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Tide: Green Junctions, regularized determinants on curves, and
theta Junctions

Author: lean-Benoit BOST

Address: ENS, 45 rue d'Ulm, 75005 Paris, France

Let X be a eompaet eonneeted Riemann surfaee, of genus g;;:: 1. Using the Arakelov .

Green funetion G of X and the theta funetion of the jaeobian of X, Faltings defines

metries on the detenninant of the eohomology of Hne bundles over X, and a new invariant

Ö(X) (e lR) of X ([F]). We discuss some relations between G, the theta funetion, Ö(X),

the Faltings metrics and the regularized detenninant of the Laplace operator. These extend

classical fonnulae on elliptie funetions (recovered when g=1).

Theorem 1 ([B]). There exists A (X) such thatlor any (x,y) e X2
, x*" Y

log G (x,y) = ir flOg 1Ii}1I ~8-
1 + A (X) .

g.
S+x-y

In this formula, e is the theta divisor in Pie 1(X)' !Ii}II is the funetion Pie l(X) ~ IR
g- g- +

defined in [FJ, and Il the translation invariant (1,1) fonn on Pie 1(X) Poinear6 dual to B.
g-

Theorem 2 ([B]). Suppose g = 2 and denote

p = {even theta eharaeteristics} c Pic
l

(X)

1I~211 = 2-12 rr 1!i} 112 (M)
Me'f

IIHU = exp [i . flog lliH11l
2
].

Pic1(X)

Then 0 (X) = - 1610g (2n) -log IlA
2

11- 4 log IIHU.

If ~ is a holamorphie vector bundle on X, and if ~ and OOx are equipped with 'C
oo

hennitian metrics II.II~ and 1I.1I
00x

, we define the Quillen metric on det Rr (X;~) as in [D],

§1.2. When COx is equipped with the Arakelov metric 1l.11
A

(ef.[F]) and ~ = C9 is equipped

with the trivial metric 11.11
0

(11111
0
= 1), we denote, using the notations of [D],§1.2:

det'(d*d)A = det'd*d;
A (X) = <1,1> .

C"'(X)
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Theorem 3 (compare [D] - [ABNMVJ). Let ~ be a Une bundle on X, and II.II~ a

smooth admissible metrie on ~ (cf.[F], §3). Denote 1I.lIp the Fa/tings metrie on

det RT(X;~) assoeiated to II.II~ (cf.[F], th.1 and pAOI), and denote II.II
Q

the Quillen

metrie on det RT(X;~) defined using the metne II.II
A

on O)x and the metric 1I.ll~ on ~.

We have:

Theorem 4.

[
det'(d"*d)A]

Ö (X) = -6 log Ä(X) + (2-2g) M - 2g logr'where

M = 24 ~'(-1) - 3 + 4 log 2.

This result is closely related to a conjecture of Gillet and Soule. 118 proof uses a joint work

with J.M. Bismut, wbere we study tbe Quillen metric for degenerating families of complex

curves.
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Title: Solvable lattice models and affine Lie algebras

Author: Etsuro DATE

Address: Dept. Math., College of General Education, Kyoto University,

Kyoto, 606 Japan

This talk is based on our work at Kyoto with M. Jimoo, A. Kuniba, T. Miwa and M. Okado.

We are studying solvable lattice models in 2-dimensions, and are interested in their

connection with the representation theory of affine Lie algebras. We calculate local state pro­

babilities of solvable lattice models by employing Baxter's corner transfer matrix method. In

the course we encounter the quantity which we call1-dimensional (10) configuration sumo

One of our results is that these 10 configuration sums are identified with the string functions

or the branching coefficients in the representation theory of affine Lie algebras. The latter are

known to be modular forms (of one variable). Thus we have the modular property related to

affine Lie algebras in the theory of solvable lattice models.

A 2-dimensionaI lattiee statisticaI model on a 2·dimensional square lattice ~ is defined by

giving the following data

(i) Fluctuation variable cr on eaeh bond and/or site with values in same set !J (these are

called Ioeal states).

J:1.
(ü) Boltzmann weight for each eonfiguration of local states around avertex a. + v H

ß
W(aßJlv) (vertex model), or around a face JJ~ H W(abed) (faee model), or a

mixture of these.
site (vertex)

I

With these data we have a statistical model on the lattiee Z;. Boltzmann weights describe

interaetions of local states (here we are considering the simple eases of interaetions).
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One of the goals of the statistical mechanics is to calculate macroscopic quantities (like the

probabilities of the occurance of specified configurations) from the knowledge of the

microscopic quantities (like Boltzmann weights) in the limit I~ I --+ 00 (the thennodynarnic

limit). One of such is the loeal stare probability (LSP) (for face models) (or I-point function)

P(a) = Prob (0"1= a), that is, the probability of finding configurations such that the local

state at a specified site 1 takes a given state a. By Boltzmann's principle, this may be

eva!uated as

4

P(a) = lim!. L ö(0" 1 = a j n W(O"'O"'O"k0"1)'
I~I-+oo Z f" t': 1 Jcon 19uratlons J.aces

ioj
1 k

where Z = :E rr W(O"'O"'O"kO"I) is the partitionfunction. While taking the limit
configurations faces 1 J

we fix the local states on boundaries of Z; to be in a ground state. This is a configuration

of local states that contributes to the partition function Z most

For general (arbitrary) Boltzmann weights this calculation is very difficult to get limit.

Therefore the fIrst task is to single out a I?ice class of lattice models for which we can, at

least, calculate Z or P(a). Through the works of Onsager, Haxter and others, the impor­

tance of the Yang-Baxter equation (YBE) (or the Star-Triangle relation (STR) depending on

the context) in this eontext has been recognized. The YBE (for the vertex ease) for linear ope­
rators WYV' ete. is the eondition of the eomrnutativity of the following diagram:

V®V'® V"

Wvv7 ~V'V"(V)

V'@ Vfl; V" V® V"@ VI

1~ Wyy.. (u+v)

VI®V" ~V V" ®V®V'

wv'V"(~ ~vv(U)
V"®V'~V

Here V, V', V" are vector spaees. Matrix elements of these WyY' ,ete. give us Boltzmann

weights. Here we allow that the operators Wyy" ete. depend on an extra parameter U E [:

(spectral parameter). In other words, we eonsider I-parameter family of lattiee models. We

call the models defined through solutions of the YBE (STR) solvable models.



There are several known solutions of the YBE. Here we take solutions related to affme Lie
algebras A~), B~) , C~) , D~) fouod by Bazhanov, Jimbo and others. For simplicity, we

consider the ease A~) in the following. From this solution we construct a vertex model

whose local state takes values in the set of the weighls 0/ the vector representation of
1 n

S ./(0+ I, [:), e 1 = {"o" .. ," }, ". =E. - - L E, (EO, ... ,E ONS) and whose
n, nIl n+ 1 j=O J n

Boltzmann weights are given by the matrix elements of the solution of the YBE of this case.

Boltzmann weights depend on two parameters W,x (w being a multiplicative spectral

parameter). This model can be also formulated as a face model whose set of loeal states

consists of level 1 weights 0/ the affine Lie algebra A~). As for the explicit form of the

Boltzmann weights ofthis model we refer to [1].

We calculate the LSPs of this face model. For this purpose we apply Baxter's corner transfer

matrix method (for which we refer to Baxter's book "Exact1y solved models in statistical

mechanies" Academic 1982). This reduces the calculation of the LSPs which are in its

original form a sum over 2-dimensional eonfigurations (on a 2-dimensionallattice) to ID

configuration sums. This is a great simplification. Let us consider in the parameter region

x=O, Iwl<l. As a result of the application of the corner transfer matrix method we are lead to

the ID configurarion sum of the form
l:.~ jH (11 U). "U+1))

f (Y,11;Q) = L q J-l ,
m

where y E the weight lattice of s.J(n+I,[), ,,(m+l) =", and "(l),... ,,,(m) ron over 8
n,l

with the eondition ,,(I)+...+,,(m) =y. Tbe function H is given by H(" ,Tl ) =0 if J..L < v, I
Il v

if J..L ~ v, where ",,, E e l' In this parameter region x=-' 0, Iwl<l, ground states are
Il v n,

eonstant on the NS-SW direction, and are labeled by the fundamental weights A. of ~).
1

Thus they are given by I-dimensional sequences of weights of level 1 PA = (pX1, (pX) =

A--.1-' A = A and m signifies m (mod.n+1).
Il+J- Il

This ID eonflguration relates to the string funetion of A~) in the following way. By parh

p =(p(j)), j~l we meau a sequenee of Iocal states such that "U)(p) =p(j+l) - pU) E e =
n,l

("O'''''''n}' Let A be a fundamental weight. We set

P(A) =~o p(m) (A), p(m) (A) =(P I pU) =p~ j ~ m+1}

and define the degree of a path p by
00

reep) = ,1: j (H("U) (p), "U+l) (p) ) - H("m (PA)' ,,0+1
) (PA) )).

J=1

Let "E h* (h: the Cartan subalgebra of ~1)) and Ö be the null root of ~1). We further

define
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P (1\) = (p E P(1\) I p(I) - o>(p) Ö=Jl}, p(m) (1\) =p(m) (1\) (l P(1\) .
J.1 J.1 J.1

Then we have by defmition

q~CJ)m(A) f (p(m+l) _a, ,,(m+l) (p ); q) = .i: # (p(m) (1\) . ) qi,
m A A 1=0 a-15

0> (1\) =.~ jH ("m (p ),,,G+l) (p »).
m J=1 A A

Let L(1\) be the irreducible highest weight module with the highest weight 1\ and set

L(1\) = (v E L(1\) Ihv =Jl(b)v for h Eh). Then our theorem is
J.1

Theorem. dirn L(1\) =# (P(1\) ).
J.1 J.1

We conjecture that tbis kind of equalities holds for other solvable vertex models related to

affine Lie algebras and higher representations (for the precise statement we again refer to

[1]).

As a result we have

lim -CJ)m(A) f «m+l)_ n(m+l)( ). ) =~ d' L(1\) iq PA a"1 PA ,q ~ 1m .<::q.
m~ m .ll. n i a-l0

The right band side is nothing but the string Junetion of Kac-Peterson. They showed string

functions enjoy nice modular property. Finally the LSP itself is given as

P(alA) =L dim L(A) '1: x-<a-iS,p> / L dirn L(1\) x-<J.1,P>, p =Ao+...+A .
i 8-lu Jl J.1 n

There are also face models related to these vertex models whose local states are dominant

integral weights ofa[ued level (say 1) and whose Boltzmann weights are parametrized by
elliptic theta functions. The lD configuration sums X of these face models are obtained

m

from those of vertex models by folding them by the action of affme Weyl groups. Their limit

coincide with the branehing eoeffieients for the pairs of affine Lie algebras, like

(~1) EB ~1) , ~1». Namely we consider the tensor product L(;) ® L(T), where ;,,, are

dominant integral weights of level .t-1, 1, and decompose it by the diagonal action. In tenns

of characters this arnounts to x~y =L b.e..,.. X (level a =.t). The limits of X 's coincide
..,''''' a ""1

8 a m
b~ 'So..,,,a

6
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Title: Hecke action on the component groups 0/ the Neron model

0/ the Jacobian 0/ a modular curve

Author: Bas EDIXHOVEN

Address: Math. lnst., Budapestlaan 6, 3584 CD Utrecht, Netherlands

Pour N un nombTe enrier positif soit Xo(N)(J 1a eourbe modulaire sur l1J parametrant 1es

N-isogenies eyeliques entre eourhes elliptiques, et Jo(N)GJ sa jaeobienne. L'algebre de

Hecke agit sur Jo(N)1J donc aussi sur son modele de Neron Jo(N) sur ~. Soit p un

nombre premier et <I>N,p 1e groupe de composantes de 1a fibre geometrique Jo(N)p de Jo(N)

en caracterisrique p.

Dans cet artic1e nous demontrons que pour p > 3 l'action de l'algebre de Hecke sur <I>N
,p

est "Eisenstein". Ce1a veut dire que pour tout nombre premier 1 ne divisant pas N l'opera­

teur de Hecke T,l agit sur <I>N.p par multiplication par 1 +1 (cf. [Ma], p.95). Ce resultat

est une generalisation d'un theoreme de K. Ribet [Ri 1], [Ri 2] (Theorem 2.24), qui prouve

1e meme resultat en supposant que 1a valuation de N en pest au plus 1. Adire vrai, Ribet

prouve son theoreme aussi pour p = 2,3. Parce que dans ce cas 1a methode de Ribet est plus

effieace nous nous restreindrons au eas p > 3.

POllT prouver son theoreme Ribet uti1ise 1a description donnee par A. Grothendieck [Gm 1]

des groupes cIl
N

en tennes de l'aeeoup1ement de monodromie sur le groupe de earacteres
,p

de 1a partie torique de 1a reduction (semistab1e) de Jo(N) sur ~p' En se servant des resultats

de [Oe-Ra] sur 1a reduetion de Xo(N) modul0 p il obtient une description combinatoire de

<1>N en tennes de points supersinguliers en caracteristique p. Ce qui reste a10rs a
,p

d6montrer est une proposition sur 1es automorphismes des eourbes elliptiques super­

singulieres.

Comme 1a methode de Ribet ne marche qu'en cas de reduction semistab1e nous nous servons

de 1a description donnee par M. Raynaud [Ray] des groupes <I>N en termes de mode1es sur
,p

~ des Xo(N)1J qui sont reguliers. De tels modeles sont eonnus dans le cas Oll la valuation

en p de Nest au plus 1 [De-Ra], et dans 1e cas Oll p > 3 [Ed]. Pour 1 un nombre
premier ne divisant pas N il faut montrer que l'operateur de Hecke T,l est dtfini en tennes

des deux morphismes standards de Xo(Nl)1J vers Xo(N)[J' Afin de calcu1er l'action de T,l

sur <I>N naus etendons ces deux morphismes acertains modeles convenables sur ~ . Ces
,p p

calcu1s nous conduisent ademontrer 1a proposition (deja pmuvee par Ribet dans 1e eas super­

singulier) mentionnee plus haut (cf. Lemme 2 de (4.2) ).

8



L'interet de ce theoreme de Ribet est le röle qu'il joue dans [Ri 2], ou il est demontre que la

conjecture de Taniyama et Weil implique ceUe de Fennal. La question sur la generalisation

traitee dans cet article semble avoir ete posee par Mazur lors d'un expose de Ribet sur [Ri 2].

Signalons toutefois qu'il reste encore ageneraliser aux cas p = 2,3.

TI est peut-etre utile de remarquer que dans la demonstration que Taniyama-Weil implique

Fennat [Ri 2] on n'a hesoin que d'une version faible du theoreme de Ribet. Cette version dit

que l'action de l'algebre de Hecke sur le sous-groupe de q-torsion de <I>N est Eisenstein
,p

pour tout nombre premier q > 3. D'apres Mazur et Rapoport [Ma-Ra] ce sous-groupe est

cyclique et on a un generateur explicite: c'est un multiple de Z - Z' (dans leur notation). TI est

tres facHe de calculer l'action dlun T.t sur Z - Z'. Malheureusement H faut aussi remarquer

quIll y a quelques petites erreurs dans les calculs de [Ma-Ra] (cf. (4.4.1) ), mais l'argument

de cet alinea reste valable. Bien snr, il nIest pas utile d'affaiblir le theoreme de Ribet quand il

slagit des conjectures de Serre.

J'aimerais remercier K. Ribet de m'avoir demande si la generalisation de son theoreme 6tait

vraie, de m'avoir envoye une version preliminaire de son article [Ri 1], de m'avoir stimul6

d'ecrire ce texte, et de ses conunentaires.
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Tide: The Schottky Problem

Author: Gerard VAN DER GEER

Address: Math. Inst., Amsterdam University, Roetersstraat 15,
1018 WB Amsterdam, Netherlands

The Schottky problem asks for characterlzations of jacobian varieties among all prlncipally

polarized abelian varieties. Schottky worked on this question (which goes back to Riemann

(1857) ). This talk deals with a set of possible answers - most of them recent - all related with

Schottky's original approach.

Let (A,S) be a principally polarized abelian variety (ppav) over a field of characteristic i:- 2.

Let L = C9 (8). Let T be the theta group of L~2. The space HO (A,L~2) has dimension 2&.
After choosing an isomorphism of the theta group T with the Heisenberg group which is the

identity on the scalars k* we can identify this space with the Schrödinger representation U
g

of the Heisenberg group H = H(g). (Here g = dim (A)). In particular, we have a canonical

basis i) , Cf e (~n)g (the so-called second order theta functions).
CJ'

The seetions of L ~2 define a morphism

FA : A ~ lP CUg).

If the theta divisor 8 is irreducible then the degree of FA is two and the image of FA is the

Kummer variety of A.

Let A (resp. A (2,4) be the moduli space of ppav (resp. ppav with an isomorphism of T
g g

with H) of dimension g. We have amorphism

F: A (2,4) ~ lP(U ) with F([AD = FA (0).
g g

Let RA (resp. RA (2,4)) be the moduli space of principally polarized abelian varieties of
g g

dimension g (resp. the same with an isomorphism of T with H) plus a non-zero point of

order 2 (resp. of order 4). There is a natural morphism

G : RAg (2,4) ~ IP(Ug_l)

which gives for an abelian variety A plus same strocture the position of the image of the non­
zero point of order 4 (say b) under FA . This point lies in a fixed space lP(U ) of 2b in

g-1

T/k* == A[2].

Forgetting the level we find morphisms

f':A ~IPCU)/Gg g g

G' : RA ~ IP CU 1) I GI'g g- g-

where G is the Galois group of A (2,4) over A .
g g g

1 1



In case A is a jacobian Jac(C) something special hapPens. Let a be a non-zero point of
-

order two and let C -+ C be the associated double cover. If P = (ker [ Nm:Jac (C) -+

Jac (C)Do is the Prym variety of C-+ C (this is a ppav of dimension g-l if g =genus of

C) then

1 2

G'([A,a]) = P'([PD. (Schottky-Jung) .

Schottkyls idea was that this should only happen for jacobians. More precisely, one defines a

Schottky locus in RA by
g

RS : = GI-] (Image of Pi),
g

and similarly, one defmes a Schottky locus in A by
g

S = ([A] E A : \r/ a E A [2], a:;t{), [A,a] E RS ).
g g g

Let J be the (closure of the) jacobian locus in A . It is known that J is an irreducible
g g g

component of S (by van Geemen) and that RJ (jacobians with a non-zero point of order
g g

two) is an irreducible component of RS . One conjectures J = S (which would give an
g g g

answer to the Sehottky problem). Donagi showed that RS contains other eomponents than
g

just RJ . In order to state a precise eonjecture, frrst note that the Satake compactification of
g

RA has three irreducible boundary eomponents (isomorphie to A ]' RA l' A 1 and
g g- g- g.

denoted by rJ, an and am). Donagi conjectured that in a toroidal compaetifieation RA of
g

RA one should have:
g

-- -- 1-- -- - --
Conjecture: RS = RJ u a RA u (RC x A 5) U (UI,....4 RJ k X A k)'

g g g g- a..::;. g-

where RC is the closure of the locus of intennediate jacobians of eubie threefolds with an
"even" point of order two.

The philosophy here is simply that one throws in at the right hand side everything that one
knows of as being contained in RS . (One is willing to adapt the conjecture if there turns

g

out to be more!) However, the merit of this conjecture is that it implies various other conjec­

tores marle in relation with the Schottky problem and explains their relationship.

The flfSt Corollary of the Conjecture is : S = J .
g g

By looking at the boundary of the moduli space one finds the following conjectures. Defme

r 00 = (s E If(A,Le2) : mo(s) ~ 4},

where ffi
O

denotes the multiplieity at the origin. Let Ver(0) be the set of common zeroes of

the sections of r00' One assumes e to be irreducible.

1) If A =Jac(C) then V(rcxI =C - C for g~ (plus two points if g=4).



2) If A is not ajacobian then V(r~ = {O).

3) If A = Jac(C) then FA(A) fl F(Ä
g

(2,4) ) = FA (~C-C) ).

4) If A is not a jacobian then FA(A) fl F (Ag (2,4) ) = FA(0).

5) Let C~ C be a double unramified cover with Prym variety P. Both P and Jac(C)

map to IP(Ug~I)' the OOt by FA and the second by FJSC(C) followed by a projection.

The intersection of the images is the image of S2C/i with i the involution associated
....

toC~C.

Tbe bebaviour at 'if gives 1) and 2), the bebaviour at aill gives 3) and 4), while the

behaviour at aII gives 5).

Conjectures 1),... ,4) were already made several years aga in [vG-vdG], independently of the

above approach. Their status is : 1) is now Welters' theorem; 2) is true for the intennediate

jacobians of cubic threefolds (Donagi-vdG) and for g~14 we know that Ver00) is finite for

the generic abelian variety [B-O-O-vdG]; 3) is known for g=3 [vG-vdG] and for g=4

[Donagi]; 4) is known for g=4 [Donagi]. These results give evidence at the boundary for

Donagi's Conjecture.

One can also consider infinitesimal versions of conjecture 2). This leads to : (assume k = [)

Conjecture: An indecomposable ppav is a jacobian if and only if we have a differential

equation of the fonn
4 -(Dl + lower order terms) i} (t,z)lz=O = 0,

where 0i + ... is a polynomial in constant vector fields with D
1

'# 0 and ~ is the vector of

theta functions i) (t,z).
o

This conjecture is stronger than Novikov's Conjecture which one gets by replacing (Di + ... )

by a specific polYnomial
4 2

01 - 0103 +02 + d.

(The K-P equation). This conjecture was solved by Shiota (in the affinnative sense).

The above conjectures are also related to trisecant properties of the Kummer variety. Other

relations can be obtained by studying r 00 as A teods to a rank-I degeneration.

1 3
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Address: Dept. Math., College 0/ General Education, Kyushu Uni­

versity, Ropponmatsu, Fukuoka-City, 810 Japan

AlM: To give a general method how to get explicit automorphism groups of

all JX>sitive definite quadratic, hennitian, or quaternion hermitian

fonns in a given fixed genus.

MOTIVATION: Theory of supersingular abelian surfaces Ichar. p developed by Kat­

sura-Oort. The above method was applied to this case where positive

definite binary quaternion hermitian fonns are concerned.

1. Supersingular abelian surfaces.

-
Let E be a supersingular elliptic curve / lF and put D = End(E)® dJ. D is the definite

p ;Z

quaternion algebra I lIJ with discriminant p.oo. The theory of supersingular abelian surfaces

(i.e. those A S.l A -- E2
) is more or less connected with the following group G:

G = { gE M
2
(D) : gtg = n(g) 11

2
, n(g) E dJ>O ).

We consider three subgroups of GA ofthe form

U = G x (Il U ) x P,
00 'P1' q

where U = G (\ GL
2

(<9 ) (<9 : maximal order of D) and P = U 0' U I or BeG
q q q p, p, p p

(the standard parahoric subgroups of G ).
p

15

()------()

U Bp U
p.l P ,0

U I = G (\ GL
2

(<9 )
~ p p

We denote these groups by \1.
1
' 'U. 0' B according as P = U 0' U 1 ,B . Each group

p. p, p

'U. )' or \l 0 corresponds to principal, or non principal genus of maximal lattices in 0 2
,

respectively.

1) (Serre) (principal polarizations on E2
) / Aut (E2) == \1.) \ GAI G (bijective).



Problem 1 :
Problem 2 :

2) (Katsura-Oort) (the set of irreducible components of A
s

) == ~o \ G) G ,where A
s

is the locus of supersingular abelian surfaces in A2.1'

3) Take a component V of A
s

which corresponds to ~o h G, and principal polarization

C on E2 which corresponds to CU 1gG. Then, (E2,C) is on V, if and only if

~ 0 h G () ~ 1g G ~ 0. B \ GAI G has also some geometrical meaning, but omitted

here.

Not only the class number of ~ (Le. the number of double cosets in ~ \ GAI 0), but also

the unit group of each class has geometrical meaning. Here, for the decomposition GA =
U~ g.O, r.: = g·I· 1 ~ g. () G is called unit group. For example, Aut (E2,C), or

1 1 1

decomposition group of V in A
2

2 is given by the unit groups of ~ 1 ,or CU 0 '
,I,

respectively.

2. Number theory (new mass formula) •

We consider the following general problems:

Let D be either the rational number field, a imaginary quadratic field, or a definite quaternion

algebra over IIJ. Let V be a finite dimensional vector space / D and take a (hennitian) metric

h with respect to the unique positive involution of D on V. We assume that h is positive
definite. From a given genus ~ of C9-lattices in V, denote by L

1
,.•• ,L

H
a set of complete

representative of classes in ~,and put r. =Aut (1...) (metric preserving automorphisms).
1 1

Calculate H.

For a given finite group r, count the number of r. such that r. == r.
1 1

1t is more or less known how to solve Problem 1 (Eichler, Selberg, Tamagawa, Hashimoto).

The method is trace formula, or a kind of mass fonnula. But Problem 2 is fairly different

from Problem 1 in nature. Roughly speaking, Problem 1 is a problem on linear represen­

tation, but Problem 2 is on permutation representation, and permutation representation is not

determined by linear representation attached to it. So, we need a new fonnula, which is a

generalization of known formula by Hashimoto. Let r be a natural number. Embed G

diagonally ioto GT and regard G as a subgroup of GT
• For y E OT, denote by (y) G the G-

conjugacy class of y. Put

1 6



Theorem. There is a fonnula whieh teHs us how to ealeulate m ({Y}o' ~). Vsing this

"new" masses, we ean solve Problem 2 by some induetion steps. (We omit details here).

For example:

Theorem. As for \1.
0

in §1, r/{±l} is isomorphie to one of the following groups:

2{I} :~n, ~/3, ( ~/2) , 8
3

, A
4

, 8
4

, D
12

, As.

For a11 p, the number of r. S.l. r. == r (r : one of the above) is explieitly given. (For
1 1

pS 31, this was obtained by Katsura-Oort by a geometrie method).

1 7
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Let k be an algebraically closed field of characteristic p, and let X be an algebraic variety

of dimension n over k. X is called a rational variety, if X is birationally equivalent to

the projective space IP 0 (k) of dimension n. X is called a unirational variety, if there

exists a generically surjective rational mapping <p from IP o
(k) to X. In particular, if there

exists a purely inseparable rational mapping <p of degree p from IPn (k) to X, we call X

a zariski surface. By definition, if X is rational, then X is unirational. If n = 1, by

Lüroth's theorem, the converse holds. If n =2 and char k =P =0, by Castelnuovo's cri­

terion of rationality, the converse also holds. However, if n = 2 and char k = P > 0, the

converse does not necessarily hold. The frrst counterexample was given by Zariski in 1958.

We want to know the characterization of unirational surfaces in positive characteristic.

Proposition (Properties of unirational varieties). Let X be a non-singular complete

unirational variety. Then, we have the following:

1) q(X) : =dimension of the Albanese variety of X =0,

2) X is supersingular, i.e. the Picard number p(X) of X is equal to the second Betti
number b

2
(X) (Shioda),

3) the algebraic fundamental group ~g(X) is a finite group (Serre),

4) the order of ~alg(X) is prime to p (Katsura, Crew, Ekedahl).

From the view point of classification theory, we have the following:

Kodaira dimension K(X) p=O p>O

-00 rational + +
irrational ruled

0 abelian
hypereil iptic (quasi -hypereil iptic)
K3 +
Enriques +

1 elliptic (quasi -ell ipti c) +

2 of general type +



where + means that the elass contains unirational surfaees, and - means that the elass

does not eontain unirational surfaees. We have examples of unirational surfaees for the

elasses of + sign.

Now we are interested in K3 surfaces. We have the following eonjeeture to eharaeterize

the unirational K3 surfaees.

Conjectwe: (Artin and Shioda). For a K3 surface X, X is unirational if and only if X is

supersingular.

The "only ifl part follows from Proposition 2). H P = 2, then this conjecture is affinnative

(Rudakov-Shafarevich). Now, assume p ~ 3. Let A be an abelian surface. Tben for a

Kummer K3 surface Km(A), the conjecture is also affinnative (Shioda). We ean give

a new proof of this result, using the locus of supersingular abelian surfaees in the

fine moduli seheme of prineipally polarized abelian surfaces with level n-structure

(n ~ 3, (n,p) = 1).

Let G be a finite subgroup of Aut (A), where Aut (A) is the automorphism group of A
v v

as an algebraie surface. If A I G is birationally equivalent to a K3 surfaee, we eall the

minimal non-singular model of A I G a generalized Kummer surface, and denote it by

Km(A,G). We can classify such subgroups G for p:2: 7 or p =O. Assume p:2: 7. Then,

we can show that Km(A,G) is unirational if and only if Km(A,G) is supersingular. This

result supports Artin-Shiodals eonjecture. In case A is isomorphie to a produet of two

supersingular elliptic curves, we can show that Km(A) is a Zariski surfaee, if p i;$ 1

mod. 12, using a result on generalized Kummer surfaces.

1 9



Tide: Primality Testing
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U.SA.

In this lecture an outline is given of the proof of the following theorem, which is due to

Adleman and Huang, after earlier work by Goldwasser and Kilian:

Theorem. The set ofprimes can be recognized in random polynomial time. The statement
means that there exists afunction f: (l>o x (l>o --+ {O,l} such that:

1) there exists an aIgorithm calculating f(n,r) in time (log(n+r»O(I);

2) f(n,r) = 1 => n is prime;

3) there exists c >°such that:
n is prime => # (r : f(n,r) =1 and (log r) ~ (log n)c}

1 c}
~ !' # {r : (log r) ~ (log n) .

One should think of n as the number to be tested for primality; of r as a long sequence of

"random bits"; of the output "f(n,r) = 1" as "n is prime"; and of the output "f(n,r) = 0" as

"I do not know".

In principle, an algorithm as this can be used to test n for primality, as follows. Pick r,

log r ~ (log n)c, at random; and calculate f(n,r). If f(n,r) = 1 then n is prime, and one

stops. Otherwise (if f(n,r) = 0), repeat with a different value of r. If this is done k times,

and each time f(n,r) =0, then it is for large k quite unlikely that n is prime, since by 3)

one expects f(n,r) =1 pretty soon, if n is prime. So in that case one is led to expect that

n is composite. To be sure, one can then run a compositeness test, which has the same

properties as above, but with "prime(s)" replaced by "composite (numbers)". Such a

compositeness test has been known for a long time (Solovay-Strassen, Rabin).

Goldwasser and Kilian almost proved the above theorem, using the following result:

Theorem. Let n E (l, n > 1, gcd(n,6) = 1. Suppose there exist an elliptic curve

E: y2 =X3 + aX + b over ~/n~, a point P =(x : y : 1) E E(~/n~), and an integer q

such that

q . P =0 =(0 : 1 : 0), q > (n1
/
4 + 1)2.

Then: qprime => nprime.

20



Proof. Let pln be prime. Tbe image P of P in E(lF ) is non-zero, so P has order q.
p

Hence (n1/4 + 1)2 < q :5; # E(lF ) < (VI> + 1)2, so P> {fi, and n is prime.
p

The algorithm of Goldwasser and Kilian now runs as folIows. Whenever the algorithm to

be described needs a "random number", one should use a beginning segment of the binary

representation of r for this purpose; this beginning segment is then "removed" from r.

This is the only röle played by r.

21

Step I.

Step 11.

Step 111.

Draw a,b E ~/n~ at random, and let E be the corresponding elliptic curve.

Use an algorithm of Schoof to determine a number m such that if n is prime

then #E(lF ) =m, and m:S;; ({fi + 1)2.
n

Check whether m factors as m =k-q, where k is the product of all small (:5;

(log n)cst, say) prime factors of m that one can find, k ~ 2, q > (n1
/
4 + 1)2,

and q is "probably" prime (as indicated by running a compositeness test on

q).

If m does not factoT in this way, go back to step I.

Step IV. Draw pI E E(~/n~) at random (this can be done, if n is prime), until one is

found for which P =k-P' is of the fonn (x: y : 1) (if n is prime this should

happen very soon). Check that qP =0 (if qP i= 0 then n cannot be prime!).

Step V. Prove recursively that q is prime. (The depth of the recursion is logarithmic,
since q:5; mf2:s n!2).

If all steps have been completed successfully one announces that n is prime (f(n,r) =1). If

one gets stuck, one spends too much time, one gives up (f(n,r) =0).

That this algorithm satisfies 2) follows from the last theorem. The difficulty is to
2

prove 3). This comes down to proving that for prime n there are "many" (~ n 0(1»)
(log n)

pairs a,b giving rise to an elliptic curve E for which #E(lF ) is prime. By results of
n

Deuring (giving the number of elliptic curves E for which #E(lF ) equals a given
n

number) this is essentially equivalent to proving that intervals of the type (x, x + {X)

contain "many" primes ~ {;0(1») for all sufficiently large x. This is a weIl known
(log x)

open problem; so with the present status of analytic number theory the Goldwasser-Kilian

algorithm is not sufficient to prove the theorem. One can prove, however, that the algorithm
IS

recognizes most primes, the number of exceptions (to 3)):5; x being :5; xTb - E for same

E >0 and all sufficiently large x.



To get around this problem, Adleman and Huang consider abelian varieties A over ~/n~

of dimension 2.If n is prime, then #A(lF ) lies in an interval of length :;:, 8n3
/2 around

n

n2
; such an interval, which is like (x, x + x3

/
4
), does contain enough primes for all x, by a

result of Iwaniec and Jutila This eliminates the analytic number theory problem, but it

creates many new ones. The most serious one is the following: the obvious analogue of the

second theorem above for abelian surfaces has the condition q> (n1
/
4 + 1)2 replaced by q

> (n1
/
4 + 1)4 ; so the induction is going the wrong way! And in fact, if one uses abelian

surfaces just as Goldwasser-Kilian use elliptic curves, then q will usually be t::r;l n2
, so

with twice as many digits as n. Adleman and Huang solve this apparently definitive

obstacle as follows: apply the "wrong induction" (replacing n by q) three times, so that

the primality proof for n has been reduced to the primality proof for a number :;:, n8
: a

number that is much bigger, but that has the advantage of being random to a certain extent,

so that one is entitled 10 expect that the Goldwasser-Kilian algorithm is able to deal with it!

Gther problems turn up as well if one transposes the Goldwasser-Kilian method to abelian

surfaces. Here are some changes that have to be made.

In step I, one must now choose a "random" abelian surface. Adleman and Huang do this

by picking f E (~/n~) [X] of degree 6 at random, aod letting A be the Jacobian

of y2 =f(X).

In step II, one must replace Schoofs algorithm by a generalization to all abelian varieties

that is due to J. Pila.

In step III and IV a simplification occurs: one may take k = 1, so that m itself is to be

subjected to the compositeness test, and P = pI,

Step V, as already remarked, should only be applied three times, after which one changes

10 the elliptic cwve method.

The final difficulty that Adleman and Huang had to master was the proof of 3). The

problem here is the unavailability of results analogous to those of Deurlng for elliptic

curves. Adleman and Huang prove rather weak analogues of Deuring's results, which are

just sufficient for their purposes.
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2 3Let k be a number field, and for a Weierstrass elliptie eurve E: y = 4x - gz x - ~

defmed over k write

where h denotes the logarithmic absolute Weil height. We discussed the following results.

Theorem (D.W. Masser, G. Wüstholz). Gillen an integer d ~ 1, there exists an effective

constant e, depending only on d, with the/ollowing property. Let k be a numberjield 0/
degree at most d, and suppose E, E* are elliptic curves over k that are k-isogenous.

Then there is a k·isogeny between thern 0/degree at most e(w(E))4.

Corollary 1. The number 0/ k-isomorphism classes 0/ elliptic curves over k that are

k-isogenous to E is at most cl (w(E))8.

Corollary 2. Each such isomorphism class contains an elliptic curve E* with
w(E*) :$; Cz w(E).

For a prime ~ let E1 be the group of ~-division points of E, and write G1 for the

Galois group of k(E1) over k.

4Corollary 3. Suppose .l > e
3
(w(E)) . Then the action 0/ G1 on E1 is

senu·simple. Further, if E has no complex rnultiplication, the action is irreducible.

This last corollary implies an effeetive version of a result of Bashmakov. Namely, for

d 2: 1, ro ~ 1 there is an effective eonstant C, depending only on d and ro, with the
following property. Let PI'" .,Pm be independent points on E(k) with 10garithmie Weil

heights oounded aoove by some U ~ 1. Let H1 be the Galois group of k(E1; !L,...,~)
.t .t

over k(E1)' Then H.t is isomorphie to E; provided

3m m

~ > C max {(w(E))4, (w(E))T U'T ).



The proof of the main Theorem uses Baker's method in transcendental number theory

applied to the algebraic group E
2

x E*2.
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1. Introduction.

We try to obtain information about moduli spaees of abelian varieties by studying

stratifieations. We shall exploit extra strueture in positive eharacteristies.

We mention a general idea:

Strategy: a) Find some "g00d" stratifieation A = u W ,Cl E I; index set partially
a

ordered by Cl > ß(:::) W~ e Wa such that:

b) 3! last one W
1

("easy...?") and
ast

c) describe every W in the neighbourhood of points of W
1

.
a ~t

We give some properties based on earlier joint work with Tadao Dda (1977), with P. Nor­

man (1980) aod with T. Katsura (1985 ~ 1987); we use methods by M. Eiehler

(1937 ~ 1955), K. Hashimoto and T. Ibukiyama (1980 ~ 1983), aod L. Moret-Bailly

(1981 ~ 1985).

Several ideas of this talk stern from joint efforts with T. Ekedahl (on stratifieations), and

with Ke-Zheng Li (on JXllarized flag type quotients).

Notation: All fields considered contain F .
p

2. Stratification by p-rank.

Notation: If X is an abelian variety, then f(X) =f, if X[p](k) == ('~/p/ with X[n] : =
Ker (x n : X --+ X). Fix g E ~ >0 ' Ag", ::> Vi = ([(X,... )] I f(X) :s; i}. Note that

o~ f ~ dirn X (and all values appear), henee Vo e ... e V. e V. 1 e ...e V = A .
1 1+ g g...

We say that an elliptie eurve E is supersingular, if f(E) =0 (i.e. E has tu) geometrie

points of order p).
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Example: k =k::::> lF ,# (k-isomorphism classes of EIE is supersingular) =h =h(p,l)
p

is finite, and this number h can be computed as the class number h =H
1

(p,1) for the

order B =End(E) (for some fixed E) in the quaternion algebra B ® 10 =K ramified
P.-

onlyat p and 00 (Eichler, Deuring, Igusa).

Theorem (Norman, Oort). Fix g; then

dim Vi = ~ g(g+1) - (g-i)

(all componenJs have the same dimension, and much more is known).

Problem' Describe the stratification of A given by the V.ls, e.g. (ir)reducible? How do. g 1

components fit together ete. ?

We show below (Ekedahl, Oort, unpublished): Fix g = 2,Ju nE Z ,Ju i = 1; then
~1

V l,n C-+ A2.1,n is irreducible.

(again: V
1

is the (coarse) moduli scheme oftriples (X,A,a), where dirn X =2, f(X) :5 1,
.n

-- tA. : X~ X and a is a level-n·structure).

3. Stratification by formal isogeny types (fit).

Define the p-divisible Tate group scheme by

't X : =lim X [pi].
p f-

i

Following Dieudonne and Manin this p-divisible group scheme can be written up to

isogeny as t X ,...,. (*), over k, where
p

<00
(*) = f(G + G ) + s G + ~ G + G

1.0 0,1 1.1 ~ (Dj.mj) (mj.nj)
j

with n. ~ m. ~ 1, (n.,m.) =1. Here G is a formal group of dimension a, and (Ga.b)t
J J J J a....

(Serre dual) == Ob . The combination
.a

f«I,O) + (0,1)) + s(I,I) + :E«n.,m.) + (m.,u.))
j J J J J

is called a formal isogeny type. This gives a stratification which (for g ~ 3) is finer than the

p-rank stratification.
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Example: g = 3 : The strata given by 3· (1,1) and by (2,1) + (1,2) together make V0 C

A3· We saw dim (V0' g =3) =~ 3 (3 + 1) - (3 - 0) = 3, but by Katsura, Dort (already Oda,

Oort) dim (locus 3·(1,1)) =2, if A. is an isomorphism, so locus 3'(1,1) ~ Vo'

RemarklQuestion: Every fit gives a Newton polygon:

supersingular, s=dimX

~

\
~ ordinary, f=dimX

Under specialization, the point on the old Newton polygon goes down. Any fit is "between"

ordinary (f = dirn X) and supersingular (s = dirn X). If (*) is under (*'), 3?

spezialization X~ ---+ Xo such that tpX~ N k (*) and tpX o N k (*') (i.e. ean every

plausible spezialization be realized?).

4. Supersingular abelian varieties.

Theorem/Definition (Eiehier, Deuring, Shioda, Deligne, Dort). k = k => lF , Eis
p

some supersingular elliptic ClUVe over k:

a) 't X N g·O 11<=> E& ....... X (~ X is supersingular).
p ,

b) X[p] == (a)& <=> E& == X (~ X is superspeeial).
p

Here a = Ker (F : (IJ ---+ (IJ ). Note that E is supersingular iff E[p] = a . Note that for
p a m p

g :5; 2 we have feX) =0 <=> Xis supersingular. But for g ~ 3, we have feX) =0 ~ X is

supersingular.

Note the eurious aspect of the theorem: in general (in ehar. zero) a splitting of Lie X does not

imply in general any splitting of X, (in ehar. p) a splitting of 't X or of the p-Lie algebra
p

Lie X does not imply any splitting of X .

27



Remark (Lenstra, Oort): If (*) is afit, (*) ':F- g·(I,I) then there exists an absolutely simple

abelian variety X with 't X ...... (*) (so supersingular is the only exeeption!).
p

2

Notation: d =d(g) =[tl
h (p,l) : = H

l
(p,l) = #(k-isomorphism classes ofE IE supersingular}

h (p,g) : = # «( Jl11l == polarization on Eg} / ==) = H (p,1), g odd
g

h (p,g) : = # «( JlIJl == polarization on E
g
, Ker J.1 = Eg[p]} / == ) = H (I,p), g even

g
(B = End (E), H (P,I) prineipal genus, ... ete.).

g

We denote by ~ c A I the supersingular locus. One expects:
g.

2

? dirn ~ = d(g) = [t],

# components of ,,6 = h(p,g).

Note: For Ilp~OO",

h(P,l) p / 12 (Eichier, 1937),

h(P,2) P2
/2880 (Hashimoto, Ibukiyama, 1982),

h(p,3) p6/ 29.34.5.7 (Hashimoto, 1983).

Examples: g = 1, ? is O.K..
,...

g = 2, ? is O.K.; every component W c ~ C A2,l has W (nonnalization) ==

]p I, # components = h(p,2); in a fine moduli scheme A
2
,I,n ~ A

2
,l they

intersect like (quite a lot is known: Katsura, Oort):

X::E2

# branches=g+1

3 ? . 0 K C Z(Xp+I Xp+l Xp+l ) ]p2 P C hg = , . lS . .; construct : = 1 + 2 + 3 C , ~ t e

]pl-bundle given by P = Proj (<:9 Ei' C9 (1)); there exists a section 5 c P -+ C,
c c

s.1. any component W c ~ C A
3

1 is given by Jl, and 'V : P -+ W, 'V (5) =
, ~ ~

28



x (point); no other cwves are contracted for any t E C(F 2); along 'V CL)
Il P Il t

many components of t6 meet, outside u 'V (L) no other components meet
Il t

W ; if W and W , intersect along v(L), J.l;t: J.l', then x ;t: x "etc. :
Il IJ. Il jl Jl

29

s
c

Most of these results are derived using (polarized) flag type quotients. Katsura, Li, Oort

hope to be able to show that (?) is correct for g =4.

Remark: t6 c A I (i.e. principal polarlzation) is essential for results as in (?), e.g. the
g,

supersingular locus for g = 3, p3 = degree (A) has components of dimension 3 ':F- 2 =
2

[tl.

Sketch 0/ the proo/ 0/ "vI,n y A2,I,n is irreducible":

a) (a la Raynaud): Show that V t,n - VO,n is quasi-affine (use thesis of Moret-Bailly).

b) (Ekedahl): In ~ cA I one can connect (Eg,A,O:) =xo and (E8)..',a') =x by T
N

,
g. ,n

where V: TN~ ~ c Ag,l,n ' W(PJ = xO' V(PN) = x and TN has N components, each

. h' ]ptlsomorp lC to .

From a) and b): For all components W of VI there exists some (Eg,A,a), and t6 is
,n

connected.

c) Defonnation theory at (Eg)..), E supersingular, gives the defonnation spaces by T =

( ~ll ~12 ), with T
12

=T
21

(without Dieudonne-modules, etc.), and HW =T is the
21 22

Hasse-Wiu matrix. Conclude: locally at (E8,A.,a) = x, we see that V I is gjven by

det(1) =0, hence locally at x invertible, and it contains V0 =~. Now this holds at all

superspecial points.
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Address: Max-Planck-Institut für Mathematik, Gott/ried-Claren­

Strasse 26, 5300 Bonn 3, Germany

Kolyvagin's recent striking theorem was presented following very closely Karl Rubin's

exposition of it in his preprint (Max-Planck-Institut für Mathematik, Bonn, July 1988) 0/
which we take the liberty to copy the first two (out of 10) pages, as weil as the final

bibliography.

Introduction.

This paper gives a complete proof of arecent theorem of Kolyvagin [3,4] on Mordell-Weil

groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic curve defined

over 1lJ, and assume that E is modular: for some integer N there is a nonconstant map

defined over [J

which we may assume sends the cusp 00 to O. Here Xo(N) is the usual modular curve over

lIJ (see for example [8]) which over [; is obtained by compactifying the quotient %tro(N)

of the complex upper half-plane % by the group

The points of Xo(N) correspond to pairs (A,C) where A is a (generalized) elliptic curve

and C is a cyc1ic subgroup of A of order N. Fix an imaginary quadratic field K in which

all primes dividing N split, and an ideal m of K such that C9tdm == tf/N~. Write H for

the Hilben dass field of K and x
H

for the point in Xo(N)([;) corresponding to the pair

(fC/C9
K

, m-l/C9
K

).

-
Fix an embedding of llJ into a::; then the theory of complex multiplication shows that

xH E Xo(N)(H). Define YH =1t(xH) E E(H), YK =TrH/K(YH) E ECK), and Y =YK - yK't E



E(K), where 'C denotes complex conjugation on K. Let WFJIJ denote the Tate-Shafarevich

group of E over lD.

Theorem (Kolyvagin [3,4]). Suppose E anti y are as above. If y has infinite order in

E(K) then E(IIJ) anti WFJfJ arefinite.

Remarks: I. The proof of this theorem given below is organized differently from

Kolyvagin's proof, and somewhat simplified, but the important ideas are a11

due to Kolyvagin and contained in [3,4].

2. It is not difficult to show, using the Hecke operator WN ' that y has infinite

order if and only if I:x>th YK has infinite order and the sign in the functional

equation of the L-function L(E,s) is + I.

3. The proof will give an annihilator of wEilt! which, via the theorem of Gross

and Zagier [2], gives evidence for the Birch and Swinnerton-Dyer conjecture.

4. Observe that Kolyvagin's theorem makes no mention of the L-function of E.

To relate his result to the Birch and Swinnerton-Dyer conjecture one needs the

following:

Theorem (Gross and Zagier [2]). With E and y as above, y has infinite order in E(K)

if and only if L(E,I) ~ 0 and L'(E,XK,l) ~ 0, where X
K

is the quadratic character

attaehed 10 K

Analytic Conjecture. If E is a modular elliptic curve and the sign in the junctionnl

equation 0/ L(E,s) is +1, then there exists at least one imaginary quadraticfield K, in

which all primes dividing N spUt, such that L'(E,XK,I) ~ O.

This analytic conjecture, as yet unproved, together with the theorems of Kalyvagin and

Gross and Zagier, would imply:

(*) FOT any modular elliptic curve E, if L(E,I) ~ 0 then E(lD) and WEJaJ arefinite.

Assertion (*) is known for elliptic curves with complex multiplication, by theorems of

Coates and Wiles [1] (for E(lD)) and Rubin [6] (for WEIGJ)'
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Lecture I.

Notation:

K finitely generated extension of lIJ;
A abelian variety over K, of dimension g > 0;

1 prime number.

The Tate module V J.A is defined as OJ J. (8) l~ A [la] ,where A[n] is the kernel of
a

- -
multiplication by n in A(K). The Galois group G

K
= Gal (K/K) acts on VJ.A; its image

G J. is an 1-adic Lie group, contained in GL(VJ.A) :: GL
Zg

(0 J.)' Its Lie algebra 9 J.

depends only on A, not of K.

The purpose of the lecture has been to Slate a number of known results on the structure of

G J. and 9 J. .

To state these, it is convenient to introduce the algebraic group H J. = Zariski closure of G.,r

(Conjecturally, the connected comPQnent ~ of H" should be the Mumford-Tate group

M,over OJ" ; and there are many cases where this is known to be true, e.g. 5) below).

Results:

1) H~ is a reductive group; G" is open in HJ. (OJ J.); the Lie algebra of H" is 9 J. .

2) The group lErn of homotheties is contained in H J. .

3) Any lIJ J.-endomorphism of V J.A which commutes with ~ (or 9 ..t) belongs to

OJ J. (8) End
K

A.

4) The rank of ~ is independent of l.

(These results are due to Faltings, Bogomolov, Zarhin and others).

33

5) Assume a) En~A =~ .
b) g is odd, or g =2 or g =6.



Then H.! is equal to GSP2/OJ J ' the groUP of symplectic similitudes, relative to the

altemating fonn on VJA defined by a polarization of A.

In case 5), there is a more precise result (assuming K is a number field): the image of

G
K

--+ IJ GSP2g(OJ 1 ) (adelic product) is open. In particular, the Galois group of the

l-division points of A is GSP2g(Dt' l) for 1 Iarge enough. (In the case g = 1, i.e. A is

an elliptic curve, this "Iarge enough" can be made effective).

Note that the analogue of 5) for g = 4 would be false, as an example of Mumford shows.

References:

Resume de cours au College de France, 1984-1985 (l-adic)

Resume de cours au College de France, 1985-1986 (variation with l)

Lecture 11.

To study the algebraic group H J = G~g introduced in the frrst lecture, one makes use of the

following infonnation:

a) If v is a place of the ground field K (assumed to be a number field), with v11, then the

restriction of PJ to the inertia subgroup Iv at v has a Hodge-Tate decomposition.

From this follows that H.! contains (after a suitable field extension) a "half-Hodge"

torus, Le. a multiplicative group Gm whose action on VJ is (~~ ) (where 11 is
g g

the unit matrix of size g).

b) Faltings' theorems tell us that H~ is reductive, and that its commuting algebra is

En~A <8> OJ .!.

c) If v is a place of K with good reducrlon, and v.t1, then the Tate module VlA can be

- -
identified with V,A ,where A is the reduction of A at v. This identification is

A v v
compatible with the action of the decomposition group D of v; the action of the inertia

v

A -
group I is trivial, and D /I == ~ acts via the Frobenius element 1C of A .v v v v v
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o

One thus gets an element 1t
v
,l of G1 eH1 (lD1 ), which is weil defined up to conjugation,

and whose characteristic polynomial has coefficients in IIJ, and is independent of 1. (Since

the 1tv•1 are dense in G1 ' this gives a strong relation between the p1 's for various ..e 's).

If ev,l denotes the smallest algebraic subgroup of H1 containing 1tv,l' then ev.l is

obtained by scalar extension OJ ~ IIJ 1 from an algebraic group Sv of multiplicative type,

defined over lIJ, whose character group is the group generated by the eigenvalues of 1t •
v

These ev give precise infonnation of H1 . For instance, if H 1 is connected (which is

true, e.g., if the 15-division points of A are rational over K), then a . is a maximal
v,'"

torus of H1 for a set of v of density 1 (this shows in particular that the rank of H 1 is

independent of 1).

Vsing a), b), c) one can determine H1 in various special cases, and prove in particular

(cf.lecture nthat H1 = GSP2/lIJ 1 if Endj( A = ~,and g is odd, 2 or 6.

Lecture 111.

We study the variation of the Galois group with ,t.

1) The elliptic case.

Let E be an elliptic curve over a number field K without complex multiplication, Le. such
that Endx A = ~. It is known (luvent. Math., 1972) that there exists L(E,K) > 0 such that,

for all ,t > L(E,K), the Galois group 0(1) of the l-division points of E is isomorphie

to GL
2

(lF .t ).

Thanks to the results of Faltings, the original proof can be much simplified (and it can also

be made effective, cf. Sem. Th. des Nombres, Paris, 1988). But an even better simplifi­

cation can be made, using the recent results ofMasser-Wüstholz. One has to apply then to E

and Ex E, both on K and on a quadratic extension of K. More precisely one eliminates

the Cartan subgroups and their nonnalizers according to the following pattern
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E

K split Cartan

K x K nonnalizer of

split Cartan

ExE

non split Cartan

nonnalizer of

non split Cartan



2) Group-theoretic preliminarieslor handling dim A ~ 2.

The main 1001 is a connection between subgroups of G~ (lF J.) and algebraic groups for N

fixed, and 1 large. By Jordan's theorem, a subgroup G of GL
N

(lF J.) whose order is

prime to 1 is "almost abelian", i.e. has an abelian nonnal subgroup C with (G:C) ~

Jordan (N), where Jordan (N) is a constant depending only on N (e.g. Jordan (2) =60).

Hence, the main interest lies in subgroups G whose order is divisible by 1; let G+ be the

subgroup of G generated by its l-Sylow groups. A eons1ruction due to Nori (Invent.

Math. ;0-.; 1986) attaches to G+ an algebraic subgroup G+alg of GL
N

' namely the

subgroup generated by all the one parameter subgroups {etX
}, where X is a nilpotent

matrix with exp(X) E G+ (this makes sense if .t ~ N). Nori proves that there is a constant

c(N) depending only on N such that the groups G+ and (G~lg(lFJ.»)+ coincide, for 1

> c(N). When G aets in a semi-simple way, G+ll1g is a semi-simple algebraic group and

(O+BJg (lF ).»+ is the image of the rational points of tbe simply connected covering group of

G+alg.

This theorem allows us to use the standard methods of Lie theory almost as weIl as in the

l-adic case.

3) Statement ofresults.

(Tbe notations A,K, ... are as before. Iassurne K is a number fieId, although the proofs

should extend to extensions of fmite type of lIJ).

Theorem. Let p : G
K

-+ IJ- G). be the honwmorphism defined by the surjective honw­

nwrphisms pJ. : G
K

-+ G.t .11 K is large enough, the image 01 p is open in IJ G). .

(i.e. the pJ.'s are alnwst independent).

Theorem. There is an exponent c ~ 1 such that p(G
K

) contains all homotheties in

"* *~ =n ~). which are c powers.
).

"(lt is likely that p(G
K

) contains a subgroup of fmite index of Z* , but I have not been able

to prove it in general).
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There are also several results of the "independence of ,l" type. E.g. the rank of G1 is

independent of 1, and so is the finite group (G;g) / (G1&)o.

Assume now that A has no non trivial abelian subvariety of CM type. Then

37

a)

b)

-
The set o/places v 0/ A where Aissupersingular has density O.

v

If x is a torsion point 0/ A 0/degree d(x), and olorder N(x), one has

d(x) » N(x)2-E

where the involved constant depends only on A,K,E.

tor every E > 0,

The proofs of these results have not been published, but a detailed exposition was given at

the College de France in 1985/86; see also the "Resume" in the Annuaire du College de

France 1986/87, pp. 95-99.



Title: Fiber systems 0/ polarized abelian varieties

Author: AUce SILVERBERG

Address: Dept. Math., Ohio State University, 231 W. 18 Avenue,

Columbus, Ohio 43210, U.S.A.

The subject of the talk was a conjecture and a theorem on the finiteness of Mordell-Weil

groups of universal abelian varieties. One applieation of the main theorem is a new proof of

Shioda's conjeeture [2], first proved in [4], that the Mordell-Weil group of the universal

prineipally polarized abelian variety (of dimension ~ 2) with fulllevel N ~ 3) structure is

exactly the group of N·torsion points. For details see [6], and for related results see [1-5].

We frrst introduce some notation. Suppose V is areal veetor spaee of even dimension,

E is a nondegenerate altemating bilinear fonn on V, and L is a lattiee in V with

E (L, L) c Z. Suppose 10 E GL(V), I~ =-1, and E(u, 10 v) is symmetrie and positive

definite, and let K l be the centralizer of 10 in the symplectic group Sp(V,E). Let G be a

eonneeted, semisimple real Lie group defined over lD and of hermitian type, let K be a

maximal cornpaet subgroup of G, and let p be a faithful representation of G in Sp(V,E),

defined and irreducible over lD, and preserving the Cartan decompositions. Let r be

an arithmetic subgroup of G, without torsion, and with p(r)L C L. Let A be the

complex manifold r \ G / K and assume either dirn A > 1 or A is compaet. Letting

W = (r tx L) \ (GIK x V), a fiber spaee over A, it is possible to realize W as a complex

manifold in such a way that the fiber over rgK is the abelian variety whose underlying

complex torus is V / L with the eomplex structure p(g) 10 p(gr\ and with polarization

given by E. The manifolds ß and W ean be realized as quasi-projeetive varieties. Let A

be the generic fiber. Then A is an abelian variety defined over the funetion field a:(A). We

can now state the conjecture.

Conjecture: HO(r,V) =0 <=> A(lC(A)) is a finite group.

To state the theorem, we introduce two other fiber systems over A. Let R =r \ (GIK x V)

and Z =r \ (GIK x L). Let S(W) (respeetively S(R) ) be the sheaf of genns of

holomorphic seetions of the fiber system 'f (respectively ~ ), and let S(Z) be the sheaf of
L\ L\

Z
genus of locally eonstant seetions of J.. We have an exaet sequenee 0 -+ S(Z) -+ S(R) -+

L\

S(W) -+ 0 of sheaves over ß.
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Consider the diagram:

o ~ HO(6, S(Z» ~ HO(6, S(R» ~ HO(~, s(W» 4 H1 (6, S(Z) ) ~ ...

~== Je ~~==

o~ HO(r, L) ~ H°(r, V lIJ) ~ H°(r, V13 / L) ~ H1(r, L) ~ H1(r, V (3) ~ ...

where the vertical inclusion f, defined by f(v + L) (rgK) = er e< L) (gK, v), defines an

isomorphism from HO(f, Vn / L) onto HO(L\, S(W) ) . .
lIol torsIOn

Theorem. A (lI:(L\)) is afinite group <=> HO(f, V) = 0 and a 0 ~ 0 B= O.

Corollary. H°(r, V) = 0 and HIer, V) =0 ~ A (lL(~» isfinite.

The theorem follows from the lemmas below.

Lemma 1. A(lL(6) ) == HO(6, S(W) ).

Lemma 2. A([(6)) isfinitely generated <=> HO(f, V) = O.

Lemma 3. HO(f,V) =0 ~ HO(A, S(R» =O.
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Dyson's Lemma. Let C be a projective curve 0/ genus g over an aigebraically closed
field k 0/characteristic zero, a,b E C (k) rwo rational points, x (resp. y) a Iocal coordinate

at a (resp. b), LaUne bundie on C x C, s a holomorphic section 0/ L, and d
t
, d

2
two

positive integers. In a neighbourhood 0/ ~ = (a,b) write s as apower series

s (x,y) = L a.. xi~.
i~O IJ

j~O

Definition. The index of s at ~ is

Theorem 1. Let F
t

= Xo x C and F
2

=C X Yo' Choose rn points ~l"'" ~m on

C x C. Asswne that

i) L.F] ~ d], L.F2 S d
2

•

ü) s does Mt vanish identically on a{wer %ne 0/ the projectionsIrom C x C 10 C.

Let e be the maximum multiplicity 0/a component in div(s). Then
m

1 ~ 2 L.L e L.F t
2' i~ t (s,Si,d l ,d2) S 2dl~ + ~~ rnax(O,2g-2+m).

Ta prove Theorem 1 one reduces to the case d] =d
2

by considering finite covers of C

rarnified at a (resp. b). When d
l

= d
2

, the index is the multiplicity of the exceptional fiber

of the blow up of Cx C at ~ in the divisor of s (pulled back to this blow up).

Prool01Mordell's conjeeture (sketch):

Let B be a smooth projective curve over k, F the function field of B, X ~ B a semi­

stable curve and C = X ® F; pUl g = genus (C).
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Step 1: Assume g ~ 2. Let P
I
,P2: C X C ~ C be the two projections, 00 the sheaf of

differentials on C, and r> 1 a rational number. Let ß ce xe be the diagonal and define
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Let

Y= (g - {g)/2

al=~(g+8)r

8 = Y'/ (2g - 2)2 Vg + 1

a
2

= ~ (g + ö) / r .

Proposition 1. If r> 2g(2g . 2) /0, L is ample. (Proof uses Nakai-Moishezon).

Step 2: Let q: W = X x X ~ B and V = q.l(bo) a fiber of q, b ~ 0, d> 0 integers, ß
B

the closure of ß, n = ffiXJB the relative dualizing sheaf.

~ = C9(d ( L\ + (al - 1) p; (n) / (2g - 2) + (a
2

- 1) ~ (n) / (2g - 2) » .

Proposition 2. Let r be as in Proposition 1 and b > Cl Vi/8 (where Cl is a constant

depending on X). Then,for d large enough, HO(X, l:;) :#- O. (Proof uses Riemann·Roch).

We shall apply Dyson's lemma to a section s of Z; with d
l

= da
l

and d2 = da2 .

Step 3: According to Mumford there is a finite partition of C (F),

C (F) = SIll ... ll Sk

such that, if a,b lie in the same S., the corresponding points in the Jacobian of C (by the
1

map a H [a] - [00] / (2g - 2» have a "bounded angle". In particular if EI (resp. E2) is

the closure of a (resp. b) in X, one gets abound on EI' E2 ' hence abound on E. Z; ,

• •
where E = PI (EI)' P2(E2) is a curve on W.

Step 4: Vsing the inequality from Step 3, the geometric construction describing the index

(extended over B), and intersection theory on the appropriate blow up, one gets a lower

bound for t(s,~, da
l
, da2), when ~ = (a,b), a and b lying in the same set Si'

Step 5: Combining this lower bound with the upper bound coming from Dyson's lemma,

one gets that, if the height h
1

of a is bigger than the height h2 of b, there is an explicit

constant c such that

Therefore each S. is finite and C (F) is finite. Furthennore, the number of elements in
1

C (F) can be explicitly bounded.



,
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Let P be a prime number. Let R be a domain with fraerlon field E of eharaeteristie O. Let

E be an algebraie closure of E and R be the integral elosure of R in E . Let X be an

abelian scheme over R. Then one constructs a R[I/p]-algebra BRJR and a natural iso­

morphism:

The construction of B
RIR

runs as Fontaine's construction of B
DR

(BDR = "B de Rham" is

in ease where R is a complete discrete valuation ring of characteristie (O,p) with perfect

residue field). Given an integer m ~ 1 one shows there exists aR-algebra ß which is a
m

..6 _
p-adic infinitesimal thickening of the p-adic completion R of R of order m, and which is

universal for this property. Setting B = 'ß [I/p] and B:
1

= lim B ,one has an
m m njR 1n m

embedding of Tp(Gm) (F) in B~ and if tE Tp(Gm) (F) , t ;t °,BlffR =B~ [I/t]. The

isomorphism i of the p-adie comparison theorem is defined using the universal veetorial

extension e of X.

+ ..6 +
The powers of the kernel of BRJR-) R [I/p] define a filtration on BR/R . If R [I/p] is

smooth over a local field of mixed eharaeteristie (O,p) with perfeet residue field, the

graduale ring ofB~ is a fonnal series ring of d + 1 variables wilh coefficienls in ~ [l/p]

(d =dimension of R [I/p] ). If S_ = ~ gri (B~) where gri(B~) -) gri+l(B~) is
l~

indueed by multiplication by t, one has

. i=j . . .
HJet (X ~ , l1J ) ® S == e W-I(X,nx

l
) ® S (-i).

Ir:. P aJ - i=O E ...
p

When d =0, one recovers Hodge-Tate deeomposition. When d ~ 1, one reeovers Hyodo

"Hodge-Tate deeomposition".
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Furthennore, the Galois group G =Gal (E / E) acts on BRJR and under certain hypotheses

on R one has B~ = 1l [l/p]. One constructs a derivation BRJR --+ BRtR f n~o and the

isomorphism i is compatible with the Gauss-Manin connection (here one follows Faltings

paper on Hodge-Tate decomposition for p-adic representations associated to modular

fonns).
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We fiX a number field K, an abelian variety A of dimension n defined over K and a

prime number 1. We denote by 1t' the Galois group Gal (I( / K) and put

..em -
A : = Ker (A ~ A) (lIJ),

.tm

•A homomorphism A ---7 A induces a homomorphism of Galois-modules

Tate proved the injectivity of this homomorphism and conjectured its surjectivity.

Furthennore he proved that his conjecture is implied by the following statement due to

LichtenbaullL

Hyp (K,A,d,.l): Given an abelian variety A of dimension n defined over a number field
. .

K, a prime .l and an integer d ~ 1 there exist only finitely many abelian varieties A over

K such that

(i) there exists a polarization 'V of A· of degree d2 defined over K,

(ü) there exists a K-isogeny 4>: A· -+ A with

deg 4> =1m
, for same m ~ 1.

This hypothesis was proved by G. Faltings in 1983. It is also implied by the following

Theorem proved by D.W. Masser and the author.

Theorem. There exists an eJfectively computable constant C > 0 depending only on the

height h(A) 01 A, dim A and the degree 01 K over [J with the lollowing property. 11
•A is an abelian variety over K isogeneous to A over K then there exists an isogeny

•ep : A -+ A over K with

deg 4>::S;; C.
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•The proof goes as folIows: Let ep be a minimal isogeny from A 10 A. Then $ induces a

period relation and this can be used to define a homomorphism

2n •'I':A ~A .

The graph r e A 2n X A· is an analytic subgroup. Now we apply transcendence technics

and an effective version of the author's analytic subgroup theorem leads to an algebraic

subgroup He r. One then shows that H =r and that the degree of H can be bounded by

a constant as described in the theorem. Thus we can bound the degree of r. But now it is

easy to get an isogeny from A to A· using r of bounded degree and to bound finally the

degree of $.

Remark: Of course, this theorem gives another proof of the Mordell conjecture and again a

proof of Siegels theorem using diophantine inequalities.
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