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Introduction

Recall that a function f holomorphic in the unit disc a is called normal iff the family of

functions {/ 0 a I a E AutLl} is normal in Montel's sense. By ~lonte1's Theorem [~loJ this

is the case for f omitting two values; in addition, such a function f satisfies the Schottkyr ­

Landau growth estimate [Sch, LaJ :

(]'

I f(z) I < i\le l-Izl

where M = lvl( lf(D) I) , .'7 = a(f). \V. K. Hayman [Hay 1 (Theorem 6.8), 2] proved that the

same inequality ho1ds for functions-in-a normal Aut ~-invariant family F (\vith a = a(F)).

In particular, it is valid for any normal function.

Recall also rHO important criteria of normality. By the Nakano - Lehto -Virt&.ien metrie

criterium [Le Vi] a function f is normal iff the mapping f: ~ -+ C C pI has a bounded

diiaration with respect to the spherieal metric on pI and Poiucare metne on ~. This \vas

generalized by V·l. K. Hayrnan [Hay 1-2] to normal invariant families of functions. Lange

- Gavrilov's P-points criterium [Lan, Ga1] (also [Gau]) states that / is nonna1 iff for any

sequence p = {ziJ in ~ there exist a subsequence p' of p and E > 0 such that the restricticn

cf f to the union of non-euclidean discs of radius E centered at the points of p' omits t.vo

values (in accordance to Bloch's Prineiple, this is parallel to MilIoux's cercles de remplissage

fOT entire functions [~1i]).

These facts \vhere generalized in many directions; see, for instaIlce, survey [Ca \Vi] for

the one-dimensional ease and [00], [Ci Kr], [.Al], [Ha 1-2], [Gi 00], [Kr Ma], [10 K\v], ete.

for multidimensional genera1izations. Here \ve give furrher ones. FoIlo\\,ing an idea of G.

.Aladro [AJ] we introduced in [Za 2] a nation of s-normal tamily 0/ h%morphie mappings

o{ eomplex spaces (see Definition 1.1 belo\v), in the non-homogeneous satting. In parricular,

normal L,variant families of holomorphic functions (regarded as C-valued mappings) on

hyperbolic homogeneous manifo1ds are s·normal. ~1embers of s-normal far.1ilies are call-ed

normal mappings (this actually coincides with the definition, given in [Ha 2], and turned out

to be equivalent to the early known definitions in 811 partieular casts). A mernc criterium

of s-normality holds in analogy to the !vlarty - Nakano - Lehto - Virtanen eriterium

(Theorem 1.6). L, fact, for s-norm81 families ane can prove a stranger inequ81ity than

the aue given by this criterium (Theorem 1.9). This inequality means that dilatations (Le.
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dilatation coeffitients) of mappings in a given s-normal family are uniformly bounded with
respect to Kobayashi pseudometrie on the preimage and the Kobayashi - Royden - Green-

~. metrie (ar KRG-metrie) on the image (see Definition 1.7). The latter metric is eomplete
in many cases. For instance, in the case of functions (dealing with as mappings into C) it
coincides with the Poincare metrie on a punctured disc in a neighborhood of 00 in C c P 1

. This leads to the following generalization of the Schottky - Landau - Hayman growth
estimates (see also Corollary 4.15 below):

Theorem. Let 'I1 be an s-normal family of holonwrphic functions on a eomplex manifold X .

Then there exists a eonstant e :::: e('I1) > 0 such that for any subset Q c X and for any fwtetion

t/J E q; J bowuled in modulus on Q by a constant M, the following inequality holds:

log (c I t/J(x) I) ::; (log (cM) e 2k x(x, Q)

(here kx is the Kobayashi pseudodistance 0/ X). Conversely, i/ a family 'I1 of Iw/omorphie
/wlctions on X satisfies the above condition, then it is s-normaL

The original Schottky - Landau - Hayman estimate corresponds to the ease when X ::::

.6. and Q :::: {O} . Varying Q one ean even get new estimates for normal functions in the upper
halfplane C + (see Proposition 4.18). A simple consequence is that any normal function in
C + ' bounded on same horizontalline in C + ' has an exponential type.

The metric criteria of s-normatity are discussed in § 1. In § 4 we prove, for families
of holomorphie funetions, another criteria of s-normality including the one in the Theorem
above. In § 3 we consider a generalization of the notion of P-points sequence and of the
Lange - Gavrilov normality criterium for a holomorphic mapping (Theorem 3.15). Closely
related results were obtained in [Ha 2, Jo Kw].

Hyperbolic metrics play an essential role in the theory of normal functions since the

pioneer work of O. Lehto and K. I. Virtanen [Le Vi]. We would like to emphasize
here that there is a deep interaction of this theory with hyperbolic analysis. Namely,

normal mappings into arbitrary complex manifolds inherit the most important properties
of holomorphic mappings into compact hyperbolic manifolds (or hyperbolically embedded

manifolds). In particular, they satisfy the Kieman - Kobayashi - Kwack analog of the Big
Picard Theorem [pu, Jä, Jo Kw] and Kiernan's analog of Montel's Theorem (see Corollary
1.14 below). In both cases the proofs are mainly based on same versions of the Schwarz
- Pick Lemma or on a distance-decreasing property. This eontraction property holds with
respect to Kobayashi pseudometrics for general holomorphic mappings or with respect to
some Hermitian metric on the image and Kobayashi pseudometric on the preimage for normal
mappings (via the metric criterium of normality).

In § 2 we proceed further along this line. An easy remark is that for a relatively compact
subspace of a compact space, being hyperbolically embedded is equivalent to the normality

of the inclusion mapping (Theorem 2.1; this is a reformulation of Kieman's hyperbolic
embedding criterium [KiD. Eastwood's criterium for hyperbolicity of preimages [Ea] is
extended to normal mappings into non-hyperbolic spaces (Theorems 2.7, 2.8). Finally, we

obtain a criterium of s-normality in terms of the absence of certain entire curves (Theorem

2.14). This generalizes both Brody's hyperbolicity criterium [Br] and Hahn's normality
eriterium [Ha 1].
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In § 5 the laUer criterium of s-normality is applied to extend some results due to V. I. Os­

trovskü [Os 1-2] on growth estimates of solutions of polynomial identities p(x(z), y(z)) =0
of the special fonns in functions x(z), y(z) holomorphic in the upper halfplane, to solutions
of a wide class of polynomial identities or inequalities in two variables in functions holo­
morphic on a complex manifold. We establish that they are normal and therefore satisfy the
inequalities in the Theorem above (Corollary 5.4; Theorem 5.6).

Most of the results of this paper were announced in [Za 2-3], some of them in a slightly
weaker form. The inequality in Corollary 5.4 was proved also in [Za 5] in a different way.

The paper was prepared during my stay as a guest of SFB-170 "Geometry and Analysis"
at the Mathematisches Institut of Göttingen University aod at the Max-Planck-Institut für
Mathematik at Bonn. It is a pleasure to express my hearty thanks to Professors H. Grauert
and F. Hirzebruch, who invited me, aod to the Institutes for their hospitality aod the warm,
stimulating atmosphere.

§ 1. s-normal families of holomorphic mappings.
Metric criteria of s-normality

Let X and Y be complex spaces, and let Y be a relatively compact subspace of Y . As
usual, Hol(X, Y) denotes the space of all holomorphic mappings X --+ Y, endowed with the
compact-open topology; ß denotes the unit disc in C .

1.1 Definition. A family :F of holonwrphic mappings X --+ Y will be called s - normal iff

the family 0/ compositions

:F 0 Hol(ß, X) := {/ 0 Cf' I fE :F, Cf' E Hol(ß, X)}

is a relatively compact subspace 0/ the space Hol(ß, Y) .
It is obvious that a subfamily of.an s-normal family is also s-nonnal. Later on we will show

that an s-normal family is normal in Montel's sense (Corollary 1.14). The converse is not
true in general, even for a family consisting of a single mapping.

1.2 Definition. A mapping f : X ---+ Y will be called normal iff the family :F ={f} is

s-normal.

1.3 Remarks. It is easily seen that the restrietion 1 I Z : Z --+ Y of the normal mapping
1 : X ~ Y, where Z is a subspace of X, is also anormal mapping. Moreover, if cp : Z --+ X
is a holomorphic mapping of complex spaces and the mapping f : X --+ Y is normal, then
f 0 r.p : Z ~ Y is also normal. Furthermore, the direct product 11 X 12 : XI X X 2 --+ YI X Y2
of two normal mappings fi : Xi --+ Yi (i = 1, 2) is normal. The same is true for restrietions,
compositions with a given mapping and direct products of s-normal families.

1.4 Notations. Let kx be the Kobayashi pseudodistance on X. If X is a complex manifold,
let Kx denote the Kobayashi-Royden differential pseudometric on T X (see [Ro 1]). For

an arbitrary metric A on Y we denote by Holc(X, ~ A) the family of a11 those mappings

f E Hol(X, Y) , which satisfy the inequality

f+ A~ ckx·
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If X and Y are smooth and Aisgenerated by an upper semicontinuous differential metrie A

on TY, the laUer inequality has the following equivalent form:

f*A ~ cKx·

The next lemma easily follows from the Arzela-Ascoli Theorem.

1.5 Lemma. Let p be a Hermitian metric on Y and A be a metric on Y. If A ~ p I Y , then

the family Holc(X, ~ A) as defined above is s-normal tor any c > O.

The following metrie eriteria of s-normality is an easy eonsequenee of Theorem 1.9

below. It is simpler and therefore often more convenient to use than the one contained in

Theorem 1.9.

1.6 Theorem. A lamily :F C Hol(X, Y) is s-normal if and only if:F C Holc(X, Y, p IY) for
some constant c > 0, where pisa Hermitian metric on Y .

To formulate Theorem 1.9 we need the notion of a KRG-metrie, introdueed below. From

now on we assume that X and Y are smooth.

1.7 Definition. Fix an arbitrary finite covering {Ui} i=l, ... ,k ofthe closure CI(Y) ofY in Y. Let
Ut := Ui nY, i = 1, ... , k. Consider the envelope H = min {/(u~ } 01 the local Kobayashi-

l<i<k I

Royden pseudometrics. Let G = max (H, p 1 Y). The metricG and the corresponding distance
9 on Y will be called a Kobayashi-Royden-Green metric, or a KRG-metric for sOOrt.

1.8 Remark. KRG-metrics were first used in [Gr] and later in [Za 1]. It is evident that a

KRG-metrie depends on the ehoiee of a covering. For suffieiently small coverings {Ui}, the

metries G and H in (1.7) are equivalent. G is a complete metrie for an appropriate covering

iff Y is a loeally complete hyperbolic subvariety of Y (this is the ease for complements of

divisors, analytic polyhedra and strictly pseudoconvex domains; see [Ki Ko, Za 1]).

1.9 Theorem. Fix a KRG-metric 9 on Y. A family :F C Hol(X, Y) is s-normal if and only if

:F C Holc(X, Y, g) Jor some constant c > O.

proor: The "ir' part follows from Lemma 1.5. Ta prove the "only if' part assume that

there is an s-noffilal family :F C Hol(X, Y) such that :F rt. Holc(X, ~ g) for any c > O. It
follows that there exist sequences {In} c :F , {vn } C T X such that K X ( vn) < ~ and

I dfn( Vn) 1 G = 1 for every n E N.

By the definition of the pseudometric /(x , there exist sequences {<Pn} C

Hol(ß, X), {un } C Toß such that I Un 1< l/n and d<Pn(un) = Vn, n E N. Let

T n :=1 !Ln 1-1 and.,pn:= rpn(unz), .,pn E Hol(~rn'X), where ß r := {z E C llz I< r}.
Consider two sequences of holomorphic discs

«I>n := In 0 <Pn E Hol(ß, Y)

and

Since ~ is an s..normal family, both sequences can be assumed to be convergent: ~n ~
n

«I> , \{1 n ~ \{1 , where «I> E Hol(ß,Y) and \{1 E Hol( C, Y) . Let us show that \{1 == const.
n
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Fix an arbitrary point Zo E .6.. Put Po = \11(0) and qo = \II(zo) (here Po, qo E CI(Y).
Consider the sequences

Zn := UnZO E.6., Zn --+ 0 ,
n

We have:

and

Pn = \11 neO) --+ \11(0) = Po .
n

Since ~n --+ ~ , for any f > 0 there exists 6 > 0 such that
n

P(~n(z), ~(O)) < f Vz E .6.fj ,

when n is sufficiently large. In particular, p(qn, Po) < € for n >> 1. Thus qn --+ Po and
n

therefore qO = PO ,Le. 'l1 (zo) = \11 (0) . So \11 - const = Po E Y .

Let the KRG-metric 9 correspond to the covering {Ud i=I,... ,k of CI(Y). Let PO E Ui .
Since Wn --+ \l1 =Po , we have: \l1 n (.6. 2 ) C ut = Ui n Y , when n is large enough. For such

n

values of none has: I<ut(d'Itn(f; I 0)) < ! . Since d\I!n(1z I 0) = dfn(un) , we have that
1 dfn( vn) 1 H < 1/2 . But 1 dfn( vn) I G = 1 by construction and hence I dfn( un ) 1 p = 1
(see Definition 1.6). It follows that

1 d\I! (dd I ) I = lim I d\ll n (dd 1 ) 1 = 1 .
Z 0 P n Z 0 P

This contradicts the constancy of \lI . Q.E.D.

1.10 Corollary. Let p be a Hermitian metric on Y and G be a KRG-metric on Y: Let
F C Hol( X, Y) be a famiiy such that

Idf(v) 1 5:cI<x(v) VfEF, VvETX
p

for some constant c > O. Then there exists a constant CI = CI(G, p, c) > 0 such that

I df(v) 1 G 5: cII<x(v) Vf E F, Vv E T X .

1.11 Example. Let Y = pI = p~, y = C = pI \{(1 : O)}, p be the spherical metric on

pI . Let a KRG-metric G on Y = C be defined as follows:

1 U 1 = 1 u I ,

G I z I + log(l Z 1 +)

where uE TzC, Iz 1+ := max {e, I z I} . Then, by (1.10), any holomorphic function f on

a complex space X, which satisfies the inequality

I df( v) 1 < () ( )
1+ 1 Je x) I 2 - cI(x v V x, v E T X ,
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actually satisfies the stranger inequality

I df(v) I ~ cIKx(v) V(x, v) E T X
I f(v) I + log(1 f(v) I +)

with a constant cl = Cl ( C) > 0 . In fact, the last inequality can also be strengthened; see

(4.9) below.

1.12 Corollary. The set N(X, Y) 01 all normal mappings X -+ Y coincides with the unions

UHolc(X, Y,g) = UHolc(X, ~ p) .
c>o c>o

(In general, the family N(X, Y) is not s-normal.)

1.13 Corollary. Let Z be a complex manilold and :F c Hol(X, Y) be an s·normallamily.
Consider the lamily

Fz := {f 0 ep I fE F, ep E Hol(Z, X)} .

Tlten F z C Hol( Z, Y) is an s-normallamily; moreover, it is a relatively compact subspace
01 the space Hol (Z, y) .
Indeed, by Theorem 1.6 F C Holc(X, ~ p) for some c > O. Since holomorphic mappings
Z -+ X are contractions with respect to the pseudometrics I<z and Kx , we have that

Fz C Holc(X, Y, p) . Now the assertion follows from the Arzela-Ascoli Theorem. Q.E.D.

Applying this to the case when X = Z, we get the following:

1.14 Corollary. An s-norl1Ulllamily F C Hol(X, Y) is normal in Montel' sense.

§ 2. Normality and hyperbolicity

Here we show that, to same extent, the notion of normality is a relative version of the notion

of hyperbolicity. The next theorem is a rewording of the criterium of hyperbolic embedding,

due to P. Kieman [Kil.

2.1 Theorem. Let Y be a relatively compact subspace 01 a complex space Y . The following
conditions are equivalent:

i) The lamily F := Hol(ß, Y) is s·normal;
ii) f:= idy is anormal mapping;
iii) Hol(6, Y) is a relatively compact subspace o[ the space Hol (~,Y) ;
iv) Y is hyperbolically embedded in Y .

Prool: Conditions i), ii), iii) are actually tautologically equivalent. By Kieman's Theorem
[Ki] iii) and iv) are equivalent. Q.E.D.

2.2 Remark. By Kieman's theorem [Ki] iii) and iv) are equivalent to the condition

ii') cKy > P I Y ,

where p is a Hermitian metric on Y and C = c(p, Y) > 0 (see also [Za 4]). The equivalence

of ii) and ii') follows from Theorem 1.6 (in the smooth case).
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2.3 Notations. Let (X, p) be ametrie space. For a subset Q of X we denote by Q(r,p) the

r-neighborhood of Q , Le. the union U Bp(x, r) of p-balls of radius r with centers in
xEQ

points of Q. For a complex space X the neighborhood Q(r,kx ) with respect 10 the Kobayashi

pseudodistance will be denoted simply by Q(r) .

2.4 Lemma. Let X, Y, Y be as in § 1. Let p be a Hermitian metric on Y and 9 be a KRG-metric
on y: Let :F c Hol(X, Y) be an s-normal family. Then there exist constants C > 0, Cl > 0

such that for any / E:F, r > 0 and Q c X the following inclusions hold:

/ ( Q(r») C [/(Q)](cr, p)

and
/ ( Q(r») C [/( Q)](CI r, g) .

Proof: Indeed, by Theorems 1.6 and 1.8 :F c Holc(X, Y,p) and :F C Holc1(X, Y,9) for

same C, Cl > O. Q.E.D.

2.5 Remar~ Let us call Q c X r - dense iff Q(r) = X, and holomorphically r - dense

iff the hull of Q(r) with respect to the algebra fj (X) of holomorphic funetions on X coincides

witb X. The next statement easily follows from Lemma 2.4 and the maximum modulus

prineiple:

Anormal holomorphicfunction / in X, which is bounded on a holomorphically r-dense suhset

Q c X , is bounded on X.

In fact, applying Lemma 2.4 ODe can estimate 11 / 11 00 by a funetion of 11 / I Q 11 00 •

A holomorphieally r-dense real eurve 1 in the unit dise 6. is called a spiral 0/ density r

(see [Ga 2]); that means that ,(r) contains some annulus K c = {z E 6. I 1 - € <I z I< I} l € >
o. As an application ODe can obtain the following fact from [Ga 2]:

Anormal function in the unit disc 6., which is bounded on a spiraL offinite density, is bounded
in ~.

The next lemma is well-known; for the sake of completeness we provide a proot.

2.6 Lemma. Let X be a complex mani/old and Q be a subset o[ X. Then for any r > 0 the
following inequalities hold:

(tanh(r))/(q<r) I Q ~ K x I Q ::; Kq<r) IQ.

Proof: The second inequality follows from the contracting property of the Kobayashi-Royrlen

pseudometrics. To prove the first one, fix x E Q and v E TxX arbitrarily. By tbe definition

of K x , for any € > 0 there exist s ~ (Kx(v) + f)-l and <p E Hol(ßs , X) such that

drp (1z I 0 ) = v. Denote by W r the hyperbolic disc in 6.~ of radius r centered at the origin. By

the contracting property of Kobayashi metrics we have: /(w r ) c Q(r). Henee /(q<r) (v) ::; t- l ,

where t = t(s, r) is the Euelidean radius of W r = 6. t . Here r = arctanh (;) , or

t = s . tanh( r) . Therefore

1
Kq<r)(v) ::; h() (Kx(v) + €),tan r

and the inequality follows. Q.E.D.
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The following statement extends Eastwood's Theorem [Ea] to nonnal holomorphic

mappings into non-hyperbolic spaces.

2.7 Theorem. Let f : X -+ Y be anormal mapping. If for some covering {Uer } of Y all
preimages /-1 (UCl') are hyperbolic, then X is hyperbolic. If these preimages are complete

hyperbolic and Y is locally complete hyperbolic in Y , then X is complete hyperboliC.

Proof: For an arbitrary point y E Y fix a p-ba11 B := Bp(Y, r) such that the preimage

p := I-I(B) is hyperbolic. Put Q := I-I (Bp(Y,~)) . By Theorem 1.6, / E Holc(X, Y, p)
for same c > O. By Lemma 2.4 we have:

or Q(r/2c) C p ~ Tbe hyperbolicity of Pimplies that the metric K p is strictly nondegenerate

in tbe fo11owing sense: it locally majorises some Hermitian metrics on P (see [Ro 1]) . By

Lemma 2.6

!(x IQ ~ (tanh(;c))Kp I Q,

hence the pseudometric Kx is strictly nondegenerate, too. This in turn implies the hyper­

bolicity of X [Ro 1].

To prove the second statement, first of a11 fix a complete KRG-metric 9 on Y (such a

metric does exist since Y is locally complete hyperbolic; see (1.8». Let D := Bkx (x, R)
be an arbitrary Kobayashi ball in X, where x E X and R > O. By Theorem 1.9 I E

Holc! (X, ~ g) for some CI > 0 , and hence I(D) c Bg(y, cIR) , where Y := I(x) (see
Lemma 2.4). Since 9 is a complete metric the closure K := Cl(Bg(y, cIR)) is compaet in Y.

k
Hence K c U UCl'j for same finite subfamily of {UCl'} . Let r > 0 be the Lebesgue number

i:::1
of this finite covering of K with respeet to g .

k
Put Wi = l-l(UerJ and W = U Wi . Then CI(D) c I-I(K) c W . Tbe envelope

i=l
H := min {/<wJ of complete metries is a complete differential metrie on W. The covering

{w y} yEK of the compact /( by the g-ba11s w y := Bg(y, r /2) induces tbe covering {Qy} of

l-l(I() by open sets Qy := f-l(wy ) . Put Py := f-l(Bg(y, r)) . Then

Kx I Qy ~ (tanhC:J )KP. I Qy

as above. Therefore

Kx I Qy ~ ,X KWi I Qy ,

wbere'x := tanh(2~1) and Wi is such that Py C Wi. It follows that

Hence the Kobayashi ball D c j-I(K) is contained in the H -ball Bh(X, R/'x) . By the

completeness of the metric H, the closure CI(Bh(X, R/ ,X)) is compact, and so CI(D) c X is

compaet. This implies that kx is a complete metric [Ko]. Q.E.D.
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Similarly, aversion ofBrody's Theorem [Br] in [Za 1, Proposition 4.6] can be generalized

as folIows:

2.8 Theorem. Let f : X -+ Y be a proper normal mapping. If every fibre X y := 1-1(y ), y E
Y , is hyperbofic, then X is hyperbolic. It in addition, Y is locally camplete hyperbolic, then
X is camplete hyperbolic.

Prool: By Proposition 4.6 in [Za 1] any point y E Y has a neighborhood w y in Y such that
f-l{wy ) is hyperbolic. Now the hyperbolicity of X follows by applying of Theorem 2.6.

If Y is locally complete hyperbolic in Y , then the image of tbe Kobayashi ball D = Bkx (x, R)
under I is contained in a compact set K c Y (see the proof of Theorem 2.6). Since f is
proper, I-1(K) is a compact in X, and bence CI{D) C j-l{K) is compact. As before, tbis

implies the completeness of tbe metric kx . Q.E.D.

Next we give a normality criterium 2.14 analogous to Brody's hyperbolicity criterium

[Br] as generalized by K. T. Hahn [Ha 1]. For tbe reader' s convenience we recall first these

facts.

2.9 Definitions. By an entire curve in a complex space Y we mean a non-constant mapping
rp : C -+ Y . I/Y is a subspace 0/ Y and rp can be approximated by holomorphie mappings

rpn : ~n -+ Y , we call rp a Y -limiting entire curve [Za 1]. I/ a /amily :F C Hol(X, Y)
is given, we say that 'P is an :F - limiting entire curve in V iff it can be approximated
by h%morphie cUnJes In 0 rpn : ~n -+ Y , where rpn E Hol{~n, X) and In E :F.

Recall [za 1, Lemma 2.9] that when Y is locally complete hyperbolic in Y , every Y-limiting

holomorphic curve in Y is contained either in Y or in 8Y .

2.10 Theorem (R. Brody [Br)). A compact complex manifold Y is hyperbolie iff it does not
contain entire cUnJes.

2.11 Theorem (see [Za 1]). A relatively compact subspace Y o{ a complex manifold Y is
hyperbollically embedded in Y iff Y contains no Y-limiting entire curve.

2.12 Theorem (K. T. Hahn [Ha 1, Theorem 6.5]). A family :F C Hol{~, Y) is relatively

compact in Hol(~, Y) iffthere exist no sequences ibn} C~, {rn}, rn 10, and {<Pn} c:F
such that {'Pn(rnz + bn )} converges to an :F-limiting entire curve C -+Y .

2.13 Remarks. In fact, Y is assumed to be compact in Theorem 6.5 in [Ha 1], but tbe proof

wodes also in this slightly more general setting (following the line of proof of Theorem 6.3
in [Ha 1]). Note also that if the family :F C Hol(~, Y) is Aut ~-invariantand non-normal,

tben we may assume above that bn = 0 for all n, Le. that {rpn (rn z)} converges to an entire

curve C -+ Y for some sequences {<Pn} c:F, {rn E (O, l/n)} .

The next theorem generalizes these facts and Corollary 6.7 in [Ha 1].

2.14 Theorem. A family :F C Hol(X, Y) is s-normal iff there exists no :F-firmting entire
curve C -+Y .

Proof: Let:F be an s-normal family. Assume tbat a sequence 4>n = In 0 rpn , converges

to a mapping 4> : C -+ Y , where In E :F and 'Pn E Hol(~n, X). By Theorem 1.6

Fe Holc(X, Y, p) for same c > O. Hence for any pair of points u, v E C we have:
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Thus 4>(u) = 4>(v) and so 4> is constant. If:F is not an s-nonnal family, then :FD. :=

{f 0 cp I f E :F, cp E Hol(ß, X)} is not a relatively compact subspace of the space Hol (ß,y)
(see (1.1». Applying Theorem 2.12 to the family :FD. C Hol(ß, Y) we easily get the existence
of an .1'-limiting entire curve C ----+ Y . Q.E.D.

2.15 Corollary. A mapping f E Hol(X, Y) is normal iff the only f-limiting mappings
C -+ Y are constants.

§ 3. Normality and P-sequences

Here we discuss a generalization of the P-points normality criterium for holomorphic
functions, due to L. H. Lange [Lan] and V. I. Gavrilov [Ga 1], in a more general setting
of holomorphic mappings.

3.1 Definition. Let X be a complex space anti ~ be a metric on X. 1Wo sequences 0/
points P = (XI;) C X and q = (x~) C X will be called con/inal (resp. ~-confinal)

iff kX(X.bX~) -: 0 (resp. ~(X1:'X~) -: 0 ). A sequence p = (Xk)k~n will be called a

shortening of the sequence p = (xk) .

Fix a mapping / E Hol(X, Y) , where Y is a relatively compact subspace of a complex
spaee Y . Let p be a fixed Hermitian metrie on Y and p = (Xk) C X be a fixed sequence.

3.2 Definition. The sequence p will be called an s-sequence 0/ f iff

tor some r > 0 and tor some domain U in Y, which is hyperbolically embedded in Y .

3.3 Definition. A sequence 0/points in X, which does not contain any s-subsequence 0/ /,
will be called a P-sequence 0/ /.
3.4 Definition. Let A be a differential pseudometric on TY anti ~ be the corresponding
pseudodistance on Y. The quantity

diIA,xo(f)'- sup
vET:toX

I df(v) I A

J<x(v)

will be called a )"-dilntation 0/ f at the point xo EX.

It is clear that / E Holc ( X, Y, )..) iff diIA,x(f) ~ c for every x EX.

3.5 Definition. The sequence p will be called a d-sequence o[ f iff

tor some shortening p o[ p anti Jor some r > O.

3.6 Definition. The sequence p will be called a g-sequence 0/ f ifftor any other sequence

q = (x~) C X , confinal with p, the sequences f(p) = {f(Xk)} anti f(q) = {t(x~)}are

p-confina~ i.e. iff p( f( XI,;), f (x~)) -: 0 when kx ( Xk, x~) -: 0 .

It is easily seen that any subsequence of an s-sequence of f is itse1f an s-sequence of

f; the same is true for d -, g - or P ---sequences. Moreover:
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3.7 Lemma. Let sequences p = (Xl) C X and q = (X~) C X be confinal. 1{ p is an

s - (resp., d-, g-, P- )sequence o{ /, then the same is true lor q.

Proof: For a given r > 0 and for some shortening p (resp. q) of p (resp. q) we have:
q{r) C p<2r) • This implies that if p is an s - or d-sequence of /, then the same is true for q.

Hy tbe transitivity of confinality q is a g-sequence of /, if p has this property. If q contains an

s-subsequence of /, then the corresponding subsequence of p will be also s-sequence of /,

as just has been proved. Thus, q would be a P-sequence of /, if pis such a sequence. Q.E.D.

3.8 Lemma. Every s-sequence o{ f is a d-sequence o{ f; every d-sequence 01 f is a
g-sequence o[ f.
Proof: Let p= (Xk) C X be an s-sequence of f, i.e. /(p(r») C U for some r > 0, where

U is a hyperbolically embedded in Y domain in Y . The latter means that Ku ~ cp I U
for some c > 0, and so

by the contracting property of Kobayashi·Royden pseudometrics. From Lemma 2.5 one gets:

and hence

sup dilp,x(f) ~ (c· tanh(r/2)]-1 .
xEp..r/2)

Thus p is a d-sequence of f.
Let p be a d-sequence of /. Then for some shortening 11 of p and for some c, r > 0 the

mapping f Ip{r) : p{r) -t Y is a contraction with respect to the pseudometric Kx I p{r) and

the metric cp I Y . This implies that p is a g-sequence of f. Q.E.D.

3.9 Lemma. Every d - or g-sequence p of f contains an s-sequence o[ f.
Proof: Since Y is relatively compact in Y , there exist a subsequence q = (xnlr ) C p such

that f(x nlr ) -t Yo, where YO E Y. Let r > 0 be small enough, so that the ball U := Bp(YOl r)
k

is hyperbolically embedded in Y . Let p he a d-sequence of f, i.e.

for some constants t, M > 0 and for some shortening p of p. Theo the restriction f I
pt) : P{') -t Y is a contraction with respect to the pseudometrics kx I P<E) and M-1p .

Let 7j be a shorteniog of q such thatf(q) C Bp(yo,r/2) cU. Then f(q-{T») C U for

o < T < rmn (t, r 12M) . Heoce Cf C P is an s-sequence of f.
Assume further that p is a g- sequence of f. Let U and q C P be the same as above.

If 7j = (xn,J is not an s-sequence of f, then /(qC(») rt. U for any f > 0 . Thus for every

n E N large enough there exist k = k(n) and x~ E X such that

kx (x nlr , x~) < l/n

11



and p(f(X~), YO) > r. For m f:. nk put x: = Xm and for m = nk put x: = x~ . Theo the

sequences p = (xm ) and pU = (x~) are confinal, but the sequences I(p) and I(pn) are not

p-confinal. This contradicts the assurnption that p is a g-sequence of f.. Q.E.D.

From Lemmas 3.8 and 3.9 we find

3.10 Corollary. The sequence pisa P-sequence 01 1 iff it does not contain any d ­

(resp., g- )subsequence 0/ f.
3.11 Corollary. I/ dilp,x/r(/) -; 00 , then p = (Xk) is a P-sequence 0/ f.

Indeed, in this case p does not contain d-subsequences of I.
3.12 Remark. The converse to Corollary 3.11 is not true in general, as the following example

((4.3) in [Ca Wi]) shows. Let X = ß, Y = C, Y = pI, I(z) = exp l~Z' X n =
1~:2 - n';'n3' x~ = 1~:2 .Here dilplx~(I) -; 00 and hence by CoroUary 3.11 q := (x~)
is a P-sequence of f. By Lemma 3.7 sequence p := (x n ) , confinal to q , is a P-sequence

of f, tao, while the sequence {dilp,xn(f)} is bounded.

Nevertheless, the following criterium for P-sequences holds (it is a generalization of

Theorem 4.4 in [Ca Wi]).

3.13 Proposition. The following conditions are equivaLent:

i) pisa P-sequence of f;

ii) there exists a sequence q = (x~) C X , confinal to p, such !hat

dil I (f) ---+ 00 ;
P,X n n

iii) there exists a sequence f n ---+ 0 such that

{dilp x( I)} ---+ 00 ., n

Proof: The equivalence of ii) and iii) is easy. Tbe implication ii) => i) follows from

Corollary 3.11 and Lemma 3.7. Thus, it is enough to prove i) => iii). Let p = (x n) be a

P-sequence of f. Put

'Pn(t) = sup {dilp,x(f)}.
xEBlrx(xn,t)

By Corollary 3.10 p cootains no d-subsequence of f and so <Pn(t) -+ 00 for any t > O. Now
n

the assertion follows from the oext simple lemma:

3.14 Lemma. Let {'Pn(t)} be a sequence of reaL-vaLued functions on the segment [O,lJ such
that <Pn(t) ---+ 00 for any t > O. Then there exists a sequence f n ---+ 0 such that <Pn(f n ) ---+ 00 •

n n

Proof: Fix nI such that 'Pn(!) > 2 for all n > nl ; then fix n2 > nl such that <Pn(!) > 3

for all n > n2 , and so on. Put EI = E2 = ... = f n1 = 1, fnt+I = ... = f n2 =~, f n2 +1 =
... = f n3 = t ,etc. It is easily seen that <Pn( f n ) -+ 00 . Q.E.D.

n

The next theorem is a generalization of the Lange·Gavrilov normality criterium for

functions, holomorphic in tbe unit disc [Lan, Ga 1, Gau].
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3.15 Theorem. A mapping f E Hol(X, Y) is normal if and only if there is no P-sequence of
f, ie. iff any sequence p = {x I;;} C X contains an s-subsequence o[ f.
Prool: If / is nonnal, then by Theorem 1.6, f E Holc(X, Y, p) for some c > O. Hence

sup dilp,:z:([) ~ c and therefore any sequence p in X is a d-sequence of f. Hy Lemma 3.9
:z:EX
p contains an s-subsequence of f. Conversely, if f is not normal, then its p-dilatation is

unbounded on X and hence there exists a sequence p = (XI;;) in X such that lim dil (I) =
.1:-00 p,:Z:/c

00. Hy Corollary 3.11 p is a P-sequence of f. Q.E.D.

3.16 Example. Let D2n+l be a union of (2n + 1) hyperplanes in pn in general position. It is
well known that pn \ D 2n+1 is hyperbolically imbedded in pn . Let f E Hol(X, pn) be a non­

nonnal mapping and p = (xn) be a P-sequence of f. Then for any subsequence q = (xn/c)
of p and any f > 0 the function 1 I q(t:) infinitely often takes values from D2n+l . In the esse
of non-nonnal meromorphic functions (n = 1) this result due 10 V. I. Gavrilov [Ga 1].

§ 4. The Schottky-Landau growth estinlates for normal functions

4.1 Let X be a complex space. By a normal h%morphie (resp., meromorphic) {unction
on X we mean anormal mapping X -+ C '--+ pI (resp., X -+ pI ) in sense of

Definition 1.2 (see Example 1.11). In the same manner we understand the terme an s-normal
family of holomorphic (meromorphie) (unctions on X. In the case of functions holomorphic

(meromorphic) in the unit disc X = ß the metric criterium of normality given in Theorem
1.6 coincides with the well-known Nakano-Lehto-Virtanen criterium: fisnormal iff the
inequality

I f'(z) I < c
1+ I f(z) I 2 - 1- I z I 2

holtis for same c > 0 and for all z E ß. Therefore the above definition of normality
for functions holomorphic in the unit disc is equivaleot to the classical one. The same
arguments shows the equivalence of our definition of normality to tbe ones given in [Ha 1]

for holomorphic functions on homogeneollS hyperbolic complex manifolds, and in [Do, Ci Kr]
for bolomorphic (meromorphic) functions on bounded strictly pseudoconvex domains in C n •

4.2 Every normal function f in the unit disc belongs to anormal Aut ß-invariant family of

functions (indeed, by the classical definition of normality the family :F = {f 0 er I er E Aut ß}
is normal in Montel' sense). Moreover, by Theorem 1.6, every s-normal family :F C

Hol(ß, C) is also contained in some normal invariant family Holc(~, C) . On the other hand,

a normal invariant family :F C Hol(ß, C) is s-normal. This follows from the theorem of
Hayman, cited below. One may consider the notion of an s-normal family of holomorphic

functions on a complex space as a generalization of the notion of normal invariant family of
holomorphic fuoctions in the unit disc, which was treated by Hayman [Hay 1-2].

4.3 F. Schottky [Sch] and E. Landau [La] proved that every function /, holomorphic in the unit

disc and omitting two values, has at most exponential growth, Le. it satisfies the inequality

I / (z) I~ A exp (0)(1- I z 1))

for some constants A, a > 0 . This theorem was extended by W. K. Hayman [Hay 1-2]
to normal invariant families of functions, holomorphic in the unit disco Here we prove a

13



Scbottky-Landau' type inequality for s-normal families of holomorphic functions on complex
manifolds. As a consequence, we obtain some new estirnates of growth of normal functions
in tbe upper halfplane.

4.4 Notation. By ß(X) we denote the space of holomorphic functions on X. For a given
positive function O(s, t) in R~ := {(s, t) E R2 I s, t 2: O} , non-decreasing in each of the
arguments, we denote by f)(X,O) tbe subspace of 5)(X) , consisting of a11 tbose functions
f E .sJ(X) which satisfy the inequality

I f(x) I::; 0 (I f(xo) I, kx(x, xo)) Vx,xoEX.

i.e. iff

4.5 Lemma The family .sJ(X, 0) is s-normal and Aut X-invariant.

Proof: Consider the family :F6. C 5)(X) , where

:F6. := {f 0 lfJ I f E .sJ(X, 0), lfJ E Hol(ß, X)} .

It is easily seen that :F6. C 5)(ß, 0) . Tbe family 5)(ß, 0) is normal; indeed, the family
{g(z) - g(O) 1 9 E 5)(ß,O)} is uniformly bounded in any disc ß r , r < 1. This proves
the s-normality of 5)(X,O) . The Aut X -invariance follows from the invariance of the
Kobayashi pseudodistance kx . Q.E.D.

4.6 Notations. On C c P 1 consider a family of KRG-metrics

Gc(z, v) := GI z I+log ( cl z I +)r1

I v I ,

where c> 0 and 1z 1+ := max {e, I z I} . In the neighborhood Oe = {z E C Ilz I> e} oi
the puncture 00 E pI, the metric Ge I Oe coincides with the restriction to Oe oi the Poincare
metrie oi the punctured disc Or , where r = C- l . Remark that the corresponding complete
distances ge in C lie between the Euclidean metric in C and the spherical (incomplete) metric
oi pI restricted to C . Put .sJc(X) := Hoi}(X, C, ge) . Put also

lic(s, t):= c-1 exp [(log (c Isi J) exp 2t] .

4.7 Definition. Let X be a comp/ex space. We say that a family :F C 5)(X) has exponentia/

~c > 1 iff

log (c I f(x) 1+) :::::: (log (c I f(xo) 1+) ) exp (2kx(x,xo))

for every f E :F and for any pair of points x, Xo EX.

4.8 lt is easily seen that a holomorphic funetion in the unit disc, having exponential type, has
exponential growth in the sense of (4.3), Le., it satisfies the Schottky-Landau estimate.

4.9 Hayman's Theorem ([Hay 1, Theorem 6.8]).

(a) Let :F C 5){ß) be a normal invariant family. Then:F C jjc{ß) for some c > 1.

(b) SJe(ß) C S)(~, Oe) for each c > 1.

14



4.10 CoroUary. Any normal invariant family :F C j)(ß) has exponential type.

4.11 Remark. In fact, the inequalities in Theorem 6.8 in [Hay 1] contain more precise

constants (see also [Je 1-2, He]) .

4.12 Definition. A family:F C SJ(X) has set-exponential type c > 1 ifffor any subset Q C X
J any f E :F and any x E X the foUowing inequality holds:

log (c I f(x) IJ ~ (:,~ß log (c I f(x') I +)) exp (2k X(x, Q)) .

4.13 Remark. For Q = {xo} the above inequality coincides witb the inequality in (4.7).
Henee a family F. of set~xponential type c > 0 has exponential type c. The next theorem,

which is the main resuJt of this section, shows in particular that the converse is true, Le. that

a family :F of exponential type c is also of set-exponential type c.

4.14 Theorem. Let X be a complex manifold. For a family :F C 5j(X) the foUowing
conditions are equivalent:

a) :F is an s-normal family.

b) :F C Hoh(X, C, A) for some metric A in C with the linear element A(z, v) = q(1 z l) I v I,
where q is a non-increasing positive Junction in R+ .

c) :F C Hol ( X, pI, P) for some c > 0, where p is the spherical metric in pI.

d) F c SJc(X) for some c > 1 (see (4.6)).

e) :F C i}(X, 0) for some positive function 0 in R~ , non-decreasing in each argument (see
(4.4)).

fJ :F is 0/ set-exponential type.

Prool: The logieal scheme of the praof is the following:

e) => a) <= b)

11' ~ 11'
f) <= d) => c)

Implications d) => e) => b) are evident; for f) => e) see (4.13) ; e) => a) is proved in
Lemma 4.5 above.

Proof 01 b) => a). Put:F6. := :F 0 Hol(ß, X), :F6. C f)(L\) . Let :F C HoII(X, C, -X) .
Then :F6, C Hol(ß, C, -X) and hence for any r E (0,1) and any ep E F6, the following

inequality holds:

, 1
I f (z) I~ h( r) (1 _ r2)

Therefore :F6. is a nonnal family, and so :F is an s-normal family.

Proof 01 a) => d). Let:F be s-normal. Then tbe family :F6. as above is anormal _

invariant family and by Hayman's Theorem 4.9 :F6. C f)c( ß) for some c > 1. Fix

f E:F, <p E Hol(ß, X) and z E L\ arbitrarily. Denote j = f 0 ep (i E :F6,), xo = ep(O)

and Xl = <pe z) . Since 1E 55c( L\) we have: j*(gc) ~ k6. (see (4.6) and therefore

f*gc(xo, xI) ~ k6.(O, z) .
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Let x', X" be a pair of points in X and '" = ({)oi}~l C Hol(ß, X), {Zi}~l C ß) be a

chain of holomorphic discs between x' and x" . From the above inequality it follows that

N N

f*ge(x', x") ~ L (f*ge)(Xi-b Xi) ~ L k ß (0, Zi) = lengthA; x Cr) ,
i=l i=l

where Xo := X', xi:= CPi+l(O) = CPi(Zi) , xN:= x" . Hence f*ge ~ kx , and so

:F C 5Je(X) .

Prool 01 d) =} 1). Fix a subset Q c X . Let f E 5je(X) be such that

R:=suplf(x)1 <00.
xEQ +

Put

Lj(R):={xEXI If(x)I~R}.

Remark that Q C L j(R) and the inequality in (4.12) is valid for points x E Lf( R) . Fix an
arbitrary point x E X \ Lf(R) . Since kx is an inner pseudometric [Ko], for each f > 0

there exist a point Xl E Lf(R) and a piecewise smooth path 7 : [0, 1] ~ X , which connects
x and Xl , such that

lengthk x Cr) ~ k X (x, Lj(R)) + f ~ k X (x, Q) + f .

We may suppose that I f(xI) 1= R and 1f 0 ,(t) I~ R for t E [0,1]. Since R ~ e, we have:
f 0 ,([0, 1]) C Oe (see (4.6». From the identity gc I Oe kn 1 I Oe (4.6) it follows thatc-

1 (log(1 cf(x) 1))
gc(1 f(x) 1,1 f(xI) I) = k

OC
_

1
(I f(x) I,R) = 2log log (cR) .

Since f E 5Jc(X) , Le. f*ge ~ kx , we have:

9 (I f(x) I, I f(xI) I) ~ 9 (f(x), f(xt}) ~
c c

~ lengthgc(f 0 1') = length j-gJ1') ~

~ lengthk X (7) ~ k X(x, Q) + f

Now the inequality in (4.12) easily follows.

This completes the proaf of Theorem 4.14.

4.15 Corollary. Every s-normal family :F C 5j(X) is o[ set·exponential type.

4.16 Remarks. 1. As follows from the proof of implication d) =} f), a family :F C· SJe(X)
is of set-exponential type c.

2. In the case of s-normal families of functions Theorem 1.9 gives weaker estirnates of

growth. Indeed, for any fixed a E (0; 1) the seale of metrics {ge} (see (4.6» majorises the
seale {c ga} . In partieular, Theorem 4.14 leads to the eoncIusion that normal funetions in
the unit dise are of exponential type, whereas from Theorem 1.9 it follows only that they

are of finite order.

Next we give some applieations of Theorem 4.14 to the one-dimensional ease.
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4.17 Corollary. 11 anormal funetion in the unit dise is bounded on some geodesie (resp.,
horocyele), then it is also bounded in any strip between two branehes 01an equi-distant to this
geodesie (resp., between two parallel horocyeles).

We turn now to normal holomorphic functions in the upper balfplane C+ ={z E C I Im z > O}.

Let

La = {z E C 11m z = a}, Ao = {z E C I Re z = 0, Im z > O} .

4.18 Proposition. Let anormal funetion 1 E S)(C+) belong to the elass S)c( C+) . Then:

a) For every a > 0 the following inequality holtis:

log (cl f(z) I+) ~ (lOg (e If(ia) 1+)) Iz~~~a2,
b)I/(1 II +) I La:::; Rforsomea > O,R > 0, then

log (e I f(z) I +) ~ (log (eR)) (Im~tgn(Im .-a),

In partkular, f is bounded in any horizontal strip {z E C I 0 < a 1 < z < a 2 } in C+ .

e) If (I 1 I +) I Ao ~ R, then

log (e I f I +) ~ (log (eR)) cotGarg z) , z E C+ .

In particular, 1 is bounded in any Stolz' angle rr 0' = {z E C I 0' < arg z < 1r - Q:'}
where 0 < 0' < 1r/2.

The proof is easy and may be omitted.

4.19 Remark. The last statement in c) is known in a stronger form for 1 bounded on

an asymptotic curve 1 1 contained in some Stolz' angle rr 0'0 [Ba, Theorem 4]. We can
supplement tbis result of F. Bagemihl by the inequality in c) with the constant log (eR) being

substituted by the constant (eot(0'0 /2) ) log (eM) , where M = sup { (I f I +) I f} . In the
same way we can make Theorem 8 in [Ga 2] more precise. Namely, if p = (zn) C C+

is a sequence such that k c+ (z,p) ::; r < 00 for any z E Ao (Le. Ao C p(r) ) and

(I f I +) I p ~ M , then the inequality in c) is valid with the constant {log (eM)) e2r

instead of log (eR) .

§ 5. Normality of solutions of polynomial equations

Let us start this section with the next simple facts.

5.1 Lemma. Every regular Junetion f on a quasiprojective hyperbolie curve r is anormal
Junetion.

proor: In order to use Corollary 2.15 remark that r is hyperbolically embedded in its

projective completion rand f can be extended to a regular mapping f : r --t pI. Hence

in any sequence {'Pn E Hol(ß n, r)} such that {f 0 'Pn} converges to an entire function go ,

there is a subsequence {<Pn/c} which converges to a constant mapping 'P 0 : C --t p E r.
Thus go = 70 <Po is constant and by Corollary 2.15, fisnormal. Q.E.D.
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From Lemma 5.1 and Corollary 1.3 we have:

5.2 Proposition. Let an algebraic curve f be hyperbolic. Then for any regular function I on
fand for any complex space X the family

:Fx := {I 0 'P 1 'P E Hol(X, r)} c S)(X)

is s-normal.

5.3 Corollary. Let r c C n be a hyperbolic affine algebraic curve. Then for any compLex

space X the family of coordinate functions ofalL holomorphic mappings X --+ riss-normal.

Hence it is of set·e.xponential type for smooth X..

5.4 Corollary. Let a curve r = {(x, y) E C 2 1 p( x, y) = o} be hyperbolic, where p E

C {x, y} . Let X be a complex space. Ifa pair o{functions I l 9 E f) (X) satisfies the polynomia1

identity P(I, g) == 0 , then I anti 9 are normal functions. In particular, if X is smooth, they
satisfy the Schottky·Landau' type growth estimates.

5.5 Remark. For some special polynomial identities growth estimates of such type in the
upper haUplane were earlier obtained by V. I. Ostroyskii [Os 1-2].

The next statement deals with polynomial inequalities instead of polynomial identities

(compare [Os 1 (Lemma 1), 2]) .

5.6 Theorem. Let X be a complex space, and p E C [x, yl be a polynomia1such that for every
c E C the curve r c := p-I(c) C C 2 is hyperbolic.

a) For a pair 0/ functions /, 9 E 5)(X) , let the function h := p(/, g) E S)(X) be bounded.

Then the functions f and 9 are normaL.

b) The same conclusion is true ilone assumes h onLy to be normal, but additionalLy assumes
that the closure of the curve f o = p-I(O) C C 2 in pI X pl intersects with each 01 two

projective lines at infinity in at least three distinct points.

Proof of a): Put Y = C 2 and Y = pI X pI = C 2 UD, where D is a union of two projective

lines in the quadric pI x pl. We must prove that the mapping F := (I, g), F : X --+ Y C-.....+ Y ,
is normal. Fix a sequence {'Pn E Hol(ßn , X)} such that the sequence {F 0 'Pn} converges

to a holomorphic mapping q. : C --+ Y . Then ~(C) c CI(P) , where P is the POlyhedron

P = {(x, y) E C 2 11 p(x, y) I< R} and R = 11 h 11 00'

By Corollary 2.15 it is enough to check that ~ = const. Consider two cases: 1) ~(C ) C C 2 ;

2) ~(C) n D f:. 0 . By Hurwith's Theorem, in the second case q.(C) CD, and so
q.( C ) C D n CI(P) . It is easily seen that the latter set is finite, and therefore ~ is constant.

In the first case p 0 q. is a bounded entire function and hence is constant. This means that

q.(C ) c f c for same c E C . Since reis a hyperbolic curve, q. is constant. Q.E.D.

Proof of b): Let Y, Y, F, {'Pn} and ~ be as above. Since h is a nonnal function,
the sequence {p 0 F 0 cpn = h 0 'Pn} contains a subsequence, which converges to a constant

mapping C --+ CO E pI . If CO E C , then q.(C) c CI(rco ) and by Hurwith's Theorem either

~(C) c r co or ~(C) C (fCo n D). In both cases ~ - const. If Co = 00, then cI>(C) CD.

Furthermore, in this case F 0 CPn(ß) n ro = 0, if n is large enough and hence by Hurwith's

Theorem either q.(C) n Cl(fo) = 0, i.e. q.(C) C (D \ CI(ro) , or ~(C) C (D n CI(fo)).
By the assurnption in b), the curve D \ CI(ro) is hyperbolic, while D n CI(fo) is a finite

set. Thus in both cases q. _ const . Q.E.D.

18



5.7 Remark. lt would be interesting to learn whether b) is true without the additional
assumption on p.
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