can be explicitly bounded.
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Let p be a prime number. Let R be a domain with fraction field E of characteristic 0. Let

E be an algebraic closure of E and R be the integral closure of R in E.Let % be an
abelian scheme over R. Then one constructs a R[1/p]-algebra B]UR and a natural iso-
morphism:

. " »
i+ Hpg (%) @ Bpg = Hy (% Q)@ B
P

RR"

DR = B de Rham" is

in case where R is a complete discrete valuation ring of characteristic (0,p) with perfect

The construction of BE/R runs as Fontaine's construction of BDR (B

residue field). Given an integer m 2 1 one shows there exists a R-algebra 'd3m which is a

) —
p-adic infinitesimal thickening of the p-adic completion R of R of order m, and which is
+

R/R
. = +
and if te Tp(Gm) F,t=20, BE/R = BR/R [1/t]. The

universal for this property. Setting B = '(Bm[llp] and B, = lih%n B _, one has an

+

RR
isomorphism i of the p-adic comparison theorem is defined using the universal vectorial

embedding of Tp(Gm) (F) in B
extension & of %.

2
The powers of the kernel of B:UR—) R [1/p] define a filtration on B;/R JIf R [1/p] is

smooth over a local field of mixed characteristic (0,p) with perfect residue field, the

+

RR
= dimensi _oh od(mt it ot N
(d = dimension of R [1/p] ). If S_ llm gr (BR/R) where gr (BR/R) —5 gr (BKJR) is

1€
induced by multiplication by t, one has

8
graduate ring of B_ _is a formal series ring of d + 1 variables with coefficients in R [1/p]

j =iy o .
He (%, Q) %p S_= So H'(X,.Q%) % S_(-).

When d =0, one recovers Hodge-Tate decomposition. When d 2 1, one recovers Hyodo
"Hodge-Tate decomposition”.
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Furthermore, the Galois group G = Gal (E/E) acts on B and under certain hypotheses
G
on R one has BI_UR =R [1/p]. One constructs a derivation Bin - Bi/R % QllUO and the

isomorphism i is compatible with the Gauss-Manin connection (here one follows Faltings
paper on Hodge-Tate decomposition for p-adic representations associated to modular

forms).
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We fix a number field K, an abelian variety A of dimension n defined over K and a
prime number £. We denote by nt the Galois group Gal (K/K ) and put

‘em —
JmA :=Ker (A= A) (Q),

TJ(A):=E2mA'

A homomorphism A" — A inducesa homomorphism of Galois-modules

Hom (A”, A) ®,2, < Hom (T,(A"), T,(A).

Tate proved the injectivity of this homomorphism and conjectured its surjectivity.
Furthermore he proved that his conjecture is implied by the following statement due to
Lichtenbaum.

Hyp (K,A,d,£): Given an abelian variety A of dimension n defined over a number field
K,aprime £ andaninteger d 21 there exist only finitely many abelian varieties A" over
K such that

i) there exists a polarization y of A® of degree d2 defined over K,

(i)  thereexistsa K-isogeny ¢: A  — A with

deg ¢ = £™, for some m2 1.

This hypothesis was proved by G. Faltings in 1983. It is also implied by the following
Theorem proved by D.W. Masser and the author.

Theorem. There exists an effectively computable constant C >0 depending only on the
height h(A) of A,dim A and the degree of K over N with the following property. If
A’ is an abelian variety over K isogeneous to A over K then there exists an isogeny
¢:A‘ — A over K with

degdp<C.



The proof goes as follows: Let ¢ be a minimal isogeny from A" to A. Then ¢ induces a
period relation and this can be used to define a homomorphism

¥ AT, AT

The graph T < AT x A" isan analytic subgroup. Now we apply transcendence technics
and an effective version of the author's analytic subgroup theorem leads to an algebraic
subgroup HC I'. One then shows that H=T" and that the degree of H can be bounded by
a constant as described in the theorem. Thus we can bound the degree of I". But now it is
easy to get an isogeny from A to A using I' of bounded degree and to bound finally the
degree of ¢.

Remark: Of course, this theorem gives another proof of the Mordell conjecture and again a
proof of Siegels theorem using diophantine inequalities.
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