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Introduction.

Let E be an elliptic curve over @ . In this note, we describe the

possibilities for the torsion subgroup E(F) of the group E(F) of

tors

F-rational points on E , where F = Q[/z ; 2€2Z] denotes the maximal

elementary abelian 2-extension of € . Our main result is as follows.

Theorem. E(F)tors is isomorphic to one of the following 22 groups
z/2°z o z/4z (a = 2,3,4,5) ,
z/2°z o z/2z (a = 1,2,3,4) ,
z/2%°z e z/4z e Z/3Z (a =2,3) ,
z/2%z e z/2z 6 z/3%2 (a = 1,2) ,
z/2°z o z/2°z e z/5Z (a=1,2) ,

Z/27 © Z/IZ © ZZ/3Z © Z/3Z

or {0}, Z/3Zz , z/3Z e Z/32 , Z/5Z , Z/71Z , Z/9Z , Z/15Z

The finiteness of E(F)torsg also follows from a very general theorem

of Ribet [Ri] which we shall not need in the following. We do not know if

all groups in the above list can actually be realized as E(F)tors for

suitable curves E over @ .

For quadraﬁic number fields K/Q the group E(K)tors has been investi-

gated in [Lal . If E is defined over K , not necessarily over @ , then
there are several results provine the nonexistence of points of certain
" orders in E(K)tors . Such results maj be found e.g. in [Man], [Ke2] or

[Ram],



Throughout this note we keep the following

Notations and Conventions. For any abelian group V , rk V = dim (V ‘ZQ)

Q

denotes the rank of V and Vto will be the torsion subgroup of V .

rs

Furthermore, if n is a positive integer, then v, - {vEV!inev = 0} is the

group of n-division points of V , and V(n) = v

U .
iz21 n}

1. Some Technical Lemmas.

A) Decompositions.

Throughout this section, we will keep the following notation:

k will be a field,
K/k a finite Galois extension with group G = Gal(K/k) , and

A will denote a simple abelian variety over k .

An abelian variety B over k is called a K/k~-formof A if B is
isomorphic to A over K . If E(K/k,A) denotes the set of classes of K/k~
forms of A under the equivalence relation defined by k-isomorphism, then

there is a bijective correspondence
0 : E(/K) » H'(GAuc,d) .

Here AutKA denotes the group of K-automorphisms of A , with the usual

G-operation. The map © is obtained as follows [Se; Chap.III,§ 1]}: Let B

K
If 8(f) denotes the image of f under s8€G , then the map s » ¢' ;= B(f)Of-1

be a K/k~form of A . Then G acts on the set of K-isomorphisms f : B_ - AK .

is a 1-cocycle of G with values in AutKA . The class of (0.) in
H‘(G,AutKA) is the image of the class of B in E(K/k,A) under © . In

particular, for any 1-cocycle y = (y‘) of G with values in AutxA ,» there



exists a K/k-form AY of A together with a K-isomorphism £Y : AY + A

such that
s(fY) = 2 £'  (s€6) .

AV is called a y-twist of A . For the operations of G on the K~points

A(K) , resp. AY(K) , the above formula can be expressed as

sV (s @) = (v, o))  (a€AT(K), 5€C) .

Thus, in particular,

£Y(AY(k)) = {a€ A(K) | s(a) = ys(a) for all s€G) .

Lemma 1.1. Suppose G = Gal(K/k) is abelian of order n and exponent e .
If Aut‘A contains a primitive e-Lh root of unity, then there exist K/k-forms
A' of A and K-isomorphisms 2 At A (1= 1,2,...,n) such that the

kernel and cokernel of

of’
—

a i
18 A (X A(K)

are annihilated by n .

Proof. Let w€ AutkA be a primitive e~th root of unity and set
R = Z[m]S EndkA . Then R 1is a commutative domain, since A is simple,
and the group ring R[G] acts on A(K) . Moreover, there are n distinct
homomorphisms X; ¢ 6+ <«w>ck (i=1,2,...,n) . Set

-1
e, = x:(s ) s € R[G] .
. 'agG 1 '

and
‘A(K)i 1= (a€AK) |8(a) = xi(s)-a for all s€G} .

Then we have e - A(K) 5:-A(l()1 . Furthermore, by the orthogonality relations ,



n
Zi=1 e ne R , whence

A < I At .

The action of e; on AR s given by multiplication with 2 xi(s-1) xj (s)
s€G

=n 'Sij (6ij = Kronecker -§) . Therefore, for all i we have

nA(®*'n ) A7) =0 .
j#i
Finally, viewing X; as a 1-cocycle of G with values in AutKA , we have

an associated K/k-form A' of A and a K-isomorphism £* : A + A such

that fl(Ai(k)) = A(K)' . This proves the lemma.
Remark 1.2. By construction, the image £1(AY (k) = A(K)* is a G-inva-
riant subgroup of A(K) . Moreover, if xi(G)E{_ti} (e.g., if e = 2) , then

all subgroups of A(l()1 are G-invariant.

Corollary 1.3, In the situation of Lemma 1.1, we have

(1) tk AR = IT_ . rk AT(K) .
- (ii) Let p be a rational prime and let np denote the p-part of n .

Then np annihilates the kernel and cokernel of the map

®s

i
18 AR oy > AR (o

induced by Ofi on the p-primary components.

For our later applications to elliptic curves, we now briefly discuss

the special case where G is an elementary abelian 2-group, say

G =z C;l = C2 x...xC2 (m times) , and char k ¥ 2 . Then there exists a

k-basis 1 = 015050458, (n = 2™) of K such that s(ei) = 46, holds

for all s€G and all i . In particular, Gi -:;ziEk ', and the characters



X; ¢ G ‘-'0-’{_*_-_1} , 8w s(ei)e'i" are all distinct. The corresponding K/k-forms
A' of A will also be denoted by A(zi) . So there are K-isomorphisms

e A1) Lo wien s(ela) = x;() £ @ (s€c, aea® ) .

Lemma 1.4. Assume that char k # 2 and G = Gal(K/k) is an elementary

abelian 2-group. Then, with the above notations, we have

(i) I1f A(K)(z) # {0} then A(k)2 # {0} .
(ii) For all i# 1, f£* yields an isomorphism of 2-division points
A(zi)(k)z # A(k), and the map ide f' : A(K) OA(zi)(k) + A(K) has kernel

isomorphic to A(k)2 .

Proof. (i). If A(K)(z)v is nonzero then A(K)2 is a nonzero IFZ[G]—
module, Since G is a 2-group, G acts trivially on the simple submodules
of A(l()2 so that these are contained in A(k)2 .

(ii). For each ac€ A(zi) (k)2 , one has fi(a) = xi(s) fi(a) = s(fi(a))
and so fi(a)EiA(k)2 . Similarly, the inverse of fi maps A(k)2 to
A(zi) (Is:)2 . Finally, (a,a;) € A(k) GA(zi)(k) belongs to the kernel of
idﬁfi if and only if a+ fi(ai)s 0 =s(a+ fi(ai)) = g- fi(ai) , where
s is an element of G with Xi(s) = -1 . Therefore, ker(ide® fi) =

(a, (£ 'a) 1 a€A00),} = A0), .

In dealing with elliptic curves E over Q and elementary abelian

2-extensions K/Q , one can always choose the basis 1 = 0,,0 .y O

g 3ee
of K over Q so that the elements z, = 9? belong to Z . If E has

n

Weierstrass equation

y2 = x3+ax+b (a,bezZ) ,

then E(zi) has Weierstrass equation

y2 = x3+az;x+bzi3 .



and an isomorphism f' : E(zi) + E with s(f'(e)) = xi(s) £'(e) for all

SEG , e€ E(zl)(k) is given by fl(x,y) = (z?x,e?z;?y) '

B) Automorphisms.

For later use in Section 2, we collect a few facts concerning the auto-
morphism groups Aut(z2/2%7z e Z/sz) . Consider, slightly more generally,

any commutative ring R with a nilpotent maximal ideal M , say M? = {0} ’

b

Vel # {0} . Let I =M ,0<b<a, be a non-trivial ideal of R . Then

the automorphism ring of the (right) R-module V =R ® R/I is isomorphic

to a generalized matrix ring:

( R annRI )

End(V.) =
R\ p/1 w1

Here, if [r] denotes the class of r€R in R/I , then the matrix ([:] [i])

€ (RI}I a;‘;‘f) acts on ([:])EV via
(&) [J;])'([:]> - ([:3123]) .

Let T denote the group of R-automorphisms of V , viewed as the group of

units of the above matrix ring. Then, with U(.) denoting unit groups, we have

U(R) annRI
r= (R/I u(n/r)) .

In the following lemma, we apply this to the special case where R = z/2%2z

and I = 2bR (0 <b<a) . We use the above notation.

Lernma 1.5. Set I‘a b= aut(z/2%z o Z/sz) , where a and b are
»

positive integers with a>b , and R = Z/2%Z . Then I’. b has order 2”%"2

-

In case b=1,T is a semidirect product, T = NXU , with

a,l

a,l
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a-1
N = (E;?R 2[1]R) o~ (1+2R,*) 6 (2? 1R,-i-) » the kernel of the reduction map

modulo 2R , and U = (R;ZR [?]) o~ Z/2Z . All elementary abelian subgroups

ASI'a 1 have order at most 8 (and at most 4 for a = 2) , and a sub~
]

o] (1]

in addition, a=2 or 3 then A is either upper or lower triangular.

group of A of index =5 2 lies in the diagonal D = (1+2R 0 ) . If,

Proof. The formula for #I‘a b is clear from the explicit description
»
of T in terms of matrices.
a,b

Assume now that b = 1 . The decomposition T = NuU , with N and U

a,t
as above is easily verified. Also, U is generated by the matrix u = ([:] [?]>
€ I‘a.1 . Its centralizer in N is the diagonal D =~ (U(R),-) . Now let
Agl‘a’1 be elementary abelian. If AcN , then clearly A has order at most
8 (and at most 4 if a =2) , since UR) = 1+2R  z/2Z © Z/2° %z
Otherwise, A contains an element of the form g = nu , with the above matrix
u and with a suitable n€N , and A = <NNA,g> . Now NNA centralizes g
aﬁd hence n , as N is commutative. Thus NN AcD and, again, A has order
at most 8 (at most & if a = 2). Also, in both cases, [A:AND] s 2 .
Finally, we claim that for a =2 or 3 , each element g€T of order 2
is either upper or lower t'riangular. To see this, suppose g = (E:; [‘3]) ,
with i€2R .and j€2a-1R , has order 2 . Then (1+i)2+j = 1{ in R,

and hence i(i+2)+j =0, Now i = 2i1 for some i1€R and so i(i+2)

= 4i (i, +1)EBR . Thus, if as$3 , then we must have j =0 and g is

lower triangular. |



2. Elementary Abelian 2-Extensions.

Let E be an elliptic curve over @ and let F2Q be the méximal
elementary abelian 2-extension of @ , i.e. F = Q[v’; ; 2€EZ] . In this
section, we consider the possiblities for the torsion subgroup E(F)tors
of E(F) . Our essential tool will be the following result due to MAZUR
[Maz; Theorems 1 and 2] and KENKU who added the finishing touches to

part (ii) [Ke3], [Ke4l, [Ke5], [Ke6] , [ke7].

Theorem 2.1. Let E be an elliptic curve over 0 .

(i) E(Q)tors is isomorphic to one of the following fifteen groups:
Z/nZ with 1Sms10 or m= 12 ,
Z/27Z © Z/2nZ with 15Sns4 .

(ii) 1f EQ® has a rational (i.e Gal(Q/Q)-invariant) subgroup

tors

isomorphic to Z/nZ , then

ns19 or n€{21,25,27,37,43,67,163} .

The above notations will be kept throughout this section. So

E will be an elliptic curve over Q , and

F=qlvz ; z€ez)] .

We first describe the possibilities for the 2'-torsion subgroup of E(F)

Proposition 2.2. E(F),, = {e€E(F) Ine= 0 for some odd n} is

isomorphic to one of the following seven groups:

Z/wZ with me€ {1,3,5,7,9,15} , or

z/3z & Z/3Z .



Proof. It clearly suffices to show that for all finite subextemsions
K/Q with KcF , E(K)Z' is isomorphic to one of the above seven groups. So

fix K/Q with G = Gal(K/Q) o Cp

o - Then, by Corollary 1.3(ii),

E®),, « e (@), 6...0 e (@,

for suitable integers zi€ Z ;1i=1,2,...,n = 2", Furthermore, by

Theorem 2.1(i). each summand Ci 1= E(zi)(Q)z, is isomorphic to one of the
groups Z/mZ with me€ {1,3,5,7,9} . Note also that each Ci corresponds

to a rational subgroup of E(K)z, . For, by Remark 1.2, the image of E(zi)(Q)

in E(K) is rational, and hence so is the image of C, » since c, = E(zi) (Q)z.

is characteristic in E(zi)(Q) . Next, observe that, by duality, each of the
groups Z/mE" with m€{5,7,9} can occur at most once among the Ci , for
otherwise - K would contain the m-division field of E and hence a primitive
mth root of unity L4 [Shi; Proposition 4.2) . But this is impossible for
m€ {5,7,9} , since G = Gal(K/Q) has exponent 2 ., Moreover, of course,
at most two of the E(zi)(Q)z. can contain a copy of Z/3Z . Using the fact
that the image of each ci in E(K) 1is a rational cycle in E(K) , we
conclude that Z/5Z and Z/7Z cannot occur simultaneously among the Ci ,
for otherwise E(K) would contain a rational subgroup isomorphic to
Z/5ZZ @ Z/1Z ~ Z/35Z , contradicting Theorem 2.1(ii). Similarly, Z/5Z
and Z/9Z cannot occur together, and the same holds for Z/7Z and Z/9Z .
We claim that the combination Z/9Z with 2Z/3Z 1is impossible. Indeed,
if E(zi) (Q)z. o Z/9Z and E(zj)(Q)z, o Z/3Z , say, then replacing E by
E(zi) if necessary, we can assume that E(Q)z. o~ Z/9Z and E(zizj)(Q)z. ~ Z[/3Z .
In particular, E has a rational point of order 9 and an additional rational
3-cycle. But this comtradicts {Ku; Lemma III.2.2].
It remains to discard the possibilities of Z/3Z and Z/7Z occuring

together. Inithis case, these two groups would generate a rational 21-cycle

in EQQ . Nox XO(ZI) has exactly four rational points which are not cusps,



and to each of these points there corresponds an elliptic curve over 0

with conductor of the form 233b [Modular Functions of One Variable IV,
Springer LN 476(1975)*); p. 80 and 123]°. Therefore, after replacing .E (and.
correspondingly the two twists of E with rational 2'-torsion. o Z/3%Z , resp.
o~ Z/7Z) by a quadratic twist, we can assume that E has good reduction

at 5 , and that E(t1)(Q)2. o~ Z/3Z and E(tz) (Q)Z' o~ Z/7Z for suitable
tiGZ . Letting ¥ denote the reduction of E modulo 5 , we claim that
Ny := #‘E’(IFZS) = 21 . To see this, let K, = Q(v’ﬁ) » let p; be a prime

. of K., over 5, and let F_ = (O, /p. be the corresponding residue field.
1 pl Kl 1

Then reduction mod B defines an injective map E(Ki)tors

- E(Fﬁ) cE(F,,)
(see[Kat; Appendix]). We conclude that 3| N25 and 7 |N25 . On the other

1" : e n = - = 2 -2
hand, by the "Riemann hypothesis", st 26 a5 » where ayc = W +%  for
some w€C with 77 =5 and ag = n+wr € Z . In particular, NZSS (5+1)2 = 36

= az(— 10

whence st = 21 , as claimed. But then we deduce that 5 = a 5

25
so that a§ = 15 , contradiction. This completes the proof of the:

proposition. 1

Remarks 2.3. a) Let K2, >0Q denote the field extension of @ generated
by E(F)Z' . If E(F)Z' = {0} then, of course, K2' = . In the case
E(F)Z' > Z/wZ , for m = 3,5,7 or 9 , Ky» has degree 0 or 2 over Q.
This follows from the fact that the automorphism group of Z/mZ is eyclic
for the above values of m (of order 2,4,6, and 6, respectively). So -
Gal(F/Q) acts on E(F)z. o~ Z/mZ through a cyclic quotient which must be
of order 1 or 2 , Finally, in the cases where E(F)z. o Z/15Z or
o~ Z/3Z © Z/3Z , the elementary abelian 2-groups of Aut(E(F)z.) have
rank at most 2 . Since Gal(F/Q) cannot act trivially on E(F)z. cdn

these cases (Theorem 2.1(i)) , K2' is of degree 2 or 4 over ¢ .

b) 1If E(F),, « Z/wZ with m=7,9 or 15, then E(F).,, = {0} and

*) 1In the following quoted as "MF IV" ,
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so E(F);ors ét Z/pz . To see this, note that, by Lemma 1.4, E(F) ) ¢ {0}
(2)

implies that E(z) (Q)2 # {0} for all quadratic twists E of E. In
the case where m = 15‘ we would deduce the existence of a rational 30-cycle,
which is imposéible, by Theorem 2.1(ii). If E(F)Z, ~ Z/mZ with m= 7 or

9 , then 'E(z)(Q) o~ Z/uﬂ for a suitable 2z and so, again, E(F)(z) = {0} .

Proposition 2.4. E(F) does not contain a rational subgroup isomorphic

to one of the following groups:

Z/8Z © Z/2Z © Z/3Z , Z/4Z © Z/2Z © Z/5Z

Z/4Z © Z/2Z © Z/3Z © Z/3Z , Z/NZ © Z/2Z .

Proof. Suppose, by way of contradiction, that VcE(F) is rational
and isomorphic to one of the above groups. Write V(z) =1L ® S with
S «%¥2Z and L the long 2-cycle, i.e. L e zlzaz , a=2,3, or5 . Let
A denote the subgroup of Aut(Vz) = Pa,l given by the action of Gal(F/Q)
on V2 . In all cases, it is easy to see that A does not stabilize the
long cycle L : If V~Z/8Z 6 Z/2Z © Z/3Z , Z/4Z © Z/27Z © Z/5Z , or
Z/32Z © Z/2Z , one would have rational cycles of order 24 , 20 , or 32 ,
respectively, which contradicts Theorem 2.1(ii). In case
Ve Z/4Z © Z/272Z © Z/3Z © Z/3Z , two 3-cycles in V are rational, hence
a curve E' 3~isogenous to E over @ has a rational 9-cycle as well as
a rational 4-cycle, contradicting Theorem 2.1(ii).

We now first diséard the three cases with a =2 or 3 ., By Lemma 1.5,
A 1is lower triangular and therefore stabilizes the short cycle S o Z/2Z .
In addition 2,\l2 = 21, is a rational cycle contained in L . Let
¢:E+E' = E/S denote the isogeny associated with S and let ¢' : E' + E

be the dual isogeny, both defined over Q . Then L1 L (¢')-1(2V2)SE'('Q)

is rational and cyclic of order 2% = 4L . Arguing as in the first paragraph



of the proof we derive a contradiction.

Thus in the following suppose that V o Z/32Z © Z/2Z . By Lemma 1.5,
A has a subgroup Ao of index 2 which is diagonal, and hence stabilizes
S and L . In particular, the above .isogeny $ ‘E + E' = E/S is Ao-
invariant. Also, L' = (¢')—1(L)_C_E’('Q') is stabilized by Ao and L'
is cyclic of order 64 . Therefore, the éair (E',L') belongs to a point
of x0(64) of degree 2 which is not a cusp. By [Kel; Lemma 1], the

3 or 33-530173 ).

j-invariant j(E') 1is integral (in fact, j(B') = —33-5
Now let KcF be the field generated by ¢(L)<E'(F) . Let P be a prime
of OK over 3 and note that Fp = OK/}! is of degree 3 2 over W,

(for, Gal (FF/IF3) is a cyclic subquotient of Gal(K/Q) which is an elemen-
tary abelian 2-group). We consider reduction of E' modulo ® and denote
the reduced curve by E' . As j(E') is integral, reduction at P is either
good or additive. In case of good reduction, one has #E (Eg) 16 , which

is impossible, since Z/327Z ~ ¢(L)EE'(K) (2) and reduction modulo §

is injective on E'(K) 2) * In case of additive reduction, let E;(K)(z)
denote the subgroup of E'(K)(z) consisting of those points which are
mapped to nonsingular points of E' (Fp) . One has [E'(K)(z) :E;(K)(z)] sS4
(cf. [Ta; §6]) and so #E(’)(K)(z) 28 . On the other hand, E‘;(K) (2) Sfr'ls(ﬂ-‘g)

o E‘; , a contradiction. Thus V = Z/327Z2 © Z/2ZZ is impossible, and the

proposition is proved. ]



_13..

Theorem 2.5. Let E be an elliptic curve over Q and let
F =Q[Yz ; 2zEZ] . Then the torsion subgroup E(F)tors is isomorphic

to one of the following 22 groups:

z/2%z ¢ z/4z (a = 2,3,4,5) ,
z/2%z e z/2z (a = 1,2,3,4) ,
z/2%z e z/4z ¢ Z/3Z (a =2,3) ,
z/2%z e z/2z © Z/3Z (a = 1,2) ,
z/2%z e z/2%z o z/52 (a = 1,2) ,

Z/2z 6 Z/2Z © Z/3Z 6 Z/3Z

or {0} , zZ/32 , z/3zz ¢ Z/3Z , Z/52Z , Z/1Z , Z/9Z , Z/\5Z .

Proof. We first describe the possibilities for the 2-primary component
E(F)(z) . If E(F)(z) ¥ {0} then, by Lemma 1.4(i), we must have 13((2)2 # {0}
and so the 2~division field of E is quadratic over ¢ and thus contained
in F . On the other hand, the 8-division field of E is not contained in
F , as F does not contain a primitive 8th root of unity. Therefore, if
E(F) 5y # {0} then it must be of the form E(F) ) = Z/2°Z @ Z/2°Z with
azb and b=1 or 2 . Moreover, a-bs4 for otherwise 2b-E(F)(2)
would be a rational cyclé of E of order divisible by 32 , which is im-
possible by Theorem 2.1(ii). Finally, since E(F) does not contain a rational
subgroup isomorphic to Z/32Z € Z/2Z , by Proposition 2.4, the groups
Z/6AZ € Z/4Z and Z/32Z © Z/2Z are ruled out, and we are left with nine
possibilities: {0} , z/2°Z € Z/2Z (a = 1,2,3,4) , and 2/2%Z @ z/4z
(a = 2,3,4,5) .

It remains to check the possible combinations of these groups with the
choices for E(F)z, as described in Propésition 2.2, First, by Remark 2.3b) ,

E(F),y & Z/nZ with m = 7,9 or 15 entails n('r)(z) = {0} . Also, if



E(F)z. # {0} , then it contains a rational cycle of order 3, 5or 7 .
Therefore, by Theorem 2.1(ii), E cannot have an additional rational 8-cycle,
which rules out the possibilities E(F) 2) ™ Z/32Z © ZL/4Z or
o~ Z/16Z € Z/2Z . Similarly, if E(F) has 5- or 7-torsion then E cannot
have a rational 4-cycle and so E(F) 2) = Z/16Z © ZL/4Z or Z)BZ © Z/2Z
are impossible. By Proposition 2.4, the latter two cases also don't
combine with a rational 3-cycle and so we have shown that in the four
cases where E(F) ,) o Z/32Z © Z/4Z , Z/16Z © z/2°z (b =1,2) or
Z/8Z ® Z/2Z we must have E(F)z, = {0} .

Now assume that E(F)(z) o~ Z/87Z @ Z/AZ oy Z/4Z © Z/2Z . Then
E(F) 2) contains a rational subgroup isomorphic to Z/4Z € Z/2Z and
so, by Proposition 2.4, E(F)Z, cannot be isomorphic to Z/5Z or to
Z/3Z © Z/3Z . This leaves E(F)z, =~ {0} or Z/3Z as the only possi-
bilities. Finally, if E(F)(z) > Z/47ZZ © Z/4Z , then E(F)z, cannot be
isomorphic to Z/3Z € Z/3Z , for otherwise F would contain the 12-
division field of E and hence a primitive 12th root of unity. This complete

the proof of the theorem. |

Remarks 2.6. (a) The curves E over @ with E(F)tors»u Z/1\52Z
are exactly the quadratic twists of the curves 50A and 50B in
[{MF 1Iv, p. 86]. Indeed, the curve S50A satisfies (50A) (Q)tors =~ Z/S5Z

and (50A) ) (Q)tors“ (50G) (Q)tors o~ Z/3Z , and for 50B one has

(50B) (@) o~ Z/5Z and (50B) (=15) (Q) e~ Z/3Z . Therefore, if

tors tors

E = 50A , 50B, or a quadratic twist thereof, then E(F)tors ~ Z/15Z .

" Conversely, any elliptic curve E over Q with E(F)tors ~ Z/152

belongs to a rational non-cusp of Xo(15) . By [MF IV, p. 80] there are
exactly four such points and these are accounted for by the curves 50ABCD .
Direct computation shows that no quadratic twist of 50C or 50D has

a rational 5~division point so that 50C and 50D , or quadratic twists
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thereof, cannot have E(F)tors o Z/15Z .
(b) If E 1is an elliptic curve over @ with E(Q)tors > Z[/9Z or
Z/7%Z , then Theorem 2.5 implies that E(F) &~ Z/9Z or Z/7Z , res-

tors

pectively. Also, if E satisfies E(Q) o~ Z/5Z and E 1is not a

tors
quadratic twist of 50A or 50B (Remark (a)), then we must have
E(F) g ™ Z/5Z .

(c) To get an example with E(F)tors o~ Z[/3Z © Z/3Z take any elliptic

curve E‘ over Q with -EI(Q)tors = <a> o Z/9Z and set E = E1/<3a>

The curve E given by the Weierstrass equation Y2 = X3 + 5805X - 285714
(= 14C in [MF IV]) satisfies E(F), __ = <(39,00> 6 <-32+132/57,0)> o

<(75,756)> © <(-9,336 /-3)>~ Z/22Z © Z/2Z © Z/3Z © Z/3Z .
(d) Curves E over Q) with a point of order 16 in a quadratic
extension of Q can be obtained as follows. Take any elliptic curve E1

over @ with ‘E'(Q) o~ Z/8Z ® Z/2Z and consider the Q-isogeny

tors
¢ :E +E -~ E"/(Z/ZZ) and its dual ¢' . Then (¢')—1(Z/82) =: UcE®

is cyclic of order 16 . Moreover, if 0€Gal(Q/Q) and e€U , then

o(e)-e =: t'oeker ¢' . Since ker ¢' o Z/2Z , Gal(§/Q) operates trivially
on ker ¢' and the map t : Gal(Q/Q) -~ z/2z , omt is a group homo-
morphism. The kernel N of t has index 2 in Gal(Q/@Q) and operates
trivially on" U . Therefore, UCE(K) where K = Fixa-(N) is quadratic

over Q .
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