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Abstract. We give an explicit formula of the shuffle relation in a general framework
that specializes to shuffle relations of multiple zeta values and multiple polylogarithms.
As a consequence, we generalize the decomposition formula of Euler that expresses the
product of two single (Riemann) zeta values as a sum of double zeta values to a formula
that expresses the product of two multiple polylogarithm values as a sum of other multiple
polylogarithm values.

1. Introduction

The decomposition formula of Euler is the equation

(1) ζ(r)ζ(s) =
s−1∑
k=0

(
r+k−1

k

)
ζ(r + k, s− k) +

r−1∑
k=0

(
s+k−1

k

)
ζ(s+ k, r − k), r, s > 2,

expressing the product of two Riemann zeta values as a sum of double zeta values. In this
paper we generalize this formula in two directions, from the product of one variable functions
to that of multiple variables and from multiple zeta values to multiple polylogarithms.
In fact, we obtain our formula in a general setting of shuffle algebras and quasi-shuffle
algebras in order to provide a natural framework to treat these special values uniformly
and to connect our generalization with the extended double shuffle relations of multiple
zeta values.

To motivate our generalization, we describe the relationship between Euler’s formula
and double shuffle relations of multiple zeta values. Multiple zeta values (MZVs) have been
studied quite intensively since the early 1990s [21, 30] involving many areas of mathematics
and physics, from mixed Tate motives [12, 29] and combinatorial number theory [3, 6, 22]
to quantum field theory [9]. Especially interesting are the algebraic and linear relations
among the MZVs. Because of the representations of an MZV as an iterated sum and as an
iterated integral, the multiplication of two MZVs can be expressed in two ways as the sum
of other MZVs, one way following the quasi-shuffle (stuffle) relation and the other way
following the shuffle relation. The combination of these two relations (called the double
shuffle relations) generates an extremely rich family of relations among MZVs. In fact,
as a conjecture, all relations among MZVs can be derived from these relations and their
degenerated forms, altogether called the extended double shuffle relations [24, 27]. A
consequence of this conjecture is the irrationality of ζ(n) for all odd integers n > 3.

Naturally, determining all the extended double shuffle relations is challenging and the
efforts have utilized a wide range of methods. One difficulty is that the shuffle relations
have not been explicitly formulated in terms of the MZVs. For example, to determine the
double shuffle relation from multiplying two Riemann zeta values ζ(r) and ζ(s), r, s > 2,
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one uses their sum representations and easily gets the quasi-shuffle relation

(2) ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s).

On the other hand, to get their shuffle relation, one first uses their integral representations
to express ζ(r) and ζ(s) as iterated integrals of dimensions r and s, respectively. One then
uses the shuffle relation (or more concretely, repeated applications of the integration by

parts formula) to express the product of these two iterated integrals as a sum of

(
r+s

r

)
iterated integrals of dimension r + s. Finally, these last iterated integrals are translated
back to MZVs and give the shuffle relation of ζ(r)ζ(s). Explicitly, this shuffle relation is
precisely the formula of Euler in Eq. (1). Then together with Eq. (2), we have the double
shuffle relation obtained from ζ(r) and ζ(s).

In general, even though the computation of the shuffle relation can be performed recur-
sively for any given pair of MZVs, an explicit formula is missing so far. As this example
shows, such an explicit formula not only provides an effective way to evaluate the shuffle
relation, but also is important in the theoretical study of MZVs, especially the double shuf-
fle relations. There are several families of special values in addition to MZVs, such as the
alternating Euler sums [2], the polylogarithms and multiple polylogarithms [3, 13], espe-
cially at roots of unity [27], where the double shuffle relations are also studied [5, 27, 33],
but are less understood. Such an explicit formula for these values should also contribute
their study.

In this paper, we prove an explicit formula in a general double shuffle framework. Con-
sequently we obtain explicit shuffle formulas for the product of any two MZVs, alternating
Euler sums and multiple polylogarithms, thereby generalizing Euler’s formula. As a con-
crete example, we obtain, for integers r1, s1 > 2 and s2 > 1,

(3)

ζ(r1) ζ(s1, s2) =
∑

t1 > 2, t2, t3 > 1
t1 + t2 + t3
= r1 + s1 + s2

[(
t1−1

r1−1

)(
t2−1

s2−t3

)(
t3−1

s2−1

)
+

(
t1−1

s1−1

)(
t2−1

s2−t3

)

+

(
t1−1

s1−1

)(
t2−1

s2−1

)]
ζ(t1, t2, t3).

As another instance, for integers r1, s1 > 2 and r2, s2 > 1, we have

ζ(r1, r2) ζ(s1, s2) =∑
t1 > 2, t2, t3, t4 > 1

t1 + t2 + t3 + t4 =
r1 + r2 + s1 + s2

[(
t1−1

r1−1

)(
t2−1

r2−1

)(
t3−1

s2−t4

)(
t4−1

s2−1

)
+

(
t1−1

s1−1

)(
t2−1

s2−1

)(
t3−1

r2−t4

)(
t4−1

r2−1

)

+

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−t4

)
+

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−t4

)
(4)

+

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−1

)
+

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−1

)]
×ζ(t1, t2, t3, t4).
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We hope this framework can be further extended to deal with other generalizations of
multiple zeta values that have emerged recently, such as the multiple q-zeta values [7, 31, 32]
and renormalized MZVs [19, 20, 26].

The organization of the paper is as follows. In Section 2, we first describe the algebraic
formulation of double shuffle algebras and then state our main formula in two forms (The-
orem 2.1 and Theorem 2.2). There we also give applications of the main formula to MZVs
and other special values (Corollary 2.3 and Corollary 2.4), and illustrate its computations
in low dimensions in Section 2.4. The proof of the main formula is quite long. So sev-
eral lemmas are first proved in Section 3. Then these lemmas are applied in Section 4 to
prove the main formula by induction. As an appendix, Section 5 includes a shuffle product
formulation of the main formula.

Acknowledgements: Both authors thank the hospitality and stimulating environment
provided by the Max Planck Institute for Mathematics at Bonn where this research was
carried out. They also thank Don Zagier and Matilde Marcolli for suggestions on an earlier
draft and for encouragement. The first author acknowledges the support from NSF grant
DMS-0505643.

2. Statements of the main theorems

We first set up in Section 2.1 a framework of general double shuffles to give a uniform for-
mulation of the double shuffle relations for multiple zeta values, alternating Euler sums and
multiple polylogarithms. We then state in Section 2.2 our main formula in two variations
in this framework. Applications of the main theorem to the aforementioned special values
are presented in Section 2.3. Computations in low dimensions and examples are provided
in Section 2.4.

2.1. The general double shuffle framework. We formulate the framework to state
our main theorems in Section 2.2. See Section 2.3 for the concrete cases that have been
considered before [3, 13, 22, 27, 33].

We first introduce some notations. For any set Y , denote M(Y ) for the free monoid
generated by Y . Let H(Y ) be the free abelian group ZM(Y ) with M(Y ) as a basis but
without considering the product from the monoid M(Y ). When H(Y ) is equipped with an
associative multiplication ◦, we use H◦(Y ) to denote the algebra (H(Y ), ◦).

Let G be a given set. Define

G = {x0} ∪ {xb | b ∈ G}

to be a set of symbols indexed by {0} t G. Then the shuffle algebra [28, 25] generated by
G is

(5) H X (G) := ZM(G)

equipped with the shuffle product X that is defined recursively by

(a1a) X (b1b) = a1(a X (b1b)) + b1((a1a) X b), a1, b1 ∈ G, a, b ∈M(G)

with the convention that 1 X b = b = b X 1 for b ∈M(G). Define the subalgebra

(6) H X
1(G) := Z⊕

(
⊕b∈G H X (G)xb

)
⊆ H X (G).
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For the given set G, let Ĝ be the set product

Ĝ := Z>1 ×G = {w :=
[ s

b

]
| s ∈ Z>1, b ∈ G}.

We will denote the non-unit elements in the free monoid M(Ĝ) by vectors

~ν := [ν1, · · · , νk] =
[ s1,··· ,sk
b1,··· ,bk

]
=
[ ~s

~b

]
.

Consider the free abelian group

H(Ĝ) := ZM(Ĝ) =
⊕

~ν∈ bGk, k>0

Z~ν, Ĝ0 = {1}.

As in the case of the shuffle algebra from MZVs, elements of H X
1(G) of the form

xs1−1
0 xb1x

s2−1
0 xb2 · · ·x

sk−1
0 xbk , si > 1, bi ∈ G, 1 6 i 6 k, k > 1,

together with 1, form a basis of H X
1(G). Since H(Ĝ) with the concatenation product is the

free non-commutative algebra generated by Ĝ, there is a natural linear bijection

(7) ρ : H X
1(G)→ H∗(Ĝ), xs1−1

0 xb1 · · ·x
sk−1
0 xbk ↔

[ s1, s2, ··· , sk
b1, b2, ··· , bk

]
, 1↔ 1.

Through ρ, the shuffle product X on H X
1(G) defined a product on H(Ĝ) by

(8) ~µ Xρ ~ν := ρ(ρ−1(~µ) X ρ−1(~ν)), ~µ, ~ν ∈ H(Ĝ).

Following our notations, we use H Xρ (Ĝ) to denote this algebra.

Now assume that G is a multiplicative abelian group. Define Ĝ = Z>0 × G to be the

abelian semigroup with the component multiplication:
[ s1

z1

]
·
[ s2

z2

]
=
[ s1+s2

z1z2

]
. Then we

define the quasi-shuffle algebra [23] on Ĝ to be

(9) H∗(Ĝ) := ZM(Ĝ)

where the multiplication ∗ is defined by the recursion

[µ1, ~µ
′]∗[ν1, ~ν

′] = [µ1, (~µ
′∗[ν1, ~ν

′])]+[ν1, [µ1, ~µ
′]∗~ν ′]+[(µ1·ν1), ~µ

′∗~ν ′], µ1, ν1 ∈ Ĝ, ~µ′, ~ν ′ ∈M(Ĝ)

with the initial condition that 1 ∗ ~ν = ~ν = ~ν ∗ 1 for ~ν ∈ M(Ĝ). See [16, 18, 23] for its

explicit description and its structure. We use H∗(Ĝ) to denote the resulting commutative

algebra (H(Ĝ), ∗).
We define a linear bijection

(10) θ : H∗(Ĝ)→ H∗(Ĝ),
[ s1,··· ,sk
b1,··· ,bk

]
7→
[ s1, s2,··· , sk

1
b1
,
b1
b2
,··· ,

bk−1
bk

]
whose inverse is given by

(11) θ−1 : H∗(Ĝ)→ H∗(Ĝ),
[ s1,··· ,sk
z1,··· ,zk

]
7→
[ s1, s2,··· , sk

1
z1
, 1
z1z2

,··· , 1
z1···zk

]
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Note that the action of θ is defined by an action on the lower row of elements in H∗(Ĝ)
which is again denoted by θ:

(12) θ(b1, · · · , bk) = (
1

b1
,
b1

b2
, · · · , bk−1

bk
).

The composition of ρ and θ gives a natural bijection of abelian groups (but not as
algebras)

(13) η : H X
1(G)→ H∗(Ĝ), xs1−1

0 xb1 · · ·x
sk−1
0 xbk ↔

[ s1, s2, ··· , sk
1
b1
,
b1
b2
, ··· ,

bk−1
bk

]
whose inverse is given by

[ s1,··· ,sk
z1,··· ,zk

]
7→ xs1−1

0 xz−1
1
xs2−1

0 x(z1z2)−1 · · ·xsk−1
0 x(z1···zk)−1 .

Through η, the shuffle product X on H X
1(G) transports to a product Xη on H(Ĝ),

resulting a commutative algebra H Xη (Ĝ) = (H(Ĝ), Xη ). More precisely, for ~µ, ~ν ∈ H(Ĝ),

(14) ~µ Xη ~ν := η(η−1(~µ) X η−1(~ν)).

Then we have the following commutative diagram of commutative algebras:

(H(Ĝ), Xη )

(H X
1(G), X )

η
55kkkkkkkkkkkkkk

ρ ))SSSSSSSSSSSSSS

(H(Ĝ), Xρ )

θ

OO

The purpose of this paper is to give an explicit formula for ~µ Xη ~ν which naturally gives
shuffle formulas for MZVs, MPVs and alternating Euler sums. However, as we will see
later, for the proof of this formula, it is more convenient to work with the product Xρ since

it is more compatible with the module structure on H∗(Ĝ). This approach also allows us to
obtain a formula without requiring that G is a semigroup, further extending its potential
of applications that will be discussed in a future work.

2.2. The statement of the main theorem. We first introduce some notations. For
positive integers k and `, denote [k] = {1, · · · , k} and [k + 1, k + `] = {k + 1, · · · , k + `}.
Define

(15) Ik,` =

{
(ϕ, ψ)

∣∣∣ ϕ : [k]→ [k + `], ψ : [`]→ [k + `] are order preserving
injective maps and im(ϕ) t im(ψ) = [k + `]

}
In fact, in the definition it suffice to use one of the three conditions of the injectivity, the
disjointness of im(ϕ) and im(ψ), or im(ϕ) ∪ im(ψ) = [k + `]. We simply list them all for

ease of application. Let ~a ∈ Gk, ~b ∈ G` and (ϕ, ψ) ∈ Ik,`. We define ~a X (ϕ,ψ)
~b to be the

vector whose ith component is

(16) (~a X (ϕ,ψ)
~b)i =

{
aj if i = ϕ(j)
bj if i = ψ(j)

= aϕ−1(i)bψ−1(i), 1 6 i 6 k + `,
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with the convention that a∅ = b∅ = 1.
Let ~r = (r1, · · · , rk) ∈ Zk

>1, ~s = (s1, · · · , s`) ∈ Z`
>1 and ~t = (t1, · · · , tk+`) ∈ Zk+`

>1 with

|~r|+ |~s| = |~t|. Here |~r| = r1 + · · ·+ rk and similarly for |~s| and |~t|. Denote Ri = r1 + · · ·+ ri
for i ∈ [k], Si = s1 + · · ·+ si for i ∈ [`] and Ti = t1 + · · ·+ ti for i ∈ [k + `]. For i ∈ [k + `],
define

(17) h(ϕ,ψ),i = h(ϕ,ψ),(~r,~s),i =

{
rj if i = ϕ(j)
sj if i = ψ(j)

= rϕ−1(i)sψ−1(i),

with the convention that r∅ = s∅ = 1.
With these notations, we define

(18) c
~t,(ϕ,ψ)
~r,~s (i) =



(
ti−1

h(ϕ,ψ),i−1

)
if i = 1 or
if i− 1, i ∈ im(ϕ) or if i− 1, i ∈ im(ψ),(

ti−1

Ti−R|ϕ−1([i])|−S|ψ−1([i])|

)
=

(
ti−1

iP
j=1

tj−
iP

j=1
h(ϕ,ψ),j

) otherwise.

Denote

(19) c
~t,(ϕ,ψ)
~r,~s :=

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i) =

k∏
j=1

c
~t,(ϕ,ψ)
~r,~s (ϕ(j))

∏̀
j=1

c
~t,(ϕ,ψ)
~r,~s (ψ(j)).

Now we can state our main theorem.

Theorem 2.1. Let G be a set and let H Xρ (Ĝ) = (H(Ĝ), Xρ ) be as defined by Eq. (8).

Then for
[ ~r

~a

]
∈ Ĝk and

[ ~s

~b

]
∈ Ĝ` in H Xρ (Ĝ), we have

(20)

[ ~r

~a

]
Xρ

[ ~s

~b

]
=

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]

=
∑

(ϕ,ψ) ∈ Ik,`
~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

( k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i)

)[ ~t

~aX (ϕ,ψ)
~b

]
,

where c
~t,(ϕ,ψ)
~r,~s (i) is given in Eq. (18) and ~a X (ϕ,ψ)

~b is given in Eq. (16).

For the purpose of applications to MZVs and multiple polylogarithms, we give an equiv-
alent form of Theorem 2.1 under the condition that G is an abelian group. For ~w ∈ Gk and
~z ∈ G`, we define

(21) (~w?(ϕ,ψ)~z)i =


wj if i = ϕ(j) and either i = 1 or i− 1 ∈ im(ϕ),

zj if i = ψ(j) and either i = 1 or i− 1 ∈ im(ϕ),
w1···wj
z1···zi−j if i = ϕ(j) and i− 1 ∈ im(ψ),
z1···zj

w1···wi−j if i = ψ(j) and i− 1 ∈ im(ϕ).
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Theorem 2.2. Let G be an abelian group and let H Xη (Ĝ) = (H(Ĝ), Xη ) be as defined by

Eq. (14). Then for
[ ~r

~a

]
∈ Ĝk and

[ ~s

~b

]
∈ Ĝ` in H Xη (Ĝ), we have

(22)

[ ~r

~w

]
Xη

[ ~s

~z

]
=

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~w?(ϕ,ψ)~z

]

=
∑

(ϕ,ψ) ∈ Ik,`
~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

( k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i)

)[ ~t

~w?(ϕ,ψ)~z

]
,

where c
~t,(ϕ,ψ)
~r,~s (i) is given in Eq. (18) and ~w?(ϕ,ψ)~z is given in Eq. (21).

We will next give applications and examples of Theorem 2.2 in Section 2.3 and Section 2.4.
Theorem 2.2 will be shown to follow from Theorem 2.1 in Section 4.1, and Theorem 2.1
will be proved in Section 4.2. Preparational lemmas will be given in Section 3.

2.3. Applications. In this section, Theorem 2.2 is specialized to give formulas for multi-
ple zeta values, alternating Euler sums and multiple polylogarithms. We start with mul-
tiple polylogarithms and then specialize further to MZVs and alternating Euler sums. In
Section 2.4 we demonstrate how to apply these formulas by computing examples in low
dimensions.

2.3.1. Multiple polylogarithms. A Multiple polylogarithm value (MPV) [3, 13, 14] is
defined by

(23) Lis1,··· ,sk(z1, · · · , zk) :=
∑

n1>···>nk>1

zn1
1 · · · z

nk
k

ns11 · · ·n
sk
k

where |zi| 6 1, si ∈ Z>1, 1 6 i 6 k, and (s1, z1) 6= (1, 1). When zi = 1, 1 6 i 6 k, we
obtain the multiple zeta values ζ(s1, · · · , sk) that we will consider in Section 2.3.2. More
generally, the special cases when zi are roots of unity have been studied [3, 6, 14, 27] in
connection with high cyclotomic theory, mixed motives and combinatorics, and have been
found in the computations of Feynman diagrams [10].

In the notation of [3], we have

(24)
Lis1,··· ,sk(z1, · · · , zk) = λ

( s1, · · · , sk
b1, · · · , bk

)
, where

(b1, · · · , bk) = θ(z1, · · · , zk) = (z−1
1 , (z1z2)

−1, · · · , (z1 · · · zk)−1).

Here θ is as defined in Eq. (12).
The product of two sums representing two MPVs is a Z-linear combination of other such

sums. This way the Z-linear span of these values form an algebra which we denote by

MPV = Z{Lis1,··· ,sk(z1, · · · , zk) | si ∈ Z>1, |zi| 6 1, (s1, z1) 6= (1, 1)}.
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In the framework of Section 2.1 and 2.2, let the abelian group G be S1 := {z ∈ C× | |z| =
1}, and consider the subalgebra

H∗0(Ŝ
1) := Z⊕

( ⊕[
s1

z1

]
6=
[

1

1

]Z
[ s1,s2,··· ,sk
z1,z2,··· ,zk

])
⊆ H∗(Ŝ1).

Then H∗(Ĝ) coincides with the quasi-shuffle (stuffle) algebra [14, 27] encoding MPVs, and
the multiplication rule of two MPVs according to their sum representations in Eq. (23)
follows from the fact that the linear map

Li∗ : H∗0(Ŝ
1)→MPV,

[ s1,··· ,sk
z1,··· ,zk

]
7→ Lis1,··· ,sk(z1, · · · , zk)

is an algebra homomorphism.
We also consider the shuffle algebra H X (S1) and its subalgebras

H X
0(S

1
) := Z⊕

(
⊕a,b∈{0}∪S1,a6=1,b 6=0 xaH

X (S
1
)xb
)

⊆ H X
1(S

1
) := Z⊕

(
⊕b∈S1 H X (S

1
)xb
)
⊆ H X (S

1
).

They agree with the shuffle algebras [13, 27] encoding a MPV through its integral repre-
sentation [3, 13, 27]

(25) Lis1,··· ,sk(z1, · · · , zk) =

∫ 1

0

∫ u1

0

· · ·
∫ u|~s|−1

0

du1

f1(u1)
· · ·

du|~s|
f|~s|(u|~s|)

.

Here

fj(uj) =

{
(z1 · · · zi)−1 − uj = bi − uj if j = s1 + · · ·+ si, 1 6 i 6 k,
uj otherwise.

for the bi in Eq. (24). Thus λ
( s1, · · · , sk
b1, · · · , bk

)
has a simpler integration representation than

that of Lis1,··· ,sk(z1, · · · , zk). This is the fact that gives the simpler form of the shuffle formula
in Theorem 2.1 in comparison with Theorem 2.2.

The multiplication rule of two MPVs according to their integral representations follows
from the algebra homomorphism

Li X : H X
0(S

1
)→MPV, xs1−1

0 xb1 · · ·x
sk−1
0 xbk 7→ λ

( s1, · · · , sk
b1, · · · , bk

)
= Lis1,··· ,sk(z1, · · · , zk),

where (z1, · · · , zk) = θ−1(b1, · · · , bk) is defined in Eq. (11). Therefore, applying Li X to the
two sides of Eq. (22) we obtain

Corollary 2.3. Let ~r ∈ Zk
>1 and ~s ∈ Z`

>1. Let ~w = (w1, · · · , wk) ∈ (S1)k and ~z =

(z1, · · · , z`) ∈ (S1)` such that
[ r1

w1

]
6=
[ 1

1

]
and

[ s1

z1

]
6=
[ 1

1

]
. Then

Li~r(~w) Li~s(~z) =
∑

~t∈Zk+`>1 ,|~t|=|~r|+|~s|

∑
(ϕ,ψ)∈Ik,`

( k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i)

)
Li~t(~w?(ϕ,ψ)~z)

where c
~t,(ϕ,ψ)
~r,~s (i) is given in Eq. (18) and ~w?(ϕ,ψ)~z is given in Eq. (21).
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See Section 2.4 for examples in low dimensions. With the notation of λ
( ~s
~b

)
, Corollary 2.3

has the form

λ
( ~r
~a

)
λ
( ~s
~b

)
=

∑
~t∈Zk+`>1 ,|~t|=|~r|+|~s|

∑
(ϕ,ψ)∈Ik,`

( k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i)

)
λ
( ~t

~a X (ϕ,ψ)
~b

)
.

2.3.2. Multiple zeta values and alternating Euler sums. Taking zi = 1, 1 6 i 6 r, in a MPV
defined in Eq. (23) and its integral representation in Eq. (25), we obtain the MZV and its
integral representation:

ζ(s1, · · · , sk) : =
∑

n1>···>nk>1

1

ns11 · · ·n
sk
k

=

∫ 1

0

∫ u1

0

· · ·
∫ u|~s|−1

0

du1

f1(u1)
· · ·

du|~s|
f|~s|(u|~s|)

for integers si > 1 and s1 > 1. Here

fj(uj) =

{
1− uj if j = s1, s1 + s2, · · · , s1 + · · ·+ sk,
uj otherwise.

This is also the case when G = {1} in our framework in Section 2.1 and 2.2. Then we

can identify Ĝ with Z>1 and denote ~ν =
[ s1,··· ,sk
z1,··· ,zk

]
=
[ s1,··· ,sk

1,··· ,1

]
by z = zs1 · · · zsk . Then

H∗(Ĝ) coincides with the quasi-shuffle algebra H∗ encoding MZVs [23, 24] through the
identification zs1 · · · zsk ↔ zs1 · · · zsk . We will use zs1 · · · zsk in place of zs1 · · · zsk to avoid
confusion with the vector (z1, · · · , zk) in ~ν. H∗ contains the subalgebra

H∗0 := Z⊕ Z
{
zs1 · · · zsk

∣∣ si > 1, s1 > 1, 1 6 i 6 k, k > 1
}
.

Likewise the shuffle algebra H X (Ĝ) when G = {1} coincides with the shuffle algebra
H X [22, 24] encoding MZVs, and there are subalgebras

H X
0 := Z⊕ x0H

Xx1 ⊆ H X
1 := Z⊕H Xx1 ⊆ H X ,

where H X
1 coincides with H X

1(Ĝ) defined in Eq. (6). The natural isomorphism η : H X
1 → H∗

of abelian groups in Eq. (13) restricts to an isomorphism of abelian groups

η : H X
0 → H∗0, xs1−1

0 x1 · · ·xsk−1
0 x1 ↔ zs1 · · · zsk .

With the notation z′ Xη z′′ := η(η−1(z′) X η−1(z′′)) from Eq. (14), the double shuffle rela-
tion of MZVs is simply the ideal generated by the set

{z′ Xη z′′ − z′ ∗ z′′ | z′, z′′ ∈ H∗0}
and the extended double shuffle relation of MZVs [24] is the ideal generated by the set

{z′ Xη z′′ − z′ ∗ z′′, z1 Xη z′′ − z1 ∗ z′′ | z′, z′′ ∈ H∗0}.
While the product z′ ∗ z′′ simply follows from the quasi-shuffle relation, the evaluation of

z′ Xη z′′ involves first pulling z′ and z′′ back to H X
0 by η, then expressing the shuffle product

η(z′) X η(z′′) as a linear combination of words in M(x0, x1), and then sending the result
forward to H∗0 by η. While this process can be defined recursively (see Proposition 4.3),
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the explicit formula is found only in special cases, such as when z′ = zr, z
′′ = zs are both of

length one. As we have discussed in the Introduction, the explicit formula in this case is
Euler’s formula in Eq. (1). See the recent papers [1, 4] for its proofs and see [8, 31] for its
q-analogs.

Our Theorem 2.2 provides an explicit formula for Xη and hence for the shuffle product
of MZVs in the full generality.

Corollary 2.4. Let ~r ∈ Zk
>1 and ~s ∈ Z`

>1 with r1, s1 > 2. Then

ζ(~r) ζ(~s) =
∑

~t∈Zk+`>1 ,|~t|=|~r|+|~s|

( ∑
(ϕ,ψ)∈Ik,`

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i)

)
ζ(~t)

where c
~t,(ϕ,ψ)
~r,~s (i) is given in Eq. (18).

See Section 2.4 for its specialization to Euler’s decomposition formula and other special
cases.

Proof. Since ζ(~r) = Li~r(~w) and ζ(~s) = Li~s(~z) where the vectors ~w and ~z have 1 as the
components, the vectors ~w?(ϕ,ψ)~z also have 1 as their components and thus are independent
of the choice of (ϕ, ψ) ∈ Ik,`. Then the corollary follows Corollary 2.3. �

Between the case of MZVs and the case of MPVs, there is the case of alternating Euler
sums, defined by

ζ(s1, · · · , sk;σ1, · · · , σk) :=
∑

n1>···>nk>1

σn1
1 · · ·σ

nk
k

ns11 · · ·n
sk
k

,

where σi = ±1, 1 6 i 6 k. This corresponds to the case when G = {±1} in our framework.
More generally when G is the group of k-th roots of unity, we have the multiple polylog-
arithms at roots of unity [27]. We will not go into the details, but will give an example
in Eq. (26) that generalizes Euler’s formula.

2.4. Examples. We now consider some special cases of Theorem 2.2, Corollary 2.3 and
Corollary 2.4.

2.4.1. The case of r = s = 1. In this case ~r = r1 and ~s = s1 are positive integers, and
~w = w1 and ~z = z1 are in G. Let ~t = (t1, t2) ∈ Z2

>1 with t1 + t2 = r1 + s1. If (ϕ, ψ) ∈ I1,1,
then either ϕ(1) = 1 and ψ(1) = 2, or ψ(1) = 1 and ϕ(1) = 2. If ϕ(1) = 1 and ψ(1) = 2,
then by Eq. (18), we obtain

c
~t,(ϕ,ψ)
r1,s1

(1) =

(
t1−1

r1−1

)
, c

~t(ϕ,ψ)
r1,s1

(2) =

(
t2−1

t1+t2−r1−s1

)
= 1

and thus

c
~t,(ϕ,ψ)
r1,s1

= c
~t,(ϕ,ψ)
r1,s1

(1) c
~t,(ϕ,ψ)
r1,s1

(2) =

(
t1−1

r1−1

)
.

By Eq. (21), we have

~w?(ϕ,ψ)~z = (w1, z1/w1).
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If ψ(1) = 1 and ϕ(1) = 2, then by Eq. (18), we obtain

c
~t,(ϕ,ψ)
r1,s1

(1) =

(
t1−1

s1−1

)
, c

~t,(ϕ,ψ)
r1,s1

(2) =

(
t2−1

t1+t2−r1−s1

)
= 1

and thus

c
~t,(ϕ,ψ)
r1,s1

= c
~t,(ϕ,ψ)
r1,s1

(1) c
~t,(ϕ,ψ)
r1,s1

(2) =

(
t1−1

s1−1

)
.

By Eq. (21), we have ~w?(ϕ,ψ)~z = (z1, w1/z1). Therefore,[ r1

w1

]
Xη

[ s1

z1

]
=

∑
t1,t2>1,t1+t2=r1+s1

(
t1−1

r1−1

)[ t1,t2

w1,z1/w1

]
+

∑
t1,t2>1,t1+t2=r1+s1

(
t1−1

s1−1

)[ t1,t2

z1,w1/z1

]
=

∑
t1,t2>1,t1+t2=r1+s1

(
t1−1

t1−r1

)[ t1,t2

w1,z1/w1

]
+

∑
t1,t2>1,t1+t2=r1+s1

(
t1−1

t1−s1

)[ t1,t2

z1,w1/z1

]
=

s1−1∑
k=0

(
r1+k−1

k

)[ r1+k,s1−k

w1,z1/w1

]
+

r1−1∑
k=0

(
s1+k−1

k

)[ s1+k,r1−k

z1,w1/z1

]
by a change of variables k = t1 − r1 for the first sum and k = t1 − s1 for the second sum.
Then by Corollary 2.3, we obtain the following relation for double polylogarithms

Lir1(w1)Lis1(z1)=

s1−1∑
k=0

(
r1+k−1

k

)
Lir1+k,s1−k(w1, z1/w1) +

r1−1∑
k=0

(
s1+k−1

k

)
Lis1+k,r1−k(z1, w1/z1),

where r1, s1 > 1, w1, z1 ∈ S1 and (r1, w1) 6= (1, 1) 6= (s1, z1). In the special case when
w1 = ±1 and z1 = ±1, we have the following relation for alternating Euler sums

(26)

ζ(r1;w1)ζ(s1; z1) =

s1−1∑
k=0

(
r1+k−1

k

)
ζ(r1 + k, s1 − k;w1, z1/w1)

+

r1−1∑
k=0

(
s1+k−1

k

)
ζ(s1 + k, r1 − k; z1, w1/z1),

when r1, s1 > 1 and (r1, w1) 6= (1, 1) 6= (s1, z1).
Further specializing, when r1, s1 > 2 and w1 = z1 = 1, we obtain the decomposition

formula of Euler in Eq. (1).

2.4.2. The case of r = 1, s = 2. In this case
[ ~r

~w

]
=
[ r1

w1

]
and

[ ~s

~z

]
=
[ s1,s2

z1,z2

]
. Let

~t = (t1, t2, t3) ∈ Z3
>1 with t1 + t2 + t3 = r1 + s1 + s2. There are 3 pairs (ϕ, ψ) in I1,2.

When ϕ(1) = 1, ψ(1) = 2 and ψ(2) = 3, by Eq. (18), we have

c
~t,(ϕ,ψ)
r1,~s

(1) =

(
t1−1

r1−1

)
, c

~t,(ϕ,ψ)
r1,~s

(2) =

(
t2−1

t1+t2−r1−s1

)
=

(
t2−1

s2−t3

)
, c

~t,(ϕ,ψ)
r1,~s

(3) =

(
t3−1

s2−1

)
and thus

c
~t,(ϕ,ψ)
r1,~s

= c
~t,(ϕ,ψ)
r1,~s

(1) c
~t,(ϕ,ψ)
r1,~s

(2) c
~t,(ϕ,ψ)
r1,~s

(3) =

(
t1−1

r1−1

)(
t2−1

s2−t3

)(
t3−1

s2−1

)
.
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By Eq. (21) we have
~w?(ϕ,ψ)~z = (w1, z1/w1, z2).

Similarly, when ϕ(1) = 2, ψ(1) = 1 and ψ(2) = 3, we have

c
~t,(ϕ,ψ)
r1,~s

=

(
t1−1

s1−1

)(
t2−1

s2−t3

)
, ~w?(ϕ, ψ)~z = (z1, w1/z1, z1z2/w1),

and when ϕ(1) = 3, ψ(1) = 1 and ψ(2) = 2, we have

c
~t,(ϕ,ψ)
r1,~s

=

(
t1−1

s1−1

)(
t2−1

s2−1

)
, ~w?(ϕ, ψ)~z = (z1, z2, w1/(z1z2)).

Combining these computations with Corollary 2.3 we obtain, for r1, s1, s2 > 1 and
(r1, w1) 6= (1, 1) 6= (s1, z1),

Lir1(w1) Lis1,s2(z1, z2) =
∑

t1, t2, t3 > 1

t1 + t2 + t3
= r1 + s1 + s2

[(
t1−1

r1−1

)(
t2−1

s2−t3

)(
t3−1

s2−1

)
Li(t1,t2,t3)(w1, z1/w1, z2)

+

(
t1−1

s1−1

)(
t2−1

s2−t3

)
Li(t1,t2,t3)(z1, w1/z1, z1z2/w1)

+

(
t1−1

s1−1

)(
t2−1

s2−1

)
Li(t1,t2,t3)(z1, z2, w1/(z1z2))

]
.

Taking w1 = z1 = z2 = 1 (or by Corollary 2.4) we obtain the relation in Eq. (3) among
MZVs.

2.4.3. The case of r = s = 2. In this case
[ ~r

~w

]
=
[ r1,r2

w1,w2

]
and

[ ~s

~z

]
=
[ s1,s2

z1,z2

]
. Let

~t = (t1, t2, t3, t4) ∈ Z4
>1 with t1 + t2 + t3 + t4 = r1 + r2 + s1 + s2. Then there are

(
4

2

)
= 6

choices of (ϕ, ψ) ∈ I2,2.
If ϕ(1) = 1, ϕ(2) = 2, ψ(1) = 3 and ψ(2) = 4, by Eq. (18), we have

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

r1−1

)
, c

~t,(ϕ,ψ)
~r,~s (2) =

(
t2−1

r2−1

)
,

c
~t,(ϕ,ψ)
~r,~s (3) =

(
t3−1

t1+t2+t3−r1−r2−s1

)
=

(
t3−1

s2−t4

)
, c

~t,(ϕ,ψ)
~r,~s (4) =

(
t4−1

s2−1

)
and thus

c
~t,(ϕ,ψ)
~r,~s = c

~t,(ϕ,ψ)
~r,~s (1) c

~t,(ϕ,ψ)
~r,~s (2) c

~t,(ϕ,ψ)
~r,~s (3) c

~t,(ϕ,ψ)
~r,~s (4) =

(
t1−1

r1−1

)(
t2−1

r2−1

)(
t3−1

s2−t4

)(
t4−1

s2−1

)
.

Similarly, if ϕ(1) = 3, ϕ(2) = 4, ψ(1) = 1 and ψ(2) = 2, then

c
~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

s2−1

)(
t3−1

r2−t4

)(
t4−1

r2−1

)
.

If ϕ(1) = 1, ϕ(2) = 3, ψ(1) = 2 and ψ(2) = 4, then

c
~t,(ϕ,ψ)
~r,~s =

(
t1−1

r1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−t4

)
.
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If ϕ(1) = 2, ϕ(2) = 4, ψ(1) = 1 and ψ(2) = 3, then

c
~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−t4

)
.

If ϕ(1) = 1, ϕ(2) = 4, ψ(1) = 2 and ψ(2) = 3, then

c
~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

s2−1

)
.

If ϕ(1) = 2, ϕ(2) = 3, ψ(1) = 1 and ψ(2) = 4, then

c
~t,(ϕ,ψ)
~r,~s =

(
t1−1

s1−1

)(
t2−1

t1+t2−r1−s1

)(
t3−1

r2−1

)
.

Then from Corollary 2.4, we obtain Eq. (4). We likewise obtain formulas for the products
of double multiple polylogarithms and double alternating Euler sums.

3. Preparational lemmas

In this section we prove some properties of the coefficients c
~t,(ϕ,ψ)
~r,~s in our Theorem 2.1 and

Theorem 2.2 in preparation for their proofs in the next section.
We recall some notations from Section 2.2. Let k, ` > 1, ~r ∈ Zk

>1, ~s ∈ Z`
>1, ~t ∈ Zk+`

>1 with

|~t| = |~r|+ |~s| and (ϕ, ψ) ∈ Ik,` be given. For 1 6 i 6 k + `, denote

(27) h(ϕ,ψ),i = h(ϕ,ψ),(~r,~s),i =

{
rj if i = ϕ(j),
sj if i = ψ(j).

We note that, if we define

(28) εϕ,ψ(i) =

{
1 if i ∈ im(ϕ),
−1 if i ∈ im(ψ),

then Eq. (18) can be rewritten as

(29) c
~t,(ϕ,ψ)
~r,~s (i) =



(
ti−1

h(ϕ,ψ),i−1

)
if i = 1
or if i > 2 and εϕ,ψ(i)εϕ,ψ(i− 1) = 1,(

ti−1
iP

j=1
tj−

iP
j=1

h(ϕ,ψ),j

)
if i > 2 and εϕ,ψ(i)εϕ,ψ(i− 1) = −1.

Also recall

c
~t,(ϕ,ψ)
~r,~s =

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i).

For the inductive proof to work, we also include the case when one of k or ` (but not

both) is zero which corresponds to the case when ~µ or ~ν ∈ H∗0(Ĝ) is the empty word 1. We
will use the convention that Z0

>1 = {e} and denote |e| = 0. When k = 0, ` > 1, we will also
denote ~r = e, denote f : [k](= ∅) → [k + `] = [`] and denote I0,` = {(f , id[`])}. Similarly,
when ` = 0, k > 1, we denote ~s = e, f : [`]→ [k + `] = [k] and Ik,0 = {(id[k], f)}. Then the
notations in Eq. (27) – (29) still make sense even if exactly one of k and ` is zero. More
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precisely, when k = 0, ` > 1, we have h(f ,id[`]),(e,~s),i = si, εf ,id[`]
(i) = −1, 1 6 i 6 `. Also, for

any ~s and ~t ∈ Z`
>1 with |~s| = |~t|, we have

(30) c
~t,(f ,id[`])

e,~s =
∏̀
i=1

(
ti−1

si−1

)
=
∏̀
i=1

δtisi .

Similarly, if ~s = e, then for any ~r,~t ∈ Zk
>1 with |~r| = |~t|, we have h(id[k],f),(~r,e),i = ri,

εid[k],f (i) = 1, 1 6 i 6 k and

(31) c
~t,(id[k],f)

~r,e =
k∏
i=1

δtiri .

We first give some conditions for the vanishing of c
~t,(ϕ,ψ)
~r,~s .

Lemma 3.1. Let k, ` > 1. Let ~r ∈ Zk
>1, ~s ∈ Z`

>1 and ~t ∈ Zk+`
>1 with |~r| + |~s| = |~t|. Let

(ϕ, ψ) ∈ Ik,`. Then c
~t,(ϕ,ψ)
~r,~s 6= 0 if and only if, for 1 6 i 6 k + `,

ti > h(ϕ,ψ),i, if i = 1 or if i > 2 and εϕ,ψ(i)εϕ,ψ(i− 1) = 1,
i∑

j=1

tj >
i∑

j=1

h(ϕ,ψ),j >
i−1∑
j=1

tj, if i > 2 and εϕ,ψ(i)εϕ,ψ(i− 1) = −1.

Proof. By definition, c
~t,(ϕ,ψ)
~r,~s 6= 0 if and only if c

~t,(ϕ,ψ)
~r,~s (i) 6= 0 for every i ∈ [k + `]. Also(

a

b

)
6= 0 if and only if a > b > 0. Then the lemma follows since(

ti − 1 > h(ϕ,ψ),i − 1 > 0
)
⇔
(
ti > h(ϕ,ψ),i > 1

)
and(
ti − 1 >

i∑
j=1

tj −
i∑

j=1

h(ϕ,ψ),i > 0
)
⇔
(
−

i−1∑
j=1

tj > −
i−1∑
j=1

tj − 1 > −
i∑

j=1

h(ϕ,ψ),j > −
i∑

j=1

tj

)
.

�

Lemma 3.2. Let k, `, ~r, ~s,~t be as in Lemma 3.1.

(a) Let (ϕ, ψ) ∈ Ik,`. If ϕ(1) = 1, s1 = 1 and t1 > r1 or if ψ(1) = 1, r1 = 1 and t1 > s1,
then

c
~t,(ϕ,ψ)
~r,~s = 0.

(b) If t1 < min(r1, s1), then c
~t,(ϕ,ψ)
~r,~s = 0 for any (ϕ, ψ) ∈ Ik,`.

Proof. (a). We only consider the case when ϕ(1) = 1, s1 = 1 and t1 > r1. The proof of the
other case is similar. Since ϕ(1) = 1, we have ψ(1) > 1. This means that h(ϕ,ψ),i = ri for

1 6 i 6 ψ(1) − 1 and h(ϕ,ψ),ψ(1) = s1. Suppose c
~t,(ϕ,ψ)
~r,~s 6= 0. Then by Lemma 3.1, we have

ti > ri for 2 6 i 6 ψ(1)−1 and
ψ(1)−1∑
j=1

rj + s1 >
ψ(1)−1∑
j=1

tj by taking i = ψ(1). From these two

inequalities, we obtain r1 + s1 > t1 and hence r1 > t1 since s1 = 1. This is a contradiction.
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(b) If t1 < min(r1, s1), then t1 < h(ϕ,ψ),1. So by Lemma 3.1, for every (ϕ, ψ) ∈ Ik,` we have

c
~t,(ϕ,ψ)
~r,~s = 0. �

We next give some relations among the numbers c
~t,(ϕ,ψ)
~r,~s (i) as the parameters vary.

Definition 3.3. Let ~e1 denote (1, 0, · · · , 0) of suitable dimension. So for any vector ~x =
(x1, x2, · · · , xk) and a ∈ Z, we have

~x− a~e1 = (x1 − a, x2, · · · , xk).
Define

~x′ = (x′1, · · · , x′k−1) := (x2, · · · , xk)
with the convention that (x1)

′ = e. For a function f on [k], let f ] and f [ be respectively the
functions on [k − 1] and [k] defined by

f ](x) = f(x+ 1)− 1, f [(x) = f(x)− 1

with the convention that [0] = ∅ and that, if f is a function on [1], then f ] = f . Let f& and
f ∗ be respectively the functions on [k + 1] and [k] defined by

f&(1) = 1, f&(x) = f(x− 1) + 1, f ∗(y) = f(y) + 1, 2 6 x 6 r + 1, 1 6 y 6 r.

Also define

Ik,`,ϕ(1)=1 = {(ϕ, ψ) ∈ Ik,` | ϕ(1) = 1}, Ik,`,ψ(1)=1 = {(ϕ, ψ) ∈ Ik,` | ψ(1) = 1}.
Lemma 3.4. Let k, ` > 1. The map

(], [) : Ik,`,ϕ(1)=1 → Ik−1,`, (ϕ, ψ) 7→ (ϕ], ψ[)

is a bijection whose inverse is given by

(&, ∗) : Ik−1,` → Ik,`,ϕ(1)=1, (ϕ, ψ) 7→ (ϕ&, ψ∗).

Similarly, the map

([, ]) : Ik,`,ψ(1)=1 → Ik,`−1, (ϕ, ψ) 7→ (ϕ[, ψ])

is a bijection whose inverse is given by

(∗,&) : Ik,`−1 → Ik,`,ψ(1)=1, (ϕ, ψ) 7→ (ϕ∗, ψ&).

Proof. From the definition we verify that

(], [)(Ik,`,ϕ(1)=1) ⊆ Ik−1,`

and
(&, ∗)(Ik−1,`) ⊆ Ik,`,ϕ(1)=1.

Then to prove the first assertion we only need to show that (ϕ])& = ϕ and (ψ[)∗ = ψ if

ϕ(1) = 1, and that (ϕ&)
]

= ϕ and (ψ∗)[ = ψ. We just check the first equation and leave the
others to the interested reader. First we have (ϕ])&(1) = 1 by definition. Since ϕ(1) = 1,
we have (ϕ])&(i) = ϕ(i) when i = 1. If i > 2, then by definition we have ϕ](i−1) = ϕ(i)−1
and (ϕ])&(i) = ϕ](i− 1) + 1 = ϕ(i), as desired.

The proof of the second assertion in the lemma is similar. �
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Lemma 3.5. Let k, `, ~r, ~s,~t and (ϕ, ψ) be as in Lemma 3.1.

(a) Let a and b be integers such that a < min(t1, r1), b < min(t1, s1). Then for all
i ∈ {2, · · · , k + `}, we have

c
~t−a~e1,(ϕ,ψ)
~r−a~e1,~s (i) = c

~t,(ϕ,ψ)
~r,~s (i)

and

c
~t−b~e1,(ϕ,ψ)
~r,~s−b~e1 (i) = c

~t,(ϕ,ψ)
~r,~s (i).

(b) If ϕ(1) = 1 and r1 = t1 = 1, then

(32) c
~t,(ϕ,ψ)
~r,~s (i+ 1) = c

~t ′,(ϕ],ψ[)
~r ′,~s (i), 1 6 i 6 k + `− 1,

with the notations in Definition 3.3. Similarly, if ψ(1) = 1 and s1 = t1 = 1, then

(33) c
~t,(ϕ,ψ)
~r,~s (i+ 1) = c

~t ′,(ϕ[,ψ])
~r,~s ′ (i), 1 6 i 6 k + `− 1.

Proof. (a) We prove the first equality. The proof for the second equality is similar. Since
a < min(r1, t1), we have ~r − a~e1 ∈ Zk

>1 and ~t − a~e1 ∈ Zk+`
>1 . For better distinction, we will

use the full notation h(ϕ,ψ),(~r,~s),i defined in Eq. (27) instead of its abbreviation h(ϕ,ψ),i. Then
we have

(34) h(ϕ,ψ),(~r−a~e1,~s),i =

{
h(ϕ,ψ),(~r,~s),i if i 6= ϕ(1),
h(ϕ,ψ),(~r,~s),i − a if i = ϕ(1).

Let i ∈ {2, · · · , k + `}. If εϕ,ψ(i)εϕ,ψ(i− 1) = 1, then i 6= ϕ(1). Indeed, if i = ϕ(1), then
i− 1 must be in im(ψ), implying that εϕ,ψ(i)εϕ,ψ(i− 1) = −1. Thus

c
~t−a~e1,(ϕ,ψ)
~r−a~e1,~s (i) =

(
ti−1

h(ϕ,ψ),(~r−a~e1,~s),i−1

)
=

(
ti−1

h(ϕ,ψ),(~r,~s),i−1

)
= c

~t,(ϕ,ψ)
~r,~s (i).

If εϕ,ψ(i)εϕ,ψ(i − 1) = −1, then either i = ϕ(j) or i − 1 = ϕ(j) for some j ∈ [k]. In either
case, we have i > ϕ(1) since ϕ keeps the order. Thus by Eq. (34), we have

i∑
j=1

h(ϕ,ψ),(~r−a~e1,~s),j =
i∑

j=1

h(ϕ,ψ),(~r,~s),j − a.

So

c
~t−a~e1,(ϕ,ψ)
~r−a~e1,~s (i) =

(
ti−1

(t1−a)+
iP

j=2
tj−

iP
j=1

h(ϕ,ψ),(~r−a~e1,~s),j

)
=

(
ti−1

iP
j=1

tj−
iP

j=1
h(ϕ,ψ),(~r,~s),j

)
= c

~t,(ϕ,ψ)
~r,~s (i).

(b) Let ϕ(1) = 1 and r1 = t1 = 1. By Eq. (27), for 1 6 i 6 k + `− 1,

h(ϕ,ψ),(~r,~s),i+1 =

{
rj if i+ 1 = ϕ(j)
sj if i+ 1 = ψ(j)

=

{
r′j−1 if i = ϕ(j)− 1
sj if i = ψ(j)− 1

=

{
r′j if i = ϕ(j + 1)− 1
sj if i = ψ(j)− 1

=

{
r′j if i = ϕ](j)
sj if i = ψ[(j).
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Thus

(35) h(ϕ,ψ),(~r,~s),i+1 = h(ϕ],ψ[),(~r ′,~s),i, 1 6 i 6 k + `− 1.

Also, for 1 6 i 6 k + `− 1, since ϕ(1) = 1, we have

i+ 1 ∈ im(ϕ)⇔ i+ 1 = ϕ(j), j ∈ {2, · · · , k} ⇔ i = ϕ](j − 1), j − 1 ∈ [k− 1]⇔ i ∈ im(ϕ]).

Similarly, i+ 1 ∈ im(ψ)⇔ i ∈ im(ψ[). Thus

(36) εϕ,ψ(i+ 1) = εϕ],ψ[(i), 1 6 i 6 k + `− 1.

We now verify Eq. (32) for i = 1. Since ϕ(1) = 1, either 2 = ϕ(2) or 2 = ψ(1). If
2 = ϕ(2), then εϕ,ψ(2)εϕ,ψ(1) = 1 and so

c
~t,(ϕ,ψ)
~r,~s (2) =

(
t2−1

r2−1

)
=

(
t′1−1

r′1−1

)
= c

~t ′,(ϕ],ψ[)
~r ′,~s (1).

If ψ(1) = 2, then εϕ,ψ(2)εϕ,ψ(1) = −1. So by the condition that r1 = t1 = 1, we obtain

c
~t,(ϕ,ψ)
~r,~s (2) =

(
t2−1

t1+t2−r1−s1

)
=

(
t2−1

t2−s1

)
=

(
t2−1

s1−1

)
=

(
t′1−1

s1−1

)
= c

~t ′,(ϕ],ψ[)
~r ′,~s (1).

Next consider i > 2. By Eq. (35) and Eq. (36), we have

c
~t,(ϕ,ψ)
~r,~s (i+ 1) =



(
ti+1−1

h(ϕ,ψ),(~r,~s),i+1−1

)
if εϕ,ψ(i+ 1)εϕ,ψ(i) = 1,(

ti+1−1
i+1P
j=1

tj−
i+1P
j=1

h(ϕ,ψ),(~r,~s),j

)
if εϕ,ψ(i+ 1)εϕ,ψ(i) = −1,

=



(
t′i−1

h
(ϕ],ψ[),(~r ′,~s),i−1

)
if εϕ],ψ[(i)εϕ],ψ[(i− 1) = 1,(

t′i−1
iP

j=1
t′j−

iP
j=1

h
(ϕ],ψ[),(~r ′,~s),j

)
if εϕ],ψ[(i)εϕ],ψ[(i− 1) = −1,

since t1 = 1 and h(ϕ,ψ),(~r,~s),1 = r1 = 1. Therefore, we have c
~t,(ϕ,ψ)
~r,~s (i+ 1) = c

~t ′,(ϕ],ψ[)
~r ′,~s (i) when

i > 2.
The proof for Eq. (33) is similar. �

Lemma 3.6. Let k, `, ~r, ~s,~t and (ϕ, ψ) be as in Lemma 3.1.

(a) Suppose that r1 > 2 and s1 > 2. If t1 > 2, then we have

(37) c
~t,(ϕ,ψ)
~r,~s = c

~t−~e1,(ϕ,ψ)
~r−~e1,~s + c

~t−~e1,(ϕ,ψ)
~r,~s−~e1

If t1 = 1, then we have

(38) c
~t,(ϕ,ψ)
~r,~s = 0.
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(b) Suppose that r1 = s1 = 1. If ϕ(1) = 1 and t1 = 1, then we have

(39) c
~t,(ϕ,ψ)
~r,~s = c

~t ′,(ϕ],ψ[)
~r ′,~s

with the notations in Definition 3.3. If ψ(1) = 1 and t1 = 1, then we have

(40) c
~t,(ϕ,ψ)
~r,~s = c

~t ′,(ϕ[,ψ])
~r,~s ′ .

If t1 > 2, then we have

(41) c
~t,(ϕ,ψ)
~r,~s = 0.

(c) Suppose that r1 = 1 and s1 > 2. If ϕ(1) = 1 and t1 = 1, then we have

(42) c
~t,(ϕ,ψ)
~r,~s = c

~t ′,(ϕ],ψ[)
~r ′,~s .

If ψ(1) = 1 and t1 = 1, then we have

(43) c
~t,(ϕ,ψ)
~r,~s = 0.

If t2 > 2, then we have

(44) c
~t,(ϕ,ψ)
~r,~s = c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 .

Similar statements hold when r1 > 2 and s1 = 1.

Proof. (a) If ϕ(1) = 1, then

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

r1−1

)
=

(
t1−2

r1−2

)
+

(
t1−2

r1−1

)
= c

~t−~e1,(ϕ,ψ)
~r−~e1,~s (1) + c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (1).

Similarly, if ψ(1) = 1, we also have

c
~t,(ϕ,ψ)
~r,~s (1) = c

~t−~e1,(ϕ,ψ)
~r−~e1,~s (1) + c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (1).

In either case, by Lemma 3.5.(a) we have

c
~t,(ϕ,ψ)
~r,~s (i) = c

~t−~e1,(ϕ,ψ)
~r−~e1,~s (i) = c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (i)

when i ∈ {2, · · · , k + `}. Hence

c
~t,(ϕ,ψ)
~r,~s =

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i)

= (c
~t−~e1,(ϕ,ψ)
~r−~e1,~s (1) + c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (1))

k+∏̀
i=2

c
~t,(ϕ,ψ)
~r,~s (i)

=
k+∏̀
i=1

c
~t−~e1,(ϕ,ψ)
~r−~e1,~s (i) +

k+∏̀
i=1

c
~t−~e1,(ϕ,ψ)
~r,~s−~e1 (i)

= c
~t−~e1,(ϕ,ψ)
~r−~e1,~s + c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 .

This proves Eq. (37). Eq (38) follows from Lemma 3.2 (b).
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(b) First we assume that t1 = 1. For (ϕ, ψ) ∈ Ik,`, either ϕ(1) = 1 or ψ(1) = 1. If ϕ(1) = 1,
then

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

r1−1

)
=

(
0

0

)
= 1

and by Lemma 3.5.(b) we have

c
~t,(ϕ,ψ)
~r,~s (i+ 1) = c

~t ′,(ϕ],ψ[)
~r ′,~s (i).

Hence

c
~t,(ϕ,ψ)
~r,~s =

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i) =

k+∏̀
i=2

c
~t,(ϕ,ψ)
~r,~s (i) =

k+`−1∏
i=1

c
~t ′,(ϕ],ψ[)
~r ′,~s (i) = c

~t ′,(ϕ],ψ[)
~r ′,~s .

This proves Eq. (39). The proof of Eq. (40) is similar. The equality for t1 > 2 follows from
Lemma 3.2.(a).

(c) Suppose that r1 = 1 and s1 > 2.

Case 1: t1 = 1. We consider the case of ϕ(1) = 1. By Lemma 3.5.(b) we have

c
~t,(ϕ,ψ)
~r,~s (i+ 1) = c

~t ′,(ϕ],ψ[)
~r ′,~s (i).

Combining this with

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

r1−1

)
=

(
0

0

)
= 1,

we obtain

c
~t,(ϕ,ψ)
~r,~s =

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i) =

k+`−1∏
i=1

c
~t ′,(ϕ],ψ[)
~r ′,~s (i) = c

~t ′,(ϕ],ψ[)
~r ′,~s .

This proves Eq. (42). If ψ(1) = 1, then

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

s1−1

)
=

(
0

s1−1

)
= 0

since s1 − 1 > 1 and so c
~t,(ϕ,ψ)
~r,~s = 0, as needed.

Case 2: t1 > 2. We will consider the four subcases when ψ(1) = 1 and t1 < s1, when
ψ(1) = 1 and t1 > s1, when ψ(1) = 1 and t1 = s1, and when ϕ(1) = 1.

If ψ(1) = 1 and t1 < s1, then

c
~t,(ϕ,ψ)
~r,~s = 0 = c

~t−~e1,(ϕ,ψ)
~r,~s−~e1

by Lemma 3.1. If ψ(1) = 1 and t1 > s1, then by Lemma 3.2.(a) we also have

c
~t,(ϕ,ψ)
~r,~s = 0 = c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 .

So in these two subcases (44) holds.
Now if ψ(1) = 1 and t1 = s1, then

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

s1−1

)
= 1 =

(
t1−2

s1−2

)
= c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (1).

If ϕ(1) = 1, then since r1 = 1, we have

c
~t,(ϕ,ψ)
~r,~s (1) =

(
t1−1

r1−1

)
=

(
t1−1

0

)
= 1 =

(
t1−2

0

)
=

(
t1−2

r1−1

)
= c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (1).
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In both subcases, by Lemma 3.5.(a) we always have

c
~t,(ϕ,ψ)
~r,~s (i) = c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 (i).

for i > 2. Therefore,

c
~t,(ϕ,ψ)
~r,~s =

k+∏̀
i=1

c
~t,(ϕ,ψ)
~r,~s (i) =

k+∏̀
i=1

c
~t−~e1,(ϕ,ψ)
~r,~s−~e1 (i) = c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 .

This proves (44).
The proof for the instance of r1 > 2 and s1 = 1 is similar. �

4. Proof of the main theorems

We first show that, under the condition that G is an abelian group, Theorem 2.1 and
Theorem 2.2 are equivalent. Then we only need to prove Theorem 2.1. This is done in
Section 4.2.

4.1. The equivalence between Theorem 2.1 and Theorem 2.2. We start with a
lemma.

Lemma 4.1. Let G be an abelian group. With the notations in Eq. (12), (16) and (21),
we have

(45) θ(~a X (ϕ,ψ)
~b) = θ(~a)?(ϕ,ψ)θ(~b).

Proof. Let ~w = θ(~a) and ~z = θ(~b). Then by Eq. (12), we have wj = 1/a1 when j = 1 and
wj = aj−1/aj when j > 2. Similarly, zj = 1/b1 when j = 1 and zj = bj−1/bj when j > 2.

Recall Eq. (16):

(~a X (ϕ,ψ)
~b)i =

{
aj if i = ϕ(j),
bj if i = ψ(j).

If i = 1, we have

θ(~a X (ϕ,ψ)
~b)1 = (~a X (ϕ,ψ)

~b)−1
1 =

{
a−1

1 = w1 if 1 = ϕ(1)
b−1
1 = z1 if 1 = ψ(1)

= (~w?(ϕ,ψ)~z)1.

Next let i > 2. Assume that i ∈ im(ϕ), say i = ϕ(j) for some j ∈ [k]. If i − 1 ∈ im(ϕ),
then j > 2 and i− 1 = ϕ(j − 1). Thus

θ(~a X (ϕ,ψ)
~b)i =

(~a X (ϕ,ψ)
~b)i−1

(~a X (ϕ,ψ)
~b)i

=
aj−1

aj
= wj.

If i− 1 ∈ im(ψ), then i− 1 = ψ(i− j). Thus

θ(~a X (ϕ,ψ)
~b)i =

(~a X (ϕ,ψ)
~b)i−1

(~a X (ϕ,ψ)
~b)i

=
bi−j
aj

=
w1 · · ·wj
z1 · · · zi−j

.

Hence by Eq. (21),

θ(~a X (ϕ,ψ)
~b)i = (~w?(ϕ,ψ)~z)i

when i ∈ im(ϕ). A similar argument shows that the above equality also holds when
i ∈ im(ψ). This proves (45). �
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Proposition 4.2. When G is an abelian group, then Theorem 2.2 is equivalent to Theo-
rem 2.1.

Proof. By the definitions of θ, Xη and Xρ , we see that θ is an algebra isomorphism from

H Xρ (Ĝ) = (H(Ĝ), Xρ ) to H Xη (Ĝ) = (H(Ĝ), Xη ). So for any
[ ~r

~a

]
,
[ ~s

~b

]
∈ H Xρ (Ĝ),

[ ~r

~a

]
Xρ

[ ~s

~b

]
=

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]

⇔ θ(
[ ~r

~a

]
Xρ

[ ~s

~b

]
) = θ(

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]
)

⇔ θ(
[ ~r

~a

]
) Xη θ(

[ ~s

~b

]
) =

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s θ(

[ ~t

~aX (ϕ,ψ)
~b

]
)

⇔
[ ~r

θ(~a)

]
Xη

[ ~s

θ(~b)

]
=

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

θ(~aX (ϕ,ψ)
~b)

]

⇔
[ ~r

θ(~a)

]
Xη

[ ~s

θ(~b)

]
=

∑
(ϕ,ψ) ∈ Ik,`

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

θ(~a)?(ϕ,ψ)θ(~b)

]
(by Eq. (45)).

Then the proposition follows from the bijectivity of θ. �

4.2. Proof of Theorem 2.1. In this section we prove Theorem 2.1. We first describe
recursive relations of Xρ that we will use later in the proof.

Let H Xρ +(Ĝ) be the subring of H Xρ (Ĝ) generated by
[ ~s

~b

]
with ~s ∈ Zk

>1,
~b ∈ Gk, k > 1.

Then

H Xρ (Ĝ) = Z⊕H Xρ +(Ĝ).

Define the following operators

P :H Xρ +(Ĝ)→ H Xρ (Ĝ), P (
[ s1,s2,··· ,sk
b1,b2,··· ,bk

]
) =

[ s1+1,s2,··· ,sk
b1,b2,··· ,bk

]
,

Qb :H Xρ (Ĝ)→ H Xρ (Ĝ), Qb(
[ s1,··· ,sk
b1,··· ,bk

]
) =

[ 1,s1,··· ,sk
b,b1,··· ,bk

]
, Qb(1) =

[ 1

b

]
.
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Proposition 4.3. The multiplication Xρ on H Xρ (Ĝ) defined in Eq. (14) is the unique one
such that

P (ξ1) Xρ P (ξ2) = P
(
ξ1 Xη P (ξ2)

)
+ P

(
P (ξ1) Xρ ξ2

)
, ξ1, ξ2 ∈ H Xρ +(Ĝ),

Qa(ξ1) XρQb(ξ2) = Qa

(
ξ1 XρQb(ξ2)

)
+Qb

(
Qa(ξ1) Xρ ξ2

)
, ξ1, ξ2 ∈ H Xρ (Ĝ),

P (ξ1) XρQb(ξ2) = Qb

(
P (ξ1) Xρ ξ2

)
+ P

(
ξ1 XρQb(ξ2)

)
, ξ1 ∈ H Xρ +(Ĝ), ξ2 ∈ H Xρ (Ĝ),

Qb(ξ1) Xρ P (ξ2) = Qb

(
ξ1 Xρ P (ξ2)

)
+ P

(
Qb(ξ1) Xρ ξ2

)
, ξ1 ∈ H Xρ (Ĝ), ξ2 ∈ H Xρ +(Ĝ).

with the initial condition that 1 Xρ ξ = ξ Xρ 1 = ξ for ξ ∈ H Xρ (Ĝ).

Proof. Let H X +
1 (G) be the subring of H X

1(G) generated by words of the form uxb with
b ∈ G. Then

H X
1(G) = Z⊕H X +

1 (G).

Define operators

I0 :H X +
1 (G)→ H X

1(G), I0(u) = x0u,

Ib :H X
1(G)→ H X

1(G), Ib(u) =

{
xbu, u 6= 1,
xb, u = 1,

for b ∈ G. Then the well-known recursive formula of the shuffle product

(a1a) X (b1b) = a1(a X (b1b)) + b1((a1a) X b), a1, b1 ∈ G, a, b ∈M(G)

can be rewritten as the following relations of I0 and Ia, Ib, a, b ∈ G,

(46)

I0(u) X I0(v) = I0
(
u X I0(v)) + I0(I0(u) X v

)
, u, v ∈ H X +

1 (G),

Ia(u) X Ib(v) = Ia
(
u X Ib(v)) + Ib(Ia(u) X v

)
, u, v ∈ H X

1(G),

I0(u) X Ib(v) = I0
(
u X Ib(v)

)
+ Ib

(
I0(u) X v

)
, u ∈ H X +

1 (G), v ∈ H X
1(G),

Ib(u) X I0(v) = Ib
(
u X I0(v)

)
+ I0

(
Ib(u) X v

)
, u ∈ H X

1(G), v ∈ H X +
1 (G).

Under the bijection ρ : H X
1(G)→ H Xρ (Ĝ) in Eq. (13), I0 and Ib, b ∈ G, are sent to P and

Qb, b ∈ G, respectively. Further the relations in Eq. (46) for I0 and Ib (b ∈ G) take the form
in Proposition 4.3. Finally, since X is the unique multiplication on H X

1(G) characterized by
its recursive relation Eq. (46) and the initial condition 1 Xu = u X 1 = u, Xρ is also unique
as characterized. �

Note that P cannot be defined by a left multiplication even though its counter part I0
can.

For ~b ∈ Gk, recall the following notation from Definition 3.3:

~b ′ = (b′1, · · · , b′k−1) := (b2, · · · , bk)

with the convention that ~b ′ = e when k = 1. In the proof for Theorem 2.1 we also need
the following lemma.

Lemma 4.4. Let ~t ∈ Zk+`−1
>1 , ~a ∈ Gk and ~b ∈ G`.
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(a) For any (ϕ, ψ) ∈ Ik−1,` we have

(47) Qa1(
[ ~t

~a ′X (ϕ,ψ)
~b

]
) =

[ (1,~t)

~aX
(ϕ&,ψ∗)

~b

]
with the notations in Eq. (16) and Definition 3.3.

(b) For any (ϕ, ψ) ∈ Ik,`−1 we have

(48) Qb1(
[ ~t

~aX (ϕ,ψ)
~b ′

]
) =

[ (1,~t)

~aX
(ϕ∗,ψ&)

~b

]
.

Proof. (a) Let ~$ = ($1, · · · , $k+`−1) := ~a ′ X (ϕ,ψ)
~b and ~τ = (τ1, · · · , τk+`) := ~a X (ϕ&,ψ∗)

~b.
By the definition of Qa1 , we only need to prove that

τi =

{
a1 if i = 1,
$i−1 if i > 2.

Since ϕ&(1) = 1, we have τ1 = a1. Now let i > 2. We have i ∈ im(ϕ&) or i ∈ im(ψ∗). If
i ∈ im(ϕ&), say i = ϕ&(j), then i−1 = ϕ(j−1). Thus we have τi = aj and$i−1 = a′j−1 = aj.
This shows that τi = $i−1. If i ∈ im(ψ∗), say i = ψ∗(j), then i − 1 = ψ(j). Thus τi = bj
and $i−1 = bj again showing τi = $i−1.

(b). The proof is similar to that for Item. (a). �

Proof of Theorem 2.1. We prove the extended form of (20) where one of k and `, but not
both, might be zero. We prove this by induction on |~r|+|~s| > 1. If |~r|+|~s| = 1, then exactly

one of k and ` is zero. So exactly one of
[ ~r

~a

]
and

[ ~s

~b

]
is the identity 1. Then by (30)

and (31), there is nothing to prove. For any given integer n > 2, assume that the assertion
holds for every pair (~r, ~s) with |~r|+ |~s| < n. Now consider ~r and ~s with |~r|+ |~s| = n. If one
of k or ` is 0, then again by (30) and (31) there is nothing to prove. So we may assume
that k, ` > 1. There are four cases to consider.

Case 1. r1 > 2 and s1 > 2. Then by Proposition 4.3 and the induction hypothesis, we
have [ ~r

~a

]
Xρ

[ ~s

~b

]
= P (

[ ~r−~e1
~a

]
) Xρ P (

[ ~s−~e1
~b

]
)

= P (
[ ~r−~e1

~a

]
Xρ

[ ~s

~b

]
+
[ ~r

~a

]
Xρ

[ ~s−~e1
~b

]
)

= P
( ∑

(ϕ,ψ)∈Ik,`

∑
~t ∈ Zk+`>1 ,|~t |=|~r|+|~s|−1

(c
~t,(ϕ,ψ)
~r−~e1,~s + c

~t,(ϕ,ψ)
~r,~s−~e1 )

[ ~t

~aX (ϕ,ψ)
~b

] )
=

∑
(ϕ,ψ)∈Ik,`

∑
~t ∈ Zk+`>1 ,|~t |=|~r|+|~s|−1

(c
~t,(ϕ,ψ)
~r−~e1,~s + c

~t,(ϕ,ψ)
~r,~s−~e1 )

[ ~t+~e1

~aX (ϕ,ψ)
~b

]
=

∑
(ϕ,ψ)∈Ik,`

∑
~t ∈ Zk+`>1 ,|~t |=|~r|+|~s|,t1>2

(c
~t−~e1,(ϕ,ψ)
~r−~e1,~s + c

~t−~e1,(ϕ,ψ)
~r,~s−~e1 )

[ ~t

~aX (ϕ,ψ)
~b

]
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=
∑

(ϕ,ψ)∈Ik,`

∑
~t ∈ Zk+`>1 ,|~t |=|~r|+|~s|,t1>2

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]
(by Eq. (37))

=
∑

(ϕ,ψ)∈Ik,`

∑
~t ∈ Zk+`>1 ,|~t |=|~r|+|~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]
(by Eq. (38)).

Case 2. r1 = s1 = 1. We will use the notations ~r ′, ~s ′,~a ′ and ~b ′ in Definitions 3.3. Then

[ ~r

~a

]
Xρ

[ ~s

~b

]
= Qw1(

[ ~r ′

~a ′

]
) XρQz1(

[ ~s ′

~b ′

]
)

= Qw1(
[ ~r ′

~a ′

]
Xρ

[ ~s

~b

]
) +Qz1(

[ ~r

~a

]
Xρ

[ ~s ′

~b ′

]
)

= Qw1

( ∑
(ϕ,ψ)∈Ik−1,`

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ ~t

~a ′X (ϕ,ψ)
~b

])
+Qz1

( ∑
(ϕ,ψ)∈Ik,`−1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r,~s ′

[ ~t

~aX (ϕ,ψ)
~b ′

] )
=

∑
(ϕ,ψ)∈Ik−1,`

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ (1,~t)

~aX
(ϕ&,ψ∗)

~b

]
+

∑
(ϕ,ψ)∈Ik,`−1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r,~s ′

[ (1,~t)

~aX
(ϕ∗,ψ&)

~b

]
( by Eq.(47) and (48))

=
∑

(ϕ,ψ)∈Ik,`,ϕ(1)=1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ],ψ[)
~r ′,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
+

∑
(ϕ,ψ)∈Ik,`,ψ(1)=1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ[,ψ])
~r,~s ′

[ (1,~t)

~aX (ϕ,ψ)
~b

]
(by Lemma 3.4)

=
∑

(ϕ,ψ)∈Ik,`,ϕ(1)=1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
+

∑
(ϕ,ψ)∈Ik,`,ψ(1)=1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
(by Eq. (39) and (40))

=
∑

(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
=

∑
(ϕ,ψ)∈Ik,`

∑
~t∈Zk+`>1 ,|~t|=|~r|+|~s|,t1=1

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]



EXPLICIT SHUFFLE RELATIONS AND EULER’S FORMULA 25

=
∑

(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t |=|~r|+|~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]
(by Eq. (41)).

Case 3. r1 = 1 and s1 > 2. With the notations in Definitions 3.3, we write ~r = (1, ~r ′).
Let ~a ′ = (w2, · · · , wr). Then[ ~r

~a

]
Xρ

[ ~s

~b

]
= Qw1(

[ ~r ′

~a ′

]
) Xρ P (

[ ~s−~e1
~b

]
)

= Qw1(
[ ~r ′

~a ′

]
Xρ

[ ~s

~b

]
) + P (

[ ~r

~a

]
Xρ

[ ~s−~e1
~b

]
)

= Qw1(
∑

(ϕ,ψ)∈Ik−1,`

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ ~t

~a ′X (ϕ,ψ)
~b

]
)

+P (
∑

(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r,~s−~e1

[ ~t

~aX (ϕ,ψ)
~b

]
)

=
∑

(ϕ,ψ)∈Ik−1,`

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r ′,~s

[ (1,~t)

~aX
(ϕ&,ψ∗)

~b

]
+

∑
(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r,~s−~e1

[ ~t+~e1

~aX (ϕ,ψ)
~b

]
(by Eq. (47))

=
∑

(ϕ,ψ)∈Ik,`,ϕ(1)=1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ],ψ[)
~r ′,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
+

∑
(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t|=|~r|+|~s|−1

c
~t,(ϕ,ψ)
~r,~s ′

[ ~t+~e1

~aX (ϕ,ψ)
~b

]
(by Lemma 3.4)

=
∑

(ϕ,ψ)∈Ik,`,ϕ(1)=1

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
+

∑
(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t|=|~r|+|~s|−1

c
~t+~e1,(ϕ,ψ)
~r,~s

[ ~t+~e1

~aX (ϕ,ψ)
~b

]
(by Eq. (42) and (44))

=
∑

(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`−1

>1 ,|~t|=|~r|+|~s|−1

c
(1,~t),(ϕ,ψ)
~r,~s

[ (1,~t)

~aX (ϕ,ψ)
~b

]
+

∑
(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t|=|~r|+|~s|−1

c
~t+~e1,(ϕ,ψ)
~r,~s

[ ~t+~e1

~aX (ϕ,ψ)
~b

]
(by Eq. (43))

=
∑

(ϕ,ψ)∈Ik,`

∑
~t∈ Zk+`>1 ,|~t|=|~r|+|~s|

c
~t,(ϕ,ψ)
~r,~s

[ ~t

~aX (ϕ,ψ)
~b

]
.
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Case 4. r1 > 2 and s1 = 1. The proof for this case is similar to that for Case 3. �

5. Appendix: a shuffle formulation of the Main Theorem

The main body of the paper does not depend on this Appendix. Here we give another
formulation of Theorem 2.1 in terms of shuffles of permutations for those who are interested
in a more precise connection between the main theorem and shuffle product.

Let integers k, ` > 1 be given. Let

(49)

S(k, `) : =
{
σ ∈ Σk+` | σ−1(1) < · · · < σ−1(k), σ−1(k + 1) < · · · < σ−1(k + `)

}
=
{
σ ∈ Σk+`

∣∣∣ if 1 6 σ(i) < σ(j) 6 k
or k + 1 6 σ(i) < σ(j) 6 k + `,

then i < j
}
.

be the set of (k, `)-shuffles.
To state the shuffle form of our main theorem we need the following notations.
Define

εσ : [k + `]→ {±1}, εσ(i) =

{
1, 1 6 σ(i) 6 k,
−1, k + 1 6 σ(i) 6 k + `.

Let ~r = (r1, · · · , rk) ∈ Zk
>1 and ~s = (s1, · · · , s`) ∈ Z`

>1. Denote

~κ = (κ1, · · · , κk+`) := (r1, · · · , rk, s1, · · · , s`).

Let ~a ∈ Gk and ~b ∈ G`. Denote

~γ = (a1, · · · , ak, b1, · · · , b`).

For σ ∈ S(k, `) we denote

~a X σ
~b = (γσ(1), · · · γσ(k+`)).

We have the following equivalent form of Theorem 2.1.

Theorem 5.1. Let G be a set and let H Xρ (Ĝ) = (H(Ĝ), Xρ ) be as defined by Eq. (8).

Then for
[ ~r

~a

]
∈ Ĝk and

[ ~s

~b

]
∈ Ĝ` in H Xρ (Ĝ), we have

[ ~r

~a

]
Xρ

[ ~s

~b

]
=

∑
σ ∈ S(k, `),

~t ∈ Zk+`>1 , |~t| = |~r|+ |~s|

( k+∏̀
i=1

(
ti−1

κσ(i)−1− 1
2
(1−εσ(i)εσ(i−1))

i−1P
j=1

(tj−κσ(j))

))[ ~t

~aX σ
~b

]

with the convention that εσ(0) = εσ(1).

Proof. Let Ik,` be as defined in Eq. (15). We have the bijection between S(k, `) and Ik,`
given by

(50) σ−1(j) := σ−1
ϕ,ψ(j) =

{
ϕ(j) if 1 6 j 6 k,
ψ(j − k) if k + 1 6 j 6 k + `.

That is,

σ(i) := σϕ,ψ(i) =

{
ϕ−1(i) if i ∈ im(ϕ),
k + ψ−1(i) if i ∈ im(ψ).
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Thus we have

(51) κσ(i) =

{
κϕ−1(i), i ∈ im(ϕ)
κk+ψ−1(i), i ∈ im(ψ)

=

{
rϕ−1(i), i ∈ im(ϕ)
sψ−1(i), i ∈ im(ψ)

= h(ϕ,ψ),i

and

(52) (~a X σ
~b)i = γσ(i) =

{
γϕ−1(i), i ∈ im(ϕ)
γk+ψ−1(i), i ∈ im(ψ)

=

{
aϕ−1(i), i ∈ im(ϕ)
bψ−1(i), i ∈ im(ψ)

= (~a X (ϕ,ψ)
~b)i.

By Eq. (52) we have

(53) ~a X σ
~b = ~a X (ϕ,ψ)

~b.

Let εϕ,ψ be the function [k + `]→ {1,−1} defined in Eq. (28). Then for σ = σϕ,ψ,

εσ(i) = 1⇔ σ(i) ∈ [k]⇔ i = σ−1(j), j ∈ [k]⇔ i = ϕ(j), j ∈ [k]⇔ i ∈ im(ϕ)⇔ εϕ,ψ(i) = 1.

So we have

(54) εσ(i) = εϕ,ψ(i), 1 6 i 6 k + `.

Now our theorem follows from Eq. (29), (51), (53), (54) and Theorem 2.1. �
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