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LOGARITHMIC TERMS IN ASYMPTOTIC

EXPANSIONS OF HEAT OPERATOR TRACES

PETER B. GILKEvt AND GERD GRUBB:j:

ABSTRACT. Let P be an elliptic selfadjoint positive classical pseudodifferclltial op­
erator of order don a compact m-dimensional manifold withollt. boundary. The heat
tra.ce of P has an asymptotic expansion in t(l-m)/d and t k log t far I = 0lll 2, ... alld
k = II 2 l •••• We show that the coefficients of all terms in this expansion are nOIl­
trivial for adense Bel. of P. We show that the coefficient of the t(l-TTl)/d tenn is not
locally computablc when (l - m)/d is a positive integcrj the rcmaining coefficients
are known to be locally computable. - Let PB be an operator of Dirae type on
a compact Tl-dimensional manifold with smooth boundary such that the structurcs
are product neat the boundary; here a spectral boundary condition is imposed. Let
~1 = PB'" PB and ~2 = PBPU'". Ifn iB even l the heat trace of ~i has an asymptotic
expansion in t(l-n)/d and tk+l/~ log t for I = 0, I

I
2l ... and k = Oll, 2, ... j if Tl is odd l

there is an expansion without the tk+l/~ logt terms. We show that all cocfficients
(all hut one if n is odd) are nontrivial for adensc set of operators.

1. Pseudodifferential operators on manifolds without boundary.

Let M be a COlnpact boundaryless rn-dimensional Coo manifold provided with
a smooth vOltllllC element, let E be a smooth Hermitian vector bundle over M, let
d be a positive integer l alld let P be a classical pseudodifferential operator (7j;c1o)
in E of order d which is elliptic, selfadjoint. and positive (> 0); such a P will be
said to be admissible. We refer to Seeley [15, 17), Greiner [10], Duistermaat and
Guillemin [7), Grubb [12]' Agranovic [1]' and Grubb and Seeley [13] for proofs of
the following analytic results.

Let e- tP be the solution operator e- tP : f f---T u for the heat eql1ation 8tu+Pu = 0
with initial value Ult=o = f. This operator is trace dass for each t > 0, anel as t -!. °
there is an asylnptotic expansion of the form:

For Re(s) » 0, let ((P, s) := Tr p-~; this has a luermnorphic extension to C with
isolat.ed simple poles. The Mellin transfonll yields the relationship

(1.2)
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Since h(P, t) decays exponeutially as t --+ 00, one can use equations (1.1) anel
(1.2) to see that r(s)((p, s) has a meromorphic extension to C with poles at the
points (m - l)/rl, l = 0,1,2,.... Let. N := {I, 2, ... }. The poles at the points
s = (rn - l)/d fJ. -N are (at most) simple, and the poles at the points s E -N are
(at most) double. (The conccpt of poles is used in a. general scuse where residues
and other Laurent coefficients can be zero.) There is the following stra.ightforward
relationship betwcen the heat trace coefficients and the cocfficients of the Laurent
expansions at these points:

(1.3)
(Li (P) = Res8=(m-l)/dr(S )((P, ,<;), anel

bk(P) = -Ress=-k(S + k)f(s)((P, s).

The asyluptotic expansion of h(P, t) determincs thc pole st.ructure of f(s )((P, s) and
converscly, the pole structurc of f(s)((P, s) elcterillines the asymptotic expansion
of h(P, t).

If P is a different.ial operator, then bk (P) = 0 for all k, and al (P) = 0 when l is
odd (in this case the order d of P is necessarily even). Therc is a similar expansion,
given in eqllation (2.1) below, when the differential operator P is considered on
a cOillpact manifold with boundary and is provided with a local elliptic bouudary
condition.

IfPis Illerely assunwd ~ 0, p-8 is defined to be zero on the nullspace Vo(P), and
the transition between the heat trace expansion (1.1) and t he pole structure (1.3)
contiIllles to hold when the rcsidue at 0 is modified by subtraction of diln(Vo(P)).

Wc say that a property holds generically for the values of a parameter in IRv
(ar (IR+)V or another cOIuplcte metric vector space) elose to Xo if it holeIs for thc
points in same sma.ll ball about Xo minus a set of Baire catcgory I (recall that thc
sets of Baire category I are countable unions of nowherc dünse sets). We denote
the iInaginary unit (A) by i.

1.4 Theorem. Let M be a compo.ct boundaryless Coo maniJold, E a Coo veetor
bundle over M and d a positive integer. Let P oe any elliptic, selJadjoint positive
dossical pscudodifferential olJCrator oJ order d in E. There exists a selJadjoint
classical pseudodifferential operator Q oJ order d - 1 in E commuting with P such
that for generic small values oJ a und b, al (P + aQ + b) i= 0 Jor all l ~ 0 and
bk (P + aQ + b) i= 0 J01' all k ~ 1.

1.5 Remark. Let m alld k be odd and let d = 1. By considering the square root
of an operator of Laplace type, Cognola et al. [6] construct. operators wherc bk is
non-trivial.

Proof. Let PI := plid. Für real parameters E = (EI,'''' Ed-l) anel {}, deHne:

By Seeley [15], P2 (f, (}) is an admissible d'th order 'ljJdü for sluall values of fand Q.

Let 1 :::; i :::; d - 1. Thcn

ßt;1 'Ir e- tP2 (i',O) = -t 'Ir{pt- i e- tP2 (E',O)}, anel heIleG

Bt; j f(s)((P2 (f, 0), s)le=o = -f(s + l)((P, s + i/d).
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(1.6)

Note that ao(P) > 0 (it is an integral of the prillcipal symbol, see for exaruple [15]).
Thus the residue of f(s)((P, s) at s = 7n/d is nonzero. Since f(m/d) is regular,
((P, s) has a non-trivial siluple pole when s = rn/d. Thus ((P, S + i/d) has a simple
pole with non-trivial residue at s(i) := (7n - i)/d. Since s(i) > -1, f(s(i) + 1)
is regular so ä~j r(s)((P2(f,0), s) ha..") a non-trivial simple pole at s(i) whcn f = O.
The variation of thc residlle is the rcsiduc of thc variation in this instance. ThllS

ä~, RCS.~=8(i) r(s)( (P2 (f, 0) 1 s) = Re88=8(i) äEj r(s )((P2 (f, 0), s) f. 0

and äEiai(Pdf,O)) f. 0 at f= O. Thus we luay choose fso that (Li(P2(f,O)) i- 0 for
1::; i::; d -1; ao(P2(f,0)) = ao(P) is always nonzero. Sincc

h(P2(f, (J), t) = h(P2(f, 0), t)e-t~,

al (P2(f, g)) = LO:5j:5l/d( -(J)j al-dj (P2(f, 0)) / j!.

Cho08e j so that l- dj = i with 0 ::; i < d. Then al-dj(P2(f, 0)) f. 0 so al(P2(f, g))
is a non-trivial polynOluial in (! aud is nonzero for generic fd. This shows tImt there
exists an adnlissible VJdo P2 which has the same leading symbol as P aud which
conllllUtes with P so t.hat ai (P2) I- 0 for I ;::: O.

We now study thc invariants bk. Let P3(T1, Ta) := pl + TIPI + Ta; P3 is an
adlllissibic second order VJelo for small values of Ta aud Tl [15]. The argument given
above shows that TO aud Tl can be .chosen so al (P3(Tl, Ta)) f. 0 for all I ;::: O. Let
P4 = -J]5;; it is an admissible first order 1/'do [15]. Since arn+dP3) f:. 0 anel since
r is regular at .., = -1/2, ((P3 , s) has a non-trivial simple pole at s = -1/2. Thus
at s = -1, ((P4, s) = ((P3 , 8/2) has a non-trivial simple pole and f(s)((P4 , s) has
a double pole so bl (P4 ) f. O. Let. Ps(T2) := P4 + T2; Ps is an admissible first order
VJdo for T2 small. Then h(PS(T2), t) = h(P4, t)e- tT2 so

This is a non-trivial polynmuial in T2 so we can choose T2 so that bk (PS (T2)) f. 0 for
k ;::: 1; this implies tImt r(~'J)((Ps(T2),s) has a double pole at s E -N. Let P6 = p;};
it is an adnlissible VJdo of order d. Then f(s)((Ps, s) = f(s)((PS (T2), ds) has a
double pole at s E -N so bk(PS ) f. 0 for k ;::: 1. This shows that there exists an
adluissible VJdo Ps which has the same leading symbol as Panel whieh conunutes
with P so that bk(PS ) f:. 0 for k ;::: 1.

For 0 $ T3 $ I, let P7(T3) = T3P2 + (1 - T3)P6 ; it is an admissible VJdo of
order d. The illvariallts al for 0 ::; I < d and b1 are non-t.rivial polynomials in T3
so we can choose T3 so al(P7 (T3)) f. 0 for 0 ::; l < d and so bdP7 (T3)) f. O. Let
Q = P7(T3) - Pj Q is a sclfadjoint VJdo of order d - 1 which COlurnutes with P.
Let P(a, b) = P + aQ + b; this is an aelmissible VJelo of order d for small values of
(a,b). Then al(P(a,O)) for 0::; l < d anel bl(P(a,O)) are non-trivial polynOluials
in a; hence they are nonzero for generic values of a alld wc restrict to such values
of a henccforth. Since h(P(a, b), t) = h(P(a, 0), t)e- tb , al(P(a, b)) for l 2:: 0 alld
bk(P(a, b)) for k 2:: 1 are non-trivial polynomials in b; hence they are non-trivial for
generic valll88 of b. D

Fix the order d, the dimension m of M anel the rank r of E. Choose a loeal
coordinate system on M and a loeal franle for E. A loeal formula A(P)(x) is simply
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a smooth funetion of the values at. x of a finite nUluber of derivatives of CL finite
number of terms (np to a fixed number no) in thc asymptotic expansion of thc total
symbol of P such that A(P)(x) is defined fOf all admissible P; this formula is said to
be invariant if the value is indepcndent of the particular local coordinate system and
fraule which is chosen. A scalar vallIed function a(P) is said to be locally comptitable
if there is an invariant loeal fOfulllla so that a(P) = JM A(P)(x). When P is an
admissible pseudodifferential operator, thc invariants al(P) for (l- rn)/d tj. N are
locally cOInplltable and the invariants bk (P) for k E N are locally cOlnputable, by
forumlas based on the rules for composition anel inversion of 1j;dos (Seeley [15]).

1.7 Theorem. IJ (1- rn)/d = k E N, then al(P) is not locally com]Jutable.

Proof. Suppose the contrary; let Al bc the cOlTesponding loeal fonnula for fixeel
(rn, d, r, no ). Let 9 be a Riemannian metric on M := sm. Stlppose first 7Tl > 1.
Let 6 (g) := (Doo (g) 2 + IR(g) 1

2 ) 1/4 0 Ir aet ing on a trivial bundle of fiber diIneIlsion
r whcre 6 0 (g) is thc scalar Laplacian anel where IR(g) 1

2 is the norm of the total
curvature tensor. Then 6(g) is a natural first order elliptic selfadjoint classical 'l/Jdo
with 6(c- 2g) = c6(g). Since sm does not admit a Hat metric, IR(g)1 2 does not
vanish identically so 6(9) is positive anel hence admissible. Ir m = 1, let 6(9) be
6 0(g)I/2 with coefficient.s in r copics oft.he Möbius bUllellcj again 6(g) is (tchuissible
anel 6(c- 2 g) = c6(g). The operator

is adlnissible whcn tbc componcut.s of f are nonnegative. Furthenuore, thc ar­
gUllwnt uscd to prove Theorem 1.4 shows that bk(P(Ol i)) is nonzero for generic
slnall T with nonnegativc components. For c > 0 1 let g(c) := c- 2 g 1 Tl (c) := CTl,

TO(C) := C2T01 anel T2(C) := CT2. Then P(g(c), T(C)) = cdP(g, T). We will show
further below that there cxists an asylnptotic cxpansion as c -!- 0 of thc form:

Since dvol(g(c)) = c-mdvol(gL we intcgrate equation (1.8) to see that.

On the other hand, since P(g(CLT(C)) = cd P(g, T), we nlay equate asYlnptotic
expansions of h(cdP, t) anel h(P1 cdt) and compare the coefficients of t k and t k log t
to sec that bk(cP) = ckbk(P) allel t.hat

(1.10)

Since bk (P(g, T)) is llonzero for gCllcric small vallIes of T, thc expansion in eqllation
(1. 9) is inconsist.cut with the expansioll in equation (1.10). This contrael iction
inlplies that al is not locally computable.

To establish equation (1.8) wc generalize an argument givell in Gilkey [8]. Fix
Xo E M and choose a system of local coordinates X on M centered at xo. Intro­
duce fonna} variables 9ij(X, g) := g(of 1 of) alld gij/o:(X 1 g) := a;:gij(X, g). Then
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A1(P(g, T')) is an invariantly defined snlooth function of the variables gij/o and T'
whose value is independent of the particular coordinate system oJ'Y which is chosen.
This fllnction is defincd for Yij positive definit.e and Ti ~ 0; t.here is no restrietion
on the gijI Cl (X, g) variables for 10'1 > O. We now sec that the restrietion P > 0 was
inessential; a loca.l formula can not detcct thc globally dcfined kerncl and henee we
ean work with allY natural selfadjoint nonnegative operator P(g). Let Xc = c- 1X
be a new coordinate system on M centered at xo. Then (sec [8] für details):

9ij/o(Xc ,c-2g)(XO) = clolgij(X,g)(xo), so

A1(P(g(c)} T'(c))) = AI(clolgij/o(X, g)(xo}, f(c))

is a smooth functiou of c at c = O. We expand this fuuction in a Taylor series about
c = 0 to derive the expansion givcn in equation (1.8); it is then imnlcdiate that the
individual terms in this expansion are invariant separately. 0

Theorem 1.4 shows that the set of admissible 'ljJdos for which all the invariants
al(P) and bk(P) do not vanish is a dense set (in a suitable topology). We shall now
show t.hat t.he set of adlItissible partial differential operators for which the invariants
al (P) do not vanish for all even I is dense in the set of aelmissible partial differential
operators. Here we canIlot in general choose the perturbation to COllullute with P.

1.11 Theorem. Let M be a compact boundaryless 0 00 maniJold, E a 0 00 vector
bundle over M and d a positive integer. Let P be (my elliptic, selfadjoint positive
differential operator oJ order 2d in E. There exists a selJadjoint differential operat07'
Q oJ order 2d - 2 on M stich that JOT generic small valties oJ a, al (P + aQ) i= 0
for I even and ~ O.

Proof. First we rccall the explicit. combinatorial forlIlulas for the invariants a2j (P)
elerivable frmn Seeley [15] (further details can be found in [9] or [11]). Let Pd+ ... +po
be thc total symbol of the differential operator P. F'or A E C \ [0, oo[ , set.

q-d := (Pd - A)-1 aud iuductivcly set

q-d-I(X,~,A) := -q-d LIClI+d+j-k=l,j<l( -i)lola€Pka~q_d_j/O'!.

Let km := i(21r) - m -1 auel let C be a suitably chosen contour in C abou t the p ositive
real axis. Then

Use a partition of unity to construct an operator ßo in E with leaeling synlbol given
by a Rielnannian metric on M. Let PI (f, (}) := P +tlßg- 1+ ... +td-l ßo +{}. Then

Thus we may choose f so that a2j(Pdf,0)) =1= 0 for 0 < j < d; ao(Pdf,O)) is
always nonzero. Since h(P(f, (}), t) = h(Pl (f, O), t)e- te } therc cxists (f, (}) so tImt
at (Pdf, (})) -=I- 0 for l evell anel ~ O. We set Q := P - Pdf, (}). Then UI (P + aQ) is
a non-trivial polyuonlial in a anel hence is nonzoro for generic a. 0



We say that a seeond order differential operator D is of Laplace type if thc leading
symbol of D is scalar and is givell by a Riemannian metrie; D = - Lij gi j BiBj +
lower order ternlS. We say timt a first order differential operat.or A is of Dirne type
if A2 is of Laplace type. Let Clir:(IRm) denote the complcx Clifford algebra. Ir ei

is thc usual orthononnal ba..<.;is for lRm , this is thc universal complex unital algebra
generated by thc Ci subject to the Clifford eommutation relations

eiej + ejei = - 26ij.

The algebra ClifC(IR2k ) has a uniquc eomplex irreducible represcntation 8 of diIllCIl­
sion 2k j thc algebra ClifC(JR2k+1) has two inequivalent complex irredueible repre­
sentations Si of dilnension 2k

. Evcry eomplex representation of these algebras ean
be expressed uniquely in terms of S 01' in terms of SI and S2, sec Atiyah, Bott.,
and Shapiro [2] for details. Let M be a eompaet conneeted boundarylcss Coo man­
ifold. Let V(M) be the space of sclfadjoint operators of Dirae type on M; this is
a eonlplete metric spaee in a suitable topology. The leadillg symbol of an operator
A E V(M) defines a ClifC(M) module strllcture on the fibers of the vcctor bundle
on whieh A aets. Let 711, bc odd. Ir M is orientable, let V(M, Tl, 1'2) be tlle space
of operators givillg rise to a modulc strueture isoillorphie to TISI + 1'282' If M is
not orientable, loeally the structure is always of the form T(Sl + S2) and we denote
this spaee by V(M, 1', r). If 111, is even, let V(M, T) be the space of operators giving
rise to the module strueture 1'8. Ir m is odd, V(M) is the disjoint union of the
V(M, Tl, 1'2) whilc if rn is even, V(M) is the disjoint union of the V(M, r). V(M) is
a Freehet space, e.g. with thc seminorms defining the Coo spaees of coefficients in a
fini te system of loeal eoordinate patehes (also global senünürillS coulel be definccl).

We shall need the following teehllieal result.

1.12 Lemma. Let M be a compact boundaryless 0 00 TfwniJold} E a Coo vecto1'
bundle ove1' M, D an operator of Laplace type in E} anrl 'l/Ji E COO(End(E)). Let
D(c) := D + E'l/Jl + E2'I/J2' Expand a21(D(E)) = LO<i<21a21,i(D,'l/J1,1};2}ci as a
polyno7nial in E. Then - -

Proo/. Let D 1 = -(gijDiBj + Akak + B) be an operator of Laplace type wherc A k

and Bare endolIlorphisms of E. Wc define:

ord(D~gij) := 10'1, ord(B~Ak):= IßI + 1, anel ürd(8JB) := 1,1 + 2.

The combinatorial formllia given in t.he proof of Theorem 1.11 shows a2l(Dd is the
trace of a non-conunutat.ive polynomial in the variables Dr;gij (for 10'1 > 0), ae A k ,

anel Bi B whieh is homogencous of order 21 with eoeffieients which are smooth
functions of the gij variables. See [9, Lemma 1.8.3) for further details. The coeffi­
eient of E21 in a21(D(c)) must thorefore be of the form c(1n,l) IM Tr(1/;~); 1/;1 does
not enter. We ean evaluate this constaut by takitlg '!f;1 = 0 anel '!f;2 = I. Then
h(D + E2, t) = h(D, t)e-e

2

t, so a21(D + E2) = (-I)lE2Iao(D)/I! plus lower order
tcrnlS in E. We uso the identity ao(D) = (41T)-m j 2 vol(M) dim(E) to cornplete thc
prüof. 0

We now st.ucly the invariants a[(A2) for operators A of Dirae t.ype.



1.13 Theorem.

(1) Let M !Je a compact connceted bOHndtL11Jless Coo manifold of dimension
1n > 1, and let A E V(M). Then a2l(A2) =I- 0 holds generically for operators
dose to A in V(M).

(2) If A E V(Sl,1'l,T2) with Tlr2 = 0, then a21(A2) = 0 for alll > O.

(3) /1 r1T2 =I- 0 and A E V (S1
, Tl, 1'2), then a2t (A 2 ) =I- 0 holds generically for

opera tOTS dose to A in V (SI 1 1'1, 1'2) .

P1·00f. Thc invariauts (l2l are given by Ioea.l fornmlas so they are cOlltinuous on V.
Consequcntly, t.o provc assertions (1) auel (3), it suffiees to show for each l that
a21(A2) does not. vallish on a dense set. The proof of (1) essontially follows from
work of Branson aud Gilkey [4]. Wo outlille thc proof since thore is one technical
point that needs amplification whieh was omitt.cd in [4]. Let A E V(A1). Let
A(e:) := A + c:. We cOlnpute:

Li 8;ai(A(c:)2)t(i-fll)/2 "J 8; Tr(e- tA(c)2)

=oc Tr( -2tA(e:)e- tA (c):I) = Tr((-2t + 4t2A(c:)2)e- tA (c)2)

=2t( -1 - 2t8t ) Tr(e- tA (c)2) ,.... Li 2(-1 + 17~ - j)aj (A(e)2)t(j-m+2)/2.

We compare coefficieuts of t in the two asymptot.ic expansions anel set. i = 2l and
j = 21 - 2 to sec:

(1.14)

Suppose that 1n is even 01' that 2l < 1n. Then 1n + 1 - 21 =I- 0, anel equation
(1.14) can be applieel recursivcly to constrllct a nOIl-zero constaut c(1TL, l) so that

This shows that a21 is nonzero Oll a denBe set. It remaius to consider the cases
where m is odd aud 2l > m. Again, we can find C(17l, k) =I- 0 so that

o;kafll+1+2k(A(e)2) = c(1n, k)a fll +dA(e)2).

ThllS it sufficcs to prove that am+dA(e)2) is nonzero on a dense set. If f E COO(M),
there is an expansion

Tr(IAe- tA2 ) "J""'OO a (I A A2)t(l-m-l)/2L.....I=O I , , •

Let A(e) := A + el. We compute

L:o 8g ai ((A + e!)2)le=ot(i-m)/2 ,.... Og Tr(e- t (A+uJ)2 )Ie=o

= - 2t Tr(IAe- tA2
) "J -2""'~ a -(I A A2)tU- m +1)/2L.....j=O j , , .

Wc compare coefficients of t in the two asymptotic expansions aud set i = rn + 1
and j = m to see
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The invariallt.s al(!, A, A 2) are locally cOlnputable;

ThllS to show timt am +1 (A 2 ) iR generically non-zero, it sllffiecs to show t. hat the
loeal fonnula Am(A, A 2 )(x) does not vanish idelltically for a dense set of operators
A. Relative to a systenl of local coordinates and in a loeal frame for E, we luay
express the operator as A = Ei rial + b. Fix Xo E M alld 110nnalize the choicc of
coordinates so that 9ij(XO) = ~ij. Fix (rn,1'1,r2)' We ean normalize the loeal frame
on the veetor bundle in questiou so that the rl have a standard form at Xo. Thcn
Am(A, A 2 )(xo) is a polYllomial in the luatrix eomponents of band its derivatives
and in the matrix cOIuponents of the derivat.ives of the rl whieh is universally
defined. Thus wc need only show that this polynomial is l1on-trivial; the topology
of the underlying manifold M plays no role. For m > 3 odd, the product argullwut
described in [4, page 81) preserves the strueture eonstants (Tl, T2) and redllees this
to the ease 1'n = 3. Thc case 1n = :3 follows from [4 , Theorem 4.1 (cl)]. This
eompletes the proof of assertion (1). We note that the argllluent given in [4) did
not take into aeeount the neecl to specify the structure constants (7'1, TZ) and was
ineomplete at this point.

Suppose that rn = 1. ParaIuetrize the circle by are length to write A = rax + b
where ,2 = -1. If 1'1 = 0 01' if T2 = 0, then r is scalar so A = ±iax + b. Choose a
loeal primitive B für b. Then A = ±ie±iBaxc~iB so A is locally gauge eqllivalent
to ±i8x and all the llighcr order local invariant.s of A vanish. This proves a..,;sertioll
(2). If 7'11'Z =1= 0, we ean choose 7 selfadjoint so that 7, + r7 = 0 and so that
Tr(i'2) =1= 0. Set A(E) := A + ci', Thcn we have A(c)2 = A2 + c'lj; + c2i'2 where
'Ij; = fYy + i'b is an operator of order zero. By Lernum 1.12, t he cocfficient. of E

2l in
a2l (A (c) 2 ) is n011- trivial alld assertion (3) folIows. 0

Let. D be a self-adjoint posit.ive operator of Laplaee type and let u E C. Let
Lu,j(D) für j ~ -1 be the ph eoefficient in the Laurent expansion of f(s)((D , s)
about s = u; L u,-l (D) = a2n(D) if u = (m - 2n)/2 for some n and Lu,-dD) = °
otherwise. lf m is even, let V(M, rl 1 TZ) = V(M,7'l)' For A E V(M, rl , TZ) with
ker(A) = 0, we consider the invariants LU,j(AZ

). For generic values of c, A + f is
invertible; we restrict to such values of c henceforth. Let T > 0, let e E IR \ {O},
anel let J.1. be the null tiplici ty of t.he lowest eigenvalue ,,\ of A 2 • We have

(1.15) a;kr(s)(((A + c)2 , s) = 2s(2s + 1) (2s + 2k - 1)f(s)((A(c)2, s + k),

(1.16) 8~ r (s)( (A 2 + T, s) = (-1) k s (.9 + 1) (s + k - 1)r (s)( (A2 + T, S + k),

(1.17) lim ,,\8+k«(A2,s+k) =J-1.
k-+oo

Note that (((eA)2,s) = lel-z~((A2,s). We expanel lel- 28 anel ((A2 ,s) in Laurellt
series separately, multiply thc two series together, anel eollcet terms to see t.hat

(1.18)
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1.19 Lemma. Let (u,m,Tl,T2) be given. There exists A E D(sm,r1,1'2) so t!wt
Lu,o(A) :I O.

Proof. We shall asSUIne Tl = 1 anel 1'2 = 0; taking direct sums anel replacing A by
-A defiucs opcratorH with arbitrary strllctllre constants and redu<~es thc proof of
thc lemma to this special case. Let Al E D(sm, 1,0) be the Dirac operator elefineel
by the spin st.ructure on sm. Suppose t.hat 2u is not. a negative oeld integer, aud
consider a k E N. Since 2'lL(2u + 1) ... (2u + 2k - l)f(u) :I 0, we can use equations
(1.15) anel (1.17) to sec that for sllfficielltly large k, a:kLu,_l((A l + c)2) = 0 anel
8;k Lu,o((A l + c)2) :I O. This shows that L u,o((A1 + c)2) =1= 0 for generic values of
c.

For thc renminder of the proof, we shall asstlme 2u is a negative odd integer.
Suppose that rn = 1. Let ((s) := Ln>o n~s be the Riemanu zeta fUllction. The
functional equatioll 7f-s/2f(s/2)((s) = ?T-(1-s)/2r((1 - 8)/2)((1 - s) shows that
((u) :I O. The cigellvalues of the Dirac operator A := -i8e on the Möbius bundle
over the cirelc are {n + 1/2} for n E Z. Sinee ((8, A2 ) = 22s+1 (1 - 2- 28 )((2.'1),
f(u)((u, A 2

) :I 0 SO Lu ,0(A2
) :I O.

Suppose m > 1 is odd. Choose 1 > 0 so that 1l. = (rn - 2l)/2. By Theorelll 1.13,
there exists A2 E D(sm, 1,0) elose to the Dirac operator on sm so that a2l (A~) :I O.
We set j = 0 i 11 Equation (1.18) to see Lu ,0 ((eA 2) 2

) :I 0 for generic vallies of e.
Suppose that rn is even. The spin bllnelle Oll sm decomposes into the half spin

bundles S±. Let '0 = ±1 Oll S±; 10 anti-commutes with the D irac operator Al'
Let A 2 (T) := Al + 'OT

l
/

2
. Since (-u)( -7l, - 1) ... (-u - k + l)f(u) 7:- 0, aud since

A2(T)2 = Ai + T, eqllations (1.16) anel (1.17) show that a;Lu ,o(A2(T)2) :I 0 for
large k. 0

As recalleel earlier, the invariallts Lu,-l are locally cOlnputable. On the other
hand:

1.20 Theorem. The invariants Lu,j are not locally comp'Utable JOT j ~ O.

Proof. We fix (rTl, 1'1,7'2), Suppose tImt Lu,j is given by a loeal fonnula Lu,j. Let
{} E IR \ {O}. Let X be a system of local coordinates ccntercd at Xo E M. Let
A = Li liOi + b. Let '"Yi/a := 8~'"Yi and biß := a~b. Thcn .cu,j(A) is an illvariantly
defined sll100th funetion of the variables lila auel biß whose valuc is independent
of the particular coordinate systenl which is chosen. This function is defined fo1' '"Yi
satisfying the Cliff~,)fd eommlltatioll relations; there are no restrictiolls on the other
variables. Let {} E IR \ {O} and let Xe = 0- 1X. Then

'"Yi/o(XI],eA)(xo) = (}lal,i/o(X, A)(xo),

b/ß(XI]' (}A)(xo) = {}l+Iß1b/ß(X, A)(xoL and

.cu,j (({}A)2)(xo) = .cu,j (Olol'"Yi/o (X, A), el+Iß1 b/ß(X, A)) (1:0)'

ThllS L u ,j(({}A)2) is slUoot.h at {} = O. We expand this function iu a Taylor series
about {} = 0 to show



only even powers of f} appeal' since .cu ,j((f}A)2) is an even function of (J. Wc integrate
this expression with respect to the metric e1efineel by the leadillg sYlubol of A to see

(1.21)

Use Lemma 1.19 to chooRe A E v(sm, rl, r2) so that Lu,o(A) =I- 0. If j > 0, the
presence of (log lel)j Lu,o in equation (1.18) contradicts equation (1.21). If j = °
and if u =I- (rTt - 2n) /2 for Tl ~ 0, then Lu,-l (A2 ) = 0. Thus eqllatioll (1.18) iluplies
Lu,o((eA)2) = lel-2u Lu ,o(A2); this contradicts equation (1.21) since the power of
e is not of the correct form.

Suppose that j = 0 anel that 'lt = (rn - 21'1,)/2 for sonle n. If 7n > 1, use Theorem
1.13 to choose A so that Lu,-l (A2 ) =I- O. The presence of (log leI)Lu,-l (A2

) in
cqllatioll (1.18) contradicts equation (1.21). If 7ft = 1, then 1.L = (1 - 2n)/2. If
n = 0, Lu,-dA) = ao(A2

) =I- °anel the same argument shows Lu,-l is not locally
computable. Suppose n ~ 1. Choosc A E V(SI, 1,0) so that Lu,o(A) =I- 0; we take
the direct sum of copies of A and of -A to treat the general case. Let A(e) = eA for
e =I- 0. Since Lu ,_1(A(e)2) = 0, we have .cu,o(A(e)2) = f}2n .cu,o(A2). The operator
A(e) is locally gauge equivalent to the operator A; consequently .cu ,o(A(e)2)
.cu,o(A2). Since n =I- 0, Lu,o(A) =°so Lu,o(A) =°which is false. 0

2. Operators of Dirac type with spectral boundary conditions.

Let X be a compact connectcd n-dimensional Cco manifold with slnooth bound­
ary M = ax (of dilnension 1H = (n - 1)). Let D be a realization of Cl second
order strongly elliptic differential operator with a loeal boundary cOllelitioll. ThcIl
equation (1.1) generalizcs to becOlnc

(2.1 )

For exaruple, if we let D act like -aJ + c on thc interval [0, n] with Dirichlet
bOlludary eondition, then h(D, t) = (.fi t- 1/ 2 - 1/2)e-ct + O(tk ) for any k; this
provides an exanlple where all thc eoefficients al in eqllation (2.1) are nonzero.

Ir a non-IDeal bounelary condition is imposed (as in At.iyah, Patodi, and Singer
[3]), then therc is an asyluptotic expanRiou which eau fnrthermore contain logarith­
mic tenns. Let us reeall t.he set.ting of [3], [13]. Choose a collared neighborhood
Xc := M x [0, c[ of M in X for some c > 0. Let X n denote thc coordinate in [0, c[
(it is considcred a.., t.he normal coordinate). Let X havc a smooth voluIne clelllent
Vx anel suppose thcre is a volume element VM on M so that Vx = UM dXn on Xc'

Let Ei be Hennitian 0 00 vector bUIHllcs over X anel let.

be a first-order elliptic differential operator from EI to E2 . Let E; dellote the
restrietion of the buudles Ei to the bOllndary M. On Xc, the Ei are iSOIHorphic to
the pull-backs of the E~. Let an denote the nornlal derivative. We assume on Xc
that P = a(8n + A) whcre a is a unitary morphisln from E~ to E~, independent
of Xn1 anel where A is a fixed elliptie first order cl ifferential operat.or on Coo (E~ )
which is selfadjoint in L2(E~), dcfiued with rcspeet to the Hennitian metric in E~.

In this setting, we shall say that the st.ructurcs are product nea7' the boundrL7'Y.
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(2.3)

The APS O]JC1'at01' PB is defined as the operator from L2(Ed to L2(E2) act.ing like
P and with domain defined by a Iloniocal (so-called spectral) boulldary condition:

D(PB ) = {u E H 1(Ed (Sobolev space) IB(uIAt} = O};

here B is an orthogonal projection in L2 (ED of the fonn B = n~ + Bo, where
n~ is the orthogonal projection onto the sum of eigenspaces for A with eigcnvalues
A ;:: 0, anel Ba COlnmutes with A a.nel ranges in Va(A). (More general bOllnelary
cOllditions are considereel in Grubb anel Seeley [14] anel in Brüning anel Lesch [5].)
By [16], PB is a Freelhohn operator.

Now consider the associatccl second order operators

61 := PB· PD and .6. 2 := PBFn •.

Thc following analogues of thc expansion (2.1) for the heat traces of these operators
h(.6.i , t) := Tr e-u~.1' were established in [13]. If n = dim(X) is even, then

(2.2) h(.6.i , t) '"'-J L~a a/ (.6. i )t(l-n)/2 + L~o bk(.6.i)tk+l/210g t,

with coefficiellts satisfying, for suitable universal constants ß(k, n) and ,(k, n) i= 0:

bk(.6. i ) = ß(k, n)a2k+n(A2),

a2k(.6.d = a2k,+(Lld + fdA),

(L2k+d.6. i ) = ,(k, n)a2k (A2) for k < n/2,

a2k+l (.6. i ) = f~ (A) for k ~ n/2.

Here a2k,+(Lld = Ix A2k(Ll i )(x) where the A2k (.6. i )(X) are the local formul<lS elefin­

ing t.I~ coefficients in the heat trace expansions for_.6. 1 = p.P resp. Ll2 = pp. I

with P dcnoting the extension of P to the double X elescribcd in [3]. The fk(A)
are Iocally computable fuuctions of A when 2k f; 11 , and the f~(A) are, by Theorem
1.20, not Iocally computable.

If n is odd, thc log t terms do not appeal' and the expansion has a form siInilar
to that given in equation (2.1):

(2.4)

(2.5)

with

a2k(.6.d = (L2k,+(.6. i ) + g~(A),

a2k+d.6.i ) = l'(k, n)a2k (A2) for 2k + 1 f; 11,

an (.6. i ) = g" (A).

whcre the g~(A) are 0 for k < n/2 and are, by Theorem 1.20, not locally computable
for k > n/2.

Let P(X) bc the space of all operators of Dirac type over X such tImt the
strllctures are product. near the bOllndary. Then the t.angenti<tI operator A is of
Dirac type on M. If n is evell, let P(X, 1'1,1'2) be the subset of operators such that.
A E V(M, 1'1, 1'2) I with structllre cOllstants 1'i independent. of the partintlar bound­
ary compollent consielereel. In the following theorem I we show t.hat the invariants
of the expansions (2.2) and (2.4) are non-trivial.
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2.6 Theorem. Consider PD with P of Dirae typc.

(1) Let n = 2. /fT1T2 = 0, then bk(D..i) = 0 for all k if PE P( ...Y,T1,1'2).

(2) Let n = 2. /J1'1r2 f:. 0, then a1 (D..i) f:. 0 and bk(D..i ) f:. 0 Jor k ~ 0 holds
generieally for operatm' dose to P in P (X, 7'1, 1'2) .

(3) Let n ~ 4 be even. Then al (D..i) f:. 0 Jor l odd < n and bk(D..d =I- 0 f07' k ~ 0
holds generically Jor operators dose to P in P (X).

(4) Let n be odd. Then al (D..i) =I- 0 for l odd f:. n holds geneneally for operators
dose to P in P(X).

(5) Let n be even, let 1'11'2 f:. 0 and let P E P(X, 1'1,1'2), Then al (ßd f:. 0 Jor
even l holels generieally for operators dose to P in P (X, r I, 1'2) .

(6) Let n be odd and let P E P(X,r). Then Ul(D..i) 'I 0 for even l holds
generically for operators dose to P in P(X).

Proo]. Thc first 4 assertions follow inuuediately from Theorem 1.13 in view of the
fonIlulas (2.3), (2.5) for thc coefficients in question.

When l is even, (2.3) anel (2.5) show timt. the invariants al dcpend on the behavior
of P in the interior; we exploit this fact in the proof. Let ep be u smooth function on
X which vanishes near the boundary and which has support in a small coordinate
neighborhood 0 on X. Oll 0, we write P = L:i (fiCi + b where Ci iH a loeal
orthonormal fralne for the tangent buudle of X. Wo use Cfl t.o idcntify EI and E2

ovcr 0 and therefore assumc without loss of generalit.y that Cfl = I. The condition
that P~P has lcading symbol given by the metrie tensor then yields that. the li are
skew-adjoint and satisfy the Clifford commutatiou conditions ,llj + Ijli = -2oij
for 2 $ i ~ n. Under thc aSSlullptiollS of the thcorClll, wc ca.u find 10 selfadjoint
with ,5 = I so timt IOli + lilO = 0 for 2 $ i ~ n. Wc let P(e) := P + el.fYYo. Then
the commutation relations involvcd imply there exists an operator '/f; of order zero
so tImt D..i(t) = D..i(O) + t'/f; + t 2ep2.

Consider the coefficients a2j (.3. i (t)) in t.he heat t.raee for t he associat.ed Lapla­

dans .3. i on the doubled nlullifold X. Here Li(e) = Li(O) + e;J + e2 (jJ2. By Lemma
1.12, a2j(Lii (e)) is a non-trivial polynomial in e. The same holds for the invariant

a2j,+(D..i(e)) = ~lL2j(Lii(e)). Since fk(A) in (2.3) a.nel g~(A) in (2.5) dcpcnd only
on thc behavior of P near thc boundary, and ep has support in thc interior of X,

is a Hon-trivial polynomial in e. Thus a2j(ßi(t)) is nonzero for all j for generic
valucs of t near 0 and the theorelll folIows. 0

For thc odd dimcnsional case wc cOllclude, since a union of two sets of Baire
catcgory I is of Baire category I:

2.7 Corollary. Let n be odd and consider PB as above. Then all coefficients al(6d
except possibly an(D..i) are nonzero genencally for operators dosc to P in P(X).

In the even dimensional case, we cau include all the remaiuing coefficients a.s
folIows:
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2.8 Theorem. Let n be even and consider P as above. 11 n = 2} assume 7'11'2 #- O.
Then aU coelficients are nonzero JOl o]Jerat01's in a dense sHbset oJ CL neighb01'hood
oJ P in P(X, 1'1,7'2),

Proof. We already have that the coefficient.s bk alld ai with l :::; 11 Of l even are
nonzero generically for PI near P. We shall show that there is a P2 elose to PI
sllch that also the (l,l with 1 odd > n are nonl.ero.

Let P1(T) = eT PI' The corresponcling Laplacian is ~1,i(T) = e2T ~1,i(O); thc
spcctral boundary condition is llllchanged. Thus h(~l,i(T), t) = h(~I,i(O), e2T t).
Let 2k + 1 = l- n. We comparc coefficicnts in the asymptotic expansion to see that

Bince bk is nOllzero, al is llonzero for T in a dense set. D

We have not investigated whcther thc al with l odd > n are continuollS Oll
P(X, 1'1,1'2) and can therefore not conelude thcy are generically nonzerü.

Let dx alld Ox be the derivative anel the coderivative Oll X. Then dx + Ox
belongs to P(X, 1', 1') if n is cven and dx +Ox E P(X) if n is odd so these theorems
provide non-trivial cxanlples in all dimensions.
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