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Abstract. We prove that if the monodromy operator V of a linear periodic process U(t, ) in
a Banach space E is power-bounded, has countable peripheral spectrum, and if its peripheral
point spectrum satisfies certain natural and simple duality condition (which always holds
in reflexive spaces), then every positive trajectory u{r) = U{0,7)z, + > 0, z € E, is
asymptotically almost periodic. If, in particular, the peripheral point spectrum of V* is
empty, then every positive trajectory is asymptotically stable. We also obtain results on
almost periodicity of complete bounded trajectories, and consider conditions under which
nontrivial bounded complete trajectories exist

1. INTRODUCTION

We are mainly concerned with the asymptotic behaviour of solutions of the differential

equation

(1.1) W' (8) = (),

and also of the inhomogeneous equation

(1.2) u'(t) = A(t)u(t) + £(2),

where A(t) are closed linear operators in a Banach space E, which depend on ¢ in a periodic
manner, i.e. there exists a positive number w such that A(t + w) = A(t), Vt. Asymptotic
behaviour of solutions of Eqs.(1.1) and (1.2) is a subject of intensive research in recent
years (see [Da], [H11-2], [Hr1-2], [He], [R-S], and references cited therein).

There are two related, but principally different, problems on the asymptotic behaviour
of solutions of Eqs.(l.l)—(l.Z). The first problem is concerned with solutions which are
defined and satisfy (1.1) (resp., (1.2)) on the whole line R, while the second problem is
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concerned with solutions on the positive half line Rj. We shall investigate both types
of behaviour, but we remark that the problem for the positive half line is as a rule more
natural and difficult to resolve. _

It is well known that if E is finite dimensional, then every solution on R4 of Eq.(1.1)
approaches zero as t — oo if and only if all the eigenvalues of the monodromy operator V
associated with Egs.(1.1)-(1.2) have absolute value less than 1 (see e.g. [Am], [Hi1}). If E
is infinite dimensional and 7(V') — the spectral radius of V - is less than 1, then solutions
on Ry of Eq.(1.1) also converge to 0 (see e.g. [D-K], [M-S]). But, to our knowledge,
no general results on the asymptotic stability of (1.1) were known for the case when
r(V) = 1. We prove, in section 3, that if the monodromy operator is power-bounded and its
spectrum has countable intersection with the unit circle, and its peripheral point spectrum
satisfies certain natural and simple duality condition (which holds automatically in reflexive
spaces), then all solutions of Eq.(1.1) are asymptotically almost periodic (Theorem 3.2).
In particular, if the peripheral point spectrum of V* is empty, then all solutions on R of
Eq.(1.1) converge to 0 as t — oo (Corollary 3.3).

As concerning the question on the asymptotic behaviour of solutions on R of Eqs.(1.1)
and (1.2), it is well known that if E = R™ and A(t) € C(R,L(R",R")) is periodic, then
every bounded solution u(t),t € R, is almost periodic (see e.g. [Hrl]). This fact, in general,
is not true for periodic equations in infinite dimensional Banach spaces (see Remark 4.3).
In section 4, we seek for a suitable extension of this result to infinite dimensional systems.
More precisely, we show that if the intersection of the spectrum of the monodromy operator
with the unit circle is countable and the function f is almost periodic, then every bounded
uniformly continuous mild solution u(t) of Eq.(1.2) is almost periodic, provided one of
the following conditions holds: (i) the space X does not contain ¢y (the Banach space of
numerical sequences converging to 0), or (i’) the range of u(t) is weakly relatively compact

(Theorem 4.2). Furthermore, we show that if the intersection of the spectrum of the

monodromy operator with the set {e** : u € £(f)} is empty, where Z(f) = {\ + 2n7/w :
A € Sp(f),n € Z} and Sp(f) is the spectrum of f, then there exists a unique almost
periodic solution u(t) of Eq. (1.2) (Theorem 4.5).
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Finally, in section 5, we present a general criterion under which there exist nontrivial
bounded solutions on R of Eq.(1.1) (Theeorem 5.3).

Our approach is based on the notion of processes. There are known conditions when
for every initial value z from a dense set in E, there exists a classical solution on R of
Eqs.(1.1)-(1.2), with »(0) = z. Then the solutions generate in a natural way a process.
Since processes arise when we consider not only equations of type (1.1)-(1.2), but also
more general retarded functional differential equations (see e.g. [HI1]), the results of the
present paper can be applied to these classes of equations as well.

The main results of this paper are essentially based on the existing results and methods
for linear operators and autonomous differential equations, which we have developed in our
previous publications (see [L-V], [V-L], [V1], [V2]). Although this material is now known,
it is not very well known so we think it is worthwhile to make it more available by giving

precise formulations of the corresponding results, as we have done at relevant places in the

paper.
2. DE LEEUW-GLICKSBERG DECOMPOSITION FOR PERIODIC PROCESSES

Let E be a Banach space. A process on FE is a two-parameter family of mappings
U={U(,7):t€R,T2>0} of E into itself, which satisfy the following properties:

() U(t,0)=1,

(i) Ut,o+7)=U(t+7,0)U(t,7), forallt e R,7 > 0,0 > 0;

(ii1) The function u(t,7) = U(t, )z is continuous for all z € X.

A process U is said to be w-periodic, if there is w > 0 such that U(t + w,0) =
U(t,o), Vt € R,0 > 0. Without loss of generality, we assume that w = 1. A process
U is said to be an autonomous process (or a continuous dynamical system) if U(t,0) is
independent of . In this case T(c) = U(¢,0) is a continuous one-parameter semigroup:
T(0)=1I, T(c+7)=T(o)T(7),0 20,7 2 0. A process U is called linear if U(t,7) are
bounded linear operators in E.

The positive trajectory of U through z € E is defined by u(t) = U(0,t)z, t > 0. A

complete trajectory of U through z € E is by definition a continuous function u: R — E
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such that u(t + 7) = U(t,7)u(t), t € R,7 > 0, u(0) = z. While there always exists a
positive trajectory through an arbitrary z in E, a complete trajectory through z may not
exist, so that to say that there exists a complete trajectory under the process Y through
z may impose restrictions on z (see [HI2], [V2]).

Let U be a linear 1-periodic process. Then the mapping V = U(0,1) is called the
monodromy operator. It is easy to see that V™ = U(0, n) (see e.g. [H11]). A complete orbit
through z is, by definition, a two-sided sequence {z, }nez in F such that z, = V™z,_p,

foralln,meZ,m>0.

LEMMA 2.1. Let = be a vector in E. If there exists a complete orbit of the monodromy
operator V through z, then there exists a complete trajectory u(t) of the processU through

T.

PROOF: Indeed, we put u(n) = z,, n € Z, and define,for 0 < 7 <1,
u(—n+71)=U(-n,7)u(—n)

Then u(t) is defined and continuous on R, and represents a complete trajectory of U with

u(0) =z. I

If, in Lemma 2.1, the complete orbit {z,} of V through z is bounded, then, as is easily

seen, the corresponding complete trajectory of U is also bounded.

The following is well known as de Leeuw-Glicksberg’s decomposition for operators whose

orbits {T"z : n =0,1,2,...} are relatively compact forall z € E. Let T'={A € C: |\ =
1}.
THEOREM 2.2. Assume that T is a bounded linear operator in a Banach space E such

that the orbits {T"z : n = 0,1,2...} are relatively compact for all £ € E. Then there are
closed subspaces Ey, E, of E such that

(21) E'_—EO@ED

where

Eo={z€E:|T"z]| - 0 as n — oo},
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and

E, =span{z € X: 3 A €T suchthat Tz = Az}.

Let G be an infinite subgroup of the additive group R. A function f : G — E is said
to be almost periodic, if the family of translates Hy = {fi(s) = f(t+s) : t,s € G}
is relatively compact in C(G, E) — the space of bounded continuous functions from G to
E, with the topology of uniform convergence. Let § C G be a subsemigroup such that
S§—8 =¢G. A function f : § — FE is said to be asymptotically almost pertodic, if there
exist functions ¢ : ¢ — E and h : § — E such that g is almost periodic, ||A(t)|| — 0 as
t — oo, and f = g|S + h. The function g (h) is called almost periodic ( respectively, stable)
part of f. Taking subgroups G = R and G = Z (with ‘subsemigroups S=Ryand S =14,
respectively), we get the definitions of almost periodic and asymptotically almost periodic
functions and sequences (cf. [A-P], [F], [L-Z]).

The conclusion of Theorem 2.2 means that every sequence {T"z},>0,2 € E, is asymp-
totically almost periodic, its periodic part is {T"2; }n>0, and its stable part is {T"x }n>o0,
where £ = 2o+ 2 is the decomposition of & according to (2.1). For more details the reader
is referred to [D-G], [Ly].

Recently Haraux [Hrl-2] has shown that if & is a quasi-contractive, periodic process
such that every its positive trajectory is relatively compact, then every positive trajectory
is asymptotically almost periodie, and its almost periodic part is a complete trajectory.
For linear periodic processes, the result of Haraux can be complemented in the following

way, using the mentioned above de Leeuw-Glicksberg’s decomposition.

THEOREM 2.3. Assume that U is a linear 1-periodic process such that every its positive

trajectory is relatively compact. Then there are closed subspaces Ey and E; such that
E=FE,8 E,

where Ey consists of z € E such that the positive trajectory through = converges to 0, and

E, consists of x € E such that there is a complete almost periodic trajectory through .
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ProOOF: From the conditions it follows that every orbit of the monodromy operator V is

relatively compact. Therefore, by Theorem 2.2,
E=EFE,9 E,

where Ey = {z € E : ||V"z|| — 0}, on E; the operator V is invertible and the complete

orbits {V"z},ez, = € E), are relatively compact. Since, for each z € Ey,
(O = 10, 0l < sup [UEONV™al =0, a5 00

every positive trajectory starting at x € Ey converges to 0. On the other hand, if =z € E;,
then there exists a complete orbit with respect to V', which implies, by Lemma 2.1, that
there exists a complete trajectory of U through z. It is easy to see that any such complete
trajectory u(t) has the propel:ty that u(R_) is relatively compact. Therefore, by {Hrl,
Theorem 8|, u(t) is almost periodic. I

3. A SPECTRAL CRITERION OF ASYMPTOTIC ALMOST PERIODICITY AND STABILITY

The following theorem [V-L] gives a spectral criterion under which a given bounded
linear operator is such that all positive orbits {T"z : n > 0}, = € E, are relatively

compact.

THEOREM 3.1. Let T be a power-bounded operator in a Banach space E. Assume that:
(i) o(T)NT is countable;
(ii) If there exists ¢ € E* and A € I such that T*¢ = Ay, then there exists ¢ € E such
that p(z) # 0 and Tz = Az.
Then all positive orbits of T are relatively compact (so that T has the decomposition as

in Theorem 2.2).

In particular, if under the conditions of Theorem 3.1, Pa(T*)NT = @, then ||T"z|| - 0
as n — oo, for all £ € E (here Po(V™) is the point spectrum of T™). This latter fact also
has been obtained independently and by a completely different method in [A-B].

Using Theorem 3.1, Lemma 2.1, and the quoted result of Haraux, we obtain the following

result.



THEOREM 3.2. Assume that the monodromy operator V of a 1-periodic process U is
power-bounded, i.e. sup,>, ||V"| < oo, and

(i) o(V)NT is countable;

(ii) If there is a functional ¢ € X" and a complex number A € ' such that V*¢ = Ap,
then there is ¢ € X such that p(z) # 0 and Vz = Az.

Then every positive trajectory u(t) of U is asymptotically almost periodic, and its peri-

odic part is a complete trajectory of U.

PROOF: The conditions imply that there exists de Leeuw-Glicksberg’s decomposition for

the monodromy operator V,

(3.1) E=E,®E,.

We show that for every z € E, the positive trajectory u(t) = U(0,t)z is asymptotically
almost periodic. According to De Leeuw-Glicksberg’s decomposition of V|, z = z¢ + 24,
where zo € Ep, 1 € Ey. Thus, u(t) = uo(t) + u1(t), where uo(t) = U(0,t)zo, u1(t) =
U(0,t)z,. We have

Jua(t)] = U, 0)zoll < sup [UCOIV 20l =0, a5 ¢ co.
<t<1

On the other hand, there exists a complete (in fact, almost periodic) orbit of the mon-
odromy operator V, through z;. By Lemma 2.1, there is a complete trajectory v(t) of
U through z; which of course must coincide with u;(¢) for t > 0. By the same argument
as in the previous part of the proof, one can show that the complete trajectory v(t) has

relatively compact range. Therefore, by [Hrl, Theorem 8|, v(2) is almost periodic. |

As a particular case of Theorem 3.2, we obtain the following condition for asymptotic

stability of positive trajectories.



COROLLARY 3.3. Assume that the monodromy operator V of a 1-periodic process U is
power-bounded and

(i) o(V)NT is countable;

(1i) Po(V*)NT = 0.

Then every positive trajectory u(t) of U satisfies ||u(t)|| — 0 as t — oo.

PRrOOF: Under the conditions (i) and (ii) of the Corollary, the subspace E; in decompo-

sition (3.1) is equal 0. The rest follows from the proof of Theorem 3.2. |

REMARK 3.4. Condition (ii) of Theorem 3.2 is necessary for the validity of the statement.
Moreover, if the Banach space F is reflexive, then it is fulfilled automatically, and condition

(ii) of Corollary 3.3 can be replaced by Po(V)NT = @ (see [V-L]).
4. ALMOST PERIODIC SOLUTIONS ON R.

In this section, we turn to Eqs.(1.1) and (1.2). Assume, that the operator-valued function
A(t) satisfies suitable conditions so that there exists, for every initial value u(0) = z from
a dense set in E, a classical solution on Ry of (1.2), with «(0) = z. Many such conditions
are known (see e.g. [Pa], [He]). Then there exists a linear process U = {U(t,7): t €
R,7 > 0} such that if z(t) is a solution of Eq. (1.1), then z(t + 7) = U(t, 7)z(t), t,7 >
0. In general, a function z(t) = U(0,t)z is called a mild solution of Eq.(1.1). Thus,
mild solutions correspond to positive trajectories. Assume that A(t) is 1-periodic, i.e.
A(t +1) = A(t), Vt € R. Then the corresponding process is 1-periodic. Assume further
that there exists a Flogquet representation for the process U, i.e. the monodromy operator
V of the process U has a logarithm: there exists a bounded operator C such that V = e®
(this is the case, for instance, if the spectrum of V' does not surround the origin). The well

known Floquet Theorem then states that there exists a continuous 1-periodic invertible

operator-valued function P(t) such that P(0) = 0 and

(4.1) U(t, r)z = P(t + 7)e" P~ (t)z.
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Formula (4.1) implies that if u(t) is a solution of Eq.(1.2), then v(s) = P~1(s)u(s) is a

solution of the equation
(42) v'(s) = Co(s) + 9(),

where g(s) = P~1(s) f(s) (see e.g. [D-K], [He], [M-S]).
We shall use the following result the proof of which can be found in [L-Z, p. 93].

THEOREM 4.1. Assume that C is a generator of a Cy-semigroup in a Banach space E
such that o(C) NiR is countable, ¢ is an almost periodic function, and v(t) is a bounded
uniformly continuous solution on R of Eq.(4.2). Then v(t) is almost periodic provided one
of the following conditions holds:

(i) E does not contain cg;

(ii) The set {u(t) : t € R} is weakly relatively compact.

THEOREM 4.2. Suppose that U is a 1-periodic process generated by Eq. (1.1) which has
a Floquet representation, V is its monodromy operator, and f is an almost periodic
function. Assume that o(V)NT is countable, and u(t) is a bounded uniformly continuous
solution of Eq.(1.2). Then u(t) is almost periodic, provided one of the following conditions
holds:

(i} X does not contain cp;

(ii) The set {u(t): t € R} is weakly relatively compact.

PROOF: By the Spectral Mapping Theorem (see e.g. [H-P], [Cle]), the set o(C) NiR
is countable. By the Floquet Theorem, if u(t) is a solution of Eq.(1.2), then v(s) =
P~1(s)u(s) is a solution of Eq.(4.2), and it is easy to see that all the properties of u(t) are
preserved for v(t). By Theorem 4.1, v(t) is almost periodic, which implies almost periodicity
of u(t).

REMARK 4.3. It is not difficult to see that Theorem 4.2 does not hold without the condition
of countability of the spectrum, even for autonomous processes. As an example consider
a (bounded) self-adjoint operator A in a Hilbert space, with purely continuous spectrum

i.e. A has no eigenvalues). Then the autonomous process U(t,7) = e'A” has the property
prop
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that every its positive trajectory is bounded and can be extended to a bounded complete
trajectory, but no complete trajectory is almost periodic (except the trivial one which is

identically zero).

We recall that the spectrum, Sp(f), of the function f € L*°(R,E) is defined as the
complement in R of the set of points A such that there is a neighborhood U of A with
the property that f * = 0 whenever ¢ € L'(R) and supp® C U (see [K], [L-Z]). It is
well known that if f is almost periodic, then Sp(f) coincides with the closure of the set of
Bohr’s exponents of f, i.e.

T
Sp(f) = closure of {A € R : a(\; f) = J;i_glmglf [ e #0),

Let 3(f) = {2+ 2n7: X € Sp(f),n € Z}. We shall need the following lemma.

LEMA 4.3. Assume that P(t) is a continuous l-periodic operator-valued function, f(t) is
almost periodic and ¢(t) = P(t)f(t). Then g(t) is almost periodic and

Sp(g) C &(f).

PROOF: By the Approximation Theorem (see e.g. [L-Z]), there exist trigonometric poly-
nomials p,(t) which converge to f uniformly on R; moreover, the exponents of p, can be
chosen from the set of Bohr's exponents of f. The function g,(t) = P(t)pa(t) converge
uniformly to g, and their spectra are contained in the set Z(f). Now the conclusion follows

from lower semicontinuity of the spectrum Sp(g) (see [K]). B

PROPOSITION 4.4. Assume that C is a bounded operator and ¢ is an almost periodic
function such that a(C) N:Sp(g) = @. Then there exists an almost periodic solution on R
of Eq.(4.2). This solution is unique if we require Sp(u) C Sp(g).

This proposition is contained in [Pr|. Here we give a different, and shorter, proof.

Proor: We put A = Sp(yg), and consider the space E(A)={h € BUC(R,E): Sp(h) C
A}. Since E(A) is invariant with respect to translates, one can consider the Cy-group
Sa(t)h = hy, t € R, of the restrictions of translates to E(A), and denote by Dy the

corresponding generator. Since o(Dj) = iA, from the condition of Proposition 4.4 it
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follows that there exists a bounded operator X from E(A) to E such that CX—XDj = 6y,
where 6y : E(A) — E is the Dirac operator defined by 8ok = h(0) (see [V1]). We define
a continuous linear operator G : E(A) — E(A) by (Gh)(t) = Xh,. It is not hard to see
that the operator G is correctly defined and, for every f € E(A), G f represents a solution
on R of the differetial equation u'(t) = Cu(t) + f(t). In particular, Gg is a solution on R
of Eq.(4.2). Since ¢ is almost periodic, and G commutes with translates, it follows that
Gy is also almost periodic. It is clear that Sp(Gg) C Sp(g). If there is another solution
v(t),t € R, of Eq.(4.2) with this property, then w = u — v is a solution of the homogeneous
equation w'(t) = Cw(t), t € R. Thus we have iSp(w) C o(C) (see [V2]). On the other
hand, iSp(w) C iA. Thus, Sp(w) = @, so w = 0 (see, e.g. [K], or [V2]). B

THEOREM 4.5. Assume that U is a 1-periodic process generated by Eq.(1.1), which has a

Floquet representation, and f is an almost periodic function such that

a(Vin{e'* :p e B(f)} =0.

Then there exits an almost periodic solution of Eq.(1.2). The solution is unique in the

class of functions whose spectrum is contained in I(f).

PRroOOF: The conditions of the theorem imply that there exists an almost periodic solution
on R of Eq.(4.2), and hence there exists an almost periodic solution on R of Eq.(1.2). If u
and v are two solutions of Eq.(1.2) and their spectra are contained in ¥(f), then by the
same reasoning as in the proof of Proposition 4.4 we can show that Sp(u — v) = @, so that
u—v=0.]

The existence of a Floquet representation is essential in the proof of Theorem 4.2. With-
out this assumption, one can show that the sequence {u(n)}necz is an almost periodic
complete orbit of V. In general, a function u(t) may not be almost periodic, even though
its restriction to Z, {u(n)},ez, is an almost periodic sequence (cf. [F, p. 163]). But it
is not known to the author whether the process U extends the almost periodic sequence
{u(n)}nez to the function u(t) almost periodically, i.e., whether Theorems 4.2 and 4.5

remain valid without the assumption on the existence of the Floquet representations 7
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5. EXISTENCE OF COMPLETE TRAJECTORIES

Let U(t,7) be a linear process which is uniformly bounded, i.e. sup{||U(t,7)||: ¢t €
R,7 > 0} < oo (such a process is called quasi-contractive in [Hrl]). Even for autonomous
processes (i.e. continuous dynamical systems), it may happen that there is no complete
trajectory of U, except the trivial one through zero. In [V2], a spectral condition is given
under which there exist a plenty of nontrivial bounded complete trajectories for a given
bounded semigroup. Here we present an analogous condition under which there exist a
plenty of nontrivial bounded complete trajectories for a periodic process.

We shall need the following result which is contained in [V2]. Recall that a power

bounded operator is said to be of class Cy., if ||T"z|| 2 0as n — oo, forallz € E.

THEOREM 5.1. Let T be a power-bounded linear operator in a Banach space E. Assume
that T is not in the class Cy., and one of the following condition holds:

i) ran(T) is dense in E, or

ii) T ¢ o(T).

Then there exist nontrivial bounded complete orbits for T™*.

COROLLARY 5.2. Let E be reflexive, T be a power-bounded operator such that T* is not

in the class Cy., and one of the following conditions holds:
i) ker(T) = {0}, or
i) T¢ o)

Then there exist nontrivial bounded complete orbits for T'.

Using Corollary 5.2, and Lemma 2.1, we obtain the following result on the existence of

nontrivial bounded complete trajectories for a periodic processes.

THEOREM 5.3. Let E be reflexive, and U be a periodic linear process with the monodromy
operator V. Assume that V satisfies the conditions in Corollary 5.2. Then there exist

nontrivial bounded complete trajectories for U.

The proof in [V2] also gives a constructive method for obtaining a large family of bounded

complete orbits for V, which together with the proof of Lemma 2.1 leads to a constructive
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method for obtaining a large family of bounded complete trajectories for the considered
process. By a modification of the example in [V2], one can show that the reflexivity

condition in Corollary 5.2, and hence in Theorem 5.3, is essential.
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