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MODULI OF CUBIC SURFACES AND THEIR ANTICANONICAL

DIVISORS

PATRICIO GALLARDO AND JESUS MARTINEZ-GARCIA

Abstract. We consider the moduli space of log smooth pairs formed by a

cubic surface and an anticanonical divisor. We describe all compactifications
of this moduli space which are constructed using Geometric Invariant Theory

and the anticanonical polarization. The construction depends on a weight on

the divisor. For smaller weights the stable pairs consist of mildly singular
surfaces and very singular divisors. Conversely, a larger weight allows more

singular surfaces, but it restricts the singularities on the divisor.

1. Introduction

The moduli space of (marked) cubic surfaces is a classic space in algebraic ge-
ometry. Indeed, its GIT compactification was first described by Hilbert in 1893
[13], and several alternative compactifications have followed it (see [14, 16, 12]).
In this article, we enrich this moduli problem by parametrizing pairs (S,D) where
S ⊂ P3 is a cubic surface, and D ∈ | − KS | is an anticanonical divisor. There
are several motivations for our construction. Firstly, it was recently established
that the GIT compactification of cubic surfaces corresponds to the moduli space
of K-stable del Pezzo surfaces of degree three [17]. The concept of K-stability
has a natural generalization to log-K-stability for pairs, and our GIT quotients are
the natural candidates for compactifications of log K-stable pairs of cubic surfaces
and their anticanonical divisors. Therefore, our description is a first step toward a
generalization of [17]. Secondly, a precise description of the GIT of cubic surfaces
is important for describing the complex hyperbolic geometry of the moduli of cu-
bic surfaces, and constructing new examples of ball quotients (see [1]). We expect
similar applications for our GIT quotients.

The GIT quotients considered depend on a choice of a linearization Lt of the
parameter space H of cubic forms and linear forms in P3. We have that H ∼=
P19×P3. Although Pic(P19×P3) ∼= Z〈a〉⊕Z〈b〉, it can be shown that the different
GIT quotients arising by picking different polarizations of H are controlled by the
parameter t = b

a ∈ Q>0 (see Section 2 for a thorough treatment). For each value of

t, there is a GIT compactification M(t) of the moduli space of pairs (S,D) where
S is a cubic surface and D ∈ |−KS | is an anticanonical divisor. It follows from the
general theory of variations of GIT (see [19, 5], c.f. [10, Theorem 1.1]) that 0 6 t 6 1
and that there are only finitely many different GIT quotients associated to t. Indeed,
there is a set of chambers (ti, ti+1) where the GIT quotients M(t) are isomorphic
for all t ∈ (ti, ti+1), and there are finitely many GIT walls t1, . . . , tk where the

GIT quotient is a birational modification of M(t) where 0 < |t − ti| < ε � 1.
Additionally there are an initial and end walls t0 = 0 and tk+1 = 1.
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Lemma 1.1. The GIT walls are

t0 = 0, t1 =
1

5
, t2 =

1

3
, t3 =

3

7
, t4 =

5

9
, t5 =

9

13
, t6 = 1.

Given t ∈ Q>0, a pair (S,D) is t-stable (respectively t-semistable) if it is t-stable
(respectively t-semistable) under the SL(4,C)-action. A pair is strictly t-semistable
if it is t-semistable but not t-stable. The space M(t) parametrizes t-stable pairs

and M(t) parametrizes closed strictly t-semistable orbits.
The GIT walls can be interpreted geometrically as follows. Let T be one of

the possible isolated singularities in a cubic surface (see Proposition 3.1), let w(T )
be the sum of its associated weights (see Definition 3.4). For example, the set

of weights for the An singularity is
(

1
2 ,

1
2 ,

1
n+1

)
and w(An) = n+2

n+1 . We define

Wall(T ) := 4
w(T ) − 3.

Theorem 1.2. There are 13 non-isomorphic GIT quotients M(t). Seven of these
quotients correspond to the walls ti in Lemma 1.1 and they can be recovered as
ti = Wall(T ) for some isolated ADE singularity T in some irreducible cubic surface:

t0 = Wall(A2) = 0, t1 = Wall(A3) =
1

5
, t2 = Wall(A4) =

1

3

t3 = Wall(A5) = Wall(D4) =
3

7
, t4 = Wall(D5) =

5

9

t5 = Wall(E6) =
9

13
, t6 = Wall(Ẽ6) = 1.

the other six GIT quotients M(t) corresponding to linearizations t ∈ (ti, ti+1),

i = 1, . . . , 6. All the points in M(t0) and M(t6) correspond to strictly semi-stable

pairs, while all other M(t) with t ∈ (0, 1) have stable points. The GIT quotient is
empty for any t 6∈ [0, 1].

The quotient M(0) is isomorphic to the GIT of cubic surfaces and the quotient

M(1) is the GIT of plane cubic curves (see [10, Lemma 4.1]). These spaces are
classical and have been thoroughly studied (see [15]). Henceforth focus on the case
t ∈ (0, 1).

The next theorem gives a full of classification of t-stable pairs (S,D) appearing
in M(t). A nice feature of M(t) is that for each t ∈ (0, 1) and each t-stable pair
(S,D), the surface S has isolated ADE singularities. Table 1 gives a summary
of the t-stable pairs (S,D) for each t in terms of their worst singularities and
the intersection of the components of D. See Definition 3.2 and Figure 2 for the
notion of worst singularity. See Table 2 to reinterpret D in the language of ADE
singularities.

Theorem 1.3. Consider a pair (S,D) formed by a cubic surface S and a hyperplane
section D ∈ | −KS |.

(i) Let t ∈ (0, 15 ). The pair (S,D) is t-stable if and only if S has finitely many
singularities at worst of type A2 and if P ∈ D is a surface singularity, then
P is at worst an A1 singularity of S.

(ii) Let t = 1
5 . The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A2, D is reduced, and if P ∈ D is a surface
singularity, then P is at worst an A1 singularity of S.
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t (0, 15 ) 1
5 ( 1

5 ,
1
3 ) 1

3

Sing(S) A2 A2 A3 A3

Sing(D) on smooth
or A1 ∈ S

isolated on
smooth or
A1 ∈ S

isolated on
smooth or
A1 ∈ S

isolated or
cuspidal at
A1 ∈ S

t ( 1
3 ,

3
7 ) 3

7 ( 3
7 ,

5
9 ) 5

9

Sing(S) A4 A4 A5, D4 A5, D4

Sing(D) isolated or
cuspidal at
A1 ∈ S

tacnodal
or normal
crossings at
A1 ∈ S

tacnodal
or normal
crossings at
A1 ∈ S

cuspidal
or normal
crossings at
A1 ∈ S

t ( 5
9 ,

9
13 ) 9

13 ( 9
13 , 1)

Sing(S) A5, D5 A5, D5 E6

Sing(D) cuspidal
or normal
crossings at
A1 ∈ S

normal
crossings
on smooth
or A1 ∈ S

normal
crossings
on smooth
or A1 ∈ S

Table 1. Worst singularities possible in a t-stable pair (S,D) for
each t ∈ (0, 1).

(iii) Let t ∈ ( 1
5 ,

1
3 ). The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A3, D is reduced and if P ∈ D is a surface
singularity, then P is at worst an A1 singularity of S.

(iv) Let t = 1
3 . The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A3, D is reduced and if P ∈ D is a surface
singularity, then P is at worst an A1 singularity of S and D has at worst a
cuspidal singularity at P .

(v) Let t ∈ ( 1
3 ,

3
7 ). The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A4, D is reduced and if P ∈ D is a surface
singularity, then P is at worst an A1 singularity of S and D has at worst a
normal crossing singularity at P .

(vi) Let t = 3
7 . The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A4, D has at worst a tacnodal singularity and
if P ∈ D is a surface singularity, then P is at worst an A1 singularity of S
and D has at worst a normal crossing singularity at P .

(vii) Let t ∈ ( 3
7 ,

5
9 ). The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A5 or D4, D has at worst a tacnodal singularity
and if P ∈ D is a surface singularity, then P is at worst an A1 singularity of
S and D has at worst a normal crossing singularity at P .

(viii) Let t = 5
9 . The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A5 or D4, D has at worst an A2 singularity
and if P ∈ D is a surface singularity, then P is at worst an A1 singularity of
S and D has at worst a normal crossing singularity at P .
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Figure 1. Pairs in M(t) \M(t) for each t ∈ (0, 1). The dotted
lines represent the divisor D. The bold points are singularities of
the surface.

(ix) Let t ∈ ( 5
9 ,

9
13 ). The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A5 or D5, D has at worst a cuspidal singularity
and if P ∈ D is a surface singularity, then P is at worst an A1 singularity of
S and D has at worst a normal crossing singularity at P .

(x) Let t = 9
13 . The pair (S,D) is t-stable if and only if S has finitely many

singularities at worst of type A5 or D5, D has at worst normal crossing
singularities and if P ∈ D is a surface singularity, then P is at worst an A1

singularity of S.
(xi) Let t ∈ ( 9

13 , 1). The pair (S,D) is t-stable if and only if S has finitely many
ADE singularities, D has at worst normal crossing singularities and if P ∈ D
is a surface singularity, then P is at worst an A1 singularity of S.

Our last theorem gives a full of classification of the pairs (S,D) associated to

each of the unique closed orbits in M(t) \M(t) for each t ∈ (0, 1). Figure 1 gives
sketches of each of these pairs. Recall that an Eckardt point of a cubic surface S is
a point where three coplanar lines of S intersect.

Theorem 1.4. Let t ∈ (0, 1). If t 6= ti, then M(t) is the compactification of
the stable loci M(t) by the closed SL(4,C)-orbit in M(t) \M(t) represented by the
pair (S0, D0), where S0 is the unique C∗-invariant cubic surface with three A2

singularities and D0 is the union of the unique three lines in S0, each of them
passing through two of those singularities.

If t = ti, i = 1, 2, 4, 5, then M(ti) is the compactification of the stable loci M(ti)
by the two closed SL(4,C)-orbits in M(ti)\M(ti) represented by the uniquely defined
pair (S0, D0) described above and the C∗-invariant pair (Si, Di) uniquely defined as
follows:

(i) the cubic surface S1 with an A3 singularity and two A1 singularities and the
divisor D1 = 2L+L′ ∈ |−KS | where L and L′ are lines such that L is the line
containing both A1 singularities and L′ is the only line in S not containing
any singularities;

(ii) the cubic surface S2 with an A4 singularity and an A1 singularity and the
divisor D2 ∈ | −KS | which is a tacnodal curve singular at the A1 singularity
of S;

(iii) the cubic surface S4 with a D5 singularity and the divisor D4 ∈ |−KS | which
is a tacnodal curve whose support does not contain the surface singularity;

(iv) the cubic surface S5 with an E6 singularity and the cuspidal rational curve
D5 ∈ | −KS | whose support does not contain the surface singularity.
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The space M(t3) is the compactification of the stable loci M(t3) by the three closed
SL(4,C)-orbits in M(t3) \ M(t3) represented by the C∗-invariant pairs uniquely
defined as follows:

(i) the pair (S0, D0) described above;
(ii) the pair (S3, D3) where S3 is the cubic surface with a D4 singularity and and

Eckardt point and D3 consists of the unique three coplanar lines intersecting
at the Eckardt point;

(iii) the pair (S′3, D
′
3) where S′3 is the cubic surface with an A5 and an A1 singu-

larity and the divisor D′3 which is an irreducible curve with a cuspidal point
at the A1 singularity of S′3.

Notation used and structure of the article. Throughout the article a pair
(S,D) consists of a cubic surface S ⊂ P3

C and an anticanonical section D ∈ | −
KS | ∼= P(H0(S,OS(1))) Hence, D = S ∩H in the case for some hyperplane H =
{l(x0, . . . , x3) = 0} ⊂ P3

C. Whenever we consider a parameter t ∈ (ti, ti+1) we
implicitly mean t ∈ (ti, ti+1) ∩Q.

In Section 2 we describe in detail the GIT setting we consider. We introduce
the required singularity theory in Section 3. GIT-stability depends on a finite list
of geometric configurations characterized in Section 4. We prove Theorem 1.3 in
Section 5. We prove Theorems 1.2 and 1.4 in Section 5.

Acknowledgments. Our article does an extensive use of J.W. Bruce and C.T.C.
Wall’s elegant classification of singular cubic surfaces [4] in the modern language
of Arnold. We thank R. Laza for useful discussions. P. Gallardo is supported by
the NSF grant DMS-1344994 of the RTG in Algebra, Algebraic Geometry, and
Number Theory, at the University of Georgia. This work was completed at the
Hausdorff Research Institute for Mathematics (HIM) during a visit by the authors
as part of the Research in Groups project Moduli spaces of log del Pezzo pairs and
K-stability. We thank HIM for their generous support and Cristiano Spotti, for
useful discussions and working together with us in upcoming applications of this
article. The final version of the article was completed while the second author was
a visitor of the Max Planck Institute for Mathematics in Bonn. He thanks MPIM
for their generous support.

Our results use some computations done via software. The computational results
are summarized in Appendix A. The computations, together with full source code
written in Python can be found in [11]. The code is based on the theory developed
in our previous article [10] and a rough idea of the algorithm can be found there.
More detailed algorithms will appear in [9]. The source code and data, but not the
text of this article, are released under a Creative Commons CC BY-SA 4.0 license.
See [11] for details. If you make use of the source code and/or data in an academic
or commercial context, you should acknowledge this by including a reference or
citation to [10] —in the case of the code— or to this article —in the case of the
data.

2. GIT set up and Computational Methods

In this section, we briefly describe the GIT setting for constructing our compact
moduli spaces. We refer the reader to [10] where the problem is thoroughly discussed
and solved for pairs formed by a hyperplane and a hypersurface of Pn+1 of a fixed
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degree. Our GIT quotients are given by

M

(
b

a

)
:=
(
P(H0(P3,OP3(3)))× P(H0(P3,OP3(1)))

)ss//
O(a,b)

SL(4,C)

and they depend only of one parameter t := b
a ∈ Q>0. The use of GIT requires three

initial combinatorial steps which are computed with the algorithm [9] implemented
in [11]. The first step is to find a set of candidate GIT walls which includes all GIT
walls (see [10, Theorem 1.1]). Some of these walls may be redundant and they are
removed by comparing if there is any geometric change to the t-(semi)stable pairs
(S,D) for t = ti ± ε for 0 < ε� 1. The set of candidate GIT walls is precisely the
one in Lemma 1.1 and once Theorem 1.4 is proven this proves Lemma 1.1.

The second step (see [10, Lemma 3.2]) is to find the finite set S2,3 of one-
parameter subgroups that determine the t-stability of all pairs (S,D) for all t.
For convenience, given a one-parameter subgroup λ = Diag(r0, . . . , r3), we define
its dual one as λ = Diag(−r3, . . . ,−r0).

Lemma 2.1. The elements S2,3 are λk and λk where λk is one of the following:

λ1 = Diag(1, 0, 0,−1) λ2 = Diag(2, 0,−1,−1) λ3 = Diag(5, 1,−3,−3)

λ4 = Diag(13, 1,−3,−11) λ5 = Diag(3, 1,−1,−3) λ6 = Diag(9, 1,−3,−7)

λ7 = Diag(5, 5,−3,−7) λ8 = Diag(1, 1, 1,−3) λ9 = Diag(5, 1, 1,−7)

λ10 = Diag(1, 1,−1,−1)

Let Ξk be the set of all monomials in four variables of degree k. Let g ∈ SL(4,C).
Suppose g · S is given by the vanishing locus of a homogeneous polynomial F
of degree 3 and g · D is given by the vanishing locus of F and a homogeneous
polynomial l of degree 1. We say that F and l are associated to the pair (S,D).
Let λ = Diag(r0, . . . , r3). Denote by S ⊆ Ξ3 and D ⊆ Ξ1 the monomials with
non-zero coefficients in F and l, respectively. There is a natural pairing pairing
〈v, λ〉 ∈ Z for any v ∈ Ξk. We define

µt(g · S, g ·D,λ) := min
v∈S
〈v, λ〉+ t min

xi∈D
〈xi, λ〉.

Lemma 2.2 (Hilbert-Mumford Criterion, see [10, Lemma 3.2]). A pair (S,D),
where D = S ∩H is not t-stable if and only if there is g ∈ SLn satisfying

µt(S,D) = max
λ∈S2,3

{µt(g · S, g ·D,λ)} > 0.

Given t ∈ (0, 1), and λ ∈ S2,3 and i ∈ {0, . . . , 3}, the next step is to find the
pairs of sets N⊕t (λ, xi) :=

(
V ⊕t (λ, xi), B

⊕(xi)
)

defined as:

V ⊕t (λ, xi) = {v ∈ Ξd | 〈v, λ〉+ t〈xi, λ〉 > 0},(2.1)

B⊕(xi) = {xk ∈ Ξ1 | k 6 i}

which are maximal with respect to the containment order. For convenience, we
list them in the Appendix (see Lemma A.1).

Theorem 2.3 ([10, Theorem 1.4]). Let t ∈ (0, 1). A pair (S, S ∩H) is not t-stable
if and only if there exists g ∈ SL(4,C) such that the set of monomials associated to
(g · S, g ·H) is contained in a pair of sets N⊕t (λ, xi) as given in Lemma A.1.
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Given N⊕t (λ, x), define N0
t (λ, xi) :=

(
V 0
t (λ, xi), B

0(xi)
)

(see [10, Prop. 5.3])

where V 0
t (λ, xi)×B0(xi) is equal to

(2.2) {(v,m) ∈ V ⊕t (λ, xi)×B⊕(xi) | 〈v, λ〉+ t〈m,λ〉 = 0}.

Theorem 2.4 ([10, Theorem 1.6]). Let t ∈ (0, 1). If a pair (S, S ∩H) belongs to
a closed strictly t-semistable orbit, then there exist g ∈ SL(4,C), λ ∈ S2,3 and xi
such that the set of monomials associated to (g · S, g ·D) corresponds to those in a
pair of sets N0

t (λ, xi) as given in Lemma A.2.

3. Preliminaries in singularity theory

We recall the admissible singularities in normal cubic surfaces (see also [6, Section
9.2.2]).

Propositon 3.1 ([4] ). Let X be an irreducible and reduced cubic surface and p ∈ X
be an isolated singular point. Then, the singularity at p is either a singularity of

type Ak, Dk with k ≤ 5, E6, or a simple elliptic singularity of type Ẽ6.

Definition 3.2 ([3, p.88]). A class of singularities T2 is adjacent to a class T1, and
one writes T1 ← T2 if every germ of f ∈ T2 can be locally deformed into a germ
in T1 by an arbitrary small deformation. We say that the singularity T2 is worse
than T1; or that T2 is a degeneration of T1.

The degenerations of the isolated singularities that appear in a cubic surface (or
in their anticanonical divisors, which are plane cubic curves) are described in Figure
2 (for details see [3, p. 88] and [2, §13]). The above theory considers only local

A1 A2
oo A3

oo A4
oo A5

oo

D4

OO

D5
oo

OO

E6
oo

OO

Ẽ6
oo

Figure 2. Degeneration of germs of isolated singularities appear-
ing in cubic surfaces.

deformations of singularities. When we study degenerations in the GIT quotient
we are interested in global deformations.

Lemma 3.3 ([18, Theorem 1]). Let V (T1, . . . Tr) be the set of cubic hypersurfaces
in Pn for n 6 3 with r isolated singular points of types T1, . . . Tr. The germ of the
linear system |OP3(3)| at any X ∈ V (T1, . . . Tr) is a joint versal deformation of all
singular points of X if

∑r
i=1 µ(Ti) ≤ 9 where µ(Ti) is the Milnor number of Ti.

Recall that µ(Ak) = k, µ(Dk) = k and µ(E6) = 6. By checking carefully how
these singularities appear together in each cubic surface (see [4, p. 255]) we conclude
that

∑r
i=1 µ(Ti) 6 6 for all cubic surfaces with ADE singularities. Furthermore,

by looking at Table 2, we see that
∑r
i=1 µ(Ti) 6 4 for any plane cubic curve with

isolated singularities . Hence, Lemma 3.3 implies that for cubic plane curves and
cubic surfaces, any local deformation of isolated singularities is induced by a global
deformation.
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Definition 3.4 ([4]). A polynomial F in n+1 variables is semi-quasi-homogeneous
(SQH) with respect to the weights (w1, w2, . . . , wn) if all the monomials of F have
weight larger or equal than 1 and those monomials of weight 1 define a function
with an isolated singularity. In particular, the weights associated to the ADE
singularities Ak, Dk and E6 are(

1

2
, . . . ,

1

2
,

1

k + 1

)
,

(
1

2
, . . . ,

1

2
,

(k − 2)

2(k − 1)
,

1

k − 1

)
,

(
1

2
, . . . ,

1

2
,

1

3
,

1

4

)
,

respectively. Furthermore, the weight of Ẽ6 is
(
1
2 , . . . ,

1
2 ,

1
3 ,

1
3 ,

1
3

)
. These weights

are uniquely associated to their respective singularity.

Non-singular -

Nodal cubic A1

Cuspidal cubic A2

Line and conic intersecting at a tacnode A3

Line and conic intersecting in two points 2A1

Three lines intersecting in three points 3A1

Three lines intersecting at a point D4

Table 2. Plane cubic curves and their singularities

Lemma 3.5 ([4, p. 246]). If F (x0, x1, x2) is SQH with respect to one of the sets
of weights in Definition 3.4 we can, by a locally analytic change of coordinates,
reduce the terms of weight 1 to the normal forms for Ak, Dk, E6, which are locally
analytically isomorphic to the following surface singularities:

Ak : xk+1
1 + x22 + x23 (k > 1), Dk : xk−11 + x1x

2
2 + x23 (k > 4),

E6 : x31 + x42 + x23, Ẽ6 : x31 + x32 + x33 + 3λx1x2x3, λ
3 6= −1.

and the resulting function will remain SQH.

Reduced plane cubic curves are completely characterized according to the num-
ber and type of their ADE singularities (see Table 2).

4. Geometric characterization of pairs

In this section we relate the classifications of pairs in terms of singularity theory
and the equations defining them. We have divided our lemmas in four groups:
classification of singular cubic surfaces, classification of pairs (S,D) with singular
boundary D, classification of pairs (S,D) where S is singular at a point P ∈
D and classification of pairs (S,D) invariant under a C∗-action. We will denote
homogenous polynomials of degree d in n+ 1 variables as fd(x0, . . . , xn), gd, etc.

Singular cubic surfaces.

Lemma 4.1 ([4, Lemma 3]). Let F = x0x1x3 + f3(x0, x1, x2), P = (0, 0, 0, 1),
Q = (0, 0, 1, 0), H = {x3 = 0} ∼= P2

(x0,x1,x2)
and Hi = {xi = x3 = 0} ⊂ H for

i = 0, 1.
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(1) The singularities of {F = 0} other than that at P correspond to the inter-
section of C = {x0x1 = 0} ⊂ H and C ′ = {f3 = 0} at points R other than
Q. Indeed, if multR(C · C ′) = k, then R is an Ak−1 singularity.

(2) If f3(0, 0, 1) 6= 0, then P is an A2 singularity. Let ki = multQ(Hi · C ′). If
both k0 and k1 are both at least 2, then {F = 0} has non-isolated singulari-
ties. Otherwise P is an Ak0+k1+1 singularity for {k0, k1} = {1, 1}, {1, 2}, {1, 3}.

Lemma 4.2. A pair (S,D) has an A2 singularity at a point P ∈ D or a degener-
ation of one if and only if P is conjugate to (0, 0, 0, 1) and simultaneously (S,D) is
conjugate by Aut(P3) to the pair defined by equations

x3f2(x0, x1) + f3(x0, x1, x2) = 0, l1(x0, x1, x2) = 0.

Proof. Without loss of generality, we may assume P = (0, 0, 0, 1). By Lemma 4.1,
S has (a degeneration of) an A2 singularity at P if and only if it is given by the
equation x0x1x3 +f3(x0, x1, x2) = 0. Any quadric f2(x0, x1) can be transformed to
x0x1 or to a degeneration of x0x1 (e.g. x20) by a change of coordinates preserving
x2 and x3. The lemma follows because a hyperplane section D contains P if and
only if D is given by a linear form l1(x0, x1, x2). �

Lemma 4.3. A surface S has an A3 singularity or a degeneration of one if and
only if it is conjugate by Aut(P3) to:

{x3f2(x0, x1) + x22f1(x0, x1) + x2g2(x0, x1) + g3(x0, x1) = 0}.
Proof. By Lemma 4.1, we may assume S = {x0x1x2 + f3(x0, x1, x2) = 0} and
P = (0, 0, 0, 1). Moreover, the singularity is of type Ak with k > 3 if and only if
f3(0, 0, 1) = 0. Therefore f3(x0, x1, x2) = x22f1(x0, x1) + x2g2(x0, x1) + g3(x0, x1).

�

Lemma 4.4. A surface S has an A4 singularity or a degeneration of one if and
only if it is conjugate by Aut(P3) to

{x3x0l1(x0, x1) + x0x
2
2 + x2g2(x0, x1) + g3(x0, x1) = 0}.

Proof. By Lemma 4.1, the surface S is defined by the equation x0x1x3+f3(x0, x1, x2) =
0 where f3(x0x1x2) = x22f1(x0, x1) + x2g2(x0, x1) + g3(x0, x1) and k0 = multQ(H0 ·
C ′) > 2 and k1 = multQ(H1 ·C ′) > 1 if and only if P is (a degeneration of) an A4

singularity. Notice that

ki = multQ(Hi · C ′) = dimC

(
C[x0, x1]

〈xi, f1 + g2 + g3〉

)
.

Therefore k0 > 2 if and only if f1(0, 1) = 0. Hence, f1 = x0. The lemma follows
from noticing that x0x1x3 is conjugate to x0x3l1(x0, x1) by an element of Aut(P3)
fixing x0, x2, x3. �

Lemma 4.5. A surface S has an A5 singularity or a degeneration of one if and
only if it is conjugate by Aut(P3) to

{x3x0l1(x0, x1) + x0x2f1(x0, x1, x2) + f3(x0, x1) = 0}.
Proof. As for Lemma 4.4, we may use Lemma 4.1 to assume that S is defined by
x0x1x3 + x22f1(x0, x1) + x2g2(x0, x1) + g3(x0, x1) = 0 and P = (0, 0, 0, 1) is an A5

singularity if and only if

k0 = multQ(Hi · C ′) = dim

(
C[x0, x1]

〈x0, f1 + g2g3〉

)
> 3,
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or equivalently f1(0, 1) = 0 and g2(0, 1) = 0. Likewise, f1 = ax0 and g2 = b0x
2
0 +

b1x0x1 and regrouping terms the proof follows. �

In Figure 2 we see that the only non-trivial degenerations of a D4 singularity in
a cubic surface which are not a Ẽ6 singularity are D5 and E6 singularities. Hence
the next lemma follows at once from [4, Case C].

Lemma 4.6. A surface S has a D4 singularity or a degeneration of one if and
only if it is conjugate by Aut(P3) to {x3x20 + f3(x0, x1, x2) = 0}.

Lemma 4.7. A surface S has a D5 singularity or a degeneration of one if and
only if it is conjugate by Aut(P3) to

{f3(x0, x1) + x2g2(x0, x1) + x0x
2
2 + x20x3 = 0}.

Proof. By Lemma 4.6 and Figure 2, we may assume that S is given by x3x
2
0 +

f3(x0, x1, x2) since D5 is a degeneration of D4. Let H = {x3 = 0} and C =
{x3 = f3(x0, x1, x2) = 0} ⊂ H and C ′ = {x3 = x0 = 0} ⊂ H. We can rewrite
f3 = x22g1(x0, x1) + x2g2(x0, x1) + g3(x0, x1). By [4, Lemma 4], the point P =
(0, 0, 0, 1) is (a degeneration of) a D5 singularity if and only if C ∩ C ′ consist of
at most two points. The equation of S ∩ H ⊂ H localized at Q = (0, 0, 1, 0) is
g1(x0, x1) + g2(x0, x1) + g3(x0, x1) = 0, and C ∩C ′ intersects in at most two points
if and only if

dimQ

(
C[x0, x1]

〈x0, g1 + g2 + g3〉

)
> 2.

The latter is equivalent to take g1 = ax0, which by rescaling x2 gives the result. �

Lemma 4.8. A surface S has a E6 singularity or a degeneration of one if and
only if it is conjugate by Aut(P3) to

{x3x20 + x0x2l1(x0, x1, x2) + f3(x0, x1) = 0}.

Proof. Using the same notation as in Lemma 4.7 and following [4, Lemma 4], S is
defined by x3x

2
0 + x22g1(x0, x1) + x2g2(x0, x1) + g3(x0, x1) = 0, and has (a degener-

ation of) an E6 singularity if and only if

dimC

(
C[x0, x1]

〈x0, g1 + g2 + g3〉

)
> 3.

The latter is equivalent to take g1 = x0 and g2 = x0l1(x0, x1). �

Lemma 4.9 (see [4, Case E]). A surface S has an isolated Ẽ6 singularity if and
only if S is the cone over a smooth plane cubic curve given by f3(x0, x1, x2) = 0.

By Serre’s criterion, any hypersurface of dimension 2 is non-normal if and only
if it has non-isolated singularities, which are classified in [4, Case E]:

Lemma 4.10. Any irreducible non-normal cubic surface is conjugated by Aut(P3)
to

{x3f2(x0, x1) + f3(x0, x1) + x2g2(x0, x1) = 0}.

Lemma 4.11. A surface S is reducible if and only if it is conjugate by Aut(P3) to

{x0f2(x0, x1, x2, x3) = 0}.
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Pairs with singular boundary. Consider a pair (S,D) and a point P ∈ D ⊂ S.
By choosing coordinates appropriately we can suppose that P = (0, 0, 0, 1) and
(S,D) = ((F = 0), (F = H = 0)) for F and H given as

F = x0f2(x0, x1, x2, x3) + x23f1(x1, x2) + x3g2(x1, x2) + f3(x1, x2),(4.1)

H = x0

Lemma 4.12. A pair (S,D) has D with an A2 singularity at a point P or a
degeneration of one if and only if (S,D) is conjugate by Aut(P3) to the pair defined
by equations:

x0f2(x0, x1, x2, x3) + x3x
2
1 + f3(x1, x2) = 0, x0 = 0.(4.2)

Proof. Without loss of generality we can suppose (S,D) given by (4.1). The equa-
tion of (a degeneration of) a plane cubic curve in (x0 = 0) with an A2 singularity
at P is given by x21x3 + f3(x1, x2) = 0, where the curve has an A2 singularity at P
if and only if x32 has a non-zero coefficient in f3. Therefore D is as in the statement
if and only if in (4.1) we take f1 = 0 and g2 = x21. �

Lemma 4.13. A pair (S,D) has D with an A3 singularity at P or a degeneration
of one if and only if (S,D) is conjugate by Aut(P3) to the pair defined by equations:

x0f2(x0, x1, x2, x3) + x1(x22 + x1l1(x1, x2, x3)) = 0, x0 = 0.

Proof. We may assume that the equations of (S,D) are as in (4.1) and P =
(0, 0, 0, 1). By restricting to {x0 = 0} ∼= P2 and localizing at P , the equation
for D is f1(x1, x2) + g2(x1, x2) + f3(x1, x2) and by choosing coordinates appropri-
ately we may assume that L = {x1 = 0} and C = {x22 +x1l1(x1, x2) = 0} are a line
and a conic intersecting at P , where l is a polynomial of degree 1, not necessarily
homogeneous. Therefore D|x0=0 has equation x1(x22 + x1l1(x1, x2, x3)) so f1 ≡ 0,
g2 ≡ ax21, f3 = x1x

2
2 + x1l1(x1, x2, 0) and the result follows. �

Lemma 4.14. A pair (S,D) has D with a D4 singularity at P or a degeneration
of one if and only if (S,D) is conjugate by Aut(P3) to the pair defined by equations:

x0f2(x0, x1, x2, x3) + f3(x1, x2) = 0, x0 = 0.

Proof. We may assume that the equations of (S,D) are given as in (4.1). A plane
cubic curve as in the statement is given by a homogeneous polynomial f3(x1, x2)
in P2

(x1,x2,x3)
∼= {x0 = 0}. By comparing with (4.1), this is equivalent to have

f1 = g2 ≡ 0. �

Lemma 4.15. A pair (S,D) has D non-reduced if and only if it is conjugate by
Aut(P3) to the pair defined by equations:

x0f2(x0, x1, x2, x3) + x21f1(x1, x2, x3) = 0, x0 = 0.

Proof. The result follows from (4.1) by noting that any two distinct lines in P2 are
projectively equivalent to any other two lines. �

Lemma 4.16. A pair (S,D) has D = L + C where L is a line and C is a conic
such that 3L ∈ | −KS | if and only if it is conjugate by Aut(P3) to the pair defined
by equations:

x0f2(x0, x1, x2, x3) + ax31 = 0, l1(x0, x1) = 0.
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where L and 3L are conjugated to {x0 = x1 = 0} and = {x0 = 0}|S, respectively.
This surface has a point Q ∈ L ⊂ Supp(D) such that S has a singularity at Q
which is not of type A1.

Proof. Suppose (S,D) as in the statement. Without loss of generality, we may
suppose that the equation of S is as in (4.1), D = {x0 + bx1 = 0} and let D′ :=
{x0 = 0}. Clearly L ⊂ Supp(D′) ∩ Supp(D) and D = D′ if and only if b = 0.
In this case, the equation of D = D′ in {x0 = 0} ∼= P2 is given by x23f1(x1, x2) +
x3g2(x1, x2) + f3(x1, x2) = 0 and 3L ∈ | − KS | if and only if f1 = g2 ≡ 0 and
f3 = ax31. If b 6= 0, then x1 = −x0

b . Take x0 = 0 in (4.1). The equation of

D′ = {x0 = 0}|S is x23f1 + x3g2 + f3 = 0 and D′ ≡ 3L if and only if f1 = g2 = 0
and f3 = x31. But then, the equation of D in {x0 + bx1 = 0} is x1(bf2 + x21) and
C = {bf2 + x21 = x0 + bx1 = 0}. It is a well known fact that the line L contains a
point Q at which S is singular and Q is not of type A1 (see [15, p. 227]). �

Pairs (S,D) where S is singular at a point P ∈ D.

Lemma 4.17 (see [4, Section 2, pp. 247–252]). Let S be a surface with a singularity
at P = (0, 0, 0, 1). Then, the equation of S can be written as

F = x3f2(x0, x1, x2) + f3(x0, x1, x2).

Lemma 4.18. Given a pair (S,D), S is singular at a point P ∈ D and D is an
A2 singularity at P or a degeneration of one if and only if (S,D) is conjugate by
Aut(P3) to the pair defined by equations:

x3x0l1(x0, x1, x2) + x3x
2
1 + f3(x1, x2) + x0f2(x0, x1, x2) = 0, x0 = 0.(4.3)

Proof. Without loss of generality we can assume P = (0, 0, 0, 1). From Lemma
4.17, the equation of S is

x3h2(x0, x1, x2) + h3(x0, x1, x2) =

= a0x3x
2
1 + x0f2(x0, x1, x2) + f3(x1, x2) + x1x3g1(x0, x2) + x3g2(x0, x2).

By comparing with the equation in Lemma 4.12, D has (a degeneration of) an A2

singularity at P if and only if g1(x0, x2) = ax0 and g2(x0, x2) = bx20 + cx0x2. The
lemma follows. �

Lemma 4.19. Given a pair (S,D), S is singular at a point P ∈ D and D has an
A3 singularity at P or a degeneration of one if and only if (S,D) is conjugate by
Aut(P3) to the pair defined by equations:

x20l1(x0, x1, x2, x3) + x0f2(x1, x2) + x0x3g1(x1, x2) + x21h1(x1, x2, x3) + x1x
2
2 = 0,

x0 = 0.

Proof. Without loss of generality we can assume P = (0, 0, 0, 1). From Lemma
4.17, the equation of S is

x3h2(x0, x1, x2) + h3(x0, x1, x2) =

= a0x3x
2
0 + x0x3g1(x1, x2) + x3g2(x1, x2) + q3(x1, x2) + x0q2(x0, x1, x2).

By comparing with the equation in Lemma 4.13, D is (a degeneration of) an A3

singularity at P if and only if g2(x1, x2) = a0x
2
1 and q3(x1, x2) = a1x

3
1 + a2x

2
1x2 +

a3x
2
1x2. Hence, after rescaling x1, the equation of S is

a0x3x
2
0 + x0x3g1(x1, x2) + a0x

2
1x3 + a1x

3
1 + a2x

2
1x2 + a3x1x

2
2 + x0q2(x0, x1, x2)
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which is equal to

x20l1(x0, x1, x2, x3) + x0f2(x1, x2) + x0x3g1(x1, x2) + x21q1(x1, x2, x3) + x1x
2
2.

�

Pairs (S,D) invariant under a C∗-action.

Lemma 4.20. Let (S,D) be a pair which is invariant under a non-trivial C∗-
action. Suppose the singularities of S and D are given as in the first and second
columns of Table 3, respectively. Then (S,D) is conjugate by Aut(P3) to ({F =
0}, {F = H = 0}) for F and H as in the third and fourth columnns in Table 3,
respectively. In particular, any such pair (S,D) is unique. Conversely, if (S,D)
is given by equations as in the third and fourth columns of Table 3, then (S,D)
has singularities as in the first and second columns of Table 3 and (S,D) is C∗-
invariant. Furthermore the element λ ∈ SL(4,C∗), as defined in Lemma 2.1, given
in the fifth column of Table 3 is a generator of the C∗-action.

Sing(S) Sing(D) F H λ

Pi = A2,
i = 1, 2, 3

A1 at each Pi x0x1x3 + x32 x2 λ2

P = A3,
Q1 = A1,
Q2 = A1

D = 2L + L′,
Q1, Q2 ∈ L,
Sing(S) ∩ L′ = ∅

x0x1x3 + x1x
2
2 + x0x

2
2 x3 λ3

P = A4,
Q = A1

A3 at Q x0x1x3 + x0x
2
2 + x21x2 x3 λ5

P = A5,
Q = A1

A2 at Q x0x
2
2 + x0x1x3 + x31 x3 λ6

P = D4 D4 not at P x20x3 + x31 + x32 x3 λ9

P = D5 A3 not at P x20x3 + x0x
2
2 + x21x2 x3 λ6

P = E6 A2 not at P x20x3 + x0x
2
2 + x31 x3 λ4

Table 3. Some pairs (S,D) invariant under a C∗-action.

Proof. There is a unique surface S with three A2 singularities [4, p. 255] which
corresponds to the equation in Table 3. When a surface S has singularities A4+A1,
A5 +A1, D4, D5 or E6, and a C∗-action, the equation for F follows from [8, Table
3]. If S has singularities A3 + 2A1, then [8, Table 3] gives that S has equation
x3f2(x0, x1) + x22l1(x0, x1) = 0, where x0x1 has a non-zero coefficient in f2, since
otherwise S is singular along a line. Hence, after a change of coordinates involving
only variables x0 and x1 and rescaling x3, we obtain the desired result. It is trivial
to check that each one-parameter subgroup λ in the table leaves S invariant, and
therefore λ is a generator of the C∗-action.

Given H, denote DH = {F = H = 0} ⊂ S. We need to show that for (S,D) with
prescribed singularities, DH = D if and only if H is as stated in Table 3. Verifying
that for F and H as in the table, the pair (S,D) has the exepected singularities is
stright forward and we omit it. We verify the converse.
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Suppose that S has three A2 singularities. Then we may assume that F =
x0x1x3 + x32 and the singularities correspond to P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0)
and P3 = (1, 0, 0, 0). There are only three lines L1, L2, L3 in S [4, p. 255], which
correspond to {x2 = xi = 0} for i = 0, 1, 3, respectively. Clearly any two of these
intersect at each of the points Pj . Moreover DH = D =

∑
Li and D has an A1

singularity at each Pi, as stated in Table 3.
Suppose that S has an E6 singularity at a point P and D has an A2 singularity

at a point Q 6= P and (S,D) is C∗-invariant. Without loss of generality, we can
now assume that F = x20x3 + x0x

2
2 + x31, H =

∑
aixi for some parameters ai

and P = (0, 0, 0, 1). Since λ4 is a generator of the C∗-action, then λ4(t) · H =
a0t

11x0 + a1t
3x1 + a2t

−1x2 + a3t
−13x3. Therefore DH is C∗-invariant if and only if

H = xi for some i = 0, . . . , 3. Notice that this happens every time the entries of λ
are distinct. If H = x0, then DH is a triple line. If H = x1, then DH is the union
of a conic and a line, and therefore DH does not have an A2 singularity. If H = x2,
then DH has an A2 singularity at P . If H = x3, then DH has an A2 singularity
at Q = (1, 0, 0, 0) 6= P and DH = D.

Suppose S has a D5 singularity at a point P , D has an A3 singularity at a
point Q 6= P and (S,D) is C∗-invariant. Reasoning as in the previous case, we
may assume λ6 generates the C∗-action, F = x20x3 + x0x

2
2 + x21x2, H = xi for some

i = 0, . . . , 3 and P = (0, 0, 0, 1). If H = x0 or H = x2, then the support of DH

contains a double line. If H = x2, then DH has an A3 singularity at P . If H = x3,
then DH has an A3 singularity at Q = (1, 0, 0, 0) 6= P and DH = D.

Suppose S has an A5 singularity at a point P and an A1 singularity at a point
Q, D has an A2 singularity at Q and (S,D) is C∗-invariant. We may assume λ6
generates the C∗-action, F = x0x

2
2 + x0x1x3 + x31, H = xi for some i = 0, . . . , 3,

P = (0, 0, 0, 1) and Q = (1, 0, 0, 0). If H = x0 then DH is a triple line. If H = x1,
then DH has a double line in its support. If H = x2, then DH has two A1

singularities. If H = x3, then DH has an A2 singularity at Q = (1, 0, 0, 0) 6= P and
DH = D.

Suppose S has an A4 singularity at a point P and an A1 singularity at a point
Q, D has an A3 singularity at Q and (S,D) is C∗-invariant. We may assume λ5
generates the C∗-action, F = x0x1x3 + x0x

2
2 + x21x2, H = xi for some i = 0, . . . , 3,

P = (0, 0, 0, 1) and Q = (1, 0, 0, 0). If H = x0 or H = x1 then DH contains a
double line in its support. If H = x2, then DH has three A2 singularities and if
H = x3, then DH has an A2 singularity at Q and DH = D.

Suppose S has a D4 singularity at a point P , D has a D4 singularity at a point
Q 6= P and (S,D) is C∗-invariant. We may assume the generator of the C∗-action
is λ9, F = x20x3 + x31 + x32 and P = (0, 0, 0, 1). If DH is λ9-invariant, either H = xi
for some i = 0, . . . , 3 or H = x1 − ax2 for a 6= 0. If H = x0, then DH has a
D4 singularity at P . If H = x1 or H = x2, then DH has an A2 singularity. If
H = x1 − ax2 with a 6= 0, then DH = {x20x3 +

(
1 + 1

a

)
x31 = 0, x2 = x1

a } has an A2

singularity. If H = x3, then DH has a D4 singularity at Q = (1, 0, 0, 0) 6= P and
DH = D.

Suppose S has an A3 singularity at a point P , two A1 singularities at points Q1

and Q2, D = 2L+ L′ where L is a line containing Q1 and Q2 and L′ is a line such
that P,Q1, Q2 6∈ L′. Furthermore, suppose (S,D) is C∗-invariant. We may assume
that λ3 is the generator of the C∗-action, F = x0x1x3+x1x

2
2+x0x

2
2, P = (0, 0, 0, 1),
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Q1 = (1, 0, 0, 0), Q2 = (0, 1, 0, 0) and L = {x2 = x3 = 0}. Moreover, if DH is λ3-
invariant, either H = xi for some i = 0, . . . , 3 or H = x0−ax1 for a 6= 0. If H = x0
or H = x1, then DH does not contain L in its support. If H = x2 or H = x0−ax1,
then DH is reduced. If H = x3, then DH = 2L+L′, where L′ = {x1+x0 = x3 = 0}.
Since P,Q1, Q2 6∈ L, then DH = D.

�

5. Proof of main theorems

We present the proofs of theorems 1.3 and 1.4. First, we reduce the amount of
pairs we need to consider to those with isolated singularities:

Lemma 5.1. Let (S,D) be a pair.

(1) If S is reducible or not normal, then (S,D) is t-unstable for t ∈ [0, 1).
(2) If D is not reduced, then, (S,D) is t-unstable for t ∈ (1/5, 1].

Proof. The case where S is reducible follows from [10, Theorem 1.3]. If S is not
normal we may assume S is as in Lemma 4.10. Then µt(S,D, λ10) > 1− t > 0. If
D is not reduced, we may assume (S,D) is as in Lemma 4.15. Then µt(S,D, λ3) =
−1 + 5t > 0, if t > 1

5 . �

Proof of Theorem 1.3. Let (S,D) be a pair defined by equations F and H. Notice
that Lemma 5.1 tells us that S being normal is a necessary condition for (S,D) to
be t-stable for any t ∈ (0, 1). In particular S has a finite number of singularities,
since it is a surface. By Theorem 2.3, the pair (S,D) is t-stable if and only if
for any g ∈ SL(4,C) the monomials with non-zero coefficients of (g · F, g · H) are
not contained in N⊕t (λ, xi) for any of the pairs of sets in Table 4 —characterized
geometrically in Section 3— which are maximal for every given t, as stated in
Lemma A.1 and Theorem 2.3. This is equivalent to the conditions in the statement.
We verify the conditions for each t ∈ (0, 1). We will refer to the singularities of D
in terms of the ADE classification as in sections 3 and 4. These will be equivalent
to the global description used in the statement of Theorem 1.3 by Table 2.

Suppose t ∈ (0, 15 ) and (λ, xi) = (λ3, x3). Then S cannot have an A3 singularity
or a degeneration of one. When (λ, xi) = (λ9, x3), we deduce that S cannot have
a D4 singularity or a degeneration of one (this condition is redundant since D4 is
a degeneration of A3). From (λ, xi) = (λ1, x2) or (λ, xi) = (λ2, x2) we deduce that
if P ∈ D then P is a singular point of S of type at worst A1. We obtain the same
condition if (λ, xi) = (λ2, x1). This completes the proof when t ∈ (0, 15 ).

When t = 1
5 , the maximal sets N⊕t (λ, xi) are the same as for t ∈

(
0, 15
)

with

the addition of N⊕t (λ3, x0), which represents the monomials of the equations of any
pair (S′, D′) such that D′ is not reduced. Therefore (S,D) is 1

5 -stable if and only

if in addition to the conditions for t-stability when t ∈ (0, 15 ), D is not reduced.
Hence (ii) follows.

Let t ∈
(
1
5 ,

1
3

)
. The maximal t-non-stable sets N⊕t (λ, xi) are the same as for

t = 1
5 but replacing the set N⊕t (λ3, x3) with both N⊕t (λ7, x3) and N⊕t (λ5, x3). A

pair (S′, D′) whose defining equations have coefficients in N⊕t (λ3, x3), N⊕t (λ7, x3)
and N⊕t (λ5, x3) require that S′ has (a degeneration of) an A3 singularity, S′ is not
normal or S′ has (a degeneration of) an A4 singularity, respectively. The second
condition is redundant by Lemma 5.1. Hence a t-stable pair (S,D) may now have
A3 singularities but not A4 singularities. However, the coefficients of the equations
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of (S,D) cannot be in N⊕t (λ9, x3) and hence S cannot have (degenerations of)
D4 singularities. Therefore (S,D) is t-stable if and only if S has at worst A3

singularities, D is reduced and if D supports a surface singularity P , then P must
be an A1-singularity and (iii) follows.

Let t = 1
3 . The maximal sets N⊕t (λ, xi) are the same as for t ∈

(
1
5 ,

1
3

)
with the

addition of N⊕t (λ5, x0), which represents the monomials of the equations of any
pair (S′, D′) such that D′ has (a degeneration of) an A3 singularity at a singular
point P of S. Hence (S,D) is 1

3 -stable if and only if it is t-stable for t ∈
(
1
5 ,

1
3

)
but

D does not have (a degeneration of) an A3 singularity at a singular point of P .
Hence (iv) follows.

Let t ∈
(
1
3 ,

3
7

)
. The maximal sets are N⊕t (λ, xi) the same as for t = 1

3 but

replacing the set N⊕t (λ5, x3) —parametrizing pairs (S′, D′) where S′ has (a de-
generation of) an A4 singularity— with the set N⊕t (λ6, x3) —parametrizing pairs
(S′, D′) where S′ has (a degeneration of) an A5 singularity. Hence a t-stable pair
(S,D) may now have A4 singularities but not A5 ones. However, the coefficients of
the equations of (S,D) cannot be in N⊕t (λ9, x3) and hence S cannot have (degen-
erations of) D4 singularities. Furthermore the restrictions for t = 1

3 regarding D
still apply. Therefore a pair (S,D) is t-stable if and only if satisfies the conditions
in (v).

Let t = 3
7 . The maximal sets N⊕t (λ, xi) are the same as for t ∈

(
1
3 ,

3
7

)
but

replacing the set N⊕t (λ5, x0) —parametrizing pairs (S′, D′) such that D′ has (a
degeneration of) an A3 singularity at a surface singularity of S′—, for both the
set N⊕t (λ6, x0)—parametrizing pairs (S′, D′) such that D′ has (a degeneration
of) an A2 singularity at a surface singularity of S′— and the set N⊕t (λ9, x0) —
parametrizing pairs (S′, D′) such that D′ has (a degeneration of) an A4 singularity.
Hence (vi) follows.

Let t ∈
(
3
7 ,

5
9

]
. The difference between the maximal sets for N⊕t (λ, xi) and for

N⊕3
7

(λ, xi) consists of three new sets (N⊕t (λ6, x3), N⊕t (λ8, x3) and N⊕t (λ10, x3)) and

three sets that do not appear for t anymore (N⊕t (λ9, x3), N⊕t (λ6, x3), N⊕t (λ7, x3)).
The three new sets parametrize pairs (S′, D′) such that S′ has at least either (a

degeneration of) one D5 singularity , a degeneration of one Ẽ6 singularity or one
line of singularities, respectively. The three sets that are not maximal non-stable
sets for t parametrize pairs (S′, D′) such that S′ has (a degeneration of) a D4,
an A5 and a line of singularities, respectively. Hence, the only difference with
respect to t = 3

7 is that we include pairs (S,D) such that S has at worst A5 or D4

singularities and (vii) follows.
Let t = 5

9 . The difference between the maximal sets for N⊕t (λ, xi) for t ∈(
3
7 ,

5
9

)
and for N⊕5

9

(λ, xi) consists of replacing the set N⊕t (λ3, x0) —parametrizing

pairs (S′, D′) such that D′ is non-reduced— for the set N⊕t (λ6, x0) —parametrizing
pairs (S′, D′) such that D′ has (a degeneration of) an A3 singularity. Hence a 5

9 -

stable pair (S,D) is a t-stable pair for t ∈
(
3
7 ,

5
9

)
such that D has at worst an A2

singularity. Notice that D is still reduced by Lemma 5.1. Hence (viii) follows.
Let t ∈

(
5
9 ,

9
13

)
. The difference between the maximal sets for N⊕t (λ, xi) for t ∈(

5
9 ,

9
13

)
and for N⊕5

9

(λ, xi) consists of replacing the set N⊕t (λ6, x3) —parametrizing

pairs (S′, D′) such that S′ has (a degeneration of) a D5 singularity— for the set
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N⊕t (λ4, x3) —parametrizing pairs (S′, D′) such that S′ has (a degeneration of) an
E6 singularity. Hence (ix) follows.

Let t = 9
13 . The difference between the maximal sets for N⊕t (λ, xi) for t ∈(

5
9 ,

9
13

)
and for N⊕9

13

(λ, xi) consists of replacing the set N⊕t (λ6, x0) —parametrizing

pairs (S′, D′) such that D′ has (a degeneration of) an A2 singularity at a singular
point of S′—, the set N⊕t (λ9, x0) —parametrizing pairs (S′, D′) such that D′ has
(a degeneration of) a D4 singularity— and the set N⊕t (λ6, x0)— parametrizing
pairs (S′, D′) such that D′ has (a degeneration of) an A3 singularity— for the set
N⊕t (λ4, x0) —parametrizing pairs (S′, D′) such that D′ has (a degeneration of) an
A2 singularity. Hence (x) follows.

Let t ∈
(

9
13 , 1

)
. The maximal sets N⊕t (λ, xi) are the same as for N⊕9

13

(λ, xi) but

removing the set N⊕t (λ4, x3), which parametrizes pairs (S′, D′) where S′ has an E6

singularities. Hence such surfaces are now t-stable providing they do not violate
any other conditions. This concludes the proof of the theorem. �

Proof of Theorem 1.4. Suppose (S,D) —defined by polynomials F and H— be-
longs to a closed strictly t-semistable orbit. By Lemma 4.20 and Lemma A.2, we
may assume that the monomials with non-zero coefficients of F and H correspond
to the fourth and fifth columns in Table 5. Notice that for each pair (λ, xi), there
is a change o f coordinates that gives a natural bijection between N0(λ, xi) and
N0(λ, x3−i). Therefore about half of the values are redundant and we have two
possible choices for each F and H if t 6= t1, . . . , t5 three choices if t = t1, t2, t4, t5
and four if t = t3.

Notice that the pair (S,D) corresponding to F = x0x3x1 + x32, H = x2 is
strictly t-semistable by Lemma A.2. Suppose that (λ, xi) = (λ1, x2). Then F =
x0x3f1(x1, x2)+f3(x1, x2) and H = g1(x1, x2). After a change of variables involving
only x1 and x2, we may assume that F = x0x3x1 + f3(x1, x2). We will show that
the closure of (S,D) contains (S,D). Let γ = Diag(1, 1, 0,−2) be a one-parameter
subgroup. Then limt→0 γ(t) · F = x0x1x3 + bx32 and limt→0 γ(t) ·H = x2. If b = 0,
then limt→0 γ(t) · S is reducible, which is impossible as it is not t-stable for any
value of t ∈ (0, 1) by Lemma 5.1. Therefore b 6= 0 and by rescaling we see that
limt→0 γ(t) · (S,D) = (S,D). Hence, the closure of the orbit of (S,D) contains
(S,D), which we tackle next.

Suppose that (λ, xi) = (λ2, x1). Then F = x31+x0f2(x2, x3) and H = x1. After a
change of variables involving only x2 and x3 we may assume that F = x31 +x0x2x3.
We can do similar changes of variables in the rest of the cases and end up with
F and H not depending on any parameters. Observe that since (S,D) is strictly
t-semistable, the stabilizer subgroup of (S,D) G(S,D) ⊂ SL(4,C) is infinite (see
[7, Remark 8.1 (5)]). In particular there is a C∗-action on (S,D). Lemma 4.20
classifies the singularities of (S,D) uniquely according to their equations. For each
t ∈ (0, 1), the proof of Theorem 1.4 follows once we recall the classification of plane
cubic curves according to their isolated singularities (see Table 2). �

Appendix A. Maximal sets of non-stable pairs

Table 4 has all pairs of sets N⊕t (λ, xi) =
(
V ⊕t (λ, xi), B

⊕(xi)
)

which are maximal
under the containtment order, for each t ∈ (0, 1) and all λ ∈ S2,3 and xi ∈ Ξ1. Con-
sider t, λi and xi for one of the rows in Table 4. Suppose that a pair of polynomials
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λ xi t V ⊕t (λ, xi) B⊕(xi) Sing(S) Sing(D) Lem.

λ1 x2 (0, 1) x3x0{x0, x1, x2},
{x0, x1, x2}3

x0, x1, x2 A2 P ∈ D 4.2

λ2 x2 (0, 1) x3{x0, x1}2, {x0, x1, x2}3 x0, x1, x2 A2 P ∈ D 4.2

λ2 x1 (0, 1) x31, x0{x0, x1, x2, x3}2 x0, x1 A2 P ∈ D 4.16

λ3 x3
(
0, 15
]

x3{x0, x1}2,x22{x0, x1},
x2{x0, x1}2, {x0, x1}3

x0, x1, x2, x3 A3 4.3

λ8 x3 (0, 1) x0{x0, x1, x2, x3}2 x0, x1, x2, x3 reducible 4.11

λ9 x3
(
0, 37
]

x3x
2
0, {x0, x1, x2}3 x0, x1, x2, x3 D4 4.6

λ3 x0
[
1
5 ,

5
9

)
x0{x0, x1, x2, x3}2,
x21{x1, x2, x3}

x0 non-
reduced

4.15

λ5 x3
(
1
5 ,

1
3

]
{x0, x1}3, x2{x0, x1}2,
x0x

2
2, x0x3{x0, x1}

x0, x1, x2, x3 A4 4.4

λ7 x3
(
1
5 ,

3
7

]
x3{x0, x1}2, {x0, x1}3,
x2{x0, x1}2

x0, x1, x2, x3 A∞ 4.10

λ5 x0
[
1
3 ,

3
7

]
x20{x0, x1, x2, x3},
x0{x1, x2}2, x0x3{x1, x2},
x21{x1, x2, x3}, x1x22

x0, P D is A3

at P
4.19

λ6 x3
(
1
3 ,

3
7

]
x0x3{x0, x1},
x0x2{x0, x1, x2},
{x0, x1}3

x0, x1, x2, x3 A5 4.5

λ6 x0
[
3
7 ,

9
13

)
x0x3{x0, x1, x2},
{x1, x2}3, x0{x0, x1, x2}2,
x21x3

x0 P D is A2

at P
4.18

λ9 x0
[
3
7 ,

9
13

)
x0{x0, x1, x2, x3},
{x1, x2}3

x0 D4 4.14

λ10 x3
(
3
7 , 1
)

x3{x0, x1}2, {x0, x1}3,
x2{x0, x1}2

x0, x1, x2, x3 A∞ 4.10

λ8 x3
(
3
7 , 1
)
{x0, x1, x2}3 x0, x1, x2, x3 Ẽ6 4.9

λ6 x3
(
3
7 ,

5
9

]
{x0, x1}3, x2{x0, x1}2,
x0x

2
2, x20x3

x0, x1, x2, x3 D5 4.7

λ6 x0
[
5
9 ,

9
13

)
x0{x0, x1, x2, x3}2, x1x

2
2,

x21{x1, x2, x3}
x0 A3 4.13

λ4 x3
(
5
9 ,

9
13

)
x20x3, x0x2{x0, x1, x2},
{x0, x1}3

x0, x1, x2, x3 E6 4.8

λ4 x0
[

9
13 , 1

)
x0{x0, x1, x2, x3}2, x21x3,
{x1, x2}3

x0 A2 4.12

Table 4. Maximal non-stable sets for t ∈ (0, 1).

F and H has monomials with non-zero coefficients only for monomials in V ⊕t (λ, xi)
and B⊕(xi), respectively. Let (S,D) be a pair defined by F and H as in Section
2. Then the singularities of (S,D) correspond to a (possibly trivial) degeneration
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λ xi t V 0
t (λ, xi) B0(xi)

λ1 x2 (0, 1) x0{x1, x2}x3, {x1, x2}3 x1, x2

λ2 x1 (0, 1) x31, x0{x2, x3}2 x1

λ2 x2 (0, 1) x32, {x0, x1}2x3 x2

λ3 x0 t1 = 1
5 x21{x2, x3}, x0{x2, x3}2 x0

λ3 x3 t1 = 1
5 x22{x0, x1}, x3{x0, x1}2 x3

λ5 x0 t2 = 1
3 x1x

2
2, x0x2x3, x

2
1x3 x0

λ5 x3 t2 = 1
3 x21x2, x0x1x3, x0x

2
2 x3

λ6 x0 t3 = 3
7 x21x3, x0x2x3, x

3
2 x0

λ9 x3 t3 = 3
7 {x1, x2}3, x20x3 x3

λ6 x3 t3 = 3
7 x0x

2
2, x0x1x3, x

3
1 x3

λ9 x0 t3 = 3
7 {x1, x2}3, x0x23 x0

λ6 x3 t4 = 5
9 x21x2, x0x

2
2, x

2
0x3 x3

λ6 x0 t4 = 5
9 x1x

2
2, x0x

2
3, x

2
1x3 x0

λ4 x0 t5 = 9
13 x21x3, x0x

2
3, x

3
2 x0

λ4 x3 t5 = 9
13 x31, x0x

2
2, x

2
0x3 x3

Table 5. Maximal non-stable sets for t ∈ (0, 15 ).

of the singularities appearing in the sixth and seventh entries of the corresponding
row. This is proven in the Lemma referred to in the eigth column of the table. The
notation A∞ denotes that S contains a line of singularities where the general point
is an A1 surface singularity.

Table 5 contains all pairs of sets N0
t (λ, xi) for each N⊕t (λ, xi) appearing in Table

4 such that the associated pair (S,D) is t-semistable.

Lemma A.1. Let t ∈ (0, 1). Consider each λ ∈ S2,3 and each i = 0, . . . , 3. The
pairs of sets N⊕t (λ, xi) = (V ⊕t (λ, xi), B

⊕(xi)) defined in (2.1) which are maximal
with respect to the containment order of sets are given in Table 4.

Proof. Since S2,3 is a finite set, there is a finite number of pairs of sets N⊕t (λ, xi).
Finding the maximal ones among them is a straight forward computation which
can be carried out by software (see [9] for a detailed algorithm and [11] for the
code). �

Lemma A.2. Let t ∈ (0, 1). Consider each of the pairs of sets N0
t (λ, xi) =

(V 0(λ, xi), B
0(xi)) defined in (2.2), for each (λ, xi) such that N⊕t (λ, xi) is max-

imal with respect to the containment order of sets, as described in Lemma A.1.
Let (S,D) be a pair defined by polynomials F and H such that its monomials with
non-zero coefficients corresponds to those in V 0(λ, xi) and B0(xi), respectively. If
the pair (S,D) is strictly t-semistable, then N⊕t (λ, xi) correspond to those sets in
Table 5.

Proof. Computing N0
t (λ, xi) is immediate from the definition. Deciding if each

pair (S,D) is strictly t-semistable is a combinatorial application of the Centroid
Criterion [10, Lemma 1.5]. Both operations can be carried by software [11]. �
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