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On eonvergenee rates of harmonie maps near

points ,of diseontinuity

Robert·Gulliver and Brian White

Let Kt'- and Nn
be Riemannian manifolds, with metries

given by
2

Ycxß(x) ~cx dx ß 2
g ij (u) du i

du
jdS

M
= and dS

N
= .

A map f : M -> N is said to be harmonie if it is stationary

for Diriehlet's integral

( 1)

where

E(f) = J IDf .l
2

d volM '
'M

]of-1 2 = ycxß(x)g .. (f(x))O fi oßf
j D := a/ax ,and

~J Cl a a
1 mis the natural volume form" Idet(Yaß) dx ... dx . For

eertain purposes, it is neeessary to ehoose an isometrie

embedding of Nn into md and define the admissible elass

of funetions H1 (M,N) to be the subset of the Sobolev spaee

H1 (M~d) (mappings whose first distributional derivatives are

square-integrable) having values in N almost everywhere. Then

the spaee H1 (M,N) i5 independent of the ehoiee of isometrie

embedding of N into md . It should be noted that for m ~ 3 ,

a mapping f E H1 (M,N) need not be (equal almost everywhere to)

a eontinuous funetion, so that definitions given originally in

terms of Ioeal coordinates on N need to be rewritten. For

example, Diriehlet's integral (1) should be defined with the
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integrand IDfl 2 = yOS(X)<Daf,DSf> ,where <, > is the

inner produet of md
. Similarly, one should define the Euler-

Lagrange equations for the functional (1) by treating the

eondition f(x) E N as a eonstraint for mappings f: M --> E d

One finds that f M --> N is harmonie if and only if it is a

weak solution of the elliptie system of equations

Here, B is the second fundamental form of N in]Rd and,

ßM is the geometrie Laplace operator of M

where we have written y = det(yoS) .

Not only the admisslble mappings, but even the solutions

of equation (2) may fail to be eontinous. This was shown by

Hildebrandt and Widman in [HW] with the example f (x) = x/lxIo

as a mapping from the euclidean ball Brn in Ern to its boundary

sm-1 , for rn ~ 3 . It was reeently shown, rnoreover, that f_
o

minimizes E among maps having the same Diriehlet boundary

values by Coron and Gulliver in [CG], following earlier results

of Jäger-Kaul (m ~ 7) and Brezis-Coron-Lieb (m = 3) .

It is no accident that the examples of discontinuous

solutions have domains of dimension m ~ 3 and targets of

dimension n ~ 2 . In fact, if n = 1 , then f is the solution

of a single uniformly elliptic equation with a mild nonlinearitYi
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f roust be as smooth as suggested by the.equation itself ([G],

ineluding referenees on pp. 51-54). On the other hand, if

m = 2, then a minimizing harmonie map is as regular as the target

N by Morrey's theorem ([M], Theorem 1.10.4 (iii) and pp., 34-37).

With m = 1 , we have the solution of an ordinary differential

equation, whose smoothness is weIl understood.

A harmonie mapping f
o

mfrom JR into a manifold Nn is

ealled a homogeneous tangent map if fO(AX) = fo(x) for all

A > 0 and all x E JRm . It may be shown by elementary means

m-1that the restrietion of a homogeneous tangent map t6 S is

h . . Sm- 1 Nn . th . t . t'a armon~e mapp~ng: ---> ; s~nee ~s res r~e ~on

represents f o faithfully, it is sometimes referred to as the

hornogeneous tangent map. If 0 E M is an interior singularity

of a minimizing harmonie map f': M ---> N , then we may eonsider

the "blow-up limit" at 0; by defining f
A

(x) = f(AX) and letting

+A ---> 0 . Sehoen and Uhlenbeck show that, module a small

eorrection factor, E(f A) is a monotone increasing function of

A ([SU], p. 313). It follows that fA(i) converges weakly in

H1 (Bm,N) to some mapping f , for a sequence A(i) ---> 0 . Theyo

proceed to show much more:

Theorem 1 ([SU]). Every sequence tending to~ has ~ subseguence

A(i) sueh that fA(i) ----> f o in the H
1

-riorm ~ same neighbor­

hood Br(O) , and uniformlyon the annulus B2r (0)'Br (0) . Moreover,

f o is a homogeneous tangent map and minimizes E for its boundary

values.
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With Theorem 1, it becomes clear that the study of points

of discontinuity of harmonie maps is conveniently divided into

the study of homogeneous tangent maps (which are essentially

harmonie maps from Sm-1 to N), and the degree to which f is

approximated by its homogeneous tangent maps. In the present

report, we shall coneern ourselves with the second of these

questions.

Theorem 1 does not yet settle the important problem of the

uniqueness of the hornogeneous tangent map f . The first resulto

in this direction was a theorem of Allard and Alrngren concerning

the analogous question for area-rninirnizing integral currents

([AA]); the eorresponding analysis for harmonie rnaps was earried

out by Simon ([52], pp. 270-276).

Given a harmonie map g: srn-1 --> N ,( für exarnple, the

restriction of f ), a veetor field ~: 5
rn

- 1 ---> TN alongo g

is called a harmonie-Jaeobi field if ~ is a weak solution of the

linearized equation

(3)
. T '

~~ + 2B«D~) ,D g) + (D B)(D g,D g) = 0,
Ci. CL - tp.'. .... 0: Ci.

where the euclidean Laplace operator is ~ = -D D ; a vector V
Cl Ci.

is written in terms of its components vT tangent to N and

v~ normal to N; and

second fundamental form

D B
~

B •

is the covariant derivative of the

Theorem, 2 ([AA], cf. [82]). Let fEH 1 (M,N) be a harmonie

rnapping whieh minimizes E ~ ~ neighborhood of O.E M . Let

fo:~~. ---> N be the weak limit of some blowup sequence fA(i)
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with A(i) ---> 0+ . Assurne that f o
is srnooth on rn-1

S and

satisfies the following integrability hypothesis: for some integer

k ~ 0 th 'k t f '1 F·. lRk x srn-1 ---> N of• , ere ~s a -parame er arn~ y

harmonie maps sueh that F(O,~) = f o and every harmonie-Jacobi

d k
field ~ along f o equals dt F(tv,·) (t=O) for some v E lR .

Then f o is the unique homogeneous tangent rnap to f at 0 , and

for sorne a > 0 ,

( 4 )

The integrability hypothesis is used in an essential way in

the proof of Theorem 2: roughly speaking, it allows one to

replace f o iteratively by another homogeneous tangent map which

gives a better approximation to f at smaller radii (cf. Lemma

II.6.4 of [52]). It seems reasonable to conjecture that the

integrability hypothesis always holds for generic metries on

N ; but this rernains unproven, and the only broad context in

whieh it is known to hold is given in Theorem 4 below.

Simon later -~ucceede~ in proving the uniqueness of the

homogeneous tangent map at a singularity without requiring the

troublesome integrability hypothesis, a result we state as Theorem

3. Nonetheless, his conclusion was weaker than that of Theorem 2

as regards the.rate of eonvergence to f o

Theorem 3 ([51]; see also [52], pp. 215-6, 240-1). Let f ,E ,H1 (M,N)

be ~ harmonie rnap which minimizes E on sorne neighborhood 'of .

rno E M . Let f o : JR ---> N be the weak limit of some blowup

sequence f A(i') with +A(i) ---> 0 . Assurne that N i5 real-
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analytic, and that f o is smooth on m-1S . Then is the

unique homogeneous tangent map to f at 0 , and as
+

P --> 0

(5) 11 f-f II 2 + pli D f 1\ 1 -> 0 ·
o c (Ixl=p) p c (Ix]=p)

Simonls proof of Theorem 3 involves a remarkable analysis

of growth rates as p = lxI --> 0 , or as t:= -log p ---> +00 ~~

Roughly speaking, he shows that after f has become sufficiently

C1-close to f , any later sufficiently long t-interval consists
o

of a possible initial interval of exponential decay, a possible

middle period in which f is nearly constant, and a possible

final interval of exponential growth (see [52], p. 252). This holds

with estimates independent of t, and the same estimates are, valid

for Dtf = -PDpf . The final growth interval is readily arranged

to be empty for fitself, but for Dtf, much more work is

needed. In particular, one requires an estimate of the time in

which a path of steepest descent in a Banach manifold will reach

a critical point; such an estimate can hold only in the real-

analytic context. The nature of these indirect arguments rules out

any explicit estimate of the rate of convergence to f
o .:..

We prove that the stronger eonclusion (4) of 'T~eo~em 2 always

holds in the lowest dimensions for which singularities may occur:

'Theorem 4 ([GW]). Let M and N be manifolds of respective

dimensions m = 3 and n = 2 . Let f: M ---> N be ~ locally

minimizing harmonie map near a singularity 0 E M . Then N has-

'the topological ~of S2 or :IRp 2
; there 1s a unique-- - -

'homogeneous tangent mapping f o : :IR
3

--> N . and f eonverges,



- 7 -

to f o at ~ rate controlled ~ a positive power of lxi , as

in ineguality (4).

The proef ef Theorem 4 proeeeds by showing that the

integrability hypothesis of .Theorem 2 is satisfied. The special

character of the dimensions m; 3 and n; 2 is related to the

special properties of conformal mappings. In general, the

restrietion cf f to the sphere defines a harmonie mapping
0

m-l Nn but if m-l 2 then is automatieallyg : S --> ; n ; , g

eonforrnal, since the quadratie form >dz 2"
is holomorphic<gz,gz

(and rnust therefore vanish identically). Sinee 0 E M is a

singularity, fand g must be nonconstant ([SU]). It follows
o

that N

N ;;:; s2

and its universal covering space must be eompact, so

or ~p2 ; we may assume N ~ s2 with no loss of

on

generality.

If ~: 52 --> TN is a harrnonic-Jacobi field, then we may

rewrite equation (3) with respect to a confermal coordinate z

s2 :

A straightforward computation reveals that the quadratic form

2
<~ ,g >dz is holomorphic, and therefore zero, which is to sayz z

that ~ is a conformal-Jacobi field ~long g • We now introduce

a conforrnal coordinate on g is represented

by a rational function P(z)/Q(z) . We may assurne that

deg P ~ deg Q ; deg g ; : d . Since <~ ,g > = 0 , ~ isz z
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represented by a meromorphie funetion; an analysis of the

poles of g shows that this meromorphic function has the

form R(z)/Q(z)2 for same polynomial R. But P and Q are

relatively prime; using the euclidean algorithm, we may find

polynomials A and B with deg B < d and deg A ~ d , so

that R = AQ - BP . Therefore, by the quotient rule,

( 6 ) R

Q2
= d P +tA (t. = 0)

dt Q+tB

We may now show that g satisfies the integrability

hypothesis of Theorem 2. In fact, we may define gA,B to be

the eonformal ~and therefore harmonie) mapping represented by

the rational funetion (P+A)/(Q+B) . As B ranges over the

eomplex polynomials of degree at most d-l and A over those

of degree at most d, this forms areal (4d+2)-parameter family

with go,o = g · Equation (6) shows that every harmonie-Jaeobi

field arises from this family.

The eonelusion of Theorem 4 may fail in higher dimensions:

Theorem 5 ( [GW] ) • There is a real-analytic manifold N3 and a-- -
harmonie map f : B

3
--> N3 from the euelidean ball B3 , such----

that as lxI --> 0, f(x) --> f O(x/ Ix I) more slowly than any---
positive power of lxi

More generally, we may eonsider the manifold ~ = sm-l x m

(for the special ease n = m ) with the m(m)-invariant metric
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( 7) dS~ = d t
2

+ r (t) 2 ds ~ ,( w)

where is the standard metric on Sm-l ., and r : :IR --> ( 0 , 00 )

is a smooth function. For example, certain metries of the form (7),

and locally every metric of this form, arise from hypersurfaces

of revolution z = A(t), lyl = r(t) in E m
+1 , where

(y, z) E:IR
m

x :IR = lRm
+ 1 and (A I ) 2 + (r I ) 2 = 1 . Suppose that

m m
f : B ---> N is a mapping in the m(m)-equivariant form

(8 ) f ( pw) = (w , u ( p» E Sm-l x:IR _ Nm

where x = pw, 0 ~ p ~ 1 and w E Sm-1 , gives spherical

coordinates for B
rn . Then the elliptic system (2) reduces to

the ordinary differential equation

(9 ). P3-nu (prn-1D u) = (m-1) r (u) r I (u)
p p

In particular, any homogeneous tangent map f ::IR
m -> rf1o

which is m(m)-equivariant must be of the form fo(pw) = (w,to )

where r'(to ) = 0 .

For the proof of Theorem 5, one may choose

-1/2 3 3
u(p) = (C-2 log p) to construct f: B --> N in the

equivariant form (8), with any positive constant C. We observe

3that pDpU B U , so that equation (9) is satisfied with m = 3

and the metric corresponding to r(t)2 := 1 + t 4 /4 + t 6 /2 Note

that t = 0 is a degenerate critical point of r, and that the

integrability hyp~thesis of Theorem 2 fails (as it must, since

the conclusion of Theorem 2 does not hold). Namely,
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fo(pw) = (w,O) is a hornogeneous tangent rnap, and the vector

field Dt is a harmonic-Jacobi field along f , but any non­
o

,,-,Il~_ . ..... ~ - -' ...-...a:.-...~._ "_ .... r_-.....-"'-~. ......~ _

sönstant hom09"~e.9_qs·'tangent ....f.l:.ap ~2~"'!: have t!].e same image' as
- - ---.-..-_--- , .

A more penetrating analysis of the ordinary differential

equation (9) reveals that for an appropriate class of W(m)-

invariant manifolds N, e~ery bounded harmonie map of the

equiv~riant'~örm(8) tends logarithmieally to its homogeneous
,. --- -..... ...

tangent map. In the statement of our last theorem, we shall

use the notation 02(tk ) for any funetion n such that the

ratios n (t) /tk , n l (·t) /tk - 1 and n ll (t) /tk - 2 are all bounded

f
o

as t --> 0 . Here and throughout, the dash represents d/dt.

Theorem 6. Let Nm be the manifold----
m-1S x Jf( ~ equipped with

the m(m)-invariant Riemannian metric (7). We assume that r is

a smooth positive funetion for -00 < t < 00 , having as its only

eritieal point ~ degenerate loeal minimum of finite order k + 2

at t = 0 , such that r 2 is eonvex on a neighborhood (-to,to )

Then any bounded m(m)-equivariant harmonie map f E H1(Bm,Nm)

eonverges to the homogeneous tangent map fo(X) = (x/lxi ,0) at

~-11k
~_rate proportional to (-loglxl)- . More precisely, if

( 1 0 )

for positive constants a and a o ' then

(11) d(f(x),fo(x)) = (-A loglxl)-1/k + O(-logjx])-2/k
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where A:= (rn-1)k(k+2)a/(2(m-2»

Remark. We may write the hypothesis on eritieal points of f in

the form

( 1 2) t f I (t) > 0 for t:l: 0 .

Note also that the eonvexity hypothesis, or the asymptotie

formula (10), implies that

( 13)

where t > 0 . Sineeo t = 0 is assumed to be adegenerate loeal

minimum, we have k even and ~ 2 .

Theorem 6 is the only new result in this report. Its proof

begins with the observation that if a rnap f E H
1

(Bffi,Nm) in the

equivariant form (8) is weakly harmonie, then u(p) is a weak

solution of the ordinary differential equation (9) (p = lxi as

above). The regularity theory for o.d.e.'s irnplies that u is

srnooth on 0 < p < 1 •

We introduce the geometrieally scaled variable e = log p

(as in [51], which uses the notation t = -8 ). Write

y(t) := (rn-1)f(t)f' (t) , and let b := m-2 > 0 • Then for

-00 < e < 0 , we have

( 14) u ee + b u e = y (u ( 8» •
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and that t y(t) > 0 for t * 0 .

Then any nontrivial bounded solution u(0) of equation (14) on

the interval (-00,0) is of one sign, is strictly monotone, and

tends to zero as 8 ---> -00

Proof. We first note that u(0) .:= -u(8) satisfies an o.d.e.

of the same form as (14), with the right-hand .side y(t) := -y(-t) ,

which satisfies the hypothesis required of y.

Now suppose, for contradiction, that u(0 1 ) > 0 and

u
0

(8 1) ~ 0 at some -00 < 8
1

< 0 • Then on an interval [8
0

,8
1

]

we have u(8) ~ t
1

:= u(8
1
)/2 and hence

y (u (8)) 2: Y0 : = inf {y ( t) : t 1 :;;; t :':i sup u} > 0 Then we "may

compare. u to the solution v of v 88 + b v
8

= yO satisfying

v(8 1) = u(8 1) and v
8

(8 1) = u
8

(8 1) : we find that

( 15)
b (8 -8)

u(8) 2: v(8) = u(8 1) - YO(8
1
-0)/b + c 1 (e 1 1) ,

-2 -2 x
where c 1 := b (YO-b u8(81))~ b yo · Since e -1 2: x , we find

u(8) ~ u(8 1) > t 1 for all 0 E [8
0

,0
1

] . But this implies that

the requirement u(8) ~ t 1 continues to hold as the interval

[80 ,81 ] is extended to the left, and finally inequality (15)

must hold for all 0 E (-00,° 1 ] . But this irnplies that u(8)

is unbounded, contrary to hypothesis. It follows also that

cannot hold sirnultaneously, byu(0
1

) < 0 and u
0

(0
1

) ~ 0

reversing the sign of u(0)

the same sign as u.

. This shows that has always

We may now show that u(0 3 ) * 0 for all 03 in (-00,0)

In fact, if u(0 3 ) = 0 , then, since we have assumed u is
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not .the trivial solution, there holds u e(e 3 ) * 0 by the

uniqueness of solutions to the initial-value problem. For.:~

8 < e and close to. e , it would follow that u(8
2

) and
2 3 3

u e (8
2

) have opposite signs, a contradiction.

We have shown that u and u e are both either positive

or negative on (-00,0) • In particular, t
2

:= 1im u(G) exists .
.8-+- 00

Consider the case u > 0 , without loss of .generality. If

t 2 > 0 , then we may argue as above to show that inequality (15)

holds on (-00,8
1
], for any choice of 0

1
' where now

YO := inf{y(t) : t 2 ~ t ~ sup u} . Since u(8) is bounded

above, the exponential coefficient cl roust be nonpositive,

which is to say

for any 8
1

in (-00 , 0 ) Choosing any 84 < 0 , we may integrate

this last inequality to obtain

u(G) ~ u(G ) - (8 -0)y /b440

for all e in (-00,8
4
]. This contradiets the property u(8) > 0

we e one lude that t 2 = 1 ~m u (e) = 0 •
0-+- 00

q.e.d.

Returning to the proof of Theorem 6, we may apply Proposition 1

to .our solution u(p) of equation (9), sinee inequality (12) holds

for its right-hand side. Thus u and u
p

have one sign on

o < p < 1 , whieh we take to be positive with no lass of .generality.
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We may therefore define a function ~(t) for 0 < t < sup u

by the relation

(16) u e = P up(p) =: cp(u(p)) .

Then equation (14) is immediately equivalent to the first-order

o.d.e.

(17) (cpl (t) + m-2)~(t) = y(t) ,

which is singular whenever cp(t) = 0 . Certain properties of .the

auxiliary problem (17) may be stated as a proposition. Note that

the inequality (12) implies that y(t) > 0 for t > 0 , while

inequality (13) implies that y' (t) ~-O for 0 ~ t $ t o

Proposition 2. Assume m > 2 . suppose~that y(t) > 0 and

yl (t) ~ 0 for 0 < t ~ t . Then for each c ~ 0 , there is a
o -- -- ---

unigue nonnegative solution, satisfying ~(O) = c of the

ordinary differential eguation (17) for o ;;i,t < t
- 0

. In the

case cf singular initial data c = 0 , this solution satisfies

(18) (1-ß(t))y(t) :i (m-2)~(t) ~ y(t) ,

where we define

-2:= (m-2) sup{y' (t)
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Remark. Since, in the context of Theorem 6, ß(t) = O(tk ) for

an even integer k ~ 2 , inequality (18) is a strong statement

of the behavior of

Proposition 1).

as e ---> -00 (and hence U --> 0 by

Proof. We may transform the singularity ~f equation (17) by

defining a new dependent variable H:= ~2/2 . Then equatio~

(17) becomes

(19) H ' (t) + b/2H(t) = y(t) ,

where b = rn-2 as before (recall b > 0 ). Now if H1 and H 2

are two nonnegative solutions of equation (19), with

H2 (t) ~ H1 (t) , then

H I - H I = b [ (2H ) 1 /2
2 1 1

This shows that the absolute difference of splutions is

nonincreasing, which implies uniqueness on [O,to ] for the

initial-value problem.

Now consider the singular case c = 0 . Fer' a ~ 0 , 'we

define the comparison function h (t) = a 2y(t)2/(2b 2 ) . Then
a.

h~ = et
2b- 2yy ' while y(t) - b(2h

et
(t)) 1/2 = (1-a)y(t) . In

particular, h 1 is a supersolution of equation (19)- on [O,tol ,

since y' ~ 0 by hypothesis . On any interval 0.:;;; t .:;;; t 1 ' ·where

t 1 .:;;; t o ' we have h~(t) ~ et
2
y(t)ß(t 1 ) , so that hex. will be a

subsolution provided that a,2 ß (t 1 ) ~ 1-0 j we choose a. = 1-ß(t
1

)

for sirnplicity. The resulting comparisons for the forward
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initial-value problem:

are equivalent to inequality (18).

q.e.d.

Returning onee again to the proof of Theorem 6, we claim

that the function ~ defined by the equation (16) in fact

satisfies lim ~ (t) = 0 . Otherwise, 4> (t) solves the regular
t-+O+

o.d.e. (17) and rernains positive for small positive t, by

Proposition 2. Specifically, we have $(t) ~ E > 0 for

o ~ t ~ t s ' while 0 < u(8) ~ t s for 8 € (-00,8 5 ] , which

implies that

u (8) ~ u (8 ) - E (8 -8)5 5

for·all 8 ~ 8 5 ' contradicting the conclusion of Proposition 1.

It remains to estimate our solution u of equation (9) in

terms of inequality (18). As above, we write 8 = log p • Then

equation (16) yields

d8 1=du 4> (u) ,

since u 8 > 0 by Proposition 1. Choose P1 > 0 such that

t 1 := u(P 1) < t o j then inequality (18) yields

(1-ß(t
1

) )y(u(p)) ~ (m-2)4>(u(p)) ;;::; y(u(p))
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for all p E [0,P1] ". Now the asymptotic relation (10) for

r implies that

Y (t) = a (m-1) (k+2) t k +1/2 + 0 1 (tk +2)

From this follows the estimate kß (t) = 0 (t ) ; recall that

k ~ 2 by assurnption. Writing A:= a(m-1)k(k+2)/(2m-4) , we

find that

and hence for u < t 1 that

dB = (k/A) u-k-1 (1 + 0 (u)) .
du

An integration yields

-ke = [C
1

- u /A](1 + O(u)) ,

that is, for P < P1

u = [C 2 - A0]-1/k(1 + O(u))

= [C
2

- A log p]-1/k + O(-log p)-2/k

where C1 and C2 are constants. On the other hand, the

geodesie distance in N fram f~(pw) = (w,O) to
- " "

f(pw) = (w,u(p)) is exactly u(p) , so that this last relation
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is equivalent to the eonelusion (11) of Theorem 6.

Adams and Simon have reeently proved in [A8] that for

any homogeneous tangent map f : JRm __> Nn
o

for whieh the

integrability hypothesis of Theorem 2 fails, and which is

smooth on JRm,{O} , there is a harmonie map f into N with

an isolated singularity x = X o ' so that f eonverges to f o

at the rate (-loglxl)K. Their result ineludes Theorem 5 above.

Their analysis is valid for a mueh broader elass of elliptie

systems, as in [81]. This theory applies equally to the rate

of eonvergenee of a singular submanifold to its tangent

eone, assuming that the tangent eone has only one singularitYi

as weIl as to other problems of geometrie interest.

We would like to point out, in the eontext of Theo~em 6,

that it is not known whether a minimizing harmonie map for given

m(m)-equivariant boundary eonditions is itself equivariant.

"
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