Rational Points on Elliptic Curves over Q in Elementary Abelian 2-Extensions of Q

by
Michael Laska and Martin Lorenz *)

SONDERFORSCHUNGSBEREICH 40 THEORETISCHE MATHEMATIK UNIVERSITÄT BONN

MASSESSANCE CONSTRUCTION OF THE MATERIALIES

IMD

RONN

May Planck-Institut for Mathematik Bibliothek bry Nr. 2012 Rational Points on Elliptic Curves over Q in Elementary Abelian 2-Extensions of Q

by
Michael Laska and Martin Lorenz *)

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26

MPI/SFB 84-21

D - 5300 Bonn 3

^{*)} Research supported by the Deutsche Forschungsgemeinschaft/
Heisenberg Programm (Lo 261/2-1).

Introduction.

Let E be an elliptic curve over \mathbb{Q} . In this note, we describe the possibilities for the torsion subgroup $\mathbb{E}(F)_{\text{tors}}$ of the group $\mathbb{E}(F)$ of F-rational points on E, where $F = \mathbb{Q}[\sqrt{z}; z \in \mathbb{Z}]$ denotes the maximal elementary abelian 2-extension of \mathbb{Q} . Our main result is as follows.

Theorem. E(F) is isomorphic to one of the following 22 groups

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$

or {0}, Z/3Z, Z/3Z • Z/3Z, Z/5Z, Z/7Z, Z/9Z, Z/15Z.

The finiteness of $E(F)_{tors}$ also follows from a very general theorem of Ribet [Ri] which we shall not need in the following. We do not know if all groups in the above list can actually be realized as $E(F)_{tors}$ for suitable curves E over Q.

For quadratic number fields K/\mathbb{Q} the group $E(K)_{tors}$ has been investigated in [La]. If E is defined over K, not necessarily over \mathbb{Q} , then there are several results proving the nonexistence of points of certain orders in $E(K)_{tors}$. Such results may be found e.g. in [Man], [Ke2] or [Kam].

Throughout this note we keep the following

Notations and Conventions. For any abelian group V, rk $V = dim_{\mathbb{Q}}(V \oplus_{\mathbb{Z}}\mathbb{Q})$ denotes the rank of V and V_{tors} will be the torsion subgroup of V. Furthermore, if n is a positive integer, then $V_n = \{v \in V \mid n \cdot v = 0\}$ is the group of n-division points of V, and $V_{(n)} = \bigcup_{i \geq 1}^{U} V_{ni}$.

1. Some Technical Lemmas.

A) Decompositions.

Throughout this section, we will keep the following notation:

k will be a field,

K/k a finite Galois extension with group G = Gal(K/k), and A will denote a simple abelian variety over k.

An abelian variety B over k is called a K/k-form of A if B is isomorphic to A over K. If E(K/k,A) denotes the set of classes of K/k-forms of A under the equivalence relation defined by k-isomorphism, then there is a bijective correspondence

$$\theta : E(K/k) \rightarrow H^{1}(G,Aut_{K}A)$$
.

Here $\operatorname{Aut}_K A$ denotes the group of K-automorphisms of A, with the usual G-operation. The map θ is obtained as follows [Se; Chap.III,§ 1]: Let B be a K/k-form of A. Then G acts on the set of K-isomorphisms $f: B_K + A_K$. If s(f) denotes the image of f under $s \in G$, then the map $s \mapsto \phi_s := s(f) \circ f^{-1}$ is a 1-cocycle of G with values in $\operatorname{Aut}_K A$. The class of (ϕ_s) in $\operatorname{H}^1(G,\operatorname{Aut}_K A)$ is the image of the class of B in $\operatorname{E}(K/k,A)$ under θ . In particular, for any 1-cocycle $\gamma = (\gamma_s)$ of G with values in $\operatorname{Aut}_K A$, there

exists a K/k-form A^{γ} of A together with a K-isomorphism $f^{\gamma}:A^{\gamma}\to A$ such that

$$s(f^{\gamma}) = \gamma_s \circ f^{\gamma} \quad (s \in G)$$
.

 A^{γ} is called a $\underline{\gamma}$ -twist of A. For the operations of G on the K-points A(K), resp. $A^{\gamma}(K)$, the above formula can be expressed as

$$s(f^{\gamma}(s^{-1}(a))) = (\gamma_g \circ f^{\gamma})(a) \quad (a \in A^{\gamma}(K), s \in G)$$
.

Thus, in particular,

$$f^{\gamma}(A^{\gamma}(k)) = \{a \in A(K) \mid s(a) = \gamma_{g}(a) \text{ for all } s \in G\}$$
.

Lemma 1.1. Suppose G = Gal(K/k) is abelian of order n and exponent e.

If Aut_A contains a primitive e-th root of unity, then there exist K/k-forms

Aⁱ of A and K-isomorphisms $f^i : A^i \to A$ (i = 1, 2, ..., n) such that the kernel and cokernel of

$$\stackrel{n}{\underset{i=1}{\bullet}} A^{i}(k) \xrightarrow{\bullet f^{i}} A(K)$$

are annihilated by n .

<u>Proof.</u> Let $\omega \in \operatorname{Aut}_{\mathbb{K}} A$ be a primitive e-th root of unity and set $R = \mathbb{Z}[\omega] \subseteq \operatorname{End}_{\mathbb{K}} A$. Then R is a commutative domain, since A is simple, and the group ring R[G] acts on A(K). Moreover, there are n distinct homomorphisms $\chi_i : G + \langle \omega \rangle \subseteq \mathbb{R}$ (i = 1, 2, ..., n). Set

$$e_i := \sum_{s \in G} \chi_i(s^{-1}) s \in R[G]$$
.

and

$$A(K)^{i} := \{a \in A(K) \mid s(a) = \chi_{i}(s) \cdot a \text{ for all } s \in G\}$$
.

Then we have $e_i \cdot A(K) \subseteq A(K)^i$. Furthermore, by the orthogonality relations,

 $\sum_{i=1}^{n} e_{i} = n \in \mathbb{R} \text{, whence}$

$$n \cdot A(K) \subseteq \sum_{i=1}^{n} A(K)^{i}$$
.

The action of e_i on $A(K)^i$ is given by multiplication with $\sum_{s \in G} \chi_i(s^{-1}) \chi_j(s)$ = $n \delta_{ij}$ (δ_{ij} = Kronecker $-\delta$). Therefore, for all i we have

$$n(A(K)^{i} \cap \sum_{j \neq i} A(K)^{j}) = 0 .$$

Finally, viewing χ_i as a 1-cocycle of G with values in $\operatorname{Aut}_K A$, we have an associated K/k-form A^i of A and a K-isomorphism $\operatorname{f}^i:\operatorname{A}^i\to\operatorname{A}$ such that $\operatorname{f}^i(\operatorname{A}^i(k))=\operatorname{A}(K)^i$. This proves the lemma.

Remark 1.2. By construction, the image $f^i(A^i(k)) = A(K)^i$ is a G-invariant subgroup of A(K). Moreover, if $\chi_i(G) \subseteq \{\pm 1\}$ (e.g., if e = 2), then all subgroups of $A(K)^i$ are G-invariant.

Corollary 1.3. In the situation of Lemma 1.1, we have

- (i) $rk A(K) = \sum_{i=1}^{n} rk A^{i}(k)$.
- (ii) Let $\, p \,$ be a rational prime and let $\, n \,$ denote the p-part of $\, n \,$. Then $\, n \,$ annihilates the kernel and cokernel of the map

$$\stackrel{n}{\underset{i=1}{\bullet}} A^{i}(k)_{(p)} \rightarrow A(K)_{(p)}$$

induced by Θf_i on the p-primary components.

For our later applications to elliptic curves, we now briefly discuss the special case where G is an elementary abelian 2-group, say $G \cong C_2^m = C_2 \times \ldots \times C_2 \text{ (m times) , and char } k \neq 2 \text{ . Then there exists a}$ k-basis $1 = \theta_1$, θ_2 ,..., θ_n $(n = 2^m)$ of K such that $s(\theta_i) = +\theta_i$ holds for all $s \in G$ and all i. In particular, $\theta_i^2 = :: z_i \in K$, and the characters

 $\chi_i: G \to \{\pm 1\}$, $s \mapsto s(\theta_i)\theta_i^{-1}$ are all distinct. The corresponding K/k-forms A^i of A will also be denoted by $A^{(z_i)}$. So there are K-isomorphisms $f^i: A^{(z_i)} \to A$ with $s(f^i(a)) = \chi_i(s) f^i(a)$ $(s \in G, a \in A^{(z_i)}(k))$.

Lemma 1.4. Assume that char $k \neq 2$ and G = Gal(K/k) is an elementary abelian 2-group. Then, with the above notations, we have

- (i) If $A(R)_{(2)} \neq \{0\}$ then $A(k)_2 \neq \{0\}$.
- (ii) For all $i \neq 1$, f^i yields an isomorphism of 2-division points $A^{(z_i)}(k)_2 \cong A(k)_2$ and the map $id \oplus f^i : A(k) \oplus A^{(z_i)}(k) \to A(K)$ has kernel isomorphic to $A(k)_2$.

<u>Proof.</u> (i). If $A(K)_{(2)}$ is nonzero then $A(K)_2$ is a nonzero $\mathbb{F}_2[G]$ -module. Since G is a 2-group, G acts trivially on the simple submodules of $A(K)_2$ so that these are contained in $A(k)_2$.

(ii). For each $a \in A^{(z_i)}(k)_2$, one has $f^i(a) = \chi_i(s) f^i(a) = s(f^i(a))$ and so $f^i(a) \in A(k)_2$. Similarly, the inverse of f^i maps $A(k)_2$ to $A^{(z_i)}(k)_2$. Finally, $(a,a_i) \in A(k) \oplus A^{(z_i)}(k)$ belongs to the kernel of $id \oplus f^i$ if and only if $a + f^i(a_i) = 0 = s(a + f^i(a_i)) = a - f^i(a_i)$, where s is an element of G with $\chi_i(s) = -1$. Therefore, $ker(id \oplus f^i) = \{(a,(f^i)^{-1}a) \mid a \in A(k)_2\} \cong A(k)_2$.

In dealing with elliptic curves E over Q and elementary abelian 2-extensions K/Q, one can always choose the basis $1=\theta_1$, θ_2 ,..., θ_n of K over Q so that the elements $z_i=\theta_i^2$ belong to Z. If E has Weierstrass equation

$$y^2 = x^3 + ax + b \qquad (a, b \in \mathbb{Z}) \quad ,$$

then E(zi) has Weierstrass equation

$$y^2 = x^3 + az_i^2 x + bz_i^3$$
,

and an isomorphism $f^i: E^{(z_i)} \to E$ with $s(f^i(e)) = \chi_i(s) f^i(e)$ for all $s \in G$, $e \in E^{(z_i)}(k)$ is given by $f^i(x,y) = (z_i^{-1}x, \theta_i^{-1}z_i^{-1}y)$

B) Automorphisms.

For later use in Section 2, we collect a few facts concerning the automorphism groups $\operatorname{Aut}(\mathbb{Z}/2^a\mathbb{Z}\oplus\mathbb{Z}/2^b\mathbb{Z})$. Consider, slightly more generally, any commutative ring R with a nilpotent maximal ideal M, say $\operatorname{M}^a = \{0\}$, $\operatorname{M}^{a-1} \neq \{0\}$. Let $\operatorname{I} = \operatorname{M}^b$, 0 < b < a, be a non-trivial ideal of R. Then the automorphism ring of the (right) R-module $\operatorname{V} = \operatorname{R} \oplus \operatorname{R/I}$ is isomorphic to a generalized matrix ring:

$$\operatorname{End}(V_{R}) \cong \left(\begin{array}{cc} R & \operatorname{ann}_{R} I \\ R/I & R/I \end{array}\right) .$$

Here, if [r] denotes the class of $r \in R$ in R/I, then the matrix $\begin{pmatrix} r & j \\ [s] [t] \end{pmatrix}$ $\in \begin{pmatrix} R & ann_R I \\ R/I & R/I \end{pmatrix}$ acts on $\begin{pmatrix} u \\ [v] \end{pmatrix} \in V$ via

$$\begin{pmatrix} r & j \\ [s] [t] \end{pmatrix} \cdot \begin{pmatrix} u \\ [v] \end{pmatrix} = \begin{pmatrix} ru + jv \\ [su + tv] \end{pmatrix} .$$

Let Γ denote the group of R-automorphisms of V, viewed as the group of units of the above matrix ring. Then, with U(.) denoting unit groups, we have

$$\Gamma = \begin{pmatrix} U(R) & \operatorname{ann}_{R} I \\ R/I & U(R/I) \end{pmatrix} .$$

In the following lemma, we apply this to the special case where $R = \mathbb{Z}/2^a\mathbb{Z}$ and $I = 2^bR$ (0 < b < a). We use the above notation.

Lemma 1.5. Set $\Gamma_{a,b} = \operatorname{Aut}(\mathbb{Z}/2^a\mathbb{Z} \otimes \mathbb{Z}/2^b\mathbb{Z})$, where a and b are positive integers with a > b, and $R = \mathbb{Z}/2^a\mathbb{Z}$. Then $\Gamma_{a,b}$ has order 2^{a+3b-2} . In case b = 1, $\Gamma_{a,1}$ is a semidirect product, $\Gamma_{a,1} = N \rtimes U$, with

 $N = \begin{pmatrix} 1+2R & 2^{a-1}R \\ [0] & [1] \end{pmatrix} \simeq (1+2R, \cdot)$ Θ $(2^{a-1}R, +)$, the kernel of the reduction map modulo 2R, and $U = \begin{pmatrix} 1 & 0 \\ R/2R & [1] \end{pmatrix} \simeq \mathbb{Z}/2\mathbb{Z}$. All elementary abelian subgroups $A \subseteq \Gamma_{a,1}$ have order at most 8 (and at most 4 for a=2), and a subgroup of A of index ≤ 2 lies in the diagonal $D = \begin{pmatrix} 1+2R & 0 \\ 0 & [1] \end{pmatrix}$. If, in addition, a=2 or A then A is either upper or lower triangular.

<u>Proof.</u> The formula for $\#\Gamma_{a,b}$ is clear from the explicit description of $\Gamma_{a,b}$ in terms of matrices.

Assume now that b=1. The decomposition $\Gamma_{a,1}=N\rtimes U$, with N and U as above is easily verified. Also, U is generated by the matrix $u=\begin{pmatrix}1&0\\1&1&1\end{pmatrix}$ $\in \Gamma_{a,1}$. Its centralizer in N is the diagonal $D\simeq (U(R),\cdot)$. Now let $A\subseteq \Gamma_{a,1}$ be elementary abelian. If $A\subseteq N$, then clearly A has order at most 8 (and at most 4 if a=2), since $U(R)=1+2R\simeq \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/2^{a-2}\mathbb{Z}$. Otherwise, A contains an element of the form g=nu, with the above matrix u and with a suitable $n\in N$, and $A=\langle N\cap A,g\rangle$. Now $N\cap A$ centralizes g and hence n, as N is commutative. Thus $N\cap A\subseteq D$ and, again, A has order at most 8 (at most 4 if a=2). Also, in both cases, $[A:A\cap D]\leq 2$. Finally, we claim that for a=2 or 3, each element $g\in \Gamma$ of order 2 is either upper or lower triangular. To see this, suppose $g=\begin{pmatrix}1+i&j\\[1]&[1]\end{pmatrix}$, with $i\in 2R$ and $j\in 2^{a-1}R$, has order 2. Then $(1+i)^2+j=1$ in R, and hence i(i+2)+j=0. Now i=2i for some i0 for some i1 on and g is lower triangular.

2. Elementary Abelian 2-Extensions.

Let E be an elliptic curve over \mathbb{Q} and let $F \supseteq \mathbb{Q}$ be the maximal elementary abelian 2-extension of \mathbb{Q} , i.e. $F = \mathbb{Q}[\sqrt{z}; z \in \mathbb{Z}]$. In this section, we consider the possiblities for the torsion subgroup $\mathbb{E}(F)_{tors}$ of $\mathbb{E}(F)$. Our essential tool will be the following result due to MAZUR [Maz; Theorems 1 and 2] and KENKU who added the finishing touches to part (ii) [Ke3], [Ke4], [Ke5], [Ke6]. [Ke7].

Theorem 2.1. Let E be an elliptic curve over Q.

(i) $E(Q)_{tors}$ is isomorphic to one of the following fifteen groups:

 $\mathbb{Z}/m\mathbb{Z}$ with $1 \le m \le 10$ or m = 12, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}$ with $1 \le n \le 4$.

(ii) If $E(\overline{\mathbb{Q}})_{tors}$ has a rational (i.e $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ -invariant) subgroup isomorphic to $\mathbb{Z}/n\mathbb{Z}$, then

 $n \le 19$ or $n \in \{21, 25, 27, 37, 43, 67, 163\}$.

The above notations will be kept throughout this section. So

E will be an elliptic curve over Q, and $F = Q[\sqrt{z} : z \in Z]$.

We first describe the possibilities for the 2'-torsion subgroup of E(F)

<u>Proposition 2.2.</u> $E(F)_2$, = { $e \in E(F)$ | ne = 0 for some odd n} is isomorphic to one of the following seven groups:

 $\mathbb{Z}/m\mathbb{Z}$ with $m \in \{1,3,5,7,9,15\}$, or $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.

<u>Proof.</u> It clearly suffices to show that for all finite subextensions K/Q with $K \subseteq F$, $E(K)_2$, is isomorphic to one of the above seven groups. So fix K/Q with $G = Gal(K/Q) \simeq C_2^m$. Then, by Corollary 1.3(ii),

$$E(K)_{2!} \simeq E^{(z_1)}(Q)_{2!} \cdot \theta \dots \theta \cdot E^{(z_n)}(Q)_{2!}$$

for suitable integers $z_i \in \mathbb{Z}$; $i = 1, 2, ..., n = 2^m$. Furthermore, by Theorem 2.1(i). each summand $C_i := E^{(z_i)}(Q)_2$, is isomorphic to one of the groups $\mathbb{Z}/m\mathbb{Z}$ with $m \in \{1,3,5,7,9\}$. Note also that each C_i corresponds to a <u>rational</u> subgroup of $E(K)_2$. For, by Remark 1.2, the image of $E^{(z_i)}(Q)$ in E(K) is rational, and hence so is the image of C_i , since $C_i = E^{(z_i)}(Q)_2$, is characteristic in $E^{(z_i)}(\mathbf{Q})$. Next, observe that, by duality, each of the groups $\mathbb{Z}/m\mathbb{Z}$ with $m \in \{5,7,9\}$ can occur at most once among the C_i , for otherwise K would contain the m-division field of E and hence a primitive m-th root of unity ζ_m [Shi; Proposition 4.2] . But this is impossible for $m \in \{5,7,9\}$, since $G = Gal(K/\mathbb{Q})$ has exponent 2. Moreover, of course, at most two of the $E^{(z_i)}(Q)_2$, can contain a copy of $\mathbb{Z}/3\mathbb{Z}$. Using the fact that the image of each C, in E(K) is a rational cycle in E(K), we conclude that $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$ cannot occur simultaneously among the C_{i} , for otherwise E(K) would contain a rational subgroup isomorphic to Z/5Z 6 Z/7Z \similarly, Z/5Z and $\mathbb{Z}/9\mathbb{Z}$ cannot occur together, and the same holds for $\mathbb{Z}/7\mathbb{Z}$ and $\mathbb{Z}/9\mathbb{Z}$.

We claim that the combination $\mathbb{Z}/9\mathbb{Z}$ with $\mathbb{Z}/3\mathbb{Z}$ is impossible. Indeed, if $E^{(z_i)}(\mathbb{Q})_2$, $\simeq \mathbb{Z}/9\mathbb{Z}$ and $E^{(z_j)}(\mathbb{Q})_2$, $\simeq \mathbb{Z}/3\mathbb{Z}$, say, then replacing E by $E^{(z_i)}$ if necessary, we can assume that $E(\mathbb{Q})_2$, $\simeq \mathbb{Z}/9\mathbb{Z}$ and $E^{(z_iz_j)}(\mathbb{Q})_2$, $\simeq \mathbb{Z}/3\mathbb{Z}$. In particular, E has a rational point of order 9 and an additional rational 3-cycle. But this contradicts [Ku; Lemma III.2.2].

It remains to discard the possibilities of $\mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$ occurring together. In this case, these two groups would generate a rational 21-cycle in $\mathbb{E}(\overline{\mathbb{Q}})$. Nox $\mathbb{X}_{\overline{\mathbb{Q}}}(21)$ has exactly four rational points which are not cusps,

and to each of these points there corresponds an elliptic curve over Q with conductor of the form 2^a3^b [Modular Functions of One Variable IV, Springer LN 476(1975)*); p. 80 and 123]. Therefore, after replacing E (and correspondingly the two twists of E with rational 2'-torsion ~ Z/3Z, resp. $\simeq \mathbb{Z}/7\mathbb{Z}$) by a quadratic twist, we can assume that E has good reduction at 5, and that $E^{(t_1)}(Q)_2 \simeq \mathbb{Z}/3\mathbb{Z}$ and $E^{(t_2)}(Q)_2 \simeq \mathbb{Z}/7\mathbb{Z}$ for suitable $t \in \mathbb{Z}$. Letting \mathbb{E} denote the reduction of E modulo 5, we claim that $N_{25} := \#\widetilde{E}(\mathbb{F}_{25}) = 21$. To see this, let $K_i = \mathbb{Q}(\sqrt{t_i})$, let p_i be a prime of K_i over 5, and let $F_{p_i} = O_{K_i}/p_i$ be the corresponding residue field. Then reduction mod p_i defines an injective map $E(K_i)_{tors} \hookrightarrow \widetilde{E}(F_{p_i}) \subseteq \widetilde{E}(F_{25})$ (see[Kat; Appendix]). We conclude that $3 \mid N_{25}$ and $7 \mid N_{25}$. On the other hand, by the "Riemann hypothesis", $N_{25} = 26 - a_{25}$, where $a_{25} = \pi^2 + \overline{\pi}^2$ for some $\pi \in \mathbb{C}$ with $\pi \cdot \overline{\pi} = 5$ and $a_5 = \pi + \overline{\pi} \in \mathbb{Z}$. In particular, $N_{25} \le (5+1)^2 = 36$ whence $N_{25} = 21$, as claimed. But then we deduce that $5 = a_{25} = a_5^2 - 10$ so that $a_5^2 = 15$, contradiction. This completes the proof of the proposition.

Remarks 2.3. a) Let $K_2 = 0$ denote the field extension of 0 generated by $E(F)_2$. If $E(F)_2' = \{0\}$ then, of course, $K_2 = 0$. In the case $E(F)_2 \simeq \mathbb{Z}/m\mathbb{Z}$, for m = 3,5,7 or 9, K_2 , has degree 0 or 2 over 0. This follows from the fact that the automorphism group of $\mathbb{Z}/m\mathbb{Z}$ is cyclic for the above values of m (of order 2,4,6, and 6, respectively). So Gal(F/0) acts on $E(F)_2 \simeq \mathbb{Z}/m\mathbb{Z}$ through a cyclic quotient which must be of order 1 or 2. Finally, in the cases where $E(F)_2 \simeq \mathbb{Z}/15\mathbb{Z}$ or $\mathbb{Z}/3\mathbb{Z}$ $\mathbb{Z}/3\mathbb{Z}$, the elementary abelian 2-groups of $Aut(E(F)_2)$ have rank at most 2. Since Gal(F/0) cannot act trivially on $E(F)_2$, in these cases (Theorem 2.1(i)), K_2 , is of degree 2 or 4 over 0.

^{*)} In the following quoted as "MF IV" .

so $E(F)_{tors} \simeq \mathbb{Z}/m\mathbb{Z}$. To see this, note that, by Lemma 1.4, $E(F)_{(2)} \neq \{0\}$ implies that $E^{(z)}(Q)_2 \neq \{0\}$ for all quadratic twists $E^{(z)}$ of E. In the case where m=15 we would deduce the existence of a rational 30-cycle, which is impossible, by Theorem 2.1(ii). If $E(F)_2 \simeq \mathbb{Z}/m\mathbb{Z}$ with m=7 or 9, then $E^{(z)}(Q) \simeq \mathbb{Z}/m\mathbb{Z}$ for a suitable z and so, again, $E(F)_{(2)} = \{0\}$.

<u>Proposition 2.4.</u> E(F) does not contain a rational subgroup isomorphic to one of the following groups:

 $\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

<u>Proof.</u> Suppose, by way of contradiction, that $V \subseteq E(F)$ is rational and isomorphic to one of the above groups. Write $V_{(2)} = L \oplus S$ with $S \simeq \mathbb{Z}/2\mathbb{Z}$ and L the long 2-cycle, i.e. $L \simeq \mathbb{Z}/2^a\mathbb{Z}$, a = 2,3, or 5. Let A denote the subgroup of $Aut(V_2) = \Gamma_{a,1}$ given by the action of $Gal(F/\mathbb{Q})$ on V_2 . In all cases, it is easy to see that A does not stabilize the long cycle L: If $V \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$, or $\mathbb{Z}/32\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, one would have rational cycles of order 24, 20, or 32, respectively, which contradicts Theorem 2.1(ii). In case $V \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, two 3-cycles in V are rational, hence a curve E' 3-isogenous to E over \mathbb{Q} has a rational 9-cycle as well as a rational 4-cycle, contradicting Theorem 2.1(ii).

We now first discard the three cases with a=2 or 3. By Lemma 1.5, A is lower triangular and therefore stabilizes the short cycle $S \simeq \mathbb{Z}/2\mathbb{Z}$. In addition $2V_2 = 2L$ is a rational cycle contained in L. Let $\phi: E \to E' = E/S$ denote the isogeny associated with S and let $\phi': E' \to E$ be the dual isogeny, both defined over Q. Then $L_1 := (\phi')^{-1}(2V_2) \subseteq E'(\overline{Q})$ is rational and cyclic of order $2^a = \#L$. Arguing as in the first paragraph

of the proof we derive a contradiction.

Thus in the following suppose that $V \simeq \mathbb{Z}/32\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. By Lemma 1.5, A has a subgroup A of index 2 which is diagonal, and hence stabilizes S and L. In particular, the above isogeny ϕ : E \rightarrow E' = E/S is A₀invariant. Also, $L' = (\phi')^{-1}(L) \subseteq E'(\overline{\mathbb{Q}})$ is stabilized by A_0 and L'is cyclic of order 64. Therefore, the pair (E',L') belongs to a point of X_0 (64) of degree 2 which is not a cusp. By [Ke1; Lemma 1], the j-invariant j(E') is integral (in fact, $j(E') = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$). Now let $K \subseteq F$ be the field generated by $\phi(L) \subseteq E'(F)$. Let p be a prime of θ_{K} over 3 and note that $F_{m} = \theta_{K}/p$ is of degree ≤ 2 over F_{3} (for, $Gal(F_n/F_3)$ is a cyclic subquotient of Gal(K/Q) which is an elementary abelian 2-group). We consider reduction of E' modulo p and denote the reduced curve by \widetilde{E}' . As j(E') is integral, reduction at p is either good or additive. In case of good reduction, one has $\#\widetilde{E}^{!}(\mathbb{F}_{Q}) \leq 16$, which is impossible, since $\mathbb{Z}/32\mathbb{Z} \simeq \phi(L) \subseteq E'(K)$ and reduction modulo \mathfrak{P} is injective on $E'(K)_{(2)}$. In case of additive reduction, let $E'_{o}(K)_{(2)}$ denote the subgroup of E'(K)(2) consisting of those points which are mapped to nonsingular points of $\widetilde{E}'(F_n)$. One has $[E'(K)_{(2)}: E'_o(K)_{(2)}] \le 4$ (cf. [Ta; §6]) and so $\#E_o'(K)_{(2)} \ge 8$. On the other hand, $E_o'(K)_{(2)} \subset \widetilde{E}_{ns}'(F_9)$ $\simeq \mathbb{F}_9^+$, a contradiction. Thus $~V \simeq \mathbb{Z}/32\mathbb{Z}~\theta~\mathbb{Z}/2\mathbb{Z}~$ is impossible, and the proposition is proved.

Theorem 2.5. Let E be an elliptic curve over Q and let $F = \mathbb{Q}[\sqrt{z}; z \in \mathbb{Z}]$. Then the torsion subgroup $E(F)_{tors}$ is isomorphic to one of the following 22 groups:

$$\mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$$
 (a = 2,3,4,5), $\mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ (a = 1,2,3,4), $\mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ (a = 2,3), $\mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ (a = 1,2), $\mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$ (a = 1,2), $\mathbb{Z}/2^{a}\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$

or $\{0\}$, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ θ $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/7\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/15\mathbb{Z}$.

<u>Proof.</u> We first describe the possibilities for the 2-primary component $E(F)_{(2)}$. If $E(F)_{(2)} \neq \{0\}$ then, by Lemma 1.4(i), we must have $E(Q)_2 \neq \{0\}$ and so the 2-division field of E is quadratic over Q and thus contained in F. On the other hand, the 8-division field of E is not contained in F, as F does not contain a primitive 8th root of unity. Therefore, if $E(F)_{(2)} \neq \{0\}$ then it must be of the form $E(F)_{(2)} \simeq \mathbb{Z}/2^a\mathbb{Z} \in \mathbb{Z}/2^b\mathbb{Z}$ with $a \geq b$ and b = 1 or 2. Moreover, $a - b \leq 4$ for otherwise $2^b \cdot E(F)_{(2)}$ would be a rational cycle of E of order divisible by 32, which is impossible by Theorem 2.1(ii). Finally, since E(F) does not contain a rational subgroup isomorphic to $\mathbb{Z}/32\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, by Proposition 2.4, the groups $\mathbb{Z}/64\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/32\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ are ruled out, and we are left with nine possibilities: $\{0\}$, $\mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ (a = 1,2,3,4), and $\mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ (a = 2,3,4,5).

It remains to check the possible combinations of these groups with the choices for $E(F)_2$, as described in Proposition 2.2. First, by Remark 2.3b), $E(F)_2$, $\approx ZZ/mZZ$ with m = 7,9 or 15 entails $E(F)_{(2)} = \{0\}$. Also, if

 $E(F)_{2}$, $\neq \{0\}$, then it contains a rational cycle of order 3, 5 or 7. Therefore, by Theorem 2.1(ii), E cannot have an additional rational 8-cycle, which rules out the possibilities $E(F)_{(2)} \simeq \mathbb{Z}/32\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ or $\simeq \mathbb{Z}/16\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Similarly, if E(F) has 5- or 7-torsion then E cannot have a rational 4-cycle and so $E(F)_{(2)} \simeq \mathbb{Z}/16\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ or $\simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ are impossible. By Proposition 2.4, the latter two cases also don't combine with a rational 3-cycle and so we have shown that in the four cases where $E(F)_{(2)} \simeq \mathbb{Z}/32\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/16\mathbb{Z} \oplus \mathbb{Z}/2^{\mathbb{D}} \mathbb{Z}$ (b = 1,2) or $\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ we must have $E(F)_{(2)} = \{0\}$.

Now assume that $E(F)_{(2)} \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then $E(F)_{(2)}$ contains a rational subgroup isomorphic to $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and so, by Proposition 2.4, $E(F)_{2}$, cannot be isomorphic to $\mathbb{Z}/5\mathbb{Z}$ or to $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$. This leaves $E(F)_{2} \simeq \{0\}$ or $\mathbb{Z}/3\mathbb{Z}$ as the only possibilities. Finally, if $E(F)_{(2)} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, then $E(F)_{2}$, cannot be isomorphic to $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, for otherwise F would contain the 12-division field of E and hence a primitive 12th root of unity. This complete the proof of the theorem.

Remarks 2.6. (a) The curves E over Q with $E(F)_{tors} \simeq \mathbb{Z}/15\mathbb{Z}$ are exactly the quadratic twists of the curves 50A and 50B in [MF IV, p. 86]. Indeed, the curve 50A satisfies $(50A)(Q)_{tors} \simeq \mathbb{Z}/5\mathbb{Z}$ and $(50A)^{(5)}(Q)_{tors} \simeq (50G)(Q)_{tors} \simeq \mathbb{Z}/3\mathbb{Z}$, and for 50B one has $(50B)(Q)_{tors} \simeq \mathbb{Z}/5\mathbb{Z}$ and $(50B)^{(-15)}(Q)_{tors} \simeq \mathbb{Z}/3\mathbb{Z}$. Therefore, if E = 50A, 50B, or a quadratic twist thereof, then $E(F)_{tors} \simeq \mathbb{Z}/15\mathbb{Z}$. Conversely, any elliptic curve E over Q with $E(F)_{tors} \simeq \mathbb{Z}/15\mathbb{Z}$ belongs to a rational non-cusp of $X_0(15)$. By [MF IV, p. 80] there are exactly four such points and these are accounted for by the curves 50ABCD. Direct computation shows that no quadratic twist of 50C or 50D has a rational 5-division point so that 50C and 50D, or quadratic twists

thereof, cannot have $E(F)_{tors} \simeq \mathbb{Z}/15\mathbb{Z}$.

- (b) If E is an elliptic curve over Q with $E(Q)_{tors} \simeq \mathbb{Z}/9\mathbb{Z}$ or $\mathbb{Z}/7\mathbb{Z}$, then Theorem 2.5 implies that $E(F)_{tors} \simeq \mathbb{Z}/9\mathbb{Z}$ or $\mathbb{Z}/7\mathbb{Z}$, respectively. Also, if E satisfies $E(Q)_{tors} \simeq \mathbb{Z}/5\mathbb{Z}$ and E is not a quadratic twist of 50A or 50B (Remark (a)), then we must have $E(F)_{tors} \simeq \mathbb{Z}/5\mathbb{Z}$.
- (c) To get an example with $E(F)_{tors} \simeq \mathbb{Z}/3\mathbb{Z}$ @ $\mathbb{Z}/3\mathbb{Z}$ take any elliptic curve E_1 over \mathbb{Q} with $E_1(\mathbb{Q})_{tors} = \langle a \rangle \simeq \mathbb{Z}/9\mathbb{Z}$ and set $E = E_1/\langle 3a \rangle$. The curve E given by the Weierstrass equation $Y^2 = X^3 + 5805 \, X 285714$ (= 14C in [MF IV]) satisfies $E(F)_{tors} = \langle (39,0) \rangle \oplus \langle (-\frac{39}{2} + \frac{189}{2} \sqrt{-7}, 0) \rangle \oplus \langle (75,756) \rangle \oplus \langle (-9,336 \sqrt{-3}) \rangle \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} .$
- (d) Curves E over Q with a point of order 16 in a quadratic extension of Q can be obtained as follows. Take any elliptic curve E_1 over Q with $E_1(Q)_{tors} \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and consider the Q-isogeny $\phi: E_1 \to E = E_1/(\mathbb{Z}/2\mathbb{Z})$ and its dual ϕ' . Then $(\phi')^{-1}(\mathbb{Z}/8\mathbb{Z}) =: \mathbb{U} \subseteq \mathbb{E}(\mathbb{Q})$ is cyclic of order 16. Moreover, if $\sigma \in Gal(\mathbb{Q}/\mathbb{Q})$ and $e \in \mathbb{U}$, then $\sigma(e)-e=: t_{\sigma} \in \ker \phi'$. Since $\ker \phi' \simeq \mathbb{Z}/2\mathbb{Z}$, $Gal(\mathbb{Q}/\mathbb{Q})$ operates trivially on $\ker \phi'$ and the map $t: Gal(\mathbb{Q}/\mathbb{Q}) + \mathbb{Z}/2\mathbb{Z}$, $\sigma \mapsto t_{\sigma}$ is a group homomorphism. The kernel N of t has index 2 in $Gal(\mathbb{Q}/\mathbb{Q})$ and operates trivially on U. Therefore, $\mathbb{U} \subseteq \mathbb{E}(\mathbb{K})$ where $\mathbb{K} = \operatorname{Fix}_{\mathbb{Q}}(\mathbb{N})$ is quadratic over Q.

References

- [Kam] S. Kamienny, Points of order p on elliptic curves over $\mathbb{Q}(\sqrt{p})$.

 Math. Ann. 261 (1982), 413-424.
- [Kat] N.M. Katz, Galois properties of torsion points on abelian varieties. Inv. Math. 62 (1981), 481-502.
- [Ke1] M.A. Kenku, Rational 2ⁿ torsion points on elliptic curves defined over quadratic fields. J. London Math. Soc. (2), 11 (1975), 93-98.
- [Ke2] M.A. Kenku, Certain torsion points on elliptic curves defined over quadratic fields. J. London Math. Soc. (2), 19 (1979), 233-240.
- [Ke3] M.A. Kenku, The modular curve X₀(39) and rational isogeny.

 Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 21-23.
- [Ke4] M.A. Kenku, The modular curve X₀(169) and rational isogeny.

 J. London Math. Soc. (2), 22 (1980), 239-244.
- [Ke5] M.A. Kenku, The modular curves X_0 (65) and X_0 (91) and rational isogeny. Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 1, 15-20.
- [Ke6] M.A. Kenku, Corrigendum: "The modular curve X₀(169) and rational isogeny" [J. London Math. Soc. (2), 22 (1980), 239-244]. J. London Math. Soc. (2), 23 (1981), 428.
- [Ke7] M.A. Kenku, On the modular curves X_0 (125), X_1 (25) and X_1 (49). J. London Math. Soc. (2), 23 (1981), 415-427.
- [Ku] S.D. Kubert, Universal bounds on the torsion of elliptic curves.

 Proc. London Math. Soc. (3), 33 (1976), 193-237.
- [La] M. Laska, Punkte auf elliptischen Kurven über Q in quadratischen

 Zahlkörpern. Max-Planck-Institut für Mathematik, Bonn, MPI/SFB 83-13.
- [Man] J. Manin, The p-torsion of elliptic curves is uniformly bounded.

 Izv. Akad. Nauk SSSR, Ser. Mat. 33 (1969), 459-465.

- [Maz] B. Mazur, Rational isogenies of prime degree. Inv. Math. 44 (1978), 129-162.
- [Ri] K.A. Ribet. Torsion points of abelian varieties in cyclotomic extensions (Appendix to N.M. Katz and S. Lang, Finiteness theorems in geometric classfield theory), L'Enseignement Math. 27 (1981), 315-319.
- [Se] J.P. Serre, Cohomologie Galoisienne. Lecture Notes in Math. 5 (1973), Springer Verlag.
- [Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan 11, Iwanomi Shoten Publishers and Princeton Univ. Press, 1971.
- [Ta] J. Tate, The arithmetic of elliptic curves. Inv. Math. 23 (1974), 179-206.