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LOGARITHMIC TERMS IN ASYMPTOTIC
EXPANSIONS OF HEAT OPERATOR TRACES

PETER B. GILKEY{ AND GERD GRUBB]

ARsTRACT. Let P be an elliptic selfadjoint positive classical pseudodifferential op-
erator of order d on a compact m-dimensional manifold without boundary. The heat
trace of P has an asymptotic expansion in t{d=m)/d and t*logt for [ = 0,1,2, ... and
k = 1,2,... We show that the coeflicients of all terms in this expansion are non-
trivial for a dense set of . We show that the coefficient of the t¢=™)/2 terin is not
locally computable when (I — m)/d is a positive integer; the remaining coefficients
are known to be locally computable. — Let Pp be an operator of Dirac type on
a compact n-dimensional manifold with smooth boundary such that the structures
are product near the boundary, here a gpectral boundary condition is imposed. Let
A = Pg*Pg and Ay = PgPy". If nis even, the heat trace of A; has an agymptotic
expansion in £¢—")/4 and t5+1/ 2 opt for { = 0,1,2,... and k = 0,1,2,...; if n is odd,
there is an expansion without the t¥*1/2logt terms. We show that all coefficients
(all but one if n is odd) are nontrivial for a dense set of operators.

1. Pseudodifferential operators on manifolds without boundary.

Let M be a compact boundaryless m-dimensional C*° manifold provided with
a smooth volume element, let £ be a smooth Hermitian vector bundle over M, let
d be a positive integer, and let P be a classical pseudodifferential operator (¢do)
in E of order d which is elliptic, selfadjoint and positive (> 0); such a P will be
said to be admissible. We refer to Seeley [15, 17], Greiner [10], Duistermaat and
Guillemin [7], Grubb [12], Agranovi¢ [1], and Grubb and Seeley [13] for proofs of
the following analytic results.

Lot e~ P be the solution operator e=tF : f — u for the heat equation dyu-+Pu =0
with initial value u|¢=g = f. This operator is trace class for cach t > 0, and as ¢ | 0
there is an asymptotic expansion of the form:

(1.1) R(P,t) := Tre " ~ T2 ay(P)tlt-—m)d 1 5~ b (P)t* logt.

For Re(s) >> 0, let (P, s) := Tr P~?; this has a meromorphic extension to C with
isolated simnple poles. The Mellin transformn yields the relationship

(1.2) T(s)C(P,s) = [~ t*" h(P, t)dt.
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Since h{P,t) decays exponentially as ¢ — 00, onc can use equations (1.1) and
(1.2) to see that ['(s)¢(P,s) has a meromorphic extension to C with poles at the
points (m —1)/d, 1l = 0,1,2,.... Let N := {1,2,...}. The poles at the points
s ={m—1)/d & —N are (at most) simple, and the poles at the points s € —N are
{(at most) double. (The concept of poles is used in a general sense where residues
and other Laurent coefficients can be zero.) There is the following straightforward
relationship between the heat trace coefficients and the cocfficients of the Laurent
expansions at these points:

ar(P) = Resg=(m—1);al (8)¢(P, s), and

13) Be(P) = ~Rosem_i(s + K)D(s)(P, ).

The asymptotic expansion of h( P, t) determines the pole structure of I'(s)¢{ (P, s) and
conversely, the pole structure of I'(s){(P,s) determines the asymptotic expansion
of h(P,t).

If P is a differential operator, then bi(P) = 0 for all k, and ¢;(P) = 0 when 1 is
odd {in this case the order d of P is necessarily even). There is a similar expansion,
given in equation (2.1) below, when the differential operator P is considered on
a compact manifold with boundary and is provided with a local elliptic boundary
condition.

If P is merely assumed > 0, P~* is defined to be zero on the nullspace V5 (), and
the transition between the heat trace expansion (1.1) and the pole structure {1.3)
continues to hold when the residue at 0 is modified by subtraction of dim(Vy(P)).

We say that a property holds generically for the values of a parameter in R”
(or (R4)” or another complete metric vector space) close to zg if it holds for the
points in some small ball about zo minus a set of Baire category I (recall that the
scts of Baire category I are countable unions of nowhere dense scts). We denote
the imaginary unit (v/=1) by i.

1.4 Theorem. Let M be a compact boundaryless C® manifold, E o C° vector
bundle over M and d a posttive integer. Let P be any elliptic, selfadjoint positive
classical pseudodifferential operator of order d in E. There exists a selfadjoint
classical pseudodifferential operator @ of order d — 1 in E commuting with P such
that for generic small values of a and b, a;(P +aQ +b) # 0 for all 1 > 0 and
bi(P+aQ +b) #£0 forallk > 1.

1.5 Remark. Let m and & be odd and let d = 1. By considering the square root
of an operator of Laplace type, Cognola et al. [6] construct operators where by is
non-trivial.

Proof. Let Py := P4, For real parameters £ = (g1, ...,e4—1) and g, define:
Py 0) =P+e P + . 4 eqr1 P+ o

By Seecley [15], P2(&, ¢) is an admissible d’th order ¥do for small values of £ and p.
Let 1 <i<d—1. Then

e, Tre~t2(80) — Ty pA=te=t2(80) and hence
0, T'(8)C(P2(€,0), s)le=0 = —T'(s + 1)¢(P, s +i/d).
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Note that ag(P) > 0 (it is an integral of the principal symbol, see for example [15]).
Thus the residue of T'(s)((P,s) at s = m/d is nonzero. Since ['(m/d) is regular,
¢(P, s) has a non-trivial simple pole when s = m/d. Thus {(P, s+1i/d) has a simple
pole with non-trivial residue at s{i) := (m —i)/d. Since s(i) > —~1, I'(s{z) + 1)
is regular so 9,,I'(s)((P2(€,0),s) has a non-trivial simple pole at s(z) when &= 0.
The variation of the residue is the residue of the variation in this instance. Thus

azq Ress:s(i) F(S)C(P2(€s 0),3) = Ress=s(i) assF(S)C(PZ(é: 0): 5) # 0

and &, a;(P2(€,0)) # 0 at €= 0. Thus we may choose £ so that a;(P2{(£,0)) # 0 for
1 <i<d=-1;ap(P(E,0)) = ag(P) is always nonzero. Since

h’(PZ(E’ Q)s t) = h(Pz(E, 0), t)e_tP
a(P2(€,0)) = Fogjciyal—0Y ai-qi(P2(€,0)) /5.

Choose j so that { —dj = ¢ with 0 <1 < d. Then a;_4{P2(€,0)) $# 0 so ai{P(£, o))
is a non-trivial polynomial in p and is nonzero for generic p. This shows that there
exists an admissible ¢ydo P, which has the same leading symbol as P and which
commutes with P so that a;(F%) # 0 for [ > 0.

We now study the invariants by. Let Py(my,7p) = PZ + 1Py + 70; P is an
admissible second order 1do for small values of 79 and 7; [15]. The argument given
above shows that 79 and 71 can be chosen s0 a;(Ps(71, 7)) # 0 for all { > 0. Let
Py = /Py; it is an admissible first order 1do [15]. Since an,.1(P3) # 0 and since
I’ is regular at s = —1/2, ((P3,s) has a non-trivial simple pole at s = —1/2. Thus
at s = —1, ((Ps,s) = ((Ps,$/2) has a non-trivial simple pole and T'(s){(Fy, s) has
a double pole so by (Fy) # 0. Let Py(mg) := Py + 72; Ps is an admissible first order
1do for 7o small. Then h{Ps(73),t) = h(Py,t)e™*"2 so

b (Ps(72)) ZO<J<L ~72)3by—;(Ps) /3.

This is a non-trivial polynomial in 7, so we can choose 75 so that by (FP5(72)) # 0 for
k > 1; this implies that ['(s){(Ps(72), 8) has a double pole at s € —N. Let Py = Pg;
it is an admissible 1do of order d. Then ['(s)((Ps,s) = T(s)((Ps(12),ds) has a
double pole at s € =N s0 bi(FPs) # 0 for £ > 1. This shows that there exists an
admissible 1do P which has the same leading symbol as P and which commutes
with P so that bg(Ps) # 0 for k > 1.

For 0 < 73 < 1, let P7(7r3) = 13 + {1 — 13} Fs; it is an admissible ¥do of
order d. The invariants q; for 0 < ! < d and b; are non-trivial polynomials in 75
so we can choose 73 50 a;{P7(73)) # 0 for 0 < ! < d and so b1(P7(73)) # 0. Let
Q = Pz(r3) — P; Q is a sclfadjoint do of order d — 1 which commutes with P.
Let P(a,b) = P + aQ + b; this is an admissible do of order d for small values of
(a,b). Then a;(P(a,0)) for 0 <! < d and b;(P(a,0)) are non-trivial polynomials
in a; hence they are nonzero for generic values of @ and we restrict to such valucs
of a henceforth. Since h(P(a,b),t) = h{P(a,0),t)e"t*, a;(P(a,b)) for I > 0 and
bx(P(a,b)) for k > 1 are non-trivial polynomials in ; hence they are non-trivial for
generic values of 5. O

(1.6)

Fix the order d, the dimension m of M and the rank » of E. Choose a local
coordinate system on M and a local frame for E. A local formula A(P)(x} is simply

3



a smooth function of the values at z of a finitc nuiuber of derivatives of a finite
number of terms (up to a fixed number ng) in the asymptotic expansion of the total
symbol of P such that A(P)(z) is defined for all admissible P; this formula is said to
be invariant if the value is independent of the particular local coordinate systemn and
frame which is chosen. A scalar valued function a(P) is said to be locally computable
if there is an invariant local formula so that «(P) = f,, A(P)(z). When P is an
admissible pseudodifferential operator, the invariants a;(P) for ({ —m)/d & N are
locally computable and the invariants b, {P) for & € N are locally computable, by
formulas based on the rules for composition and inversion of ¥dos (Secley [15]).

1.7 Theorem. If (I —m)/d =k € N, then a;(P) is not locally computable.

Proof. Suppose the contrary; let A; be the corresponding local formula for fixed
(m,d,r,np). Let ¢ be a Riemannian metric on M := S§™. Suppose first m > 1.
Let A(g) := (Ao(9)? +|R(9)*)Y* ® I, acting on a trivial bundle of fiber dimension
r where Ag(g) is the scalar Laplacian and where |R(g}|? is the norm of the total
curvature tensor. Then A(g) is a natural first order elliptic selfadjoint classical ydo
with A(c™2g) = cA(g). Since $™ docs not admit a flat metric, |R(g)|? does not
vanish identically so A(g) is positive and hence admissible. If m = 1, let A(g) be
Ag(g)'/? with coefficients in 7 copies of the Mobius bundle; again A(g) is admissible
and A{c%g) = cA(g). The operator

Pg,T) := {(A(g)2 + 1 Ag) + To)l/z + Tz}d

is admissible when the components of ¥ are nonnegative. Furthermore, the ar-
gument used to prove Theorem 1.4 shows that by (P(g, 7)) is nonzero for generic
small ¥ with nonnegative components. For ¢ > 0, let g(c) := ¢~ 2g, 11(c) := ¢y,
19(c) = c®7g, and 7o(c) := cr. Then P(g(c),7(c)) = c*P(g,7). We will show
further below that there exists an asymptotic expansion as ¢ | 0 of the form:

(1.8) A(P(9(6), 7(6)) = Locnen A9, 7) + OV +1), for any N.
Since dvol(g(c)) = ¢~ ™dwvol(g), we integrate equation (1.8) to see that
(1.9) a(P(g(c), T(e))) = ZOSHSN " Mar (g, T) + O(cN+1=m).

On the other hand, since P(g(c),7(c)) = c?P(g,7), we may equate asymptotic
expansions of h(c?P,t) and h{P,c?t) and compare the coefficients of t* and t* logt
to sce that bx(cP) = c*b(P) and that

(1.10) ar(P(g(c), 7(c))) = F{a(P(g, 7)) + dlog cbe (P(g, 7))}

Since bg(P(g, 7)) is nonzero for generic small values of 7, the expansion in equation
(1.9) is inconsistent with the expansion in equation (1.10). This contradiction
implies that a; is not locally computable.

To establish equation (1.8) we generalize an argument given in Gilkey [8]. Fix
zo € M and choose a system of local coordinates X on M centered at zy. Intro-
duce formal variables g;; (X, g) := g(Bf(,(')‘f) and gi;/q(X, g) := 029i;(X, g). Then
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Ai(P(g,7)) is an invariantly defined smooth function of the variables g;;/, and 7
whose value is independent of the particular coordinate system X which is chosen.
This function is defined for g;; positive definite and 7; > 0; there is no restriction
on the g;;,,(X, g) variables for || > 0. We now see that the restriction P > 0 was
inessential; a local formula can not detect the globally defined kernel and hence we
can work with any natural selfadjoint nonnegative operator P(g). Let X, = ¢! X
be a new coordinate system on M centered at zo. Then (see [8] for details):

9ijja(Xe, e 2g)(z0) = Mgy (X, 9)(z0), s0
Ai(P(g(c), 7(c))) = Ailc®lgi; /0l X, g)(m0), 7(c))

is a smooth function of ¢ at ¢ = 0. We expand this function in a Taylor series about
¢ = 0 to derive the expansion given in equation (1.8); it is then immediate that the
individual terms in this expansion are invariant separately. [

Theorem 1.4 shows that the set of admissible ¥dos for which all the invariants
a;(P) and b (P) do not vanish is a dense set (in a suitable topology). We shall now
show that the set of admissible partial differential operators for which the invariants
a;(P) do not vanish for all even ! is dense in the set of admissible partial differential
operators. Here we cannot in gencral choose the perturbation to commute with P.

1.11 Theorem. Let M be a compact boundaryless C™° manifold, E a C° vector
bundle over M and d « positive integer. Let P be any elliptic, selfadjoint positive
differential operator of order 2d in EE. There exists a selfadjoint differential operator
Q) of order 2d — 2 on M such that for generic small values of a, ay(P + aQ) # 0
for 1 even and > 0.

Proof. First we recall the explicit combinatorial forinulas for the invariants ag;(P)
derivable from Secley [15] (further details can be found in [9] or [11]). Let pg+...+po
be the total symbol of the differential operator P. For A € C\ [0, 00[ , set

g—aq := (pa — A) "} and inductively set

g-d—1(7,&§,A) 1= —q¢_4 Z|a|+d+j_k=z,j<z("i)lalagpkag"I—d—j/a!-

Let &y, 1= i(27)~™~! and let C be a suitably chosen contour in C about the positive
real axis. Then

a(P) = km [ s [ c€7* Trqoai(z, €, X) dAdédz.

Use a partition of unity to construct an operator Ag in F with leading symbol given
by a Riemannian metric on M. Let P (&, p) := P+51Ag‘1 + .o teg1Ag+o. Then

8e ;25 (P1{(E, 0))le=0 = —Cr 25 fip. oy €177 [ €72 Trg_a(z, €, A)? dAdédz # 0.

Thus we may choose £ so that ay;(P;(€,0)) # 0 for 0 < j < d; ag(P,(£,0)) is
always nonzero. Since h(P(£,0),t) = h(P;(£,0),t)et, there cxists (£, p) so that
ai(Py(€,0)) # 0 for I even and > 0. We set Q) := P — Py(€,0). Then q;(P + aQ) is
a non-trivial polynomial in @ and hence is nonzero for generic a. [
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We say that a second order diffcrential operator D is of Laplace type if the leading
symbol of D is scalar and is given by a Riemannian metric; D = — 3. g*18;0;+
lower order terms. We say that a first order differcntial operator A is of Dirac type
if A? is of Laplace type. Let Clif*(R™) denote the complex Clifford algebra. If e;
is the usual orthonormal basis for R™, this is the universal complex unital algebra
generated by the e; subject to the Clifford commutation relations

€€ +e;¢; = —251'3'.

The algebra Clif*(R?*} has a unique complex irreducible representation S of dimen-
sion 2%; the algebra CIif*(R?**1) has two inequivalent complex irreducible repre-
sentations S; of dimension 2. Every complex representation of these algebras can
be expressed uniquely in terms of S or in terms of §; and S,, see Atiyah, Bott,
and Shapiro [2] for details. Let M be a compact connected boundaryless C* man-
ifold. Let D(M) be the space of selfadjoint operators of Dirac type on M; this is
a complete metric space in a suitable topology. The leading symnbol of an operator
A € D(M) defines a Clif*(M) module structure on the fibers of the vector bundle
on which A acts. Let m be odd. If M is orientable, let D(M,ry,7r3) be the space
of operators giving rise to a module structure isomorphic to 718y + reSs. If M is
not orientable, locally the structure is always of the form r(S; + S») and we denote
this space by D(M,r,r). If m is even, let D{M,r) be the space of operators giving
rise to the module structure 8. If m is odd, D(M) is the disjoint union of the
D(M,r1,72) while if m i even, D(M) is the disjoint union of the D(M,r). D(M) is
a Fréchet space, e.g. with the seminorms defining the C® spaces of coeflicients in a
finite system of local coordinate patches (also global seminorms could be defined).
We shall need the following technical result.

1.12 Lemma. Let M be a compact boundaryless C°° manifold, E o« C* wvector
bundle over M, D an operator of Laplace type in E, and ¢; € C°(End(E)}). Let
D(g) := D + ey + €%yy. Ezpand an(D(e)) = ZOS;’S?I agr (D, 12)e as a
polynomial in €. Then

ﬂzi,zl(D,¢1,¢2) (4m) _m/2 /“fM

Proof. Let Dy = —(g"79;8; + A*0, + B) be an operator of Laplace type where A*
and B are endomorphisms of E. We define:

ord(82¢%) := |a|, ord(8%A*) :=|B] +1, and ord(8)B) := |y| + 2.

The combinatorial formula given in the proof of Theorem 1.11 shows ag (D) is the
trace of a non-commutative polynomial in the variables 8%g;; (for Ja| > 0), 85 A,
and 97 B which is homogeneous of order 2! with coefficients which are smooth
functions of the ¢;; variables. See {9, Lemma 1.8.3) for further details. The coeffi-
cient of €2 in ay(D(e)) must therefore be of the form ¢(m,1) ) far Te(by); w1 does
not enter. We can evaluate this constant by taking ¢, = 0 and 9 = I. Then
D + €2,t) = h(D,t)e~*t, s0 an(D + £2) = (—1)e¥ag(D)/!! plus lower order
terms in €. We use the identity ag(D) = (47)~"™/2v0l(M) dim(E) to complete the
proof. O

We now study the invariants a;(A2) for operators A of Dirac type.



1.13 Theorem.

(1) Let M be a compact connected boundaryless C*° manifold of ditnension
m > 1, and let A € D(M). Then ay{A?) # 0 holds generically for operators
close to A in D(M).

(2) If A€ D(S, ri,7m2) with riry =0, then ay(A%) =0 for all 1 > 0.

(3) If rirg # 0 and A € D(SY,7r1,72), then ag(A4?%) # 0 holds generically for
operators close to A in D(S',71,79).

Proof. The invariants ag; are given by local formulas so they are continuous on D.
Consequently, to prove assertions (1) and (3), it suffices to show for each ! that
a1({A?) does not vanish on a densc set. The proof of (1) essentially follows from
work of Branson and Gilkey [4]. We outline the proof since there is one technical
point that needs amplification which was omitted in [4]. Let A € D(M). Let
Ale) := A+ . We compute:

T, 02a:(A(e)2)tE-m/2 v 92 Tr(emtAE)?)
36‘5 'I\f(—ztA(E)e_tA(E)ﬂ) — ']_‘r((_Qf + 4t2A(E)2)C_tA(£)2)
=20(=1 — 2t8,) Tr(e A" ) ~ T 21+ m — j)a;(A(e)2 )G +2/2,

We compare coefficients of ¢ in the two asymptotic expansions and set 1 = 2 and
j =20 -2 to sec:

(1.14) O2any(A(€)?) = 2(1 +m — 2)ag_2(A(e)?).

Suppose that m is even or that 2l < mn. Then m + 1 — 2! # 0, and equation
(1.14) can be applied recursively to construct a non-zero constant ¢(m, ) so that

O agt((A + €)?)|e=o = c(m, N)ag(A%) # 0.

This shows that a9; is nonzero on a dense set. It remains to consider the cases
where m is odd and 2] > m. Again, we can find ¢(m, k) # 0 so that

02  am 142k (A(€)%) = c(m, k)am11(A(€)?).

Thus it suffices to prove that a,,41(A(€)?) is nonzero on a dense set. If f € C®(M),
there is an expansion

Te(fAe™) ~ TZp i, A, A2 D2,
Let A(p) := A -+ of. We compute

520 00ai (A + 0f)2)| =0t O™/ ~ 8, Tr(e~tA+eD™)|
= — 2 Tr(fAe™ ") ~ 2% a;(f, A, A2)=m+1/2,

We compare coefficients of ¢ in the two asymptotic expansions and set ¢ = m + 1
and § = m to see

Outtmar (A + 0 Dlomo = —2an(f, 4, 42).
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The invariants a;{f, A, A?) arc locally computable;
a’i(f) A: Az) = fju f(T)-Ai(Ar A2)($)

Thus to show that a,,.1(A42) is generically non-zero, it suffices to show that the
local formula A, (A, A%)(x) does not vanish identically for a dense set of operators
A. Relative to a system of local coordinates and in a local frame for E, we may
express the operator as A = . v;0; + b. Fix ¢9 € M and normalize the choice of
coordinates so that gij(zg) = d;;. Fix (m,r;,72). We can normalize the local frame
on the vector bundle in question so that the v; have a standard forin at zo. Then
A (A, A%)(xy) is a polynomial in the matrix components of b and its derivatives
and in the matrix components of the derivatives of the ; which is universally
defined. Thus we need only show that this polynomial is non-trivial; the topology
of the underlying manifold M plays no role. For m > 3 odd, the product argument
described in [4, page 81] preserves the structure constants (r1,72) and reduces this
to the case 'n = 3. The case n = 3 follows from [4, Theorem 4.1 (d)]. This
completes the proof of assertion (1). We note that the argument given in {4} did
not take into account the need to specify the structure constants {ry,72) and was
incomplete at this point.

Suppose that . = 1. Parametrize the circle by arc length to write A = v0, + b
where v2 = —I. If r; = 0 or if r5 = 0, then vy is scalar so A = +id, + b. Choose a
local primitive B for b. Then A = +ie*'B3,eF'8 s0 A is locally gauge equivalent
to +id, and all the higher order local invariants of A vanish. This proves assertion
(2). If ryrg # 0, we can choose ¥ selfadjoint so that 4y + % = 0 and so that
Tr(4%) # 0. Set A(e) := A+ &¥. Then we have A(e)? = A? + e1p + £24? where
1 = b¥ 4 4b is an operator of order zero. By Lemma 1.12, the cocfficient. of €% in
axn{A(€)?) is non-trivial and assertion (3) follows. O

Let D be a self-adjoint positive operator of Laplace type and let v € €. Let
Ly ;(D) for j > —1 be the j** coefficient in the Laurent expansion of I'(s)¢{D, s)
about s = u; L, ~1(D) = agn(D) if u = (m — 2n)/2 for some n and L, _(D} =0
otherwise. If m is even, let D(M,r1,72) = D(M,r;}). For A € D(M,r1,r2) with
ker(A) = 0, we consider the invariants L, ;{A?). For generic values of €, A +¢ is
invertible; we restrict to such values of € henceforth. Let 7 > 0, let p € R\ {0},
and let x be the multiplicity of the lowest eigenvalue A of A%2. We have

(1.15) 02T (s)C((A + €)%, 8) = 25(25 + 1)...(25 + 2k — 1)T'(s)C(A(e)?, s + k),
(1.16) BFT(s)C(A% + 7,5) = (—1)Fs(s + 1)...(s + k — DYT(s)C(A% + 7,5 4+ k),
(1.17) Jim MNHEC(AZ s+ k) = p

Note that (((0A4)?,s) = |o|72*¢(A?,s). We expand jo|~2* and ((A2,s) in Laurent
series separately, multiply the two series together, and collect terms to see that

(118)  Luj((0A)?) = lel™™ ¥ _1chey Luk(AD) (=27~ (log o]} ~#/(j — b)!



1.19 Lemma. Let (u,m,ry,79) be given. There exists A € D(S™,r1,72) so that
LIL,O(‘A) 71: 0.

Proof. We shall assume r; = 1 and rp = 0; taking direct sums and replacing A by
—A defines operators with arbitrary structurc constants and reduces the proof of
the lemina to this special case. Let A; € D(S™,1,0) be the Dirac operator defined
by the spin structure on 5™. Suppose that 2u is not a negative odd integer, and
consider a £ € N. Since 2u(2u + 1)...(2u + 2k - 1)T'(u) # 0, we can use equations
(1.15) and (1.17) to sce that for sufficiently large k, 82 L, _1((4; + €)?) = 0 and
2% Ly o((Ay +€)?%) # 0. This shows that L, o((A; +€)?) # 0 for generic values of
€.

For the remainder of the proof, we shall assume 2u is a negative odd integer.
Suppose that 7 = 1. Let {(s) := 3 ,on7° be the Riemann zeta function. The
functional equation 73/2T(s/2)¢(s) = 7~1=9)/2((1 — $)/2)¢(1 — s) shows that
¢(u) # 0. The cigenvalues of the Dirac operator A := —idp on the Mdbius bundle
over the circle are {n + 1/2} for n € Z. Since (s, A%) = 22+1(1 — 272%)¢(2s),
T(u)C(u, A%) # 0 50 Ly o(A®) # 0.

Suppose m > 1 is odd. Choose ! > 0 so that « = (m — 2{}/2. By Theorem 1.13,
there exists Ax € D(S™, 1,0) close to the Dirac operator on §™ so that ag (A3) # 0.
We set j = 0 in Equation (1.18) to see Ly o((0A2)?) # 0 for generic values of p.

Suppose that rn is even. The spin bundle on 5™ decomposes into the half spin
bundles S*. Let vy = %1 on §%; vy anti-commutes with the Dirac operator A;.
Let Ap(7) := Ay +v7Y/2. Since (—u)(—u — 1)...(—u — k + 1)I’(u) # 0, and since
Aa(7)? = A} + 7, equations (1.16) and (1.17) show that 9L, o(A2(7)?) # 0 for
large k. O

As recalled earlier, the invariants L, _; are locally computable. On the other
hand:

1.20 Theorem. The invariants L, ; are not locally computable for j > 0.

Proof. We fix (m,r1,72). Suppose that L, ; is given by a local forinula L, ;. Let
g € R\ {0}. Let X be a system of local coordinates centered at o € M. Let
A =3, 70: +b. Let ;o := 02vi and by := 82b. Then L, ;(4) is an invariantly
defined smooth function of the variables v/, and b;g whose value is independent
of the particular coordinate system which is chosen. This function is defined for ~;
satisfying the Clifford commutation relations; there are no restrictions on the other
variables. Let g € R\ {0} and let X, = p7'X. Then

Yi/a (Xg) QA)($0) = Q|a|7i/a(X= A)(IO)s
bp(X e, 04)(z0) = @"*V¥lb;5(X, A) (o), and
Eu,j((QA)z)(IO) = Eu,j(9|0|7i/n (X: A)1 Ql+|ﬂ|b/ﬁ(xa A))(UO)

Thus L, ;{(0A)?) is smooth at o = 0. We expand this function in a Taylor series
about g = 0 to show

L i((0A)*) = Xocnen Luian(A2)™ + O(¢*N+2), for any N;
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only even powers of g appear since £, ;({gA)?) is an even function of p. We integrate
this expression with respect to the metric defined by the leading symbol of A to see

(1.21) Lui((04)) = Cocnen Lugan(AD)iel* ™™ + O(*V+27™).

Use Lemma 1.19 to choose A € D(S™,ry,72) so that Lyo(A4) # 0. If j > 0, the
presence of (log|g|)? Ly o in equation (1.18) contradicts equation (1.21). If j = 0
and if u # (m—2n)/2 for n > 0, then Ly, _1(A%) = 0. Thus equation (1.18) implies
Ly 0((0A)?) = |o|™2*Ly,0(A?); this contradicts equation (1.21) since the power of
¢ is not of the correct form.

Suppose that j = 0 and that v = (m — 2n)/2 for some 7. If 7n > 1, use Theorem
1.13 to choose A so that L, _1(A%) # 0. The presence of (loglol)L, —1(A4?) in
equation (1.18) contradicts equation (1.21). If rn = 1, then v = (1 — 2n)/2. If
n=0, L, 1(4) = ap(A?) # 0 and the same argument shows L, _ is not locally
computable. Suppose n > 1. Choose A € D(S?,1,0) so that L, o(4) # 0; we take
the direct sum of copies of A and of —A to treat the general case. Let A(p) = pA for
0 # 0. Since L, _1(A(p)?) = 0, we have L, o(A(0)?) = ¢*" L, 0(A?%). The operator
A(p) is locally gauge equivalent to the operator A; consequently L, o(A(0)?) =
Ly,0(A?). Since n £ 0, L,,0(A) =0 s0 Ly o(A) = 0 which is false. O

2. Operators of Dirac type with spectral boundary conditions.

Let X be a compact connected n-dimensional C'* manifold with smooth bound-
ary M = 90X (of dimension m = (n — 1)). Let D be a realization of a second
order strongly elliptic differential operator with a local boundary condition. Then
equation (1.1) generalizes to become

(2.1) h(D,t) :=Tre P ~ ¥, a(D)t-m12,

For example, if we let D act like —83 + ¢ on the interval [0, 7] with Dirichlet
boundary condition, then h(D,t) = (y7t~1/2 = 1/2)e~% + O(t¥) for any k; this
provides an example where all the coefficients a; in equation (2.1} are nonzero.

If a non-local boundary condition is imposed (as in Atiyah, Patodi, and Singer
[3]), then there is an asymptotic expansion which can furthermore contain logarith-
mic terms. Let us recall the setting of [3], [13]. Choosc a collared neighborhood
Xe =M x[0,¢[ of M in X for some ¢ > 0. Let z, denote the coordinate in [0, ¢
(it i1s considered as the normal coordinate). Let X have a smooth volume element
vy and suppose there is a volume element vy on M so that vy = vy dz,, on X,.
Let E; be Hermitian C*° vector bundles over X and let

P CDO(El) — COO(Ez)

be a first-order elliptic differential operator from E; to E,. Let E! denote the
restriction of the bundles E; to the boundary M. On X, the E; are isomorphic to
the pull-backs of the E]. Let 9, denote the normal derivative. We assume on X,
that P = (9, + A) where o is a unitary morphism from E{ to Ej, independent
of z,,, and where A is a fixed clliptic first order differential operator on C*(E])
which is selfadjoint in Lo{E}), defined with respect to the Hermitian metric in Fj.
In this setting, we shall say that the structures are product near the boundary.
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The APS operator Pg is defined as the operator from Lo(Eq) to Lo F2) acting like
P and with domain defined by a nonlocal (so-called spectral) boundary condition:

D(Pg) = {u € H'(E1) (Sobolev space) | B(uly) =0};

here B is an orthogonal projection in Lg(Ej]) of the form B = Iy + By, where
IT> is the orthogonal projection onto the sum of eigenspaces for A with eigenvalues
A 2 0, and By commutes with A and ranges in V5(A4). (More general boundary
conditions are considered in Grubb and Seeley [14] and in Briining and Lesch [5].)
By [16], Pp is a Fredholm operator.

Now consider the associated second order operators

Ay :=Pg*Pp and A, ;= PgPg".

The following analogues of the expansion (2.1) for the heat traces of these operators
h(Ag,t) := Tre™ ¢ were established in [13]. If n = dim(X) is cven, then

(2.2) h(A, 1) ~ Yoo (A2 4 5702 b (A)tF /2 logt,

with coefficients satisfying, for suitable universal constants g(k,n) and y(k,n) # 0:
be(A;) = Bk, n)azk+n(A?),

azk(A;) = age +(A4) + fi(A),

ages1(D;) = v(k, n)agk (A?) for k < n/2,

azps1(0;) = fL(A) for k > n/2.

(2.3)

Here agg 4(8:) = [y Aw(A A;)(z) where the Ay (A;)(z ) are the local formulas defin-
ng the cocfficients in the heat trace expansions for A1 = PP resp. A, = PP
with P denoting the extension of P to the double X described in {3]. The fi(A )
are locally computable functions of A when 2k # n, and the f{(A) are, by Theorem
1.20, not locally computable.

If n is odd, the logt terms do not appear and the expansion has a form similar
to that given in equation (2.1):

(2.4) B(Bi, 1) ~ T2 ar(Ag)1-m2,
with

agk(8:) = azk 4 (8s) + gi (4),
(2.5) azk+1(A;) = y(k,n)azy (A?) for 2k + 1 # n,
an(8;) = ¢"(A).

where the g; (A) are 0 for k < n/2 and are, by Theorem 1.20, not locally computable
for k > n/2.

Let P(X) be the space of all operators of Dirac type over X such that the
structures are product near the boundary. Then the tangential operator A is of
Dirac type on M. If n is even, let P(X,r1,72) be the subset of operators such that
A € D(M,ry,77), with structure constants r; independent of the particular bound-
ary component considered. In the following theorem, we show that the invariants
of the expansions (2.2) and (2.4} are non-trivial.
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2.6 Theorem. Consider Pp with PP of Dirac type.

(1) Letn=2. If y7p =0, then be(A;) =0 for all k if P € P(X,71,72).

(2) Let n = 2. If ryrg # 0, then a1(A;) # 0 and bp(A;) # 0 for k > 0 holds
generically for operator close to P in P(X,r1,7m3).

(3) Letn >4 be even. Then ai(A;) #0 forl odd < n and bp(A;) #0 for k>0
holds generically for operators close to P in P(X).

(4) Let n be odd. Then a;(A;) # 0 for 1 odd # n holds generically for operators
close to P in P(X).

(5) Let n be even, let Tyro # 0 and let P € P(X,r1,72). Then ai(A;) # 0 for
even | holds generically for operators close to P in P(X,r1,72).

(6) Let n be odd and let P € P(X,r). Then ai(A;) # 0 for even | holds
generically for operators close to P in P(X).

Proof. The first 4 assertions follow iimmediately from Theorem 1.13 in view of the
formulas (2.3), (2.5) for the coefficients in question.

When [ is even, (2.3) and (2.5) show that the invariants a; depend on the behavior
of P in the interior; we exploit this fact in the proof. Let ¢ be a smooth function on
X which vanishes near the boundary and which has support in a small coordinate
neighborhood O on X. On O, we write P = ), 0,e; + b where ¢; is a local
orthonormal frame for the tangent bundle of X. We use oy to identify E; and F,
over O and therefore assume without loss of generality that o; = I. The condition
that P* P has leading symbol given by the metric tensor then yields that the 4; are
skew-adjoint and satisfy the Clifford commutation conditions ~v;v; 4 ;7 = —2dy;
for 2 < i < n. Under the assumptions of the theorem, we can find v, selfadjoint
with y¢ = I so that yoy; +vivo = 0 for 2 < i < n. We let P(e) := P + epyy. Then
the commutation relations involved imply there exists an operator 1 of order zero
so that A;(e) = A;(0) + e + 2.

Consider the coefficients a,gj(&;(a)) in the heat trace for the associated Lapla-
cians A; on the doubled manifold X. Here A(e) = A(0) + ey + €232, By Lemma
1.12, (12_?‘(2&1;(6)) is a non-trivial polynomial in €. The same holds for the invariant
ag; +(Di(e)) = %(sz(&,;(e)). Since fr(A) in {2.3) and gi.(A) in (2.5) depend only
on the behavior of P near the boundary, and ¢ has support in the interior of X,

a2j(84(2)) = a2 (84(0)) = 12,4 (Ai(e)) = a2;,4(B:(0))
is a non-trivial polynomial in €. Thus as;(A;{e)) is nonzero for all j for generic
values of € near 0 and the theorem follows. 0O

For the odd dimensional case we conclude, since a union of two sets of Baire
category I is of Baire category I:

2.7 Corollary. Letn be odd and consider Pg as above. Then all coefficients ai(A;)
ezcept possibly a,(A;) are nonzero generically for operators close to P in P(X).

In the even dimensional case, we can include all the remaining coefficients as
follows:
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2.8 Theorem. Lein be cven and consider P as above. If n = 2, assume ryro # 0.
Then all coefficients are nonzero for operators in a dense subset of a neighborhood
of P in P(X,ry,7m2).

Proof. We already have that the coefficients b, and aq; with [ < n or [ even arc
nonzero generically for P, near P. We shall show that there is a /% close to P,
such that also the a; with { odd > n are nonzero.

Let Pi(t) = e"P,. The corresponding Laplacian is Ay ;(7) = e?"A;(0); the
spectral boundary condition is unchanged. Thus h{(Aq;(7),t) = k(A1 :(0),e*72).
Let 2k +1 = | —n. We compare coefficients in the asymptotic expansion to see that

a(Pi(r)) = e {a(P1(0)) + 27 (P1L(0)) ).

Since by is nonzero, q; is nonzero for 7 in a dense sct. [

We have not investigated whether the ¢ with ! odd > n are continuous on
P(X,r1,72) and can therefore not conclude they are generically nonzero.

Let dx and dx be the derivative and the coderivative on X. Then dx + x
belongs to P(X,7,7) if n is even and dx +dx € P(X) if n is odd so these theorems
provide non-trivial examples in all dimensions.
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