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Foreword

The two notes combined in this preprint can be read indepen-
dently of each other. They are linked together by some general
ideas which lie behind the applications of H.Weyl's equi-
distribution principle as e;empl{figgiﬁﬁqflinspaﬁéé5 in:
J.W.S.Cassels, An introduction to diophantine approxim;tion,
Cambridge University Press, 1957 (Chapter VI, §§ 4,5).

S.Lang, Algebraic number theory, Addison-Wesley Publishing
Company, 1970 (Chapter VI, § 2).

J-P.Serre, Abelian l4adic.represéﬁféti§ﬁ§faﬁa'eiliptic

curves, Benjamin, 1968 (Appendik to Chapter I).






Two years ago we proved a rather general theorem concerning
equidistribution of integral points on norm-form varieties (see
[1], equation (23)). As a simple application of the methods developed
in [1] we give here a result much stronger than one can expéct to
obtain working analytically (cf., e.g., [3]). Let, in notations of

(11,
d. 5j
Uj(X) = {ala €R I, Igj(a)]<x } ,1s3sr,
and let
U(xX) = U1(X)X.....er(X) '
where we write, for brevity,

|Y|=1?§§n|yi| for y = (yqreeevy) vy €C

Theorem. Suppose that kj is a totally complex Galois extension of
@, 1s jsr , and that the fields k1""'kr are arithmetically

independent, Then

k)

1-c - -
), CT(k)>0’ cz(k)>0 . (1)

o (
N, (U()NV) = c, (K)x+O(X 2

Notations. We retain the notations introduced in t1}; in what follows
cj(f), 15 3 s 7, and the 0O-constants depend at most on the sequence

of fields ky, 1§ j s r . Let E, be the set of all the ~ . '

2
subsets of V of the form



Ut =UxI,U€EE, I-= {tlt1 <t st}

where t1 and t2 range over RR_ and satisfy the condition t.,<t

1772

Lemma 1.‘ The set u = U(X) nVv, X > 0, is (Ez,p')-smooth and

(k)

(o]
3Ty,

C(u) = 0((log -X)
where, as always, C{u) denotes the smoothness constant of u .
Lemma 2. We have

w'(U(X) N V) =.c4(i)x ;g (k)50 .

Lemma 3. We have_'

t(U(X) n V) = 0(X) .

Proof of the theorem.. In view of lemma 1 and lemma 3, it follows

from the estimate (19) in [1] that

1—c5(£)

N (U(X)AV) = bu' (U(X)AV) + O(X ), cS(E)>o . (2)

Since according to [2, theorem 2] ‘the constant b depends on kj '
1s j£r , only and since b > 0 , relation (1) is a consequence of

(2) and lemma 2.



Proof of lemma 1. Let

la,- 11, 1s3sr,

{eji“‘ s i s '2-, 37

be a system of fundamental units in kj . Suppose that

uEgj(Vj(1)nt(X)) and U(e)aEgj(Vj(1)ﬂU (X))

J
with

= . n, € 2 1 s is =d, - 1
e q Eji ’ i ’ 3 r

where ¢ denotes the diagonal embedding of kj into dj—dimensional

R-algebra

defined in [1,§ 2]. It follows from the definitions of ¢ and gj

that the integers n, obey the following estimate:

n; = O0(log X) .

Therefore there is a covering

;P

I CHhh

Vo1 N U(x) <
P



with

: - & O
KP €EE, £ =0(log X}7) , a := 5 "L .

The assertion of lemma 1 is an easy consequence of this fact.

Proof of lemma 2. By definition,

X
pt(uxynv) = [ dt u(u(x) n Vo (t)) . (3)
: 5 -

On the other hand,

U(x)nvy(h) = U, (xyav, (k) x..... xU_(X) 0V (h)

and

- -1
My (U4 (X)0V,(n)) = u(U(Xh )av, (1))

for h>0 . An easy computation shows that

13
) 293 77 (k) >0
pj(Uj(y)ﬂVj(1))- cﬁtkj)(log y) r CglRyl>Y

and therefore

w(U(X) NV, (h)) = c (k) (log v, cgk)>0 (4)

where y := . Lemma 2 follows from (3)

T

and (4).



Proof of lemma 3. It follows from the definitions.

Remark. Analogously one can prove that

-~ - 1—c7(f) N
N Fxny = but @@ av) + 0(x ) 4 cq(k)>0 ,
taking
~ - - d' 6'
U(x) = {ala = (a;,...,a), ay ER 7, Iaj|<x J,1s 3 s r}.
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Equidistribution of Frobenius classes

and the volumes of tubes

B.Z.Moroz

1. Let G be a compact Lie group that fits in an exact

sequence

1 —> T > G ——> H > 1, (1)
where T 1is an n-dimensional real torus and H 1is a finite
group. Given a countable index set P and a set of conjugacy
classes

P
{oplp € P}

in G , we are interested in the following equidistribution

problem. Let

be a map satisfying the asymptotic formula (8) below and let

A c G . For each X in ZR+ ' let
N(A,x) = card {p|p€P, opnA¢¢, lpl < %} .

One studies the asymptotics of N(A,X) as X ——> « ., Without

loss of generality we can assume that A 1s invariant under



conjugation, i.e.

t At = A for Tt € G , ' (2)
so that
N(A,x) = card {p|p€P, o5 S A, |p| s x} . (3)

The manifold G inherits the natural Riemannian structure
from T . Let u be the Haar measure on G normalised by the

condition
w(G) =1,
and suppose that A satisfies the following condition:
u(U, (38)) = O(C(A)6%) with o > 0 , | (4)

where 3A denotes the boundary of A and where UG(A) denotes

the §-neighbourhood of A , i.e. the subset
{xlx € G, Q(XIA) < 6} H (5)

here 6§ > 0 and p denotes the Riemannian metrics on G . Con-

sider now the set G of all the simple characters of G ; let vy

be an irreducible representation of G and let

w|T=diag(A1,...,A2), x=try, AjET, 1s3ysl . (6)



In view of the isomorphism

)
iy
S
-

one can choose a basis

{pj|15j5n}

n m, .
- 1] : :
we write then
[ ¢t fmg |
wix,) = (1+jm,.1),wix) = max w(x,) .
S B8 13 1sis1

Theorem 1, If A satisfies (4) and

I x(oy) = gx)B(x) + ob(x,m(x))), x € G, (8)
p E€FP

pl<x

(]

where g{(x)=1 1if x 1is the character of the identical represen-

tation and g(yx)=0 for any other character and where
y b(x,mm ° = by(x,v) < = (9)
m=1

for some v in R, then (assuming (2) and (3))

o

b,(x,v)\a+vn
A cy (B lx
ViR ) )8 () (o SR (L)) (10)




—4-
Proof. Since, by definition, p(gi,g2)=°° when J(g,)*3(g,) .
we have
therefore there is a Cm-functiOn
(06 H G—> [0'1].

satisfying the following conditions:

! wa(g)duig)=1, @ is H-invariant, wé(g)=0 for g ¢ US({1}) .
G ) .

Let £, and £_ Dbe the characteristic functions of U,(A)

and A\UG(G\A) respectively, and let
g,(8) = [ £, o,y B)duly) .
¥ c -

Then g_ € c’(G) and g, is H-invariant (since £ and L

1+

are) . Moreover,

g,(8) = [ £.(8y Dogvauly) ,
U (L1}

so that

g,.(B)20 for BEG, g _(B)=1 for BE€A, g_(B)=0 for BfA .

Thus



. =5-

) g_(cp)sN(A,x)s ) g+(cp)’. | (11)
lpl<c |p|<x

We write
g, = [.c, (x)x (12)

and substitute (8) in (12} to obtain

L g lop)=c, (0BG« [ e, () Ibx,wid)) - (13)
lpl<x x#1 7 '

It follows from (12) that
c, (1} = [ g _(8)du(g) ,
- G - .
or recalling the definition of g, f+ , and @5
ey (= [ £,(g)dulg) = n(Alau(UgGA)) .

Therefore it follows from (4) and (13) that

) g+(cp)=p(A)B(x)+0(B(x)5“C(A))+O( Lle, ) [blx,wix))) . (14)
lpl<x "~ x#1 ~

To estimate c+(x) let us suppose that yx satisfiies (7) and

{6) and write

G= U Th_, j(h ) =¥
ven Y i



Then (12) gives:
c,(x) = { du(e) § g, (ahy)XTeR)) . | (15)
- YEH._

In view of (6) ,

1
X(c!ihY) = i.z-" Ai(a)tpii(hY) .
Therefore
1
c:(x)z Z 1z=1 wiiiEY)-{- du(a)gt(ahY)liia) . (16)
Y€H

It follows from {7) and the definition of g, that (cf., e.g.,
[(2,.§ 31)

_]'du(o.)g_'_(ahY)L\ila) =o(5"vn w(li)_"‘) (17)
T z

for each v in Z NR, . A classical argument (cf., e.g.,

{7, § 8.1]) shows that, in fact,
wix) =()(w(Ai)), 1s5isl ,
for a simple character x' and that
card{xlxea, wi(x)=m} =0(1}), m €Z, m 2 1 . (18)

In view of (9), (14), (17) and (18), we conclude that



-7~

I g,(0,)=u(A)B(x)+0(B(x) 6°C(A)) +0(s™ b, (x,v)) . (19)
|pj<x” 1 '
b1(x,v) a+vn -
Taking & = (———————) one deduces (10) from (11) and (19).

B(x)

This completes the proof of Theorem 1.

Corollary 1. Assume that 34 'is contained in an analytic subset

of dimension n~-1 . Then relations (8) and (9) imply (10) with

a=1 .

Proof. By.a geometric lemma discussed in the Appendix to_this

paper,fa-compédtiaﬁdi§t§¢dséf "B~ 5f codimension--e satisfies

an estimate

(U (8)) = o(c(B)s®) .

2. Ta deécribe an arithmetical application of theorem 1 let k
be a finite extension of @ , the field of‘ratiodal numbers, and
let W(k) denote the (absolute) Weil group of k defined as a
projective limit of the relative Weil groups W(K|k) , where K
varies over all the finite Galois extensions of k (cf. [9], .-

{10]). Let us recall that
*
W(K|k) = R, X W, (K|k)

with compact W1(K|k) and that W(K|k) is defined as a group

extension

T —> Cc —> W(K|k) —> G(K|k) —> 1 ,
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where CK denotes the idéle—clasé group of . K and where
G(K|k) is the Galois group of- K over k . Let S(k) be the
set of all the prime diviéors of k , and let Ip and 9% ‘be the
inertia subgroup and the Frobenius class in W(k) for p€S(k)

Consider a finite dimensional continuous represéntation
y ¢ W(k) —> GL(V)

acting in a complex vector space V ; let
vp = {e|eev ,‘w(g)e = e for g € Ip}

be the subspace of Ip—invariant vectors and let x denote the

character of y . We define x(cp) to be equal to the trace of

P
definition does not depend on the choice of =« in op . One °

the operator w(rp) on V for TPEUP and notice that this
can show that the set
Sy(w) := {p|pes(k), vy ¥ V1

is finite and that vy factors through W(K|k) for a finite

extension K|k . We say that vy is normalised if ¢ factors

through W1(K|k) for a finite Galois extension Klk .

.Theorem 2. ILet M be a finite set of normalised (finite

dimensional continuous) representations of W(k) , let

v
M= {x|x = try for some ¢ in W} ,



=g~

and choose J9 in W(k) and e in the interval 0O<e<1 .

There is a positive constant ‘a(m:go,s) such that

card{p|p€s(k), Ix(cp)-x(go)‘<€rNk/@P<X}

X
a(m;go,e) i %3%—3 +0(x exp(-c1VIog x)), C1>0 P (20)
2
and
c, .
a(m;go,e) > c3e ’ (21)

where cj,1$js3  and the implied by the O-symbol constant

depend at most on M (but not on go,e,x)

Proof. Let Klk be a finite Galois extension such that each
¢ 1in @0 factors through W1(K|k) and let [K:k] = n+1 .

Consider the (closed) subgroup

G0 = N Ker y
yel

of W(k) and let G = W(k)/GO . It follows from the definitions

that G fits into the exact sequence (1). We let

s,(M) = U S, (y)
0 yem 0

and denote by Fp the image of the Frobenius class under the

natural homomorphism
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(0 W(k) —> G .

For pe€S(k)NS,(M) the set Ep is a conjugacy class in G .

Moreover, it can be deduced from the Hecke's Primzahlsatz, [1]

(cf. also [5, theorem 4]) that, for each x in G , we have:

d u
log u * 0lx exp(-c,

log x 1)
log wi(yx)+/log x

X
) xlo ) =g(x) [ (22)
2

Ipl<ix

with ¢, > 0 , where lpl := N qP - Let
v
B = {g|g€W(k), |x(g)-x(g ke for x € M}

and let
A = @(B) .

The set 23A may be regarded as a semialgebraic éet, therefore

it satisfies (4) with C(A) and o independent of ¢ and d9
(cf. (1%, Corollary 4.5]). Estimate (20) -follows now

from theorem 1; in view of (22). To deduce the inequality (21)

we appeal to [3, Proposition 5] (cf. also (4, p,461]' and

[6, Theorem 2, p.991).

Remark 1. Theorem 2 may be regarded as a generalization of both
Chebotarev's density theorem and the prime number theorem for
grossencharacters due to E.Hecke. It- confirms our conjecture

stated in ‘[3, p.23] and in [6, p.139-140].
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Appendix. We reproduce here an argument kindly communicated to

the author by Professor J-P.Serre in his letter of Aprii 24th, 1986
(cf. also [8, p.145]).

Lemma. Let i be a compact subset of the analytic set

¢ = {x|x eR®, £(x) = 0} ,

where £ :IRN

——> R 1s an analytic function, and let d denote

the (real) dimension of € . Then

[ dx < C{m) s for 0 < < 1. % (23)
U, (k) : '

Sketch of the proof.

It follows from the Hironaka's theorem on
resolution of singularities that

1(u) 4
h E U B 7 B - g (I ) r
POt B B
where I := [0,1] and gj is a continuous map with the Lipschitz

property, i.e.

|gj(X+y)-gj(x)|<Cj|YI , C, >0

J
Therefore
1(h)
f ax s } [ ax . (24)
U, (b) j=1 ug sy

Let



v v+1 ] _
I(v,N) = [ﬁ -l 0 s v s N=-1,
and let
B],;; = gj(I‘\’1IN)X...XI(_\deN)) ’ 3 —— (U'I""'Ud) .
Then
4.1
f dx = O ((8 + 5) )
-
UG(Bj,\))

with an O-constant depending at most on C_, , 1 s 3 s 1(h) ,

3

and therefore

n

j oaxs ) ax = om%(s + ) ) .
~Ug(By) v UG(Bj,;)
Choosing N to be equal to [%] one obtains an estimate
[ ax = o(s™7Y) . (25)
Us(Bj)

Relation (23) is a consequence of (24) and (25).

Remark 2. As it has been pointed out in [8],one should try to
prove this lemma by elementary methods making no use of the theory

of resolution of singularities.
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