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MUMFORD-TATE GROUPS AND THE THEOREM
OF THE FIXED PART

Yves André

The present paper grew out of an attempt of understanding group-
theoretically the consequences of Hodge theory which are explained
in Deligne [4] II 4, with an eye towards applications to algebraic
independence.

After some preliminaries about representations of linear
algebraic groups, we define and study Mumford-Tate groups of mixed
Hodge structures over noetherian subrings R of the field R of real
numbers. Though in the sequel we restrict ourselves to the crucial
case R = Z , we refer to the appendix for a study of some
pathologies which may occur in the case of other ground rings. We
then turn to a more precise study of Mumford-Tate groups arising
from 1-motives (see [4] III 10).

In the fourtﬁ parahraph a mild generalization of a result by
Deligne about the monodromy of variation of Hodge structure is
given; we also present our main object of study, that is Streenbrinck-
Zucker's notion of a good variation of mixed Hodge sructure.

In paragraph 5, we give a group-theoretic formulation of the
theorem of the fixed part proved in [12]: for almost all s;alks of
a given poiarizable good variation of mixed Hodge structure, the

connected monodromy group Hx is a normal subgroup of the derived



Mumford-Tate group DGx . We then state straightforward conseguences
about monodromy groups. In the next paragraph, we study how big can
Hx be in DGx ; we end by applying these considerations to the
study of algebraic independence of Abelian integrals dependipg on

some parameters.
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1. Some facts about linear algebraic groups

N

Let K be a field of characteristic 0 K some

, and V

1

K-vector space. We-shall consider closed an algebraic subgroup

G < GL(V) = GLy - For non-negative integers m,n , we set
-y v
o o pM iy = vo" e von , where V denotes the dual space
of V (with the contragredient action of GLN ). By "representation

of G " as "G-module", we shall always mean a finite-dimensional
rational one. The following three properties are well-known

[13; 3.5 § 16.1), [6; I 3.11]:

1) every representation of G 1is a subquotient representation

of a finite direct sum of TV" 's ,

2) G 1is the stabilizer of some one-dimensional L in some finite

mi,ni )
direct sum & T : G = Stab L ,

3) (not used here) if G is reductive (that is, if V 1is a semi-
simple representation of G }, one can choose L so that G acts

trivially on it; for 1 a generator of L , we then write G = Fix 1

For any representation W of G , and any character ¥y € XK(G)
of G over K , we denote by WG the fixed part of W under G
and by WX the submodule of W on which G acts according to
X . We write EndGW for the endomorphisms of the G-module W , so

that EndGW = (EndKW)G , and we denote by Z(EndGW) its center.

Lemma 1. Assume that G is connected, and let H = G be a closed

subgroup. The following conditions are equivalent:



i) BH d G , that is, H 1is normal in G ,

ii) for every tensor space e , and for every ¥ € XK(H) '

(T™'™) X is stable-under G ,

iii) every H-isotopical component of any representation of G 1is
stable under G .

If moreover G 1is reductive, these conditions imply that

Z(EndHV) c Z(EndGV)

Proof: iii) = ii) is obvious, and we shall first prove that ii) = i),
independently of the connectedness assumption on G . We know by 2)
that there exists some one-dimensiocnal L in some eTmi’ni such that
H = Stab L . Let W be the G-module 'spanned by L . The line L
defines a character y € XK(H) ; we have L c wX , and

wX = wan ﬁeTmi'ni)X = W , according to the hypothesis ii). Let ¢ be
the natural morphism G —> GL(End W) ; it is clear that Hcker ¢
Conversely if g € ker ¢ , g commutes with any endomorphism of.

W , that is, g is scalar; this implies that g stabilizes L ,

so that g € H . Hence H = ker ¢ 1is a normal subgroup.

We now prove i) = iii). Let W be a G-module, and W' the G-sub-
module of the sum of its irreducible submodules. It suffices to
prove that the H-isotypical components of W' are G-stable. Let
H', G' denote the natural images of H and G respectively in
GL(W') , so that H' < G' . The normality property implies that
(End W')H' is stable under G' , inside the G'-module End W'

For w € EndH,W' , let Cw be the kernel of the commutator map

[w,.] in End,,W' . It is easy to derive the formula gC = ng /



so that Z(EndH,W‘) = N Cw is again a G'-module. But
wEEndH W

Z(EndH,W') is a finite-dimensional semi-simple algebra over K ;

by the connectedness of G' , the morphism G' —> AutK(Z(EndH,W'))
thus has trivial target, that is, Z(EquTEJ) is a trivial G' -module.
Now the H-isotypical components of W' _are given by p.W' , where

p runs among the minimal indempotents of Z(EndH.W') . We just
proved that p commutes with the action of G' on W' , and this
implies that p.W' is stable under G' .

When G is reductive, we have V' = V , and the above proof shows

that Z(EndHV) is a trivial G-module, whence an obvious imbedding

A (EndHV) c Z (EndGV)



2. Mumford-Tate groups

We first recall some definitions. Let R be some Noetherian
subring of IR such that X := R® @ is a field, Let V be a
noetherian R-module. A (pure R-) Hodge structure of weight M € Z
over V 1is a morphism h : Resm/mﬂ;m —_—> GL(VR ®R;R) such that

hw{x) is the multiplication by xM ; here w denotes the embedding

ijm s ResmﬂRGm given by R < ¢* . Equivalently, it is a

bigraduation on VeR =: Ve = o vPr9 with VP9 - yOP ; OX

. _ _ R p+g=M

or else a decieaaing filtration FP on Ve such that

FPg FMPt1~, VE(FP = z:vp',M-p') . For instance, there is one
p'ep '

and only one Hodge structure of weight -2M on V = (21/=T)'R ,

called "the Tate twist" and denoted by R(M) . A polarisation of

the Hodge structure (V,h) of weight M 1is a morphism of Hodge
structures (in the obvious sense) ¢ : V ® V —> R(-M) such that

(217\/—1)M w(.;h(/-1).) is a scalar product on VR += V ®IR . Elements.

&m ® (Hom(V,R))en ® @ (endowed with the natural
Z

K-Hodge-structure of weight (m-n)}M) which are of type (0,0)

m,n e
of T (VK) s= V

are called "Hodge tensors". In fact Hodge tensors are nothing but

elements of FO(Tm’n(Vm)) n Tm’n(VK)

A mixed R-Hodge structure (M.H.S) is a 'noetherian R-module V ,

together with a finite filtration W of the K-space VK 1= Ve qQ.,
p 4

and a finite decreasing filtration F' of V such that the

C

(GrK(VK), Gr:(F)) are K-Hodge structures of weight n respectively.

We shall consider the category of mixed R-Hodge structures up to



isogeny, whose objects are mixed R-Hodge structures, and whose
morphisms are the homomorphisms of the associated K-vector space
which preserve the filtrations. We say that a M.H.S. V is of
type € <« Z x 2 1if its Hodge numbers hP'? are 0 for

(pra) € €

The category of mixed R-Hodge structures up to isogeny is an
Abelian K-linear tensor category [4; th 12.10] which is rigid and
has an obvious exact faithful K-linear tensor functor

W (V,W,é) > VK . Let < V > denote the Tannakian subcategory

\Y
functor to < v > . Then the functor Aut @(mv) is representable

generated by (V,W,F) , and w the restriction of the fiber

by some closed K-algebraic subgroup G = G(V} of GL(VK) » and w.

defines an equivalence of categories < V > - Rep

M 2. .
KG , cf. [6; I;‘ 11]

We call G the Mumford-Tate group 9£ (V,W,F) .

Lemma 2. The Mumford-Tate group G 1is connected. Any tensor fixed

by G in some 0

~is a Hodge tensor (an element of
FO(Tm'n(Vm)) n Tm'n(VK)) , and G 1is the biggest subgroup of
GL(VK) which fixes Hodge tensors. If (V,W,f) arises from a
pure Hodge structure (V,h) , G 1s the K-Zariski closure of the

image of h in GL(VK) , and if moreover V 1is polarizable, then

G 1is reductive.

Remark: the definition of Mumford-Tate group above is slightly
distinct from that given in [6; I, 3.2] 1in the case of pure Hodge
structures; however if the weight is non-zero, this leads to an

isogenious group.



Proof of the lemma: let us first prove the second and third

assertions. Any invariant tensor 1 under G span a trivial

representation LK corresponding to a M.H.S., say L , such that
<L > is equivalent to EEEEK . Thus IL 1is a trivial M.H.S., that
is to say, 1 is a Hodge tensor. By 1.2), we know that G 1is the
stabilizer of some line LK in $Tmi’ni , Wwhich corresponds to a

M.H.S. of rank one (up to isogeny), that is, to some Tate twist
L = R(N1) . We can assume V non-trivial (up to isogeny); thus
there exists an integer N such that the weight of Det WN(VK) '

v
say N2 , 1s non-zero. Taking if necessary VK instead of VK '

one can assume moreover that N and N2 have the same sign. Let

1.
r be the rank of the M.,H.S. WN(VK) over K , and let 1 be a

generator of the one-dimensiocnal subspace

&N, | r 82N, | m 0, O[N] r 82N |
Lg ® (A W (V) inside (T ) ® (4 V)
Then G = Fix(l) . The arguments given in {6; I, 3, 4-6] , with

minor modifications in order to take into account the difference of

definitions, prove the statements about pure Hodge structures.

“

v et ST IR - c— —a

To prove that G 1is connected in the general -case, it suffices to

show that any K-space V; on which G acts through a finite group

is in fact a trivial representation. Such a Vﬁ correspond to some

M.H.S. V' , and we have to show that V' is trivial up to isogeny.
The group G acts on each quotient Gr: Vk thrbugh the Mumford-

Tate group GA of this pure Hodge structure over K , which is
therefore finite. By the description of the Mumford-Tate group of

a pure Hodge structure as a Zariski closure over K of some real



torus, it follows that Gﬁ is trivial, so that Gr:VR is a
trivial Hodge structure (that is, of type (0,0) ). This implies
that W V' = F'V' =0 for n # 0 , and finally that V; is a
trivial representation of G by definition of the Mumford-Tate
group.

u]
Remark: the description of Mumford-Tate groups by their invariant
tensdrs implies some restrictions on the groups which may occur;
for example, G cannot be a Borel subgroup of GL(VK) '

cf. [6: I 3.2]. However, there are other restrictions on the

structure of Mumford-Tate groups, as we shall see now:

Lemma 3. Let G be the Mumford-Tate group of a M.H.S. over R ,
say V , such that GrWV is polarizable. Then the abelianized
group Gab = G/DG is a torus. The group of real points ot its
guotient Gab/ ab is compact.

G ﬂ(];m
Proof: since all morphisms in < V > are strict, one has
erV' € Ob<Gr V> for any V' € Ob<V> , thus erV' is polarizable.
Take for V' the M.H.S. corresponding to a faithful representation
Vk of the quotient U of Gab by its maximal torus. We find that

G(GrWV') = 0 (see lemma 2). Thus V' , which is a successive

extension of trivial H.S., is also a trivial H.S., and

] — - —_ ab n
G(V') = U =0 . Now let x € XE(G) = XE(G ) , and let QR be
some real plane such that V& ~ X ® X ; after twisting & la Tate,
Det gﬁ corresponds to a trivial real H.S. Therefore Gab/ ab
G NG
m

1R



acts trivially on Det Vﬁ_' which yields |y| = 1 . All representations
of Gab/ ab , are unitary, so that this torus is compact.

cPng
TR

Remark. The same argument shows in the same situation that if G 1is
nilpotent, then G = Gm X T (or G =T if V 1is pure of weight 0),

where T denotes a compact torus.
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3. Mumford-Tate groups of T1-motives

u
s

We recall that a 1-motive over € , denoted by M = [X > E] .

is the following couple of data:

i) an extension 0 - T - E - A - 0 of an Abelian variety A by

a torus T ,

ii) a morphism u from a free Abelian group X to E(C} . One

associates to a 1-motive a mixed Hodge structure

V = V(M) = (Vi, W, F*) , given by:
Vi = {(1,x)€ Lie E x X / exp 1 = u(x)}
WO = VCD '
W_1 = H1(E)®m and Gr_1 is polarizable,
W_, = H1(T)®m
F' = Ker(W,®C - Lie E) , see [4] IIT 10.
We denote by G the Mumford-Tate group of V , and by G_ that of

1

W_1 . Let E' be the Zariski closure of u(X) , and let us write

F := End E' ® (@ .

H
0 1

may take H = G ). Let us assume that E is a split extension. Then

Proposition 1. Let H < G such that W, < W_, (for instance we

U(H) := Ker(H - G(w_1)) is canonically isomorphic to

U := Hom_ (F.u(X); H,(E') @ @)

Proof (inspired from Kummer's theory of division points on Abelian
varieties): the map U(M) - W_1 : 0 > om-m , depends only on the

image (under u) of the class of m € Wq modulo W_q - This map



defines therefore a G-equivariant homomorphism
U (H) i£>rHomz (u(X); W_1) . The vanishing of ¢(c) implies that
g fixes Wy which is a faithful representation of H ; thus
¢ = 1 , and this shows the injectivity of ¢ . Because of Poincaré's
complete reducibility lemma, the exact sequence of 1-motives,
0 - [XﬁE'] - [X-E] - [O»E/E.] -+ 0 splits (up to isogeny).
"It follows that

Ker (H-G (W_,))

il

Ker(H»G(H1(E'))) n Ker(HaG(H1(E/E.))

1N

Ker (H' —> G(H,(E'))}) ;

where H' = H 0 G(V([X3E'])) . Thus ¢ factorizes through
Homz(u(X); H1(E') ® @) ; also it is easily seen that elements in the
image of ¢ are F-linear in some suitable sense: o(U(H)) < U .

Replacing E by E' and X by u(X)/ ;, We may now

torsion
assume that u is a dominant embedding; we identify X and u(X)

Since E is a split extension, we have F ~ End. W_, , whence
-1

EndG_Tﬁ o (EndF FX)OP”; also W_, v whence U (with trivial action of
G_, on FX ), is a semi-simple G_,-module. Thus ¢(U(H)) 1is the
kernel of some G_1-equivariant endomorphism v of U : that is to
say, there éxists f ¢ F such that (y9(o))m = cfm-£fm-=0 ,

Yo € U(H) , vym € FX . If o(U(H)) + U , then Yy # 0 , therefore we
can find x € FX such that U(H)x = x and x # 0

We set Xx = Zx , Mx = [XX &—> E] , and we denote by a subscript

x the objects G,r Vg etc. ... associated to this 1-motive. By

construction the natural mappings

> GL(W_ )
H =HNG Xr have the same image, and i is

X X .
—L> LW, _.)

1



injective. Since E splits, wx__1 o2 W_1 is a direct sum of
! r

polarizable pure Hodge structures, so that jﬁ%{q ij is reductive.

Therefore We o1 is a direct summand in the H -module W
r

means that we could choose x ¢ WX

x,0 ’ which
so that H_X = x : indeed,
=1 X

H, acts trivially (like Gy ) on W whose type 1s (0,0)

W

%x,0 X, =1

Recall that wg c W_1 ; this implies the corresponding inclusion

H

Wxxo c W, _q since H commute with the action of F . Therefore
’ ’

we get a contradiction, and deduce that ¢(U(H)) =T

Corollary. If E splits (E = A x T) , with A non trivial, one

~ “« .
has a split exact sequence 0 - U - G - G(HT(A)) -+ 0

Remark: if one drops the assumption that E 1is split U(G) can
be much smalier than U . In "Deficient points on extensions of
abelian varieties by & "J. Number theory - (1587), 0. Jacquinot
and K. Ribet have build some examples (by means of endomorphisms of
A which are antisymmetric with respect to a poiarization) where

U(G) = 0 , corresponding to some selfdual 1-motives.



4, Variations of mixed Hodge structure

In the sequel we shall .concentrate on the case R = X (see

the appendix for other ground rings). By a variation of M.H.S., we

we shall mean a finitely filtered object in the category of local

systems of noetherian Z-modules over a fixed connected complex

manifold X ,

(Ve W) 0 Wy Vg S W Yy

together with a decreasing filtration of the complex bundle V;
attached to Vg := V, ® C by subbundles FF , such that on each

fibre Yi s ! (W,F) induces a M.H.S. and that the flat covariant
' -

1

derivative V satisfies VFp c Fp_1 ® Qx

. A morphism of variation
of M.H.S. is a morphism of local system which respects W and
whose complexification respects the filtration FP pointwise.

This yields an abelian category (any morphism is strictly compatible
with the fibrations).

We call such a variation (Vg, W, F) a graded-polarizable one if

each of the families Gr: Vg  carries a bilinear from with-values
in 'Z(-n)x which is a morphism of local system and pointwise-a-
polarization. Any subquotient of a polarizable variation and any
object isogenious to a polarizable one are polarizable. |
The integral relative cohomology modules of the complement of a
divisor with relatively normal crossings in a projective smooth

X~scheme furnish examples of polarizable variations of M.H.S. over
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the algebraic variety X (see [7; 4.3] for instance).

For a variation of M.H.S., and for a point x o©of X , we denote

by Hx the connected monodromy group, that is the neutral

component of the smallest algebraic subgroup of GL(Vcu x) con-
r

taining the image of n1(x,x) . We also denote by Gx the

Mumford-Tate group of the M.H.S. carried by the stalk V

Z,xX

=]
Lemma 4 {(see [5; 7.5]) On the complement X of some meager
subset of X , Gx is locally constant. If the variation 1is

polarizable, then Hx c GX for any x € X

Proof: for a polarizable variation of pure Hodge structure , this

is stated in loc. cit., without much detail abouth the proof how-
ever. So we shall write down a detailed proof, though (thanks to
lemma 2) there is no new complication involved with the M.H.S.. Let
X be the universal covering of (X,0) , for §ome base point 0 € X .
The inverse image of the (polarized) variation of M.H.S. is a
(polarized) variation of M.H.S. over X , whose underlying filtered

local system (Vz,ﬁ.> is constant. For 1 € Tm’n(va) 5 Tm'n(ffm o)

we set
~ ~ m,n, ~ . '
X(1) (= {x € X/ 1 €T (V ) is a Hodge tensor}
X 0,x
_ N 0 m,n, o
-{xex/1x6F T (Va:,x)}'

Since F0 is a subbundle, X(1) 4is an analytic subvariety of X,

and its natural projection n*ﬁ(l) on X 1s an analytic subvariety



too. We set X = X N~ ( m,X(1) ) , which is a (dense)

U
l a4

such that 7, X(1}#X

countable intersection of dense open subsets of X . By definition

’. . 0‘ = - ~ . - ]
of X , any 1 € Tm’n(PVQ) , whose stalk at some X € ﬂ1 X is a
Hodge tensor, is in fact a Hodge tensor at any point of X . For

x € X, G, 1is then the biggest subgroup of GL(V )  which fixes

Q,x
the various tensors in Tm'n(Vm x) which 1lift to FOTm'n(TVm) .

Therefore G, is locally constant on ;

We now assuﬁe that the variation is polarized and we shall see
that ﬂ1(X,x) acts (through a finite group) on the spaces HTg'n
of Hodge tensors in Tm'n(vm'x) for any x € ; ; this will be

sufficient to prove the lemma, since Gx can be described as

m, ,n,
Fix(l) , for one element 1 of one space GBHTXl 1 . We have seen
m,n ° . m,n
that HTx (for x € X ) is the subspace of T (Vm x) composed
I
of tensors which 1lift to F°Tm'n(FV¢) ; in particular this subspace’

is locally constant. Hence HTJH{I'n is the rational stalk at x
associated to a sub-vafiation of M.H.S. (Vg,W., F'7) of

(Tm'“(yx), T 5.y, ™™ (F'))., which is actually pure of type
(0,0) and which inherits a polarization. This polarization VY on
%ﬁ,x is a scalar product, invariant under n1(X,x) . Thus ﬂ1(X,x)
factors through the discrete group Aut Vi' on one side, and
through the compact orthogonal group O(Y&,x' Y} on the other
side; hence the connected group H acts trivially on HTr}[:'n .

a

Remark: a variation of M.H.S. V is said to be semi-simple if

for any x € X , the relevant category < Yx > 1s semi-simple

(notations of § 2). It is easily seen that a polarizable M.H.S.




is semi-simple if and only if it is a finite direct sum of
variations of pure H.S. up to isogeny. Indeed, using lemma 1, we
can see that both conditions imply the reductivity of Gy, for

=]
any X € X . Conversely, assume that for some x € X , Gx is
=]

reductive. Then by local constancy of Gy on X , the same is true
[«]
for Gy for any y € X
Now consider a section o of the inclusion
- .
(Wm)y < (wm+1)y in the category <Vy> , and let ng
(up to homotopy) from y to a nearby point 2z in X . Then because

z be a path

of the horizontality of the filtration W. and the local constancy

o ] .
of (Gy)yex , the section YY,Z(O) deduced by transporting ¢ along

Y is a section of (W ) < (W

m+1)z in the category <V, > . Thus

\ § is a direct sum of variations of pure H.S. up to isocgeny, which
extend to X by continuity. The semi-simplicity of V follows from

this.

We shall now recall a concept introduced by Steenbrinck-Zucker [12]
(cf. also I15]), Let us now assume that X is a smooth connected
algebraic variety over € . The variation of mixed Hodge structure
is considered good if it satisfies the following condition at

infinity: there exists a compactification X of X , for which

X - X 1is a divisor with normal crossings, such that

i) The Hodge filtration bundles FP extend over X to sub-bundles

~

~P .
F of the canonical extension Vg of Vg , such that they induce

the corresponding thing for er(yZ,W-,F') '

ii) for the logarithm Nj of the unipotent part of a local mono-

dromy transformation about a component of X N~ X , the weight
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filtration of Nj relative to W exists.

The fact that these conditions are sufficient to imply those
of [12] (3.13) is pointed out in [15] 1.5, and follows from [16] 4
and [12] A. The following classes of variations of M.H.S. are goodﬁ

1) polarizable semi-simple variations of M.H.S. over algebraic
bases [10], [14]

2) relative cohomology modules of(the complementAof a divisor
with relatively normal crossings in'éiprojective smooth X:scheme, at
least when X is a curve, see [12] 5.7. Moreover, the category of
good variations of M.H.S. over X 1s stable under standard con-

structions of linear algebra, ®, ® , duality ... , see [12] A

Example: smooth 1-motives.
Recall from [4] III 10.1.10 that a smooth 1-motive M over X is

the following couple of data:

i) an extension 0 - T - A » 0 of a (polarizable) Abelian

-
f

> Itd

scheme A over X by a torus T over X

ii) a morphism u : X » E from a group scheme X over X to E ;

one assumes that locally for the etale topology on X , X 1is constant

and defined by a free Z-module of finite type.

The construction V(M) (yz, W., F")

Vg = Wo(yz) = Lie E/X XE X defined by the exponential sequence,
w;1 = Ker exp = R, ffn z
_ \'
w_, (X (T))
0 _ c .
F~ = Ker (Vy - Lie E/,)",



which is fibrewise compatible with that of § 3, yields a polarizable

variation of M.H.S. over X .

Lemma 5. Assume that X is a curve. Then the variation V(g)

associated to the smooth 1-motive M is good.

(Sketch of) Proof: according to M. Raynaud [C.R.A.S. 262 (1966)
413-416], there exists a Néron model of E over the smooth completion

X of X , such that p extends to u : X —> E ; note that the

smooth group scheme E/i is not of finite type in general. Replacing
X by a subgroup-scheme of finite index, which yields an isogeneous

variation of M.H.S., we may assume that u(X) lies in the neutral

0

component E of E . Condition i) defining good variations is

fulfilled with F° = Ker ((Lie EO/i xz0 X)€ + Lie Eo/i) .
In order to verify ii), we may proceed by induction since we know

that both W_1 (by point 2) above: the geometric situation) and

WO/W (by duality of 1-motives and point 2) ) satisfy ii); the point
-2

is that N. W_, N wW_, =0 .
j -1 -2

Granting ii) for W_1 , it follows from theorem 2.20 of [12]
{formula 2.21) that ii) for W0 reads equivalently:
1l 1

(*) N Wy N W_, cNTW_, + M , for all 1 > 0 ; here

-1 F-2)Me1-1 (-2)M-1-1

is the relative weight filtration of W_, , which is W_j-q since
the unipotent part of the local monodromy of. W_2 is trivial (see

[12] 2.14; the point is that T is necessarily locally constant).

Therefore (*) follows from property 1i) for WO/W
-2
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5. Normality

We keep the notations of the previous paragraph., The following
result is a simple consequence of the theorem of the fixed part

(Griffiths-Schmid-Steenbrinck-2Zucker).

Theorem 1. Let V = (V., W., F') be a (graded-) pola£izable

good variatién of mixed Hodge structure over a smooth connected
algebraic variety X . Then for any x € ; . the connected monodromy
group H, is a normal subgroup of the derived Mumford-Tate group

PG .
X

Proof: we first prove that Hx ‘<IGx , using the implication

ii) = i) in lemma 1. Since we already know that Hx c Gx = Gg ’

it suffices to prove ii) for Hx' Gx . Since w1(x,x) acts on the

_ o m,n
free Z-module T (Vz'x

VCD x) must factor through {: 1} (the only
[

possible eigenvalues). Thus the connected group Hx has only

) /torsion, any action of w1(X,x) on a

, C m,n
line inside T ’'°{

trivial rational character. Hence it suffices to prove that for

any V' = (Tm'n(yz), ™ % w.), T'™(F*)) , the fixed part of
v, under H is the rational space ¢ (V") of a subobject
Q,x X Vz,x .
v" of V' in < V > (notations of § 2). Replacing X by the

Z,x

finite covering defined by the maximal subgroup (of finite index)
of m,(X,x) which factors through the connected component H_ of

‘the monodromy group, we are reduced to prove that the largest
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constant sub-local system of Yir is a {(constant) sub-variation

of M.H.S.. For a finite direct sum of polarizable variation of
pure H.S., this is precisely the theorem of the fixed part of
Griffiths-Schmid, see [3][10]. For a general polarizable good
variation of M.H.S. in Steenbrinck-Zucker' sense, this is the
theorem of the fixed part of these authors, see [12] 4.19. In
fact, in loc. cit., this theorem is stated for a one-~-dimensional
basis X , but we can reduce to this case by considering curves in
X ; see [7] § 4.3.4.b, for the detailed argument.

r

So far we have proved that H_ <| G, i to show that H < 7c

it remains to prove that DH_= H_ . We know that Hxab = Gxab is

X

a torus (lemma 3). Let ¥ a complex character of Hx . We just

proved that H <4 G so that according to i) = ii) in

x|C x|c ’ -
lemma 1 for K =@ , (Tm’nV ) X+ {Tm’nv )X is stable under
C,x C,x

Gx|¢ ; it is even the cqmplexificatibn of -a real space %R stable

under G Thus for some suitable Tate twist R(n) ,

xR °
Det W, ® R(n) - is a trivial Gqu_mOdUIe’ It follows that Det W,
is a trivial thm—module, which yields the equality: |x| = 1

Therefore all representations of sz are unitary; this means that

ab .
Hth 15 a compact torus.

m, ,n,
Let V'c@®T?" le x @ faithful representation of Hib . A sub-
!
group of finite index of ﬂ1(X,X) acts on V' through
m,,n,
GL(V' nerT?t 1Vi ,) which is discrete, and also through a
I

compact torus. Because of the connectedness of H, it follows

that V' 1is a trivial Hx—module, that is: Hx = DHx
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Corollary 1 (see [4; 4.2.6-9]). The local system V underlying

Q
a polarizable variation of pure Hodge structure is semi-simple;
each isotypical component carries a sub-variation of pure Hodge
structure ; the center of End(ym) is purely of type (0,0)

For any x € X , the connected monodromy group Hx is semi-simple.

]
Proof: since Hx < DGx for x € X , and since DGX is a semi-

simple group (lemma 2), it follows that Hx is semi-simple; since

H is locally constant on X , H is in fact semi-simple for any

x € X . This implies the complete reducibility of the action of

ﬂ1(X,x) on and the first assertion follows (the normality

Vo, x
Hx < Gx would suffice here). By 1) = iii) in lemma 1, applied to
Hx < Gx for x € X , we get on each stalk of each isotypical compo-

nent of the local system V a Hodge sub-structure. By continuity,

o
QX )
these Hodge sub-structures extend across X~X and patch together
to give rise to a sub-variation of {-Hodge structure on the
isotypical component of ym . The third assertion follows from
lemma 1 in the same manner.

o

Corollary 2 (see [4; 4.2.9b]). The radical of the connected monodromy

group Hx associated to a polarizable variation of M.H.S. is

unipotent .

Proof: let Px be the subgroup of GL(Vm x) which respects the
L4
weight filtration W' , and Nx the subgroup of P which acts

. . W . .
trivially on Gr (Vm,x) . Then Hx (= Px and N is unipotent.



Moreover the connected monodromy group, say GrH  , of er(yz)
at " x 1is the image of H in Px/Nx . Hence Hx is an extension
of Ger + which (according to the previous corollary) satisfies

Ger = 7 Ger , by a (necessarily unipotent) subgroup of Nx

Remark: a similar argument shows that the Mumford-Tate group of
a M.H.S. over RcR , say V , is an extension of the Mumford-Tate
group of the direct sum of K-Hodge structures GrWV , by a unipotent
K-group (notations of § 2). In particular if V is polarizable,

G(erV) is the quotient of G(V) by its unipotent radical.

Remark: corollary 2 shows in particular that if G, is solvable
Q
for some x € X , then the variation of M.H,S. is unipotent in the

sense of [15].
Remark: theorem 1 applies to the geometric situations considered
in § 4 since in the course of proving it, we have made a restriction

to curves.

Counterexample: we produce an example, following Deligne-

Steenbrinck-Zucker (see [12] 3.16), to show that some extra hypo-

thesis upon the variation of M.H.S. is necessary.

n
np x
Consider the smooth 1-motive M = [2 &——> G ] over X = G
Q
Here the set X 1is @ ~ mzors . The corresponding good variation

of M.H.S. V is an extension of Z by 2Z(1) inside C . We
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denote by ¢_, the generator +i of Z(1) « W_, and by ab any

2

element of yz~\w_2 ; then <eo,e_2> spans !z . For some suitable

determination of log x (depending on the choice of € ), the

. ~ _ log x c 0
section e, : ,fO 537 €., ©f Vg spans F° and extends to
a section of Vg over 2?1 . We now combine notations from § 3 and
[}
§ 4. For x € X , we have U(H (M)) = U(G (M)) = U = G, according
" to proposition 1. On the other side Hx(ﬂ) = U(Hx(g}) according to

the previous corollary.

For any entire function £ , let us now consider the following

perturbation yf of V : (yi, wh) = (Vgi W.) but 5% s

spanned by Eb+ f E_o - The corresponding groups Hx(ﬂf), Gx(ﬂf)
admit the same description. The following assertions are easily seen

to be equivalent:

a) !f is good

b) f extends analytically at

c¢) £ 1is constant
a viay
e) V' := Hom(y,yf) is good.
The group Hx(z') is isomorphic to G, ; viewing it at a subgroup
. v £ B " . " :
of GL, * GL, acting on (Vm,x ®.Vm'x) , its "typical"” element is

of the shape

The "typical" element of Gx(!') is of the shape

“1/b 0 « b a
c 1 0 1 , a being independent of ¢ 1if
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(and only if) Yf # V . Therefore we see in this example that

Hx(y') < DGX(X') if and only if V' is good.
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6. Maximality

Let (yz,w, F*) a polarizable good variation of mixed Hodgé

. [+ .
structures on X . Let x € X as in lemma 3. By the theorem,

- we know that H_ €|DGX.. We now study how big can H, be in

DGx . )

Proposition 2. Assume that for some y € X , Gy is nilpotent. Then
o

for any x € X , Hx = DGX .

Proof: according to the remark which follows lemma 3, G
is actually a torus. Since the assertion is invariant under taking
finite coverings of X , it suffices to show that any tensor

1 € M Dy invariant under. 7,(¥X,xXx) spans a G_-module W on
0, x 1 X b4

which the action of Gx is abelian. It follows from the "fixed

part” theorem that W, is fixed by n1(X,x) , and the local constancy
o
of Gx on X , together with an argument of continuity, shows that
: /
Wy extends to a constant sub-variation of M.H.S., say (V' ,W.,F'"), of

(Tm’nv ' Tm'nh) . In particular the action of Gx on Yi = VQ is

-Q

the same as the action of Gy on y§ , which is abelian.

Before turning to applications, we propose a conjecture:

conjecture: under the general assumptions of this paragraph,

assume moreover that, except possibly for one Tate twist, no
Jordan-HO6lder constituent of (yz,W.,F') is a locally constant

[+
variation of M.H.S.. Then He = DGX , for any x € X
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Remark: this is obviously true, taking into account the normality
[+]

property, if"for some x € X , the {-group DGx is simple. By

way of example, we consider a polarized (aﬁalytic} family of

Abelian varieties with many endomorphisms over a complex algebraic

base X ; by this, we mean that the generic fibre fn of £ (this
makes sense since f 1is automatically algebraic) enjoys the
following property: (End fn) 2 Q@ is a division ring whiéh
contains a commutative field of degree dim fn over @ . Then
the derived Mumford-Tate group of the stalk (R1f*®)x can be

computed for any Weil generic point x of X (so that

End fn = End fx ) : it turns out that ?7G_ = Res + G where

Z /0

Z+ denotes the maximal totally real subfield of the center of

(End fn) @z @ , and G is an absolutely simple group over 2"
(in fact G|E 2 SL2 ): thus in this case DG, is simple over Q@
(see also the appendix, and [9, lemma 2.3], [1, th. 2]). However,

P. Deligne has constructed some Abelian varieties whose derived
Mumford-Tate groups PG are not simple over @ (letter to the

author) .

Remark: in the case when G 1is solvable, the conjecture holds
and is compatible with the results of [15]. In the reductive
case, when the variation arises from geometry, the conjecture
seems to be compatible with Grothendieck's conjecture about

algebraic independence of periods of algebraic integrals, see

[1].
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7. Algebraic independence of Abelian integrals

Let M be a smooOth 1-motive over X‘; its generic fibre

M := Eh is a 1-motive over the function field C€(X) .

According to [4] III 10.1.7, there exists a universal extension

M# of M by a vector group:

0 —_— X =

|

*
0 —> Ext1(M,Ga)’ —> B >

The De Rham cohomological realization of M 1is by definition

H;R(M) := COIJ&EE#-. Moreover, the exact sequence

0 —> Hom(X, Ga) ———>vExt1(M,'Ga) —_— Ext1(E, Ga) — 0

induces an exact sequence

(*) 0 —> Hom(X, Ga) —_ H;R(M) —_ H;R(E) —_ 0 ,

where (E) ié the De Rham cohomological realization of the

Hpr
1-motive [0 —> E] , identified with the usual first De Rham

algebraic cohomology group of E

Let X, denote the fraction field of the local ring ( an
. X ,x

some X € X . Construction [4] IIT 10.1.8 then yields a canonical

isomorphism:

at
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an
Let van the flat connection over Vg such that (Vg)v = YE

A% has only regular singular points

According to Griffiths, er v
(see [3]). It follows that Vv@" itself has only regular singular
points, henceforth is induced by a connection V¥V over H;R(M)

In fact (*) is a sequence in the category of C(X)-vector spaces

with CT(X)/.,.-connection, inducing the Gauss-Manin connection on
T g

1

HDR(E) , and a trivial connection on Hom{X, Ga) .

By definition of ¥V , we have

" 1 .
* % - .
(**) Homv(HDR(M), Kx) Vm'x inside Vm,x ® Kx .

Let us translate (*) and (**) in more down-to-earth terms, assuming

that X —2—> E is injective, and that X 1is constant over X

Then X may be considered as a group of sections of E —£—> X ,

and \/

7 is spanned by < logEﬁ, Ker expy > at least if we restrict

ourselves to the subset of X where u is fibrewise injective. By
means of suitable bases, a fundamental sclution matrix of a Picard-

Fuchs differential system of order one associated to H1 (M) can

DR
be expressed in some neighbourhood of Xq € X by:
Ex )
[ 7w, where ., (resp. y. , resp. £ ) runs
0 i i | ] k
. through some basis of H,.(E/y) @ Ox,xo
an _
(resp. of 0R1f* T) , of Xx }, so
0 1d X0 0
\ : J that the entries of Z are elements
of 0 an . In the first quadrant, we can recognize the classical
X, x
: 0

"period matrix" solution of a Picard-Fuchs differential system

1

associated to the quotient HDR

(E) ; such a matrix 2 was already
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considered by Y. Manin [17].

Our next theorem deals with a smooth 1-motive of the form

[0 —> E] .

Theorem 2. Assume that some fibre of E L. x is split:

E 1 = Tx1 x Ax1 » and that Ax1 is of CM type.
Then the transcendence degree of the € (X)-extension generated

by all the "periods" ¢ Wy (Yj, w, as above) equals the dimension
Y -
i

of the "generic" derived Mumford-Tate group DUG .

Proof: by '"generic", we mean the dimension § of D(Gx(y([o - E])))
for any x € ; . The groupe GX1 is a torus, according to the CM
type hypothesis. Since the variation of M.H.S. is good (at least
when restricted to curves, see the example at the end of § 4),
proposition 2 applies to establish the equality § = dim Hx . Since

the connection has only regular singular points, we get furthermore

that 6 4is the dimension of the differential Galois group associated
1
HDR

dimension is the transcendence degree of the C(X)-extension generated

to (E) . But differential Galois theory tells us that this

by the entries of the fundamental solution matrix 2 (see [1], [2]).
o
Our last theorem is concerned with a smooth 1-motive of the form

[X =95 A] , where A > X is an Abelian scheme.

Theorem 3. Assume that, over any finite etale covering of X , the

map induced by u : X —> A/c. a4 part remains injective. Then the

transcendence degree of the C(X) ((¢ wi) ) - extension generated

. ij
Yj J
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£
by the germs of analytic functions | k W, (Ek as above), equals

i
0
the dimension of the generic group U introduced in § 3.

Proof: wusing similar arguments from differential Galois theory,

we can see that it is enough to show that
U = Ker(Hx(E[ﬁ - 3a]) —> HX(Z[O - Al)) := U(Hx) .

According to theorem 1, we have Hx <l Gx ; thus in order to
H

apply proposition 1, it suffices to show that Woxx cW
14

-1,x 7
At the cost of replacing X by a finite etale covering, we may
assume that Hx is the whole monodromy group (not only its

neutral component). We identify X with its image in A and

H
consider it as a group of sections of £ . Let Ve € woxx ; it
¥
extends to a global section v of W, i setting § =exp v € X,
£ (x) - . 1
we thus have V(d/dx)fO Wy 0 , for any section w of QQ/X

and any derivation d/dx of €(X) . According to Manin [17],

this implies that £ belongs to the fixed part of A . However
the hypothesis we have made upon u implies in turn that § = 0 ,
so that v € TW_, .
ﬁemark: this result is the geometric variant of the "Kummer
theory" on Abelian varieties, which studies the extension of the
field of rationality of some torsion points, generated by the

division points of some non-torsion points.

Remark: the exact sequence (*) of T(X)-vector spaces with

connection splits if and only if U(Hx) =0 .
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Appendix
Automorphisms of certain Hodge structure over number fields

So far we have been concerned only with polarized Hodge structures
(Hz,h,w) over X , and we used some variants of the argument

that the automorphisms of (Hz,h,w) form a finite group, say

G : indeed G imbeds both into the discrete group GL(HZ) and
into the compact orthogonal group Ow = Aut(Hz @R , y(+,h(i) "))
If Z 1is replaced by the ring of integers R of some totally
real number field, the group GL(HR) is no longer discrete in
general; even if one tries to use Weil's restriction of scalars
from R to Z , it could happen that the "conjugates" of Ow
are not compact. Here we shall study those polarized Hodge
structures over R which arise naturally as pieces of the

cohomology of Abelian varieties with many endomorphisms, and

show how the finiteness of G involves arithmetical questions.
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8. Classification of Abelian varieties with many endomorphisms

Let X a complex simple Abelian variety of dimension
g > 0 , such that D = End X @z;m contains some commutative
field E of degree g over @ . Since X 1is simple, D is
a division ring whose center is denoted by Z . Any polarization
¥y of X defines a positive involution * over D ; this implies
that the subfield 2% of 2 fixed by * is a totally real number
field. After Albert's classification (cf [8] 11), four cases can

occur a priori:

Type I: Z =2 =E =D ; X 1is then called a "Hilbert-Blumenthal™"

Abelian variety.

Type II: Z = Z and for every real place p of 2 ,

D ® ]REM2C[R) .
Z,0

According to [8] loc. cit., there exists a € D , such that the
reduced trace TrD/Z(a) vanishes, and such that the involution

* is given by x* = a[TrD/Z(x)-x]a—1 for any x € D . Since D

is a quaternion algebra over Z , there exists b € D , such that
the reduced trace TrD/Z(b) vanishes, and which anticommutes with
a . We then have b* = b . So Z(b) 1is totally real and one can

assume that E = Z(b)

+

Type III: 2 =2 and for every place b of 2 ® R is

* Pz,0
isomorphic to the Hamilton quaternion algebra M . In
fact this case does not occur under our assumptions on

X . Indeed the representation of Ean[H1(XanJR) 8, p]R]



over H1(XanJR) @Z'DZR yields, after complexification,
two copies of the standard representation of' SO2

([9, lemma 2.3]). This representation thus decomposes
into four sub-representations of degree one, whose
endomorphism algebra has to be H %R C = Mz(m) : this

is impossible.

Type IV: Z 1is a totally imaginary quadratic extension of 7"

Either [2:Q] = 2g in which case X 1is said.of
"CM type" and we can choose E = 2" , or [Z:Q] = g
and we can assume that E 1is a totally imaginary

quadratic extension of its subfield E+ fixed by =* ,

whence the following diagram of extensions:

’///’/,E‘\‘\E\\ since [D:Q] s 2g ,

+
Z E [E:Z] & [D:E] (from the
XZ-'-/

commutativity of E }, and

[E:q@] g , we find that

[E:2]

A

2

Except in the CM case, E is a maximal commutative subfield of
D , and in any case we shall write E+ for the subfield of E
fixed by » , K for the Galois :closure of E+, in ER} and ‘'R for

the ring of integers of K .
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9. The Hodge structures Hu over R

Let us pick some primitive element ‘C of E+ over @ in
the order (End X) n E' of B . This element acts via 7* on
the free R-module H1(Xan,R) , and its characteristic polynomial
has rational integral coefficients and the same roots as the
minimal polynomial of ¢ ; that characteristic polynomial thus
equals some power of this (separable) minimal polynomial, so that
some essential R-submodule of H1(Xan,R) decomposes into a direct
sum of free R-modules Hu » the indices running among the imbeddings
of E+ into. K . Let L be the compositum in € of K and the
image of E through some complex imbedding, so that L = K
except in the non—CM.type IV case. Then the rank of HU is
2g/[E:@) = 2[L:K] . The free R-module HU is naturally endowed

with a structure of polarized Hodge structure (H ,hu,wu) of type

U
(0,1) + (1,0) over R , and there is an isomorphism of polarized

K-Hodge structures (H1(Xan,K),h,w) = ®+ (H @R K, h
u
v:E oK

Furthermore when L % K , wu comes from a L-hermitian form ¢

' wu) .

M
on the L-vector space Hu ®R K .
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. Aut rphi f H, h,
10. Automorphisms o ( I y wu)

Proposition 3. The group G of L-linear automorphisms of

(Hu, hu, wu) is infinite if and only if one of the following

statements holds:

i) K = L , and there exists some non-totally positive
“‘element k € K* "such that the multiple vk.C of the
Weil morphism C = hu(v—1) on Hu ®, R comes from an

endomorphism of Hu ®R K ,

ii) K # L and the direct summand (Hu @R K) ®L T of

HU @R € is bihomogeneous.

We begin the proocf with the case K = L

Let us choose a R~basis of Huv such that the Riemann form

wu = <-,-> 1is represented by the matrix (_2 8) for some

e € RY , and let us consider the matrix of C in the basis

(viewed as a basis of Hu @RZR }: since C2 = -1 , this matrix
3

has the shape (_S _g> , for (o,B,Y) ER satisfying the equation

ay = 1 +’B2 . It follows that ay # 0 . The symmetric form
ae Be
Be vye
8 € Aut Hu n O(Hu ®IR, Q) , and let us write eij € R for the

<+,C(*)> is represented by Q = ( ) . Let 6 € G, so that

coefficients of the matrix of g . The equation teQe = Q is

equivalent to the system
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(- 2 2
aloyq=1) + 2B 619059 * v8y9 =0
() { @0190qp * B(Byp8,9 * 814855 = 1% ¥0,.8,55 =0

2 2 .

Let us first deal with the case when € 1is defined over some
totally real algebraic extension of K ., Then «,B,y are

totally real algebraic numbers. Let ¢ € Gal(K/@) , and let

g g ¢

o, B, v be conjugates (necessarily real) of «ao,B,Yy
oo g o
respectively, above ¢ . Setting QU = (udeo Bceg) , we find
B"e” «y'e

*699%6% = Q% , and det Q° = (e9)% > 0, so that &° belongs

to the compact orthogonal gfohp OZ(QO) . By restriction of
scalars 4 la weil from K to Q@ , G 1imbeds into

(Res ~Aut(Hu @R K)) (Z) (which is discrete) and into 1 02(Q0)

K/Q .
“(which is compact), so that G 1is finite in this case.

Here we point out that the CM type is a special case: indeed

the Hodge bigraduation of Hu ®R C comes from the CM decom-

position H 8. L' = (B (x*%,0) & 1'] ® [ (x*%,0) & L'] ,
HOR 7,V Z,v
4 r
for some complex place v of Z over u (here we denote by L'

the compositum K-v(Z) which is a quadratic totally imaginary
extension of K ). Let us write L' = K(h) with. h2 = -g €ER ;
the matrix of C (in some basis adapted to the above decompo-
sition) reads (é _g) , thus C is defined over the totally

real number field K(Y/g) = K(ih)



b)

c)

Let us now assume that o,f,y span a line over K ; since

oy #+ 0 , we write B8 = ba, vy = ca , for some (b,c) € K x KX
This yields a2 = 1 ) €EKNR . Getting rid of the above
a-b

possibility 2), we are reduced to the case i) of the proposition,

with k = c-b2 . Since any (¢ € G commutes with

1~ _ (-1 -c X -Cy
ac = ( 1 b) , 6 has the shape (y x+2by) for x,y,cy and

2by € R . The set of all these matrices is an order R' in

the field X' = K(vbT-c)

K(ia) , as is seen by identifying

(; ;fgby) with (x+by) + y/b?’-c . Since ¢ 1is invertible,

it is identified with some unit in R' . The equation
+BQG = Q then reads x2 + 2bxy + cy2 = 1 , that is

(x+by) + yvbT-c € Ker NK./K .

But N has maximal rank as a morphism between unit groups

K'/K
(R')x —> R® . By assumption, K' is not totally imaginary,

so that by Dirichlet's theorem rk (R')* > rk R® . Thus the

kernel of NK' (R')® contains infinitely many elements,

sk o
and so does G in this case,

i
It remains to deal with the case when a,8,y span a K-vector

space of dimension at least 2. This implies that all minors

of (&) wvanish. In particular,

2 2

(1) (8 =1 (8,50, + 84 8,5 = 1) = 287,8,,6,,

(2)  (06%.-1)(8,.6.. + 8..6.. = 1) = 20,.0..06°
22 12 921 11 %2 12 922925
2 2 2 2

(3)  (85,-1) (82,-1) = 6,02,
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from which it follows that (812921 + 611922—1)e$2931 =
20,,65,65,0,, , SO that 8,,0,, = Ts+ 0,0, if 6 6. %0
Sgaring, we find (using (3) again) that 811 = -822 in this
case, and from (1) we get 812621 = 1—631 ; that is, det 6 = -1
and tr 6= 0 , from which it follows that 6% = 1 . If

812621 = 0 , we get from the vanishing of the other minors) tﬁét
6?1 = 8%2 = 1 , and moreover that 611822 = -1 if 612 and

821 do not vanish simultaneously; so we are reduced to the
previous case where 811 = —622 , except if © = z1 . From
this description we see that any two elements of G , distinct

from 1 , are inverse up to sign; this implies that G 1is

finite (with at most 4 elements).

We now turn to the case K # L

Let us choose a R-basis of HU such that the L-hermitian form

wu = <+,"> 1is represented by the matrix (g g) , for some
(e,f) € (R)® . We identify L &, R with € by means of an
element h of L such that h2 = -g € KNR' ; since L .is

totally imaginary (like E ), g 1is totally positive. The Weil
morphism C 1is linear with respect to the complex structure

induced by L @K:m on Hu @RZR , Since it commutes with L .

a) Let us first deal with the case when (Hu ®R K)@L C is not

bihomogeneous. Through the isomorphism € = L @K:m '

(Hu GR K)@L C can be identified with the complex 2-plan

HU @RZR , and C denotes the two eigenvalues i on
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Hu @R:m . Since wu is a morphism of the Hodge structure and
since C 1is C-linear, C belongs to the unitary group of wu .
Using this property, and the equations C2 = -1 and tr C =0 ,
we get the following matrix representation for C : (?E Iht)

2

for t ER , ku,y) € ¢° , and with the following equation:

(*) oy + gt2 =1 and fa = ey .

Let us write o = v + hw , for (v,w) EZRZ . Taking into account '
(*), we find the following matrix representation for the symmetric
form Re h/g <-*,C{+)> in the real basis of Hu eR:m attached to

the chosen complex basis:

Q = -et 0 fw =-fv )

0t -get fv gfw 3
for (t,v,w) €IR
fw fv ft 0

-fv  gfw 0 gft J
Since QU has maximal rank and index 0, the first main 71-minor

is non zero: t # 0 .

Let us first assume that o # 0 . Since © € G commutes with C ,

we find that © has following matrix representation:

x -yy/ao x -fay/a )
= , for (x,y) € L
y x+2hty/a Yy x+2hty/a
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Furthermore, the relation tél(g g)ﬂe= (g g) yields the system

,

(') | xx + f/e + yy = 1 (1)
- 2 Z - -
1 xx + (f/e + 4gt /aa)yy = 1 + 2ht/&a(axy + oxy) (2)
2htyy = aXy - oxy - (3) .

3

Eliminating Xxx between (1) and (2} and y§ between (2} and (3),
one obtains Xy = 0 ; reporting this equation in (1) and (3) gives

y = 0 and xXx = 1 . (Note that sihce 6 is invertible, x is a
unit in L ).

If on the contrary « = 0 , then vy = 0 according to (*), so that

8 is diagonal and xx = 1 again. In both cases, to show that

G 1is finite, it suffices to prove that the unit in Ker NL/K form
a finite group. Since L 1is a totally imaginary quadratic extension
of K , the unit groups UL and UK have the same rank [X:Q] -1 ,

thus the desired statement comes from Dirichlet's theorem.

b) It remains to deal with the case ii) of the proposition. In
this case C is the homothety with scale i € L ®K:R on-
Hu ®RZR . The matrix of the symmetric form Re h <-,C(+})> 1in the

real basis of Hu ®R;R attached to the chosen complex basis reads:

Q:/E/e

ge
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Sincé Q has maximal rank and index 0, it follows from Sylvester's
criterium that the product 6163 of the first and third main
minors of Q 1s positive: ef > 0 .

Let K' the imaginary quadratic session of K generated by

/-e/f . We shall show that K' is not totally imaginary. Indeed,
according to a result of Shimura [11, th 5], there exists at least
one place ou of K (o € Gal(K/@)) such that HOu falls in case

a). We apply Sylvester's criterium to the matrix

_ _.0 o] _eO
Qou = et 0 f,w f v
-g%% f% g%f% considered in
fcw £% £%¢ 0 case a) for
o 0.0 ogile]
-f f 0 f7t H .
L v g w g , ou
The product 6163 is —(ezf)dtz(f0v2'+ fcgow2 + gceth) . Because
of the relations (*), this can be simplified: 6163 = —(ecfot)zeofO .

we find e%f% < 0 , so that K' 1is not totally imaginary.

ILet 8 € G and § its L-determinant. The relation

tz (e 0\ , _ (e O . a -f/e cé
0 (0“£}.8 = (0 f) yields the shape (c R ) for the

matrix of 6 , with 66 = 1 and eaa + fcc = e . To show that

G 1is infinite, it suffices to consider the case where a,c € R

and & = 1 . Then the set of matrices (2 -fée c) with
(a,c) € K2 is a field isomorphic to K' . The subring consisting

of matrices with entries in R is an order R' , and the subgroup’

of (R')X consisting of unimodular matrices satisfying

ea2 + f02 = e 1is the kernel of N in (R')x . The same

K'/K
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argument as in part of the proof (K = L , case b), shows that
this group-is infinite. This completes the proof of the
proposition.
o

Along the lines of [4; II 4.4.8], proposition 3 can be used
to reprove the conjecture of § 6 for families of Abelian varieties
with many endomorphisms. The point is that, except in case ii),
the Hodge filtration of H is locally constant if and only if
the monodromy is finite. Indeed, the local constancy of F°
implies that the monodromy group (whose neutral component is
semi-simple) imbeds into the automorphism group & which is
finite except in cases i), ii) and which is a torus in case i) ;
here G denotes the Zariski closure of the group G determined

by proposition 3.



- 44 -

References
[1] ANDRE Y., "Sur certaines algébres de Lie assocleés aux
schémas abéliens", Note CR.A.S. t. 299 I n® 5 (1984),
137-140.
[21] ANDRE Y., "Quatre descriptions des groupes de Galois

différentiels", to appear in the proceedings of the

"Séminaire d'algebre de Paris", Springer L.N.

[3] CORNALBA M., GRIFFITHS P., "Some transcendental aspects of
algebraic geometry", Proc Symp pure Math. vol XXIX, AMS
1975, 3-110.

[4] DELIGNE P., "Théorie de Hodge" II, Publ. Math. IHES 40 (1972),
5-57; III, Publ. Math. IHES 44 (1974) 5-78.

[5] .DELIGNE P., "La conjecture de Weil pour les surfaces
K3" , Inv. Math. 15 (1972), 206-226.
(6] DELIGNE P. and al., Hodge cycles, Motives and Shimura Va-

rieties, Springer L.N: 900 (1982) I Hodge cycles on Abelian

varieties 9-100; II Tannakian categories 101-228.‘

[7] KATZ N., "Algebraic solutions of differential equations",
Inv. Math. 18 (1972), 1-118.

(8] MUMFORD D., Abelian Varieties, Oxford Univ. Press, Oxford
(1970) .
[9] MURTY V.K., "Exceptional Hodge Classes on Certain Abelian

varieties", Math. Ann. 268 (1984), 197-205.

[10] SCHMID W., "The singularities of the period mapping", Inv.
Math. 22 (1973), 211-319.



(111

[12]

[13]

[14]

[15]

[16]

[(17]

- 45 -

SHIMURA G., "On analytic families of polarized Abelian
varieties and automorphic functions", Ann. of Math. 78
(1963) , 149-192.

STEENBRINCK J., ZUCKER S., Variation of mixed Hodge
structure I Inv. math. 80 (1985), 489-542,

WATERHOUSE W., Introduction to Affine Group Schemes,
Springer, Heidelberg, 1979.

CATTANI E., KAPLAN A., SCHMID W., Degeneration of Hodge
structure Ann. Math. 123 (1986) 457-535.

HAIN R.M., ZUCKER S., Unipotent variations of mixed Hodge
structure, Inv. math. 88 (1987), 83-124.

KASHIWARA M., Variation of mixed Hodge structure (Pre-
print 1986).

MANIN Y., Algebraic curves over fields with differentiation,
AMS Translations (2) 37, 59-78.



