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Introduction

Recall that a function f holomorphic in the unit disc A is called normal iff the family of
functions {f o a | @ € AutA} is normal in Montel’s sense. By Montel’s Theorem [Mo] this
is the case for f omitting two values; in addition, such a function f satisfies the Schottky —
Landau growth estimate [Sch, La] :

o

| f(z)| < Me - :

where M = M(|f(0)|), o = o(f). W. K. Hayman [Hay 1 (Theorem 6.8), 2] proved that the
same inequality holds for functions in-a normal Aut A—invariant family F (with ¢ = o(F)).
In particular, it is valid for any normal function.

Recall also two important criteria of normality. By the Nakano — Lehto —Virtanen metric
criterium {Le Vi) a function f is normal iff the mapping j: A — C C P! has a bounded
diatation with respect to the spherical metric on P! and Poincaré metric on A. This was
generalized by W. K. Hayman [Hay 1-2] to normal invariant families of functions. Lange
— Gavrilov’s P-points criterium [Lan, Gal] (also [Gau]) states that f is normal iff for any
sequence p = {2} in A there exist a subsequence p' of p and ¢ > 0 such that the restricticn
of f to the union of non-euclidean discs of radius e centered at the points of p’ omits two
values (in accordance to Bloch’s Principle, this is parallel toc Milloux’s cercies de remplissage
for entire functions [Mi}).

These facts where generalized in many directions; see, for instance, survey [Ca Wi] for
the one-dimensional case and [Do], [Ci Kr], [Al], [Ha 1-2], [Gi Do], {Kr Ma), [To Kw], etc.
for multidimensional generalizations. Here we give further ones. Following an idea of G.
Aladro [Al] we introduced in {Za 2] a notion of s-normal family of holomorphic mappings
of complex spaces {see Definition 1.1 below), in the non-homogeneous satting. In particular,
normal invariant families of holomorphic functions (regarded as C—valued mappings) on
hyperbolic homogeneous manifolds are s-normal. Members of s-normal families are called
normal mappings (this actually coincides with the definition, given in [Ha 2}, and turned out
to be equivalent to the early known definitions in all particular cases). A metric criterium
of s-normality holds in analogy to the Marty — Nakano — Lehto — Virtanen criterium
(Theorem 1.6). In fact, for s-normal families one can prove a stronger inequality than
the one given by this criterium (Theorem 1.9). This inequality means that dilatations (i.e.



dilatation coeffitients) of mappings in a given s-normal family are uniformly bounded with
respect to Kobayashi pseudometric on the preimage and the Kobayashi — Royden — Green-
metric (or KRG-metric) on the image (see Definition 1.7). The latter metric is complete
in many cases. For instance, in the case of functions (dealing with as mappings into C) it
coincides with the Poincaré metric on a punctured disc in a neighborhood of oo in C C P!
. This leads to the following generalization of the Schottky — Landau — Hayman growth
estimates (see also Corollary 4.15 below):

Theorem. Let ¥ be an s-normal family of holomorphic functions on a complex manifold X .
Then there exists a constant ¢ = ¢(V) > 0 such that for any subset Q C X and for any function
Y € ¥ , bounded in modulus on Q by a constant M, the following inequality holds:

log (c | ¥(z) [} < (log(cM)) ¥ (=D yoex

(here ky is the Kobayashi pseudodistance of X). Conversely, if a family ¥ of holomorphic
functions on X satisfies the above condition, then it is s-normal.

The original Schottky — Landau — Hayman estimate corresponds to the case when X =
A and Q = {0} . Varying O one can even get new estimates for normal functions in the upper
halfplane C (see Proposition 4.18). A simple consequence is that any normal function in
C, , bounded on some horizontal line in C_ , has an exponential type.

The metric criteria of s-normality are discussed in § 1. In § 4 we prove, for families
of holomorphic functions, another criteria of s-normality including the one in the Theorem
above. In § 3 we consider a generalization of the notion of P-points sequence and of the
Lange — Gavrilov normality criterium for a holomorphic mapping (Theorem 3.15). Closely
related results were obtained in [Ha 2, Jo Kw].

Hyperbolic metrics play an essential role in the theory of normal functions since the
pioneer work of O. Lehto and K. I. Virtanen [Le Vi]. We would like to emphasize
here that there is a deep interaction of this theory with hyperbolic analysis. Namely,
normal mappings into arbitrary complex manifolds inherit the most important properties
of holomorphic mappings into compact hyperbolic manifolds (or hyperbolically embedded
manifolds). In particular, they satisfy the Kiernan — Kobayashi — Kwack analog of the Big
Picard Theorem [Fu, J4, Jo Kw] and Kiernan’s analog of Montel’s Theorem (see Corollary
1.14 below). In both cases the proofs are mainly based on some versions of the Schwarz
— Pick Lemma or on a distance-decreasing property. This contraction property holds with
respect to Kobayashi pseudometrics for general holomorphic mappings or with respect to
some Hermitian metric on the image and Kobayashi pseudometric on the preimage for normal
mappings (via the metric criterium of normality).

In § 2 we proceed further along this line. An easy remark is that for a relatively compact
subspace of a compact space, being hyperbolically embedded is equivalent to the normality
of the inclusion mapping (Theorem 2.1; this is a reformulation of Kiernan’s hyperbolic
embedding criterium [Ki]). Eastwood’s criterium for hyperbolicity of preimages [Ea] is
extended to normal mappings into non-hyperbolic spaces (Theorems 2.7, 2.8). Finally, we
obtain a criterium of s-normality in terms of the absence of certain entire curves (Theorem
2.14). This generalizes both Brody’s hyperbolicity criterium [Br] and Hahn’s normality
criterium [Ha 1].



In § 5 the latter criterium of s-normality is applied to extend some results due to V. 1. Os-
trovskii [Os 1-2] on growth estimates of solutions of polynomial identities p{z(z),y(z)) =0
of the special forms in functions z(z), y(z) holomorphic in the upper halfplane, to solutions
of a wide class of polynomial identities or inequalities in two variables in functions holo-
morphic on a complex manifold. We establish that they are normal and therefore satisfy the
inequalities in the Theorem above (Corollary 5.4; Theorem 5.6).

Most of the results of this paper were announced in [Za 2-3], some of them in a slightly
weaker form. The inequality in Corollary 5.4 was proved also in [Za 5] in a different way.

The paper was prepared during my stay as a guest of SFB-170 “Geometry and Analysis”
at the Mathematisches Institut of Gottingen University and at the Max-Planck-Institut fiir
Mathematik at Bonn. It is a pleasure to express my hearty thanks to Professors H. Grauert
and F. Hirzebruch, who invited me, and to the Institutes for their hospitality and the warm,
stimulating atmosphere.

§ 1. s-normal families of holomorphic mappings.
Metric criteria of s-normality

Let X and Y be complex spaces, and let Y be a relatively compact subspace of Y . As
usual, Hol( X, Y') denotes the space of all holomorphic mappings X — Y, endowed with the
compact-open topology; A denotes the unit disc in C.

1.1 Definition. A family F of holomorphic mappings X — Y will be called s — normal iff
the family of compositions

FoHol(A, X):={foep]| f€F, ¢ Hol(A,X)}

is a relatively compact subspace of the space Hol(A,?) .

It is obvious that a subfamily of.an s-normal family is also s-normal. Later on we will show
that an s-normal family is normal in Montel’s sense (Corollary 1.14). The converse is not
true in general, even for a family consisting of a single mapping.

1.2 Definition. A mapping f : X — Y will be called normal iff the family F ={f} is
s-normal.

1.3 Remarks. It is easily seen that the restriction f | Z : Z — Y of the normal mapping
f: X — Y, where Z is a subspace of X, is also a normal mapping. Moreover, if p: Z — X
is a holomorphic mapping of complex spaces and the mapping f : X — Y is normal, then
foyw:Z — Y is also normal. Furthermore, the direct product f1 x f2: X3 x X5 - Y] x Y}
of two normal mappings f; : X; — Y; (: = 1,2) is normal. The same is true for restrictions,
compositions with a given mapping and direct products of s-normal families.

1.4 Notations. Let kx be the Kobayashi pseudodistance on X. If X is a complex manifold,
let Kx denote the Kobayashi-Royden differential pseudometric on X (see [Ro 1]). For
an arbitrary metric A on Y we denote by Hol.(X,Y, A} the family of all those mappings
f € Hol(X,Y), which satisfy the inequality

f*A<ckx.



If X and Y are smooth and A is generated by an upper semicontinuous differential metric A
on TY, the latter inequality has the following equivalent form:

f*A<cKy.

The next lemma easily follows from the Arzela-Ascoli Theorem.
1.5 Lemma. Let p be a Hermitian metric on'Y and X be a metricon Y. If A\ > p | Y , then
the family Hol.(X,Y, A) as defined above is s-normal for any c > 0.

The following metric criteria of s-normality is an easy consequence of Theorem 1.9
below. It is simpler and therefore often more convenient to use than the one contained in
Theorem 1.9.

1.6 Theorem. A family F C Hol(X,Y) is s-normal if and only if F C Hol.(X,Y,p | Y') for
some constant ¢ > 0, where p is a Hermitian metric on Y .

To formulate Theorem 1.9 we need the notion of a KRG-metric, introduced below. From
now on we assume that X and Y are smooth.

L.7 Definition. Fix an arbitrary finite covering {U;};_, _ of the closure CI(Y) of Y inY . Let
U :=UnY, i=1,...,k. Consider the envelope H = lléljélk {Ky-} of the local Kobayashi-
L]

Royden pseudometrics. Let G = max (H, p | Y). The metric G and the corresponding distance
g on'Y will be called a Kobayashi-Royden-Green metric, or a KRG-metric for short.

1.8 Remark. KRG—metrics were first used in [Gr] and later in [Za 1]. It is evident that a
KRG-metric depends on the choice of a covering. For sufficiently small coverings {U;}, the
metrics G and H in (1.7) are equivalent. (G is a complete metric for an appropriate covering
iff Y is a locally complete hyperbolic subvariety of Y (this is the case for complements of
divisors, analytic polyhedra and strictly pseudoconvex domains; see [Ki Ko, Za 1]).

1.9 Theorem. Fix a KRG-metric g on Y. A family F C Hol(X,Y') is s-normal if and only if
F C Hol(X,Y,g) for some constant ¢ > 0.

Proof: The “if” part follows from Lemma 1.5. To prove the “only if” part assume that
there is an s-normal family 7 C Hol(X,Y) such that 7 ¢ Hol.(X,Y,g) for any ¢ > 0. It

follows that there exist sequences {fa} C F, {va} C TX such that Kx(vs) < 1 and
| dfa(va) | ¢ = 1 for every n € N.

By the definition of the pseudometric Kx , there exist sequences {pn} C
Hol(A, X), {un} C ToA such that | u, |< 1/n and dpp(un) = va, n € N. Let
rp =]ty | T! and ¥y 1= @u(unz), ¥n € Hol(Ar",X) , where A, :={zeC||z|<r}.
Consider two sequences of holomorphic discs

®, := fuop, € Hol(A,Y)

and
U, := fpothy, € Hol(A,,,Y).

Since F is an s-normal family, both sequences can be assumed to be convergent: @, -
®, ¥, — ¥, where ® € Hol(A,Y) and ¥ € Hol(C,Y) . Let us show that ¥ = const.
n



Fix an arbitrary point z, € A . Put pp = ¥(0) and qo = ¥(zo) (here py,q0 € CI(Y)).
Consider the sequences

Zn i =upzg € A, 2z, 20,
n

gn = Op(zn) €Y, pa=0,(0) €Y.
We have:
¢n = Ya(20) = ¥(20) = qo0
and
pn = ¥n(0) = ¥(0) = pp .

Since ¢, — &, for any € > 0 there exists 6 > 0 such that
n
p(Ba(2), B(0)) < € Vz € Ay,

when n is sufficiently large. In particular, p(qn,po) < € for n >> 1. Thus ¢, — pp and
therefore go = po , i.e. ¥(z) = ¥(0). So ¥ =const = pp € Y .

Let the KRG-metric g correspond to the covering {Ui},; _; of CI(Y). Let po € U;.
Since ¥, — ¥ = pg , we have: ¥,(A,) C UF = U;NY , when n is large enough. For such
n

values of n one has: Ky:(dUn (| ,)) <3 . Since d¥n(4 | ;) = dfa(va), we have that
| dfn(ve) | g < 1/2 . But | dfy(va) | ¢ = 1 by construction and hence | dfp(vy) | p = 1
(see Definition 1.6). It follows that

d . d

This contradicts the constancy of ¥ . Q.E.D.

1.10 Corollary. Let p be a Hermitian metric on Y and G be a KRG-metric on Y. Let
F C Hol(X,Y) be a family such that

| ()| | < cKx(v) VS €F, WweTX

for some constant ¢ > 0. Then there exists a constant ¢; = ¢1(G, p, c) > 0 such that

| df (v) | o <aKx(v) VfeF, YweTX.

1.11 Example. Let Y = P! = P&, Y =C=P!\{(1:0)}, p be the spherical metric on
P! . Let a KRG-metric G on Y = C be defined as follows:

1wl
G |z[+log(lz|+)’

where u € T;C, |z| | :=max{e,| z{}. Then, by (1.10), any holomorphic function f on
a complex space X, which satisfies the inequality

|u]

O ) Ve
1+|f(z)|2$I{X()V(,)€TX,



actually satisfies the stronger inequality

| df(v) | o Kelo) V(s s
7)1 100l F0) 1 4) 1Kx(v) ¥(z,v) € TX

with a constant ¢; = ¢j(c) > 0. In fact, the last inequality can also be strengthened; see
(4.9) below.

1.12 Corollary. The set N(X,Y') of all normal mappings X — Y coincides with the unions

|J Hole(X, Y, g) = | Holo(X, Y, ).
c>0 >0

(In general, the family N(X,Y’) is not s-normal.)

1.13 Corollary. Let Z be a complex manifold and F C Hol(X,Y') be an s-normal family.
Consider the family

Fz:={fop|feF, peHl(Z X)}.

Then Fz C Hol(Z,Y) is an s-normal family; moreover, it is a relatively compact subspace
of the space Hol(Z,Y) .

Indeed, by Theorem 1.6 F C Hol.(X, Y, p) for some ¢ > 0. Since holomorphic mappings
Z — X are contractions with respect to the pseudometrics Kz and Ky , we have that
Fz C Hol(X,Y, p) . Now the assertion follows from the Arzela-Ascoli Theorem. Q.E.D.

Applying this to the case when X = Z, we get the following:
1.14 Corollary. An s-normal family 7 C Hol(X,Y') is normal in Montel’ sense.

§ 2. Normality and hyperbolicity

Here we show that, to some extent, the notion of normality is a relative version of the notion
of hyperbolicity. The next theorem is a rewording of the criterium of hyperbolic embedding,
due to P. Kieman [Ki].

2.1 Theorem. Let Y be a relatively compact subspace of a complex space Y . The following
conditions are equivalent:

i) The family F := Hol(A,Y) is s-normal;

if) f := idy is a normal mapping;

iify Hol(A,Y) is a relatively compact subspace of the space Hol(A,Y) ;

iv) Y is hyperbolically embedded in'Y .
Proof: Conditions i), ii), iii} are actually tautologically equivalent. By Kieman’s Theorem
[Ki] iii) and iv) are equivalent. Q.E.D.
2.2 Remark. By Kiemnan’s theorem [Ki] iii) and iv) are equivalent to the condition

iily cKy 2 p| Y,

where p is a Hermitian metric on Y and ¢ = ¢(p,Y) > 0 (see also [Za 4]). The equivalence
of ii) and ii') follows from Theorem 1.6 (in the smooth case).



2.3 Notations. Let (X, p) be a metric space. For a subset Q) of X we denote by Q("#) the

r-neighborhood of @, i.e. the union |J B,(z,r) of p—balls of radius r with centers in
z€Q
points of Q. For a complex space X the neighborhood Q{"#¥) with respect to the Kobayashi

pseudodistance will be denoted simply by Q(r) .

2.4 Lemma. Let X,Y,Y beasin§ 1. Let p be a Hermitian metric onY and g be a KRG-metric
onY. Let F C Hol(X,Y) be an s-normal family. Then there exist constants ¢ > 0, ¢; > 0
such that forany f € F, v > 0and Q C X the following inclusions hold:

£(Q) c (@1

and
(@) c s,

Proof: Indeed, by Theorems 1.6 and 1.8 F C Hol,(X,Y,p) and F C Hol,(X,Y,g) for
some c,¢; > 0. Q.E.D. '

2.5 Remark. LetuscallQ C X r — dense iff Q) = X, and holomorphically r — dense
iff the hull of Q(") with respect to the algebra $ (X) of holomorphic functions on X coincides
with X. The next statement easily follows from Lemma 2.4 and the maximum modulus
principle:

A normal holomorphic function f in X, which is bounded on a holomorphically r-dense subset
@ C X, is bounded on X.

In fact, applying Lemma 2.4 one can estimate || f || . by a functionof || f | Q|| -

A holomorphically r-dense real curve + in the unit disc A iscalled a spiral of density r
(see [Ga 2]); that means that 4(”) contains some annulus K, = {z € A| 1—e<|z]|<1}, €>
0. As an application one can obtain the following fact from [Ga 2]:

A normal function in the unit disc A, which is bounded on a spiral of finite density, is bounded
in A
The next lemma is well-known; for the sake of completeness we provide a proof.

2.6 Lemma. Let X be a complex manifold and () be a subset of X. Then for any r > 0 the
following inequalities hold: '

(tanh(r))KQm | Q< Kx | Q< KQ(r) | Q.

Proof: The second inequality follows from the contracting property of the Kobayashi-Royden
pseudometrics. To prove the first one, fix € () and v € T; X arbitrarily. By the definition
of Kx , for any ¢ > 0 there exist s > (Kx(v)+¢) ' and ¢ € Hol(A,, X) such that
do(£ | ;) = v. Denote by w, the hyperbolic disc in A, of radius r centered at the origin. By
the contracting property of Kobayashi metrics we have: f(w,) C Q("). Hence Ko (v) < 71,
where ¢t = t(s,r) is the Euclidean radius of w, = A;. Here r = arctanh (%) , or
t = s - tanh(r) . Therefore

Kon(v) < (Kx(v) +¢),

1
tanh(r)
and the inequality follows. Q.E.D.



The following statement extends Eastwood’s Theorem [Ea] to normal holomorphic
mappings into non-hyperbolic spaces.

2.7 Theorem. Let f : X — Y be a normal mapping. If for some covering {U,} of Y all
preimages f~1(U,) are hyperbolic, then X is hyperbolic. If these preimages are complete
hyperbolic and Y is locally complete hyperbolic in'Y , then X is complete hyperbolic.

Proof: For an arbitrary point y € Y fix a p—ball B := B,(y,r) such that the preimage
P := f~Y(B) is hyperbolic. Put Q := f~1(B,(y,3)) . By Theorem 1.6, f € Holc(X,Y,p)
for some ¢ > 0. By Lemma 2.4 we have:

£(Q¥) ¢ By(y,r) = B,

or Q(r/2¢) ¢ P The hyperbolicity of P implies that the metric K p is strictly nondegenerate
in the following sense: it locally majorises some Hermitian metrics on P (see [Ro 1]) . By
Lemma 2.6

r
> -
Kx | Q> (tanh(Zc))KP | @,
hence the pseudometric Kx is strictly nondegenerate, too. This in turn implies the hyper-
bolicity of X [Ro 1].

To prove the second statement, first of all fix a complete KRG-metric ¢ on Y (such a
metric does exist since Y is locally complete hyperbolic; see (1.8)). Let D := By, (z, R)
be an arbitrary Kobayashi ball in X, where z € X and B > 0. By Theorem 19 f €

Hol,, (X,Y, g) for some ¢; > 0, and hence f(D) C By(y,c1R) , where y := f(z) (see
Lemma 2.4). Since g is a complete metric the closure K := Cl(By(y, ¢c1R)) is compact in Y.

E
Hence K C |J U,, for some finite subfamily of {U,} . Let r > 0 be the Lebesgue number

e
of this ﬁnite‘covering of K with respect to g .

k
Put W; = f~1(Uy,) and W = |J W; . Then CI(D) C f~1(K) Cc W . The envelope
i=1
H := min {Kw,} of complete metrics is a complete differential metric on W. The covering

{wy}, e of the compact K by the g—balls wy, := By(y,r/2) induces the covering {Q,} of
F7Y(K) by open sets Qy := f~}(wy). Put Py := f~1(By(y,r)) . Then

r
Ky 1Qy > (tanh (o) )Kr, 1 Q,
c1
as above. Therefore
KX|Qy2AKWs|Qy,
where A := tanh (-2%—) and W; is such that P, C W;. It follows that
Kx | fTUK)>XH| fTYK).

Hence the Kobayashi ball D C f~!(K) is contained in the H—ball By(z, R/A) . By the
completeness of the metric H, the closure Cl(By(z, R/A)) is compact, and so CI(D) C X is
compact. This implies that kx is a complete metric [Ko]. Q.E.D.

8



Similarly, a version of Brody’s Theorem [Br] in [Za 1, Proposition 4.6] can be generalized
as follows:

2.8 Theorem. Let f : X — Y be a proper normal mapping. If every fibre X, := f~}(y), y €
Y , is hyperbolic, then X is hyperbolic. If, in addition, Y is locally complete hyperbolic, then
X is complete hyperbolic.

Proof: By Proposition 4.6 in [Za 1] any point y € Y has a neighborhood wy in Y such that
f~Y(wy) is hyperbolic. Now the hyperbolicity of X follows by applying of Theorem 2.6.

If Y is locally complete hyperbolic in Y , then the image of the Kobayashi ball D = By, (z, R)
under f is contained in a compact set K C Y (see the proof of Theorem 2.6). Since f is
proper, f~!(K) is a compact in X, and hence Cl(D) C f~!(K) is compact. As before, this
implies the completeness of the metric kx . Q.E.D.

Next we give a normality criterium 2.14 analogous to Brody’s hyperbolicity criterium
[Br] as generalized by K. T. Hahn [Ha 1]. For the reader’s convenience we recall first these
facts.

2.9 Definitions. By an entire curve in a complex space Y we mean a non-constant mapping
¢ :C — Y .IfY is a subspace of Y and © can be approximated by holomorphic mappings
wn:Bng =Y ,wecall paY — limiting entire curve {Za 1). If a family F C Hol(X,Y)
is given, we say that p is an F — limiting entire curve in Y iffit can be approximated
by holomorphic curves f, 0, : A, — Y | where @, € Hol(A,, X) and f, € F.

Recall [Za 1, Lemma 2.9] that when Y is locally complete hyperbolic in Y , every Y-limiting
holomorphic curve in Y is contained either in Y or in 8Y .

2.10 Theorem (R. Brody [Brl). A compact complex manifold Y is hyperbolic iff it does not
contain entire curves.

2.11 Theorem (see [Za 1]). A relatively compact subspace Y of a complex manifold Y is
hyperbollically embedded in Y iff Y contains no Y-limiting entire curve.

2.12 Theorem (K. T. Hahn [Ha 1, Theorem 6.5]). A family 7 C Hol(A,Y) is relatively
compact in Hol(A,Y) iff there exist no sequences {b,} C A, {rn}, ma | 0,and {¢,} CF
such that {@n(raz + by)} converges to an F—limiting entire curve C —Y .

2.13 Remarks. In fact, Y is assumed to be compact in Theorem 6.5 in [Ha 1], but the proof
works also in this slightly more general setting (following the line of proof of Theorem 6.3
in [Ha 1]). Note also that if the family 7 C Hol(A,Y) is Aut A—invariant and non-normal,
then we may assume above that b, = 0 for all n, i.e. that {¢n(r,z)} converges to an entire
curve C — Y for some sequences {®,} C F, {rs €(0,1/n)}.

The next theorem generalizes these facts and Corollary 6.7 in [Ha 1].

2.14 Theorem. A family 7 C Hol(X,Y) is s—normal iff there exists no F—limiting entire
curve C —Y .

Proof: Let F be an s—normal family. Assume that a sequence ®, = f, o p, , converges
to a mapping ® : C — Y , where f, € F and ¢, € Hol(A,, X). By Theorem 1.6
F C Hol(X,Y, p) for some ¢ > 0. Hence for any pair of points u,v € C we have:

P(@a(u), 8(v)) < ¢ kx(n(w), pa(v)) < ¢ ka,(u,0) = 0.

n



Thus ®(u) = ®(v) and so & is constant. If F is not an s—normal family, then Fp :=
{fow| fe€F, ¢€Hol(A, X)} is not a relatively compact subspace of the space Hol(A,Y)
(see (1.1)). Applying Theorem 2.12 to the family Fa C Hol(A, Y') we easily get the existence
of an F—limiting entire curve C — Y . Q.E.D.

2.15 Corollary. A mapping f € Hol(X,Y) is normal iff the only f—limiting mappings
C — Y are constants.

§ 3. Normality and P-sequences

Here we discuss a generalization of the P—points nomality criterium for holomorphic
functions, due to L. H. Lange [Lan] and V. 1. Gavrilov [Ga 1], in a more general setting
of holomorphic mappings.

3.1 Definition. Let X be a complex space and ) be a metric on X. Two sequences of
points p = (zx) C X and ¢ = (m;) C X will be called confinal (resp. \—confinal)
iff kx (zk,:c'k) 2 0 (resp. ,\(:ck, x;) ry 0 ). A sequence 3 = (zy)y>, Will be called a
shortening of the sequence p = (z3) .

Fix a mapping f € Hol{ X,Y), where Y is a relatively compact subspace of a complex
space Y . Let p be a fixed Hermitian metric on Y and p = (z;) C X be a fixed sequence.

3.2 Definition. The sequence p will be called an s—sequence of [ iff
f(p(')) cvU

for some r > 0 and for some domain U in Y, which is hyperbolically embedded in'Y .

3.3 Definition. A sequence of points in X, which does not contain any s—subsequence of f,
will be called a P—sequence of f.

3.4 Definition. Let A be a differential pseudometric on TY and A be the corresponding
pseudodistance on Y. The quantity

) df(v
dalf) = s LGOS
will be called a A—dilatation of [ at the point =9 € X .
It is clear that f € Hol(X,Y,A) iff dilax(f) < cforeveryz € X .
3.5 Definition. The sequence p will be called a d—sequence of f iff

sup dilpx(f) < oo
zep"

for some shortening D of p and for some r > 0.

3.6 Definition. The sequence p will be called a g—-sequence of f iff for any other sequence
q= (:1:;) C X, confinal with p, the sequences f(p) = {f(z+)} and f(q) = {f(:.c'k)} are
p—confinal, ie. lﬁ‘p(f(:ck),f(xk)) 2 0 when kx (:ck,:a:k) ry 0.

It is easily seen that any subsequence of an s—sequence of f is itself an s—sequence of
f; the same is true for d — g — or P —sequences. Moreover:

10



3.7 Lemma. Let sequences p = (zx) C X and q = (z'k) C X be confinal. If p is an
s — (resp.,d—, g—, P—)sequence of f, then the same is true for q.

Proof: For a given r > 0 and for some shortening p (resp.q) of p (resp. q) we have:
7" ¢ p(®) . This implies that if p is an s — or d—sequence of f, then the same is true for q.
By the transitivity of confinality ¢ is a g—sequence of f, if p has this property. If ¢ contains an
s—subsequence of f, then the corresponding subsequence of p will be also s—sequence of f,
as just has been proved. Thus, ¢ would be a P—sequence of f, if p is such a sequence. Q.E.D.

3.8 Lemma. Every s—sequence of f is a d—sequence of f; every d—sequence of f is a
g—sequence of f.

Proof: Let p = (z;) C X be an s—sequence of f, i.e. f(p(')) C U for some r > 0, where

U is a hyperbolically embedded in Y domain in Y . The latter means that Ky > cp | U
for some ¢ > 0, and so

folpM <Ky | p0 < R
by the contracting property of Kobayashi-Royden pseudometrics. From Lemma 2.5 one gets:
Fo1p™ < e ey | 7 < e tanh(r/2)] 7 Kx | pU7D
and hence
sup dil,.(f) < [c- tanh(r/2)]7".
zEPTI2)
Thus p is a d—sequence of f.
Let p be a d—sequence of f. Then for some shortening p of p and for some ¢, > 0 the

mapping f | T ) :5{") - Y is a contraction with respect to the pseudometric Ky | pT(') and
the metric ¢p | Y . This implies that p is a g—sequence of f. Q.E.D.

3.9 Lemma. Every d — or g—sequence p of f contains an s—sequence of f.

Proof: Since Y is relatively compact in Y , there exist a subsequence ¢ = (z,,) C p such
that f(zq,) 2 v, where yp € Y. Let r > 0 be small enough, so that the ball U := B,(yo,r)

is hyperbolically embedded in Y . Let p be a d—sequence of f, i.e.

sup dil,-(f) < M,
zept?

for some constants {, M > 0 and for some shortening 7 of p. Then the restriction f |
) . 3® — Y is a contraction with respect to the pseudometrics kx | 7{9 and M~p.
Let § be a shortening of ¢ such thatf(g) C By(yo,7/2) C U . Then f(q(’)) c U for
0 < 7 < min(¢,7/2M) . Hence g C p is an s—sequence of f.

Assume further that p is a g—sequence of f. Let U and § C p be the same as above.
If § = (z,,) is not an s—sequence of f, then f(ﬁ(‘)) ¢ U for any € > 0. Thus for every

n € N large enough there exist k = k(n) and z',c € X such that

kX(:r,,,‘,x;) <1l/n

11



and p(f(:l:’k),‘yo) > r. For m # ng put z,, = z,, and for m = ny put z,, = :1:;‘ . Then the
sequences p = (z,) and p = (z,, ) are confinal, but the sequences f(p) and f(p") are not
p—confinal. This contradicts the assumption that p is a g—sequence of f.. Q.E.D.

From Lemmas 3.8 and 3.9 we find

3.10 Corollary. The sequence p is a P—sequence of f iff it does not contain any d —
(resp., g—)subsequence of f.

3.11 Corellary. If dil, -, (f) 2, then p = (z) is a P—sequence of f.
Indeed, in this case p does not contain d—subsequences of f.

3.12 Remark. The converse to Corollary 3.11 is not true in general, as the following example
((4.3) in [Ca Wi]) shows. Let X = A, Y =C,Y = P!, f(z) =exp &, za =

T = ke @ = Ty - Hete dil, 1 (/) - oo and hence by Corollary 3.11 ¢ i= (z,)

is a P—sequence of f. By Lemma 3.7 sequence p := (z,) , confinal to ¢ , is a P—sequence
of f, too, while the sequence {dil, z,(f)} is bounded.

Nevertheless, the following criterium for P—sequences holds (it is a generalization of
Theorem 4.4 in [Ca Wi)).

3.13 Proposition. The following conditions are equivalent:

i) p is a P—sequence of f;
ii) there exists a sequence q = (::::,) C X, confinal to p, such that

dil, +(f) = 00
iii) there exists a sequence e, — 0 such that

sup {dil, ()} — 00,

zGng(zn,cn)

Proof: The equivalence of ii) and iii) is easy. The implication ii) = i) follows from
Corollary 3.11 and Lemma 3.7. Thus, it is enough to prove i) = iii). Let p = (z_) be a
P—sequence of f. Put

en(t) = sup {dil, x(f)} .
2€Biy (Z )

By Corollary 3.10 p contains no d—subsequence of f and so ¢,(t) — for any t > 0. Now
the assertion follows from the next simple lemma:

3.14 Lemma. Let {pn(t)} be a sequence of real-valued functions on the segment [0,1] such
that (1) — oo for any t > 0. Then there exists a sequence €, — 0 such that p,(e,) —00.

Proof: Fix n; such that ¢n(3) > 2 for all n > ny ; then fix ny > n; such that p,(3) > 3
foralln>ny,andsoon. Putey = €3 =...= €5, =1, €ny41 =... = €n; = 3, Enp1 =
.= €py = % , etc. It is easily seen that @,(€p) — 00 . Q.E.D.
n

The next theorem is a generalization of the Lange-Gavrilov normality criterium for
functions, holomorphic in the unit disc [Lan, Ga 1, Gau).
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3.15 Theorem. A mapping f € Hol(X,Y') is normal if and only if there is no P—sequence of
f, Le. iff any sequence p = {:z: k} C X contains an s—subsequence of f.

Proof: If f is normal, then by Theorem 1.6, f € Hol.(X,Y,p) for some ¢ > 0. Hence
sup dil, z(f) < c and therefore any sequence p in X is a d—sequence of f. By Lemma 3.9
zeX

p contains an s—subsequence of f. Conversely, if f is not normal, then its p—dilatation is

unbounded on X and hence there exists a sequence p = (zx) in X such that klirn dil . (f) =
— 00 ¥

oo . By Corollary 3.11 p is a P—sequence of f. Q.E.D.

3.16 Example. Let Dy, be a union of (2r + 1) hyperplanes in P" in general position. It is
well known that P™\ D, is hyperbolically imbedded in P". Let f € Hol(X, P™) be a non-
normal mapping and p = (z,) be a P—sequence of f. Then for any subsequence ¢ = (zy,)
of p and any € > 0 the function f | ¢'9) infinitely often takes values from Djny1 . In the case
of non-normal meromorphic functions (rn = 1) this result due to V. I. Gavrilov [Ga 1].

§ 4. The Schottky-Landau growth estimates for normal functions

4.1 Let X be a complex space. By a normal holomorphic (resp., meromorphic} function
on X we mean a normal mapping X — C — P! (resp, X — P! ) in sense of
Definition 1.2 (see Example 1.11). In the same manner we understand the terme an s—normal
family of holomorphic (meromorphic) functions on X. In the case of functions holomorphic
(meromorphic) in the unit disc X = A the metric criterium of normality given in Theorem
1.6 coincides with the well-known Nakano-Lehto-Virtanen criterium: f is normal iff the
inequality

S
1+ /()12 7 1-]z]|?
holds for some ¢ > 0 and for all z € A . Therefore the above definition of normality
for functions holomorphic in the unit disc is equivalent to the classical one. The same
arguments shows the equivalence of our definition of normality to the ones given in [Ha 1]
for holomorphic functions on homogeneous hyperbolic complex manifolds, and in [Do, Ci Kr}
for holomorphic (meromorphic) functions on bounded strictly pseudoconvex domains in C*.

4.2 Every normal function f in the unit disc belongs to a normal Aut A—invariant family of
functions (indeed, by the classical definition of normality the family F = {f o a | &« € Aut A}
is normal in Montel’ sense). Moreover, by Theorem 1.6, every s—normal family F C
Hol(A, C) is also contained in some normal invariant family Hol (A, C) . On the other hand,
a normal invariant family 7 C Hol(A, C) is s—normal. This follows from the theorem of
Hayman, cited below. One may consider the notion of an s—normal family of holomorphic
functions on a complex space as a generalization of the notion of normal invariant family of
holomorphic functions in the unit disc, which was treated by Hayman [Hay 1-2].

43 F. Schottky [Sch] and E. Landau [La] proved that every function f, holomorphic in the unit
disc and omitting two values, has at most exponential growth, i.e. it satisfies the inequality

| f(z) IS A exp(a/(1— | 2 1))

for some constants A, ¢ > 0 . This theorem was extended by W. K. Hayman [Hay 1-2]
to normal invariant families of functions, holomorphic in the unit disc. Here we prove a
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Schottky-Landau’ type inequality for s—normal families of holomorphic functions on complex
manifolds. As a consequence, we obtain some new estimates of growth of normal functions
in the upper halfplane.

4.4 Notation. By $(X) we denote the space of holomorphic functions on X. For a given
positive function 6(s,¢) in R% := {(s,t) € R?| s,t > 0} , non-decreasing in each of the
arguments, we denote by $( X, 8) the subspace of $3(X), consisting of all those functions
f € H(X) which satisfy the inequality

| f(2) 1< 0(] f(=o) |, kx(z,20)) Vz,z0 € X.

4.5 Lemma. The family $(X,0) is s—normal and Aut X—invariant.
Proof: Consider the family F5 C $(X), where

Fa:={fop|f€H(X,0), ¢ €Hol(A,X)}.

It is easily seen that Fo C $(A,8) . The family $(A,6) is normal; indeed, the family
{9(z) — g(0) | g € $H(A,0)} is uniformly bounded in any disc A, , r < 1. This proves
the s—normality of $(X,8) . The Aut X—invariance follows from the invariance of the
Kobayashi pseudodistance k£x . Q.E.D.

4.6 Notations. On C C P! consider a family of KRG-metrics

Gelar) = (5121, tog((e] = +))—lm,

where ¢ > 0 and | z | | := max{e,| z |} . In the neighborhood Q. = {z € C ||z |> e} of
the puncture co € P!, the metric G, | 2. coincides with the restriction to 2, of the Poincare
metric of the punctured disc 2, , where » = ¢! . Remark that the corresponding complete
distances g. in C lie between the Euclidean metric in C and the spherical (incomplete) metric
of P! restricted to C . Put $(X) := Holy(X,C,g.) . Put also

0(s,t) :=c Texp [(log (c | s ] +)) exp Qt] .

4.7 Definition. Ler X be a complex space. We say that a family F C $(X) has exponential
type c > 1 iff

FC H(X,0.),

log (c | f(:;) | +) < (log (c | f(z0) | +) ) exp (2t (2,20))

for every f € F and for any pair of points z,zg € X .

Le. iff

4.8 1t is easily seen that a holomorphic function in the unit disc, having exponential type, has
exponential growth in the sense of (4.3), i.e., it satisfies the Schottky-Landau estimate.

4.9 Hayman’s Theorem ([Hay 1, Theorem 6.8]).
(a) Let F C $(A) be a normal invariant family. Then F C $c(A) for some ¢ > 1.
(b) H:(A) C H(AD,0,) for each ¢ > 1.

14



4.10 Corollary. Any normal invariant family F C $H(A) has exponential type.
4.11 Remark. In fact, the inequalities in Theorem 6.8 in [Hay 1] contain more precise
constants (see also [Je 1-2, Hel) .

4.12 Definition. A family 7 C $(X) has set-exponential type ¢ > 1 iff for any subset Q C X
,any f € F and any = € X the following inequality holds:

og (1 J(2) 1) < (:}é% og (<1 1) +)) exp (2% 4, (2,Q)).

4.13 Remark. For @ = {zy} the above inequality coincides with the inequality in (4.7).
Hence a family JF. of set-exponential type ¢ > 0 has exponential type c¢. The next theorem,
which is the main result of this section, shows in particular that the converse is true, i.e. that
a family F of exponential type c is also of set-exponential type c.

4.14 Theorem. Let X be a complex manifold. For a family F C $H(X) the following
conditions are equivalent:

a) F is an s—normal family.
b) F C Holi(X,C, A) for some metric A in C with the linear element A(z,v) =q(| z|) | v |,
where q is a non-increasing positive function in R, .
¢) F C Hol (X P p) for some ¢ > 0, where p is the spherical metric in P* .
d) F C $HX) for some ¢ > 1 (see (4.6)).
e) F C $H(X, 0) for some positive function 0 in R% | non-decreasing in each argument (see
(4.4)).
f) F is of set-exponential type.
Proof: The logical scheme of the proof is the following:
e) = a) < b)
ft U ft
fl « d = ¢
Implications d) = ¢) = b) are evident ; for f) = e) see (4.13) ; e) = a) is proved in
Lemma 4.5 above.

Proof of b) = a). Put Fp := FoHol(A,X), Fa C $H5(A). Let F C Holj(X,C, ).
Then Fa C Hol(A,C,A) and hence for any r € (0,1} and any ¢ € Fa the following
inequality holds:

| F(2)]< e ! Vz € A, .

)(1—r?)
Therefore F, is a normal family, and so F is an s—normal family.

Proof of a) = d). Let 7 be s—normal. Then the family A as above is a normal
invariant family and by Hayman’s Theorem 4.9 Fp C $.(A) for some ¢ > 1. Fix
f€F, ¢ecHol(A,X)and z € A arbitrarily. Denote f = f o (fe }'A), zo = (0)
and z; = ¢(z). Since f € H,(A) we have: f*(g.) < ka (see (4.6)) and therefore

frgc(zo, z1) < ka(0,2) .
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Let o, " be a pair of points in X and A = ({go,-}fil C Hol(A, X), {=}%, CA) bea
chain of holomorphic discs between z' and z” . From the above inequality it follows that

N N
f‘gc(mi$ :‘:H) < Z (f*gc)(zi-1,2i) < Z kA(Ov z) = lengthl‘x (7) )
=1

i=1
where zg := ', z; := ¢i+1(0) = pi(z), zy = z" . Hence f*g. < kx , and so
F C 9(X) .
Proof of d) = f). Fix a subset Q C X . Let f € $(X) be such that

R:=sup| f(z)| < oo.
zeQ +

Put
Ly(R):={ze X | | f(z)| < R}.

Remark that Q C Ly¢(R) and the inequality in (4.12) is valid for points z € L¢(R) . Fix an
arbitrary point x € X \ Ly(R) . Since kx is an inner pseudometric [Ko], for each ¢ > 0
there exist a point «; € L;(R) and a piecewise smooth path v : [0,1] — X , which connects
z and z; , such that

lengthy (v) < k (z,Lg(R)) + €< kX(x, Q)+e.

X

We may suppose that | f(z1) |= Rand | foy(¢)|> R fort € [0,1]. Since R > e, we have:
fo~([0,1]) C Qe (see (4.6)). From the identity g | Qc = ka__, | Qe (4.6) it follows that

L)1, R) = g1og (ELLDD)

Since f € H.(X), ie. f*g. < kx , we have:

9 (1 f(2) ;] flz1) ) < g_(f(=), f(=:1)) <
< lengthy,(f 07) = lengthy.g (7) <
<lengthy (v) <k (2,Q)+e€ .

gell f(@) |11 f(za) ) = kg

[+

X
Now the inequality in (4.12) easily follows.

This completes the proof of Theorem 4.14.
4.15 Corollary. Every s—normal family F C $(X) is of set-exponential type.

4.16 Remarks. 1. As follows from the proof of implication d) = f), a family F C $(X)
is of set-exponential type c.

2. In the case of s—normal families of functions Theorem 1.9 gives weaker estimates of
growth. Indeed, for any fixed @ € (0;1) the scale of metrics {g.} (see (4.6)) majorises the
scale {cgs} . In particular, Theorem 4.14 leads to the conclusion that normal functions in
the unit disc are of exponential type, whereas from Theorem 1.9 it follows only that they
are of finite order.

Next we give some applications of Theorem 4.14 to the one-dimensional case.
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4.17 Corollary. If a normal function in the unit disc is bounded on some geodesic (resp.,
horocycle), then it is also bounded in any strip between two branches of an equi-distant to this
geodesic (resp., between two parallel horocycles).

We turn now to normal holomorphic functions in the upper halfplane Cy ={z € C | Im z > 0}.
Let
Li={z€C|lmz=a}, Ap={2z€C|Rez=0, Imz>0}.

4.18 Proposition. Let a normal function f € $(C,) belong to the class $.(C,) . Then:
a) For every a > 0 the following inequality holds:

og (c1 7)1, ) < (o8 (el 7601, ) ) LELEE, rec,.

) If (| f1,) | La < R for somea>0,R >0, then

sign(Im z—a)
Z) N z € C+ .

tog (<1421, ) < (og(cR))(1m?

In particular, f is bounded in any horizontal strip {z €eCll0<a <z< az} inCy.
DI (1 f1,) | Ao < R, then

log (c| f +) < (log(cR))cot(%a,rg z) , zeCy.

In particular, f is bounded in any Stolz’ angle [[, = {t € C| a<argz<7m—a} ,

where 0 < a < 7/2.

a

The proof is easy and may be omitted.

4.19 Remark. The last statement in c) is known in a stronger form for f bounded on
an asymptotic curve v , contained in some Stolz’ angle [] o, B2 Theorem 4]. We can
supplement this result of F. Bagemihl by the inequality in ¢) with the constant log (cR) being
substituted by the constant (cot(aq/2))log(cM), where M = sup {(| f| ) |7} . In the
same way we can make Theorem 8 in [Ga 2] more precise. Namely, if p = (z,) C C4
is a sequence such that k¢ (z,p) < r < oo for any z € Ag (ie. Ao C p( ) and
(1f14) I p < M, then the inequality in c) is valid with the constant (log(cM))e?"
instead of log (cR) .

§ 5. Normality of solutions of polynomial equations

Let us start this section with the next simple facts.

5.1 Lemma. Every regular function f on a quasiprojective hyperbolic curve T is a normal
function.

Proof: In order to use Corollary 2.15 remark that I' is hyperbolically embedded in its
projective completion T' and f can be extended to a regular mapping f : T — P!. Hence
in any sequence {¢, € Hol(A,,T')} such that {f o p,} converges to an entire function g,
there is a subsequence {,,} which converges to a constant mapping ¢, : C — p € T.
Thus g, = f o, is constant and by Corollary 2.15, f is normal. Q.E.D.
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From Lemma 5.1 and Corollary 1.3 we have:

5.2 Proposition. Let an algebraic curve T" be hyperbolic. Then for any regular function f on
I’ and for any complex space X the family

Fx:={fop|ype€ Ho(X,I')} C H(X)
is s—normal.
5.3 Corollary. Let ' C C" be a hyperbolic affine algebraic curve. Then for any complex

space X the family of coordinate functions of all holomorphic mappings X — T’ is s—normal.
Hence it is of set-exponential type for smooth X. .

5.4 Corollary. Let a curve T' = {(z,y) € C? | p(z,y) =0} be hyperbolic, where p €
C {z,y}. Let X be a complex space. If a pair of functions f, g € $H(X) satisfies the polynomial
identity p(f,g) = 0, then f and g are normal functions. In particular, if X is smooth, they
satisfy the Schottky-Landau’ type growth estimates.

5.5 Remark. For some special polynomial identities growth estimates of such type in the
upper halfplane were earlier obtained by V. 1. Ostrovskii {Os 1-2].

The next statement deals with polynomial inequalities instead of polynomial identities
(compare [Os 1 (Lemma 1), 2]) .
5.6 Theorem. Let X be a complex space, and p € C [z, y] be a polynomial such that for every
c € C the curve T, := p~Y(c) C C? is hyperbolic.
a) For a pair of functions f,g € $H(X), let the function h := p(f,g) € H(X) be bounded.
Then the functions f and g are normal.

b) The same conclusion is true if one assumes h only to be normal, but additionally assumes
that the closure of the curve Ty = p~1(0) C C? in P! x P! intersects with each of two
projective lines at infinity in at least three distinct points.

Proof ofa): PutY = C%2and Y = P! x P1 = C2U D, where D is a union of two projective
lines in the quadric P! x P1. We must prove that the mapping F := (f,g), F: X =Y - Y,
is normal. Fix a sequence {yn, € Hol(A,, X)} such that the sequence {F o,} converges
to a holomorphic mapping ® : C — Y . Then ®(C) C CI{(P), where P is the polyhedron
P={(z,y)eC?||p(z,y) I<R} and R=|| b || .

By Corollary 2.15 it is enough to check that & = const. Consider two cases: 1) ®(C) c C?;
2) ®(C)Nn D # § . By Hurwith’s Theorem, in the second case ®(C) C D , and so
®(C) c DN CI(P). It is easily seen that the latter set is finite, and therefore ® is constant.
In the first case po @ is a bounded entire function and hence is constant. This means that
®(C) C I, for some c € C . Since I, is a hyperbolic curve, ® is constant. Q.E.D.

Proof of b): Let Y, Y, F, {p,} and ® be as above. Since h is a normal function,
the sequence {po F oy, = ho,} contains a subsequence, which converges to a constant
mapping C — co € P! . If ¢p € C , then ®(C) C CI(T',) and by Hurwith’s Theorem either
®(C)c T, or (C) C (I, N D). In both cases = const . If cg = 00, then $(C) C D.
Furthermore, in this case F o ¢,(A)NTy = @, if n is large enough and hence by Hurwith’s
Theorem either ®(C) N CYTy) = @, i.e. (C) C (D \ Cl(T'y)) , or ®(C) C (D NCITLy)).
By the assumption in b), the curve D \ Cl(Tg) is hyperbolic, while D N CI(I'y) is a finite
set. Thus in both cases & = const . Q.E.D.
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5.7 Remark. It would be interesting to learn whether b) is true without the additional
assumption on p.
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