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On convergence rates of harmonic maps near

points .of discontinuity

Robert Gulliver and Brian White

Let M" and N° be Riemannian manifolds, with metrics
. 2 _ a .. B 2 _ i .7
given by dsM YGB(X) dx~ dx and dsN = gij(u) du” du” .
Amap f : M —> N is said to be harmonic if it is stationary

for Dirichlet's integral

(1) E(f)

]

2
,ﬁ | DE | d voly .

where |Df‘]2

YGB(x)gij(f(x))DafiDij, D, = 3/dx, , and

d voly, 1is the natural volume form’ /EEET7;ET ax'...ax™ . For
certain purposes, it is necessary to choose an isometric
embedding of ¥?  into rY and define the admissible class

of functions H1(M,N) to be the subset of the Sobolev space
H1(MJRd) (mappings whose first distributional derivatives are
square-integrable) having values in N almost everywhere. Then
the space H1(M,N) is independent of the cheoice of isometric
embedding of N into :Rd . It should be noted that for m =z 3 ,
a mapping f € H1(M,N) need not be (equal almost everywhere to)
a continuous function, so that definitions given originally in

terms of local coordinates on N need to be rewritten. For

example, Dirichlet’s.integral (1) should be defined with the



integrand lDf]2 = yas(x)<Daf,DBf> , where < , > 1is the
inner product of :Rd . Similarly, one should define the Euler-

Lagrange equations for the functional (1) by treating the
condition f(x) € N as a constraint for mappings f : M ——>1Rd .
One finds that f : M —> N is harmonic if and only if it is a

weak solution of the elliptic system of equations

B

8B _
(2) byf + Y*U(X)B(D_£,D f) = 0

B
Here, B 1is the second fundamental form of N in ZRd , and

A is the geometric Laplace operator of M :

M

iz - oB
byf = =D _(¥Y Yy "DgE) /Y,
where we have written vy = det(yaB) .

Not only the admissible mappings, but even the solutions

of equation (2) may fail to be continous. This was shown by

Hildebrandt and Widman in [HW] with the example f_(x) = x/ | x|
as a mapping from the euclidean ball B® in R to its boundary
gm-1 , for m 2 3 . It was recently shown, moreover, that £

minimizes E among maps having the same Dirichlet boundary
values by Coron and Gulliver in [CG], following earlier results
of Jdger-Kaul (m 2 7) and Brézis-Coron-Lieb (m = 3) .

It is no accident that the examples of discontinuous
solutions have domains of dimension m 2 3 and targets of
dimension n g 2 . In fact, if n =1 , then f is the solution

of a single uniformly elliptic equation with a mild nonlinearity;



f must be as smooth as suggested by the .equation itself ([G],
including references on pp. 51-54). On the other hand, if
m = 2, then a minimizing harmonic map is as regular as the target
N by Morrey's theorem ([M], Theorem 1.10.4 (iii) and pp. 34-37).
With m = 1 , we have the solution of an ordinary differential
equation, whose smoothness is well understood.

A harmonic mapping fo from R into a manifold N" is

called a homogeneous tangent map if fo(kx) = fo(x) for all

A >0 and all x € R" ., 1t may be shown by elementary means

that the restriction of a homogeneous tangent map to Sm_1 is

1 —> NU ; since this restriction

a harmonic mapping: S™
represents fo faithfully, it is sometimes referred to as the
homogeneous tangent map. If 0 € M 1is an interior singularity

of a minimizing harmonic map f : M —> N , then we may consider
the "blow-up limit" at 0. by defining fx(x) = £(Ax) and letting
A —> 0+ . Schoen and Uhlenbeck show that, modulc a small
correction factor, E(fA) 1s a monotone increasing function of

A ([sul, p. 313). It follows that £ converges weakly in

A(1)
H1(Bm,N) to some mapping fo , for a sequence A(i) —> 0 . They

proceed to show much more:

Theorem 1 ([SU]). Every sequence tending to zeroc has a subsequence

A (1) such that fk(i) —> f_  in the H'-riorm on scme neighbor-

hood Br(O) » and uniformly on the annulus B2r(0)\Br(0) . Moreover,

fo is a homogeneoué tangent map and minimizes E for its boundary

values.



With Theorem 1, it becomes clear that the study of points
of discontinuity of harmonic maps is conveniently divided into
the study of homogeneous tangent maps (which are essentially
harmonic maps from Sm_1 to N ), and the degree to which f 1is
approximated by its homogeneous tangent maps. In the present
report, we shall concern ourselves with the second of these
questions.

Theorem 1 does not yet settle the important problem of the
uniqueness of the homogeneous tangent map fo . The first result
in this direction was a theorem of Allard and Almgren concerning
the analogous question for area-minimizing integral currents
([AA]); the corresponding analysis for harmonic maps was carried
out by Simon ([S2]1, pp. 270-276).

Given a harmonic map g : s N (for example, the

restriction of f0 ), a vector field ¢ : Sm_T —> TN along g

is called a harmonic-Jacobi field if ¢ 1is a weak solution of the

linearized equation

(3) 4 + 2B((D @) ", D g) +

——

(D(DB) \(DugrDag) =0,

where the euclidean Laplace operator is A = -DaDa ; a vector V
is written in terms of its components vt tangent to N and

VL normal to N ; and DwB is the covariant derivative of the

second fundamental form B

Theorem 2 (IAA], cf. [S2]). Let £ € H1(M,N) be a harmonic

mapping which minimizes E on some neighborhood of 0.€ M . Let

f£,:R. —> N be the weak limit of some blowup sequence £,




with A(i) —> 0" . Assume that £, 1is smooth on s™1  and

satisfies the following integrability hypothesis: for some integer

k 2 0 , there is a k-parameter family F :ka X Sm_1 —> N of

harmonic maps such that F(0,:) = fo and every harmonic-Jacobi

. a B k
field ¢ along fO equals It F(tv,*) (t=0) for some v €R .

Then fo is the unique homogeneous tangent map to f at 0 , and

for some o > 0 ,

(4) Il £-£ 1l

+ pllef|| 1 < const. p
c(|x|=p)

C ({x]=p)

The integrability hypothesis is used in an essential way in
the proof of Theorem 2: roughly speaking, it allows one to
replace f0 iteratively by another homogeneous tangent map which
gives a better approximation to f at smaller radii (cf. Lemma
IT.6.4 of [S2]). It seems reasonable to conjecture that the
integrability hypothesis always holds for generic metrics on
N ; but this remains unproven, and the only broad context in
which it is known to hold is given in Theorem 4 _ below.

Simon later -succeeded in proving the uniqueness of the
homogeneous tangent map at a singularity without requiring the
troublesome integrability hypothesis, a result we state as Theorem
3. Nonetheless, his conclusion was weaker than that of Theorem 2

as regards the rate of convergence to fo .

Theorem 3 (IS1]; see also [S2], pp. 215-6, 240-1). Let f € H1(M,N)

be a harmonic map which minimizes E on some neighborhood of

0 € M. Let fO : R" —> N be the weak limit of some blowup

sequence fx(i) with A(i) —> 0" . Assume that N is real-




analytic, and that f_ 1is smooth on & . Then f_ 1is the
unique homogeneous tangent map to £ at 0 , and as p —> 0" ;
(5) | £-£,1 + o|l D _£| —> 0

© C2(|x|=p) P C1(|x|=p)

Simon's proof of Theorem 3 involves a remarkable analysis
of growth rates as p = |[x|{ —> 0 , or as t := =log p —> +® 4
Roughly speaking, he spows that after £ has become sufficiently
C1—close to fo , any later sufficiently long t-interval consists
of a possible initial interval of exponential decay, a possible
middle period in which f. is nearly constant, and a possible
final interval of exponential growth (see tSZ], p. 252). This holds
with estimates independent of t , and the same estimates are valid
for th = —prf . The final growth interval is readily arranged
to be empty for £ itself, but for th , much more work is
needed. In particular, one requires an estimate of the time in
which a path of steepest descent in a Banach manifold will reach
a critical point; such an estimate can hold only in the real-
analytic context. The nature of these indirect arguments rules out
any explicit estimate of the rate of convergence to fo

We prove that the stronger conclusion (4) of TﬁEb:em 2 always

holds in the lowest dimensions for which singularities may occur:

Theorem 4 ([GW]). Let M and N be manifolds of respective

dimensions m =3 and n =2 . Let £ : M —> N be a locally

minimizing harmonic map near a singularity 0 € M . Then N has

the topological type of 52 ox Rp? ; there is a unique

‘homogeneous tangent mapping fO :IR3 —~—> N ; and £ converges




g

f, at a rate controlled by a positive power of |[x| , as

in inequality (4}.

The proof of Theorem 4 proceeds by showing that the
integrability hypothesis of Theorem 2 is satisfied. The special
character of the dimensions m = 3 and n = 2 1is related to the
special properties of conformal mappings. In general, the
‘restriction of fo to the sphere defines a harmonic mapping

Sm_1 — > N ; but if m-1 =n = 2 , then g is automatically
conformal, since the quadratic form <gz,gz>dzzh is holbmorphic
(and must therefore vanish identically). Since 0 € M 1is a
singularity, fO and g must be nonconstant ([SU]). It follows
that N and its universal covering space must be compact, so
N = 52 or :lRP2 ; we may aséume N = 82 with no loss of
generality.

If o : 52 —> TN 1is a harmonic-Jacobi field, then we may
rewrite equation (3) with respect to a conformal coordinate z

on 52:

= T 4- T -
9,z = Blw,,g97) + Blg_,o7) + (DmB)(gz,gz) .
A straightforward computation reveals that the quadratic form
> 2 . . .
<wz,gz>dz is holomorphic, and therefore zero, which is to say
that ¢ 1is a conformal-Jacobi field along g . We now introduce

a conformal coordinate on N2 = 52 , S0 that g 1is represented

by a rational function P(z)/Q(z) . We may assume that

deg P s deg Q = deg g = : d . Since <wz,gz> =0, ¢ Iis



represented by a meromorphic function; an analysis of the
poles of g shows that this meromorphic function has the

form R(z)/Q(z)2 for some polynomial R . But P and Q are
relatively prime; using the euclidean algorithm, we may £find
polynomials A and B with deg B <d and deg A s d , so
that R = AQ - BP . Therefore, by the quotient rule,

6) = LEER .y,

Q dt Q+tB

We may now show that g satisfies the integrability

hypothesis of Theorem 2. In fact, we may define to be

9a,B
the conformal (and therefore harmonic) mapping represented by
the rational function (P+A)/(Q+B) . As B ranges over the
complex polynomials of degree at most d-1 and A over those
of degree at most d , this forms a real (4d+2)-parameter family
with go’0 = g . Equation (6) shows that every harmonic-Jacobi

field arises from this family.

The conclusion of Theorem 4 may fail in higher dimensions:

Theorem 5 ([GW]). There is a real-analytic manifold N3 and a
harmonic map £ : B3 — w3 from the euclidean ball B> , such
that as |x| —> 0, £(x) ———>.f0(x/lx|) more slowly than any
positive power of |x| .

More generally, we may consider the manifold N© = Sm_1 x IR

(for the special case n = m ) with the ®(m)-invariant metric



2

(7) ds§ = at? + r(t)? ds%jw) ,

where dsg is the standard metric on Sm_1., and T : R —> (0,®)

is a smooth function. For example, certain metrics of the form (7),

and locally every metric of this form, arise from hypersurfaces

of revolution z = A(t), |y| = I'(t) in R, where

(y,2z) EZRF x R =2Rm+1 and (A')2 + (F')2 = 1 . Suppose that
£ : B® —> N" is a mapping in the O(m)-equivariant form
(8) £(pw) = (wu(p)) € 8™ ! x®r = "

where x = pw, 0 $ p s 1 and w € Sm“1 , gives spherical
coordinates for B™ . Then the elliptic system (2} reduces to

the ordinary differential equation

(9) p3"mnptpm'1npu) = (m=1)T(uw)T"'(u) .

. m
In particular, any homocgeneous tangent map fo : R® —> N
which is O(m)-equivariant must be of the form fo(pw) = (w,to)
where F'(to) =0 .

For the proof of Theorem 5, one may choose

=172 to construct f : B3  — N3 in the

u{p) = (C-2 log p)
equivariant form (8), with any positive constant C . We ocbserve
that pru = u3 , so that equation (9) is satisfied with m = 3
and the metric corresponding to F(t)2 = 1+ t4/4 + t6/2 . Note
that t = 0 1is a degenerate critical point of T , and that the

integrability hypothesis of Theorem 2 fails (as it must, since

the conclusion of Theorem 2 does not hold). Namely,



fo(pw) = {(w,0) 1is a homogeneous tangent map, and the vector

field Dt is a harmonic-Jacobi field along fo , but any non-

*Qoﬁétéﬁf‘hoﬁggéégggsiﬁéﬁégﬁi:ﬁgﬁmﬁggg Hé&é the same image ‘as £ -
A more penetrating analysis of the ordinary differential

equation (9) reveals that for an appropriate class of O(m)-~-

invariant manifolds N , every bounded harmonic map of the

gqu;ygrianpffdrm(B) tends logarithmically to its homogeneous

tangent map. In the statement of our last theorem, we shall

use the notation Oz(tk) for any function n such that the

ratios n(t)/tk, n'(t)/tk—1 and n"(t)/tk_2 are all bounded

as t —> 0 . Here and throughout, the dash represents d/dt

Theorem 6. Let NV be the manifold Sm”1 x IR 7 equipped with

the @©(m)-invariant Riemannian metric (7). We assume that T 1is

a smooth positive function for -« < t < «» , having as its only

critical point a degenerate local minimum of finite order k + 2

at t = 0 , such that r? is convex on a neighborhood (-t .t )

1
Then any bounded @{m)-equivariant harmonic map £ € Hi(Bm,Nm)

converges to the homogeneous tangent map £_(x) = (x/|x|,0) at
a_rate proportional to (—log|x|)+1/k. More precisely, if
(10) rie)?smay + a 572 4 0 (6573,

for positive constants a and L then

(11) d(f(x), £ (x)) = (-A 1og|:-c|)-1/k + 0(-log]x[)-2/k



_‘|‘|_
where A := (m-1)k(k+2)a/(2({m=2))

Remark. We may write the hypothesis on critical points of T in

the form
(12) t T'(t) >0 for t % 0 .

Note also that the convexity hypothesis, or the asymptotic

formula (10), implies that
(13) (r?)"(t) 2 0 for -t_st st
2 or o o

where tO >0 , Since t = 0 is assumed to be a degenerate local

minimum, we have k even and g 2 .

Theorem 6 is the only new result in this report. Its proof
begins with the observation that if a map f € H1(Bm,Nm) in the
equivariant form (8) is weakly harmonic, then u(p) is a weak
solution of the ordinary differential equation (9) (p = |x| as

above} . The regularity theory for o.d.e.'s implies that u is

smooth on 0 < p <1
We introduce the geometrically scaled variable 0 = log p
(as in [S1], which uses the notation t = -0 ). Write
y(t) := (ﬁ-1)F(t)P'(t) , and let b := m-2 > 0 . Then for
—0o < 0 < 0 , we have

(14)  ugg *+ b ug = y(u(e))



- 12 -

Proposition 1. Suppose b > 0 and that t Y(t)'> 0 for t *= O

Then any nontrivial bounded solution u(®) of equation (14) on

the interval (-«,0) is of one sign, is strictly monotone, and

tends to zero as O —> -«

Proof. We first note that U(Q) := -U(0) satisfies an o.d.e.
Qf the same form as (14), with the right-hand .side 7(t) := =y(-t) ,
which satisfies the hypothesis required of vy

Now suppose, for contradiction, that u(@1) > 0 and

ue(@1) s 0 at some -= < 91 < 0 . Then on an interval [90,91]

we have u(0) 2 t1 := u(91)/2 and hence
y{u(o)) 2 Yo :° inf{y(t) : t, £t s sup u} > 0 . Then we may
compare . u to the solution v of Vo * b Vo T Yp satisfying

v(01) = u(@1) and ve(e1) = uO(O1) : we find that

b(@1-@)
(15) u(®) 2 v(e) = u(@1) - 70(91—6)/b + c1(e -1 .,

where ¢, := bhz(yo-b ue(O1))a b_2yo . Since €%-1 2z x , we find

u(o) 2 u(®1) > t, for all 0 € [00,91] . But this implies that

the reqguirement u(0) 2 t1 continues to hold as the interval
[90,91] is extended to the left, and finally inequality (15)
must hold for all 0 € (—w,@1] . But this implies that u(©)
is unbounded, contrary to hypothesis. It follows also that
u(®1) < 0 and ue(®1) ¢ 0 cannot hold simultaneously, by

reversing the sign of u(@) . This shows that u has always

0

the same sign as u

We may now show that u(93) +#+ 0 for all © in (-«,0)

3

In fact, if u(63) = 0 , then, since we have assumed u 1is



not .the trivial solution, there holds u9(63) # 0 by the
uniqueness of solutions to the initial-value problem. For'

ez < 93 and close to. 03 , it would follow that u(@z) and

uo(ez) have opposite signs, a contradiction.

We have shown that u and uO

or negative on (-«,0) . In particular, t2 := lim u(@) exists.
Q-

are both either positive

Consider the case u > 0 , without loss of generality. If

t2 > 0 , then we may argue as above to show that inequality (15)
holds on (—w,01] , for any choice of 61 , where now

Yo = inf{y(t) : t2 £ t S sup u} . Since u(@) is bounded
above, the exponential coefficient c4 must be nonpositive,

which is to say
uo(®1) 2 Yo/b

for any 91 in (-«,0) . Choosing any @4 < 0 , we may integrate

this last ineqguality to obtain
u(@) = u(9,) - (64-G)Yo/b

for all © in (-m,e4] . This contradicts the property u(d) > 0 ;
we conclude that t, = lim u(0) =0
Q-=-
' g.e.d.
Returning to the proof of Theorem 6, we may apply Proposition 1
to .our solution u(p) of equation (9), since inequality (12) holds

for its right-hand side. Thus u and u, have one sign on

0 < p <1, which we take to be positive with no loss of generality.



- 14 -

We may therefore define a function ¢(t) for 0 < t < sup u

by the relation

(16) ug = P up(p) =: d(ulp))

Then equation (14} is immediately equivalent to the first-order

o.d.e.
(17) (o' (t) + m-2)0(t) = y(t) ,
which is singular whenever ¢(t) = 0 . Certain properties of the

auxiliary problem (17) may be stated as a proposition. Note that
the inequality (12) implies that +y(t) > 0 for t > 0 , while
inequality (13) implies that «y'(t) 2 0 for 0 £ t ¢ ty -

Proposition 2. Assume m > 2 . Suppose\that y(t}) > 0 and

-

y'(t) 20 for 0 < t s ty - Then for each ¢ 2 0 , there is a

unique nonnegative solution, satisfying ¢(0) = ¢ , of the

ordinary differential equation (17) for 0 St = tO . In the

case of singular initial data ¢ = 0 , this solution satisfies

(18) (1-B(E))y(t) s (m=-2)¢(t) < y(t) ,

where we define

Blt,) := (m-2) Psup{y' (t) : 0 5 t st} .
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Remark. Since, in the context of Theorem 6, RB(t) = O(tk) for
an even integer k 2 2 , inequality (18) is a strong statement

of the behavior of u

g as ® —> -» (and hence u ——> 0 by

Proposition 1).

Proof. We may transform the singularity of equation (17) by
defining a new dependent variable H := ¢2/2 . Then equation

(17) becomes
(19) H'(t) + bv2H(t) = vyi(t) ,

where b = m-2 as before (recall b > 0 ). Now if H1 and H2
are two nonnegative solutions of equation (19), with

Hz{t) 2 H1(t) , then

H‘l —_ HI

B 1/2 1/2
) ] = b[(2H1) - (2H2) ] 0

This shows that the absolute difference of splﬁtions is
nonincreasing, which implies uniqueness on [O'to] for the
initial-value problem.

Now consider the singular case ¢ =0 . For' o 2 0 , we
define the comparison function ha(t) = azy(t)z/(sz) . Then

h) = azb_zyy' , while vy(t) - b(2ha(t))1/2

= (1-a)y(t} . In
particular, h, is a supersolution of equation (19) on [O,tO] '
since y' 2 0 by hypothesis. On any interval 0 s t = t1 , wWhere
t; $ t, , we have h!'(t) s o’y(t)8(t;) , so that h, will be a
‘subsolution provided that azﬁ(t1) £ 1=-0 ; we choose o = 1—B(t1)

for simplicity. The resulting comparisons for the forward



..16_
initial-value problem:
ha(t1) < H(t1) s h1(t1)

are equivalent to inequality (18).
g.e.d.
Returning once again to the proof of Theorem 6, we claim
that the function ¢ defined by the equation (16) in fact

satisfies lim ¢(t) = 0 . Otherwise, ¢(t) solves the regular
t-0+

o.d.e. (17) and remains positive for small positive t , by
Proposition 2. Specifically, we have &(t) 2 ¢ > 0 for

0 st s te while 0 < u(®) s t5' for 0 € (-w,OS] , which
implies that

u(0) s u(@s) - E(OS—O)

for-all © S ©. , contradicting the conclusion of Proposition 1.

5
It remains to estimate our solution u of equation (9) in
terms of inequality (18). As above, we write ©0 = log p . Then

equation (16) yields

de 1
du $(u)

since g > 0 by Proposition 1. Choose 04 > 0 such that

t, := u(p1) < to ; then inequality (18) yields

3

(1-8(t1))Y(u(p)) S (m-2)2(ulp)) < y(u(p))



- 17 -

for all p € [0,p1]-. Now the asymptotic relatibn (10) for

' implies that

k+1 tk+2

y(t) = a(m=-1) (k+2)t7 /2 + O ) .

1(
From this follows the estimate B(t) = O(tk) ; recall that

k 2 2 by assumption. Writing A := a(m-1)k(k+2)/(2m-4) , we

find that

2

o(t) = a t5/k +g (K%

and hence for u < t that

0 - /a0 )

An integration yields

o =1[c, - u¥/al(1 +o0(0) ,

1
that is, for p < Py

“1/X (1 + o(w)

c
It

(c, - AQ]

1/k 2/k

+ O0(-log p)- ’

[02 - A log pl~

where C, and C, are constants. On the other hand, the
geodesic distance in N from £ _(pw) = (w,0) to

f(p&) = (Q,u(p)) is exactly uf{p) , so that this last relation



is equivalent to the conclusion (11} of Theorem 6.

Adams and Simon have recently proved in [AS] that for
any homogeneous tangent map fo : R® —> N for which the
integrability hypothesis of Theorem 2 fails, and which is
smooth on R'~{0} , there is a harmonic map f into N with
an isolated singularity x = X, + SO that £ converges to fo
at the rate (-log|x|)K . Their result inclpdes Theorem 5 above.
Their analysis is valid for a much broader class of elliptic
systems, as in [S1]. This theory applies equally to the rate
of convergence of a singular submanifold to its tangent
cone, assuming that the tangent éone has only one singularity;
as well as ﬁo other problems of geometric interest.

We would like to point out, in the context of Theorem 6,

that it is not known whether a minimizing harmonic map for given

@ (m) ~equivariant boundary conditions is itself equivariant.
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