MUMFORD-TATE GROUPS AND THE THEOREM

OF THE FIXED PART

Yves André

Max-Planck-Institut
fur Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

CONTENTS

1. Some facts about linear algebraic groups
2. Mumford-Tate groups
3. Mumford-Tate groups of 1 -motives
4. Variations of mixed Hodge structure
5. Normality
6. Maximality
7. Algebraic independence of Abelian integrals

Appendix 8. Classification of Abelian varieties with many endomorphisms
9. The Hodge structures H_{μ} over R
10. Automorphisms of ($H_{\mu}, h_{\mu}, \varphi_{\mu}$)

Yves André

The present paper grew out of an attempt of understanding grouptheoretically the consequences of Hodge theory which are explained in Deligne [4] II 4, with an eye towards applications to algebraic independence.

After some preliminaries about representations of linear algebraic groups, we define and study Mumford-Tate groups of mixed Hodge structures over noetherian subrings R of the field \mathbb{R} of real numbers. Though in the sequel we restrict ourselves to the crucial case $R=\mathbf{z}$, we refer to the appendix for a study of some pathologies which may occur in the case of other ground rings. We then turn to a more precise study of Mumford-Tate groups arising from 1-motives (see [4] III 10).

In the fourth parahraph a mild generalization of a result by Deligne about the monodromy of variation of Hodge structure is given; we also present our main object of study, that is StreenbrinckZucker's notion of a good variation of mixed Hodge sructure.

In paragraph 5, we give a group-theoretic formulation of the theorem of the fixed part proved in [12]: for almost all stalks of a given polarizable good variation of mixed Hodge structure, the connected monodromy group H_{x} is a normal subgroup of the derived

Mumford-Tate group $D G_{x}$. We then state straightforward consequences about monodromy groups. In the next paragraph, we study how big can H_{x} be in $D G_{x}$; we end by applying these considerations to the study of algebraic independence of Abelian integrals depending on some parameters.

Acknowledgements: first of all, I want to express my gratitude to the Max-Planck-Institut für Mathematik, Bonn, for generous hospitality which I appreciate very much. A preliminary version of this paper served as a base text for talks given at the seminar about Hodge theory in the Max-Planck-Institute; I thank the participants for their interest. The present study of Mumford-Tate groups of 1 -motives (§ 3) grew out of a question of D. Bertrand; I thank him. Finally the computations in the Appendix, and some results in § 6, were worked out during my military service; I thank the authorities from E.A.M.E.A. (Cherbourg) for allowing suitable conditions to deal with such technicalities.

Note: while this work was almost completed, J.P. Winterberger has pointed to me a recent paper by G.A. Mustafin "Families of algebraic varieties and invariant cycles" Math. Izv. 27 (1986) $\mathrm{n}^{\circ} 2$, where the author also compares H_{X} and G_{x} under a strong degeneration hypothesis; in that paper, the normality property in the "projective smooth situation" is stated, and attribuated to P. Deligne.

1. Some facts about linear algebraic groups

Let K be a field of characteristic 0 , and $V \cong K^{N}$ some K-vector space. We shall consider closed an algebraic subgroup $G \subset G L(V)=G L_{N}$. For non-negative integers m, n, we set $T^{m, n}=T^{m, n}(V)=V^{\otimes m} \otimes \stackrel{V}{V} \otimes n$, where $\stackrel{V}{V}$ denotes the dual space of V (with the contragredient action of GL_{N}). By "representation of G " as "G-module", we shall always mean a finite-dimensional rational one. The following three properties are well-known
$[13 ; 3.5 \S 16.1],[6 ; ~ I \quad 3.1]:$

1) every representation of G is a subquotient representation of a finite direct sum of $T^{m, n}$'s,
2) G is the stabilizer of some one-dimensional L in some finite direct sum $\oplus T^{\mathrm{m}_{i}, \mathrm{n}_{i}}: G=\operatorname{stab} L$,
3) (not used here) if G is reductive (that is, if V is a semisimple representation of G), one can choose L so that G acts trivially on it; for 1 a generator of L, we then write $G=F i x l$.

For any representation W of G, and any character $\chi \in X_{K}(G)$ of G over K, we denote by W^{G} the fixed part of W under G and by W^{X} the submodule of W on which G acts according to X. We write End ${ }_{G} W$ for the endomorphisms of the G-module W, so that End $_{G} W=\left(E n d_{K} W\right)$, and we denote by $Z\left(E n d_{G} W\right)$ its center.

Lemma 1. Assume that G is connected, and let $H \subset G$ be a closed subgroup. The following conditions are equivalent:
i) $H \& G$, that is, H is normal in G,
ii) for every tensor space $T^{m, n}$, and for every $X \in X_{K}(H)$, $\left(T^{m, n}\right)^{X}$ is stable under G,
iii) every H-isotopical component of any representation of G is stable under G .

If moreover G is reductive, these conditions imply that $Z\left(E^{2} d_{H} \mathrm{~V}\right) \subset \mathrm{Z}\left(\right.$ End $\left._{\mathrm{G}} \mathrm{V}\right)$.

Proof: iii) \rightarrow ii) is obvious, and we shall first prove that ii) \Rightarrow i), independently of the connectedness assumption on G. We know by 2) that there exists some one-dimensional L in some $\oplus T_{i} \mathrm{~m}_{\mathrm{i}}$ such that $H=S t a b L$. Let W be the G-module spanned by L. The line L defines a character $X \in X_{K}(H)$; we have $L \subset W^{X}$, and $W^{X}=W \cap\left({ }^{m} T^{\prime}, n_{i}\right) X=W$, according to the hypothesis ii). Let φ be the natural morphism $G \longrightarrow G L(E n d W)$; it is clear that $H \subset k e r \varphi$. Conversely if $g \in \operatorname{ker} \varphi, g$ commutes with any endomorphism of W, that is, g is scalar; this implies that g stabilizes L, so that $g \in H$. Hence $H=\operatorname{ker} \varphi$ is a normal subgroup.

We now prove i) \Rightarrow iii). Let W be a G-module, and W^{\prime} the G-submodule of the sum of its irreducible submodules. It suffices to prove that the H-isotypical components of W^{\prime} are G-stable. Let H^{\prime}, G^{\prime} denote the natural images of H and G respectively in GL (W^{\prime}) , so that $H^{\prime}<G^{\prime}$. The normality property implies that (End $\left.W^{\prime}\right)^{H^{\prime}}$ is stable under G^{\prime}, inside the $G^{\prime}-$ module End W^{\prime}. For $w \in E n d_{H}, W^{\prime}$, let C_{W} be the kernel of the commutator map $[w,$.$] in E n d_{H}, W$ ' It is easy to derive the formula $g C_{w}=C_{g w}$,
so that $Z\left(E n d_{H}, W^{\prime}\right)=\cap_{W \in E n d_{H}, W^{\prime}} C_{W}$ is again a G^{\prime}-module. But $Z\left(E n d_{H}, W^{\prime}\right)$ is a finite-dimensional semi-simple algebra over K; by the connectedness of G^{\prime}, the morphism $G^{\prime} \longrightarrow A u t_{K}\left(Z\left(E n d_{H} W^{\prime}\right)\right)$ thus has trivial target, that is, $Z\left(E n A^{\prime} W^{\prime}\right.$ ') is a trivial G' module. Now the H-isotypical components of W^{\prime} are given by $p . W^{\prime}$, where p runs among the minimal indempotents of $Z\left(E n d_{H}, W^{\prime}\right)$. We just proved that P commutes with the action of G^{\prime} on W^{\prime}, and this implies that p.W' is stable under G^{\prime}.

When G is reductive, we have $V^{\prime}=V$, and the above proof shows that $Z\left(E n d_{H} V\right)$ is a trivial G-module, whence an obvious imbedding $Z\left(\right.$ End $\left._{H} V\right) \subset Z\left(\right.$ End $\left._{G} V\right)$.

2. Mumford-Tate groups

We first recall some definitions. Let R be some Noetherian subring of \mathbb{R} such that $K:=R \otimes \otimes$ is a field. Let V be a noetherian R-module. A (pure $R-$) Hodge structure of weight $M \in \mathbf{Z}$ over V is a morphism $h: \operatorname{Res}_{\mathbb{C} / \mathbb{R}^{\mathbb{G}}} \longrightarrow G L\left(V_{R} \otimes_{R} \mathbb{R}\right)$ such that $h w(x)$ is the multiplication by x^{M}; here w denotes the embedding $\mathbb{G}_{\mathrm{m} \mathbb{R}} \subset \operatorname{Res}_{\mathbb{C} / \mathbb{R}^{\mathbb{G}}}$ given by $\mathbb{R}^{\mathrm{X}} \subset \mathbb{C}^{\mathrm{X}}$. Equivalently, it is a bigraduation on $v \underset{R}{\otimes} \mathbb{R}=: V_{\mathbb{C}}=\underset{p+q=M}{\oplus} \mathrm{v}^{\mathrm{p}, \mathrm{q}}$ with $\overline{\mathrm{v}^{p, q}}=\mathrm{v}^{\mathrm{q}, \mathrm{p}}$, or or else a decreasing filtration F^{p} on $V_{\mathbb{C}}$ such that $F^{p} \oplus \bar{F}^{(M-p+1)} \xrightarrow{\longrightarrow} V_{\mathbb{C}}\left(F^{p}=\sum_{p^{\prime} \geqq p} v^{p^{\prime}, M-p^{\prime}}\right)$. For instance, there is one and only one Hodge structure of weight -2 M on $\mathrm{V}=(2 \pi \sqrt{-1}){ }^{\mathrm{M}_{\mathrm{R}}}$, called "the Tate twist" and denoted by $R(M)$. A polarisation of the Hodge structure (V, h) of weight M is a morphism of Hodge structures (in the obvious sense) $\psi: V \otimes V \longrightarrow R(-M)$ such that $(2 \pi \sqrt{-1})^{M} \psi(., h(\sqrt{-1})$.$) is a scalar product on \quad V_{\mathbb{R}}:=V \otimes \mathbb{R}$. Elements. of $T^{m, n}\left(V_{K}\right):=V^{\otimes m} \otimes(\operatorname{Hom}(V, R))^{\otimes n} \otimes \mathbb{Z}$ (endowed with the natural K -Hodge-structure of weight $(\mathrm{m}-\mathrm{n}) \mathrm{M})$ which are of type $(0,0)$ are called "Hodge tensors". In fact Hodge tensors are nothing but elements of $F^{0}\left(T^{m, n}\left(V_{C}\right)\right) \cap T^{m, n}\left(V_{K}\right)$.

A mixed R-Hodge structure (M.H.S) is a noetherian R-module V, together with a finite filtration W of the $K-s p a c e ~ V_{K}:=V \otimes \mathbb{Q}$, and a finite decreasing filtration F^{\prime} of $V_{\mathbb{C}}$ such that the $\left(G r_{n}^{W}\left(V_{K}\right), G r_{n}^{W}(F)\right)$ are K-Hodge structures of weight n respectively. We shall consider the category of mixed R-Hodge structures up to
isogeny, whose objects are mixed R -Hodge structures, and whose morphisms are the homomorphisms of the associated K -vector space which preserve the filtrations. We say that a M.H.S. V is of type $\varepsilon \subset \mathbf{Z} \times \mathbf{z}$ if its Hodge numbers $h^{p, q}$ are 0 for $(p, q) \notin \varepsilon$.

The category of mixed R -Hodge structures up to isogeny is an Abelian $\mathrm{K}-\mathrm{linear}$ tensor category [4; th 12.10] which is rigid and has an obvious exact faithful K -linear tensor functor $\omega:(V, W, \dot{F}) \longmapsto V_{K}$. Let $\langle V\rangle$ denote the Tannakian subcategory generated by (V, W, F), and ω_{V} the restriction of the fiber
 by some closed K-algebraic subgroup $G=G(V)$ of $G L\left(V_{K}\right)$, and ω. defines an equivalence of categories $\langle V\rangle \xrightarrow{\sim} \operatorname{Rep}_{K} G$, cf. [6; II 2.11]. We call G the Mumford-Tate group of (V, W, \dot{F}).

Lemma 2. The Mumford-Tate group G is connected. Any tensor fixed by G in some $T^{m, n}$ is a Hodge tensor (an element of $\left.F^{0}\left(T^{m, n}\left(V_{\mathbb{C}}\right)\right) \cap T^{m, n}\left(V_{K}\right)\right)$, and G is the biggest subgroup of $G L\left(V_{K}\right)$ which fixes Hodge tensors. If (V,W, F) arises from a pure Hodge structure (V, h) , G is the K -Zariski closure of the image of h in $G L\left(V_{K}\right)$, and if moreover V is polarizable, then G is reductive.

Remark: the definition of Mumford-Tate group above is slightly distinct from that given in [6; I, 3.2] in the case of pure Hodge structures; however if the weight is non-zero, this leads to an isogenious group.

Proof of the lemma: let us first prove the second and third assertions. Any invariant tensor 1 under G span a trivial representation L_{K} corresponding to a M.H.S., say L, such that $<L>$ is equivalent to $\underline{V e c t}_{K}$. Thus L is a trivial M.H.S., that is to say, 1 is a Hodge tensor. By 1.2), we know that G is the stabilizer of some line L_{K} in $\oplus T^{m_{i}}{ }^{n} i$, which corresponds to a M.H.S. of rank one (up to isogeny), that is, to some Tate twist $L=R\left(N_{1}\right)$. We can assume V non-trivial (up to isogeny); thus there exists an integer N such that the weight of $\operatorname{Det} W_{N}\left(V_{K}\right)$, say N_{2}, is non-zero. Taking if necessary $\stackrel{V}{V}_{\mathrm{K}}$ instead of V_{K}, one can assume moreover that N_{1}, and N_{2} have the same sign. Let r be the rank of the M.H.S. $W_{N}\left(V_{K}\right)$ over K, and let l be a generator of the one-dimensional subspace
 Then $G=F i x(1)$. The arguments given in $[6 ; 1,3,4-6]$, with minor modifications in order to take into account the difference of definitions, prove the statements about pure Hodge structures.

To prove that G is connected in the general case, it suffices to show that any K-space V_{K}^{\prime} on which G acts through a finite group is in fact a trivial representation. Such a V_{K}^{\prime} correspond to some M.H.S. V^{\prime}, and we have to show that V^{\prime} is trivial up to isogeny. The group G acts on each quotient $G r_{n}^{W} V_{K}^{\prime}$ through the MumfordTate group G_{n}^{\prime} of this pure Hodge structure over K, which is therefore finite. By the description of the Mumford-Tate group of a pure Hodge structure as a Zariski closure over k of some real
torus, it follows that G_{n}^{\prime} is trivial, so that $G r_{n}^{W_{K}^{\prime}}$ is a trivial Hodge structure (that is, of type (0,0)) . This implies that $W_{n} V^{\prime}=F^{n} V^{\prime}=0$ for $n \neq 0$, and finally that V_{K}^{\prime} is a trivial representation of G by definition of the Mumford-Tate group.

Remark: the description of Mumford-Tate groups by their invariant tensors implies some restrictions on the groups which may occur; for example, G cannot be a Borel subgroup of $G L\left(V_{K}\right)$, cf. [6; I 3.2]. However, there are other restrictions on the structure of Mumford-Tate groups, as we shall see now:

Lemma 3. Let G be the Mumford-Tate group of a M.H.S. over R, say V, such that $\mathrm{Gr}^{\mathrm{W}} \mathrm{V}$ is polarizable. Then the abelianized group $G^{a b}=G / D G$ is a torus. The group of real points ot its quotient $\quad G^{a b} / G^{a b}{ }_{n G_{m}}$ is compact.

Proof: since all morphisms in < V > are strict, one has $\left.G r^{W} V^{\prime} \in O b<G r^{W} V\right\rangle$ for any $\left.V^{\prime} \in O b<V\right\rangle$, thus $G r^{W} V^{\prime}$ is polarizable. Take for V^{\prime} the M.H.S. corresponding to a faithful representation V_{K}^{\prime} of the quotient U of $G^{a b}$ by its maximal torus. We find that $G\left(G{ }^{W} V^{\prime}\right)=0$ (see lemma 2). Thus V^{\prime}, which is a successive extension of trivial H.S., is also a trivial H.S., and $G\left(V^{\prime}\right)=U=0$. Now let $X \in X_{\mathbb{C}}(G)=X_{\mathbb{C}}\left(G^{a b}\right)$, and let $V_{\mathbb{R}}^{\prime \prime}$ be some real plane such that $V_{\mathbb{C}}^{\prime \prime} \simeq X \oplus \bar{X}$; after twisting à la Tate, Det $V_{\mathbb{R}}^{\prime \prime}$ corresponds to a trivial real H.S. Therefore $G^{a b} /\left.{ }_{G}{ }^{a b}{ }_{n G}\right|_{\mathbb{R}}$
acts trivially on Det $V_{\mathbb{R}}^{\prime \prime}$, which yields $|X|=1$. All representations of $G^{a b} /{ }_{G}{ }^{a b}{ }_{\left.n \mathbb{G}_{\mathrm{m}}\right|_{\mathbb{R}}}$, are unitary, so that this torus is compact.

Remark. The same argument shows in the same situation that if G is nilpotent, then $G=G_{m} \times T$ (or $G=T$ if V is pure of weight 0), where T denotes a compact torus.

3. Mumford-Tate groups of 1 -motives

 is the following couple of data:
i) an extension $0 \rightarrow T \rightarrow E \rightarrow A \rightarrow 0$ of an Abelian variety A by a torus T,
ii) a morphism u from a free Abelian group X to $E(\mathbb{C})$. One associates to a 1 -motive a mixed Hodge structure $V=V(M)=\left(V_{\mathbb{Z}}, \underset{\sim}{W}, F^{*}\right)$, given by:

$$
\begin{aligned}
V_{\mathbf{Z}} & =\{(1, x) \in \text { Lie } \mathrm{E} \times x / \exp 1=u(x)\} \\
W_{0} & =V_{\mathbb{Q}} \\
W_{-1} & =H_{1}(E) \otimes \mathbb{Q} \text { and } G_{-1} \text { is polarizable, } \\
W_{-2} & =H_{1}(T) \otimes \mathbb{Q} \\
F^{0} & =\operatorname{Ker}\left(W_{0} \otimes \mathbb{C} \rightarrow \text { Lie } E\right) \text {, see }[4] \text { III } 10 .
\end{aligned}
$$

We denote by G the Mumford-Tate group of V, and by G_{-1} that of W_{-1}. Let E^{\prime} be the Zariski closure of $u(X)$, and let us write F : = End $E^{\prime} \otimes \mathbb{Q}$.

Proposition 1. Let $H<G$ such that $W_{0}^{H} \subseteq W_{-1}$ (for instance we may take $H=G$). Let us assume that E is a split extension. Then $\mathrm{U}(\mathrm{H}):=\operatorname{Ker}\left(\mathrm{H} \rightarrow \mathrm{G}\left(\mathrm{W}_{-1}\right)\right)$ is canonically isomorphic to $\tilde{\mathrm{U}}:=\operatorname{Hom}_{\mathrm{F}}\left(\mathrm{F} . \mathrm{u}(X) ; \mathrm{H}_{1}\left(\mathrm{E}^{\prime}\right) \otimes \mathbb{Q}\right)$.

Proof (inspired from Kummer's theory of division points on Abelian varieties): the map $U(M) \rightarrow W_{-1}: \sigma \longmapsto \sigma m-m$, depends only on the image (under u) of the class of $m \in W_{0}$ modulo W_{-1}. This map
defines therefore a G-equivariant homomorphism
$\mathrm{U}(\mathrm{H}) \xrightarrow{\varphi} \operatorname{Hom}_{\mathbf{z}}\left(\mathrm{u}(\mathrm{X}) ; \mathrm{W}_{-1}\right)$. The vanishing of $\varphi(\sigma)$ implies that σ fixes W_{0}, which is a faithful representation of H; thus $\sigma=1$, and this shows the injectivity of φ. Because of Poincare's complete reducibility lemma, the exact sequence of 1 -motives $0 \rightarrow\left[X \rightarrow E^{i}\right] \rightarrow[X \rightarrow E] \rightarrow[0 \rightarrow E / E,] \rightarrow 0$ splits (up to isogeny).

It follows that

$$
\begin{aligned}
\operatorname{Ker}\left(H \rightarrow G\left(W_{-1}\right)\right) & =\operatorname{Ker}\left(H \rightarrow G\left(H_{1}\left(E^{\prime}\right)\right)\right) \cap \operatorname{Ker}\left(H \rightarrow G\left(H_{1}\left(E / E^{\prime}\right)\right)\right. \\
& \subseteq \operatorname{Ker}\left(H^{\prime} \longrightarrow G\left(H_{1}\left(E^{\prime}\right)\right)\right) ;
\end{aligned}
$$

where $H^{\prime}=H \cap G\left(V\left(\left[X \rightarrow E^{\prime}\right]\right)\right)$. Thus φ factorizes through $\operatorname{Hom}_{\neq}\left(u(X) ; H_{1}\left(E^{\prime}\right) \otimes \mathbb{D}\right) ;$ also it is easily seen that elements in the image of φ are $\mathrm{F}-$ Iinear in some suitable sense: $\varphi(\mathrm{U}(\mathrm{H})) \subseteq \mathbb{U}$.

Replacing E by E^{\prime} and X by $u(X) /$ torsion , we may now assume that u is a dominant embedding; we identify X and $u(X)$. Since E is a split extension, we have $F \simeq$ End $_{G_{-1}} W_{-1}$, whence End $_{G_{-1}} \tilde{U} \simeq\left(\text { End }_{F} F X\right)^{o p}$; also W_{-1}, whence \tilde{U} (with trivial action of G_{-1} on $F X$), is a semi-simple G_{-1} module. Thus $\varphi(U(H))$ is the kernel of some G_{-1}-equivariant endomorphism ψ of \tilde{U}; that is to say, there exists $f \in f$ such that $(\psi \varphi(\sigma)) \cdot m=\sigma f m-f m=0$, $\forall \sigma \in U(H), \forall m \in F X$. If $\varphi(U(H)) \neq \tilde{U}$, then $\psi \neq 0$, therefore we can find $x \in F X$ such that $U(H) x=x$ and $x \neq 0$. We set $X_{x}=\mathbf{Z x}, M_{x}=\left[X_{x} \longrightarrow E\right]$, and we denote by a subscript x the objects G_{x}, V_{x} etc. ... associated to this 1-motive. By construction the natural mappings
$H_{x}=H \cap G_{x} \xrightarrow{i} G L\left(W_{x, 0}\right) \quad$ have the same image, and $i \quad$ is
injective. Since E splits, $W_{x,-1} \simeq W_{-1}$ is a direct sum of polarizable pure Hodge structures, so that $j H_{x}<j G_{x}$ is reductive. Therefore $W_{x,-1}$ is a direct summand in the H_{x}-module $W_{x, 0}$, which means that we could choose $x \notin W_{x,-1}$ so that $H_{x} x=x$: indeed, H_{x} acts trivially (like G_{x}) on $W_{x, 0} /_{W_{x,-1}}$ whose type is (0,0). Recall that $W_{0}^{H} \subseteq W_{-1}$; this implies the corresponding inclusion $W_{x, 0}^{H} \subseteq W_{x,-1}$ since H commute with the action of F. Therefore we get a contradiction, and deduce that $\varphi(\mathrm{U}(\mathrm{H}))=\tilde{\mathrm{U}}$.

Corollary. If E splits ($E=A \times T$), with A non trivial, one has a split exact sequence $0 \rightarrow \tilde{U} \rightarrow G \stackrel{\curvearrowleft}{\rightarrow} G\left(H_{1}(A)\right) \rightarrow 0$.

Remark: if one drops the assumption that E is split $U(G)$ can be much smaller than \tilde{U}. In "Deficient points on extensions of abelian varieties by \mathbb{G}_{m} "J. Number theory - (1987), O. Jacquinot and K. Ribet have build some examples (by means of endomorphisms of A which are antisymmetric with respect to a polarization) where $U(G)=0$, corresponding to some selfdual 1 -motives.
4. Variations of mixed Hodge structure

In the sequel we shall concentrate on the case $R=\mathbf{z}$ (see the appendix for other ground rings). By a variation of M.H.S., we we shall mean a finitely filtered object in the category of local systems of noetherian \mathbf{z}-modules over a fixed connected complex manifold X ,

$$
\left(\underline{V}_{z}, W\right), W_{n} \underline{v}_{z} \subset W_{n+1} \underline{V}_{z},
$$

together with a decreasing filtration of the complex bundle $V_{\mathbb{C}}^{C}$ attached to $\underline{V}_{\mathbb{C}}:=\underline{V}_{\mathbb{Z}} \otimes \mathbb{C}$ by subbundles F^{P}, such that on each fibre $V_{\mathbb{Z}}, s,(W, \dot{F})$ induces a M.H.S. and that the flat covariant derivative ∇ satisfies $\nabla F^{p} \subset F^{p-1} \otimes \Omega_{X}^{1}$. A morphism of variation of M.H.S. is a morphism of local system which respects W and whose complexification respects the filtration F^{P} pointwise. This yields an abelian category (any morphism is strictly compatible with the fibrations).

We call such a variation ($\left.\underline{V}_{\mathbb{Z}} ; \underset{\because}{W}, F\right)$ a graded-polarizable one if each of the families $\operatorname{Gr}_{n}^{W} \underline{V}_{\mathbf{Z}}$ carries a bilinear from with-values in $\mathbf{Z}(-n) \mathrm{X}$ which is a morphism of local system and pointwise a• polarization. Any subquotient of a polarizable variation and any object isogenious to a polarizable one are polarizable.

The integral relative cohomology modules of the complement of a divisor with relatively normal crossings in a projective smooth X-scheme furnish examples of polarizable variations of M.H.S. over
the algebraic variety X (see [7; 4.3] for instance).
For a variation of M.H.S., and for a point x of x, we denote by H_{x} the connected monodromy group, that is the neutral component of the smallest algebraic subgroup of $G L\left(V_{Q, x}\right)$ containing the image of $\pi_{1}(X, x)$. We also denote by G the Mumford-Tate group of the M.H.S. carried by the stalk $\mathrm{V}_{\mathbf{Z}, \mathrm{x}}$.

Lemma 4 (see [5; 7.5]) on the complement $\dot{\circ}$ of some meager subset of X, G_{x} is locally constant. If the variation is polarizable, then $H_{x} \subset G_{x}$ for any $x \in{ }_{\mathrm{X}}^{\circ}$.

Proof: for a polarizable variation of pure Hodge structure , this is stated in loc. cit., without much detail abouth the proof however. So we shall write down a detailed proof, though (thanks to lemma 2) there is no new complication involved with the M.H.S.. Let $\widetilde{\mathrm{x}}$ be the universal covering of $(\mathrm{x}, 0)$, for some base point $0 \in \mathrm{X}$. The inverse image of the (polarized) variation of M.H.S. is a (polarized) variation of M.H.S. over \widetilde{X}, whose underlying filtered local system $\left(\tilde{V}_{\mathbf{z}}, \tilde{W}.\right)$ is constant. For $l \in T^{m, n}\left(\Gamma \tilde{\mathrm{~V}}_{\mathbb{Q}}\right) \cong T^{m, n}\left(\tilde{\mathrm{~V}}_{\mathbb{Q}, 0}\right)$, we set

$$
\begin{aligned}
\tilde{X}(1) & :=\left\{x \in \tilde{X} / l_{x} \in T^{m, n}\left(\widetilde{v}_{\mathbb{Q}, \mathrm{x}}\right) \text { is a Hodge tensor }\right\} \\
& =\left\{x \in \tilde{X} / l_{x} \in F^{0} T^{m, n}\left(\tilde{V}_{\mathbb{C}, x}\right)\right\}
\end{aligned}
$$

Since F^{0} is a subbundle, $\widetilde{X}(1)$ is an analytic subvariety of \tilde{X}, and its natural projection $\pi_{\star} \widetilde{x}(1)$ on x is an analytic subvariety
too. We set $\stackrel{\circ}{x}=x \vee\left(\begin{array}{l}U \quad \pi_{*} \tilde{X}(1) \\ \text { such that } \pi_{*} \widetilde{X}(1) \neq X\end{array}\right.$ countable intersection of dense open subsets of X. By definition of $\stackrel{\circ}{X}$, any $l \in T^{m, n}\left(\Gamma \tilde{V}_{\Phi}\right)$, whose stalk at some $x_{0} \epsilon^{-1} \stackrel{\circ}{\pi^{\prime}}$ is a Hodge tensor, is in fact a Hodge tensor at any point of \tilde{x}. For $x \in \stackrel{\circ}{X}, G_{x}$ is then the biggest subgroup of $G L\left(V_{\Phi}, x\right)$ which fixes the various tensors in $T^{m, n}\left(V_{\mathbb{Q}, \mathrm{X}}\right)$ which lift to $F^{0} T^{m, n}\left(\Gamma \widetilde{V}_{\mathbb{C}}\right)$. Therefore G_{X} is locally constant on $\stackrel{\circ}{X}$.

We now assume that the variation is polarized and we shall see that $\pi_{1}(X, x)$ acts (through a finite group) on the spaces $H T_{x}^{m, n}$ of Hodge tensors in $T^{m, n}\left(V_{\Phi, x}\right)$ for any $x \in \dot{X}$; this will be sufficient to prove the lemma, since G_{x} can be described as Fix(1), for one element 1 of one space $\oplus H T_{i} \mathrm{~m}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}$. We have seen that $\operatorname{HT}_{x}^{m, n}$ (for $x \in \stackrel{\circ}{X}$) is the subspace of $T^{m, n}\left(V_{Q}, x^{\prime}\right.$) composed of tensors which lift to $\mathrm{F}^{\circ} \mathrm{T}^{\mathrm{m}, \mathrm{n}}\left(\Gamma_{\mathbb{V}}\right)$; in particular this subspace is locally constant. Hence $H T_{x}^{m, n}$ is the rational stalk at x associated to a sub-variation of M.H.S. ($\underline{V}_{\mathbf{Z}}^{\prime}$, W., F'•) of $\left(T^{m, n}\left(\underline{V}_{z}\right), T^{m, n}(W),. T^{m, n}\left(F^{*}\right)\right)$: which is actually pure of type $(0,0)$ and which inherits a polarization. This polarization ψ on $V_{\mathbb{R}, x}^{\prime}$ is a scalar product, invariant under $\pi_{1}(X, x)$. Thus $\pi_{1}(X, x)$ factors through the discrete group Aut $V_{\mathbf{Z}}^{\mathbf{Z}}, \mathrm{x}$ on one side, and through the compact orthogonal group $O\left(V_{\mathbb{R}, x^{\prime}}^{\prime} \psi\right)$ on the other side; hence the connected group H_{x} acts trivially on $H T_{x}^{m, n}$.

Remark: a variation of M.H.S. \underline{V} is said to be semi-simple if for any $\mathrm{x} \in \mathrm{X}$, the relevant category $\left\langle\underline{\mathrm{V}}_{\mathrm{x}}\right\rangle$ is semi-simple (notations of § 2). It is easily seen that a polarizable M.H.S.
is semi-simple if and only if it is a finite direct sum of variations of pure H.S. up to isogeny. Indeed, using lemma 1, we can see that both conditions imply the reductivity of G_{x} for any $x \in X$. Conversely, assume that for some $x \in{ }_{X}^{\circ}, G_{x}$ is reductive. Then by local constancy of G_{y} on $\stackrel{\circ}{X}$, the same is true for G_{y} for any $y \in \stackrel{\circ}{X}$.

Now consider a section σ of the inclusion
$\left(W_{m}\right)_{y} \subseteq\left(W_{m+1}\right)_{y}$ in the category $\left\langle V_{Y}\right\rangle$, and let $\gamma_{Y, z}$ be a path (up to homotopy) from y to a nearby point z in X. Then because of the horizontality of the filtration W. and the local constancy of $\left(G_{y}\right) \underset{Y}{ } \in \stackrel{\circ}{X}$, the section $\gamma_{y, z}(\sigma)$ deduced by transporting σ along $\gamma_{y, z}$ is a section of $\left(W_{m}\right)_{z} \subseteq\left(W_{m+1}\right)_{z}$ in the category $<V_{z}>$. Thus $\left.\underline{V}\right|_{X} ^{\circ}$ is a direct sum of variations of pure $H . S$. up to isogeny, which extend to X by continuity. The semi-simplicity of \underline{V} follows from this.

We shall now recall a concept introduced by Steenbrinck-Zucker [12] (cf. also [15]). Let us now assume that X is a smooth connected algebraic variety over \mathbb{C}. The variation of mixed Hodge structure is considered good if it satisfies the following condition at infinity: there exists a compactification $\overline{\mathrm{X}}$ of X , for which $\overline{\mathrm{X}}$ - X is a divisor with normal crossings, such that
i) The Hodge filtration bundles F^{p} extend over \bar{X} to sub-bundles $\tilde{\mathrm{F}}^{\mathrm{p}}$ of the canonical extension $\tilde{\hat{\mathrm{V}}_{\mathbb{C}}^{\mathrm{C}}}$ of $\mathrm{V}_{\mathbb{C}}^{\mathrm{C}}$, such that they induce the corresponding thing for $\mathrm{Gr}^{W}\left(\underline{V}_{Z}, \mathrm{~W}_{\mathrm{H}}, \mathrm{F}^{\cdot}\right)$,
ii) for the logarithm N_{j} of the unipotent part of a local monodromy transformation about a component of $\bar{x} \backslash x$, the weight
filtration of N_{j} relative to W exists.
The fact that these conditions are sufficient to imply those of [12] (3.13) is pointed out in [15] 1.5, and follows from [16] 4 and [12] A. The following classes of variations of M.H.S. are good:

1) polarizable semi-simple variations of M.H.S. over algebraic bases [10], [14]
2) relative cohomology modules of the complement of a divisor with relatively normal crossings in a projective smooth x -scheme, at least when X is a curve, see [12] 5.7. Moreover, the category of good variations of M.H.S. over X is stable under standard constructions of linear algebra, \oplus, \otimes, duality ... , see [12] A.

Example: smooth 1-motives.
Recall from [4] III 10.1.10 that a smooth 1 -motive M over X is the following couple of data:
i) an extension $0 \rightarrow \underline{T} \rightarrow \underline{E} \rightarrow \underline{A} \rightarrow 0$ of a (polarizable) Abelian ${ }_{\mathrm{y}}^{\mathrm{f}} \mathrm{f}$
scheme \underline{A} over X by a torus \underline{T} over X
ii) a morphism $\underline{u}: \underline{X} \rightarrow \underline{E}$ from a group scheme \underline{X} over X to \underline{E}; one assumes that locally for the etale topology on x, \underline{x} is constant and defined by a free \mathbf{z}-module of finite type.

The construction $\underline{V}(M)=\left(\underline{V}_{\mathbf{Z}}, W ., F{ }^{\circ}\right)$:

$$
\begin{aligned}
\underline{V}_{\mathbf{Z}} & =W_{0}\left(\underline{V}_{\mathbb{Z}}\right)=\underline{\text { Lie }} \underline{E} / X{ }_{X}{ }^{E} \underline{X} \text { defined by the exponential sequence, } \\
W_{-1}^{*} & =\operatorname{Ker} \exp =R_{1} f_{*}^{a n} \mathbf{Z}^{\prime} \\
W_{-2} & =\left(X_{\mathbb{C}}(\underline{T})\right)^{V} \\
F^{0} & =\operatorname{Ker}\left(V_{\mathbb{C}}^{C} \rightarrow \text { Lie } \underline{E} / X\right)^{\prime},
\end{aligned}
$$

which is fibrewise compatible with that of $\S 3$, yields a polarizable variation of M.H.S. over X.

Lemma 5. Assume that X is a curve. Then the variation $V(\underline{M})$ associated to the smooth 1 -motive \underline{M} is good.
(Sketch of) Proof: according to M. Raynaud [C.R.A.S. 262 (1966) 413-416], there exists a Néron model of E over the smooth completion $\overline{\mathrm{X}}$ of X , such that μ extends to $\overline{\bar{u}}: \underset{\bar{X}}{\bar{X}} \underset{\overline{\mathrm{E}}}{\overline{\mathrm{E}}}$; note that the smooth group scheme $\bar{E} / \underline{\bar{X}}$ is not of finite type in general. Replacing \underline{x} by a subgroup-scheme of finite index, which yields an isogeneous variation of M.H.S., we may assume that $\underline{\bar{u}}(\underline{\bar{X}})$ lies in the neutral component \underline{E}^{0} of \bar{E}. Condition i) defining good variations is fulfilled with $\widetilde{F}^{0}=\operatorname{Ker}\left(\left(\text { Lie } \underline{E}^{0} / \bar{X}^{\times \bar{E}^{0}} \underline{\bar{X}}^{c}\right)^{c}\right.$ Lie $\left.\underline{E}^{0} / \bar{X}^{\prime}\right)$.

In order to verify ii), we may proceed by induction since we know that both W_{-1} (by point 2) above: the geometric situation) and $W_{0} /_{W_{-2}}$ (by duality of 1 -motives and point 2)) satisfy ii); the point is that $N_{j} W_{-1} \cap W_{-2}=0$.

Granting ii) for W_{-1}, it follows from theorem 2.20 of [12] (formula 2.21) that ii) for W_{0} reads equivalently:
(*) $N^{l} W_{0} \cap W_{-1} \subset N^{1} W_{-1}+(-2)^{M-1-1}$, for all $1>0$; here $(-2)^{M}-1-1$
is the relative weight filtration of W_{-2}, which is W_{-1-1} since the unipotent part of the local monodromy of.. W_{-2} is trivial (see [12] 2.14; the point is that \underline{T} is necessarily locally constant). Therefore (*) follows from property ii) for W_{0} / W_{-2}.

5. Normality

We keep the notations of the previous paragraph. The following result is a simple consequence of the theorem of the fixed part (Griffiths-Schmid-Steenbrinck-Zucker).

Theorem 1. Let $\underline{V}=\left(\underline{V}_{X}, W ., F^{*}\right)$ be a (graded-) polarizable good variation of mixed Hodge structure over a smooth connected algebraic variety X. Then for any $x \in \stackrel{\circ}{X}$, the connected monodromy group H_{x} is a normal subgroup of the derived Mumford-Tate group ${ }^{D} \mathrm{G}_{\mathrm{x}}$.

Proof: we first prove that $H_{x} \ll G_{x}$, using the implication ii) \Rightarrow i) in lemma 1. Since we already know that $H_{x} \subset G_{x}=G_{x}^{0}$, it suffices to prove ii) for H_{x}, G_{x}. Since $\pi_{1}(x, x)$ acts on the free \mathbf{z}-module $T^{m, n}\left(V_{\mathbf{Z}, \mathrm{x}}\right) /$ torsion, any action of $\pi_{1}(X, x)$ on a line inside $T^{m, n}\left(V_{\mathbb{Q}, \mathrm{x}}\right)$ must factor through $\{ \pm 1\}$ (the only possible eigenvalues). Thus the connected group H_{x} has only trivial rational character. Hence it suffices to prove that for any $V^{\prime}=\left(T^{m, n}\left(V_{\mathbf{Z}}\right), T^{m, n}(W),. T^{m, n}\left(F^{*}\right)\right)$, the fixed part of $V_{\mathbb{Q}, x}^{\prime}$ under H_{X} is the rational space $\omega_{V_{Z, x}}\left(V^{\prime \prime}\right)$ of a subobject $V^{\prime \prime}$ of V^{\prime} in $\left\langle V_{z, x}\right\rangle$ (notations of § 2). Replacing x by the finite covering defined by the maximal subgroup (of finite index) of $\pi_{1}(x, x)$ which factors through the connected component H_{x} of the monodromy group, we are reduced to prove that the largest
constant sub-local system of $\underline{V}_{\mathbf{Z}}^{\prime}$ is a (constant) sub-variation of M.H.S.. For a finite direct sum of polarizable variation of pure H.S., this is precisely the theorem of the fixed part of Griffiths-Schmid, see [3][10]. For a general polarizable good variation of M.H.S. in Steenbrinck-Zucker' sense, this is the theorem of the fixed part of these authors, see [12] 4.19. In fact, in loc. cit., this theorem is stated for a one-dimensional basis X, but we can reduce to this case by considering curves in X; see [7] § 4.3.4.0. for the detailed argument.

So far we have proved that $H_{x}<G_{x}$; to show that $H_{x}<D G_{x}$, it remains to prove that $D H_{x}=H_{x}$. We know that $H_{x}^{a b} \subseteq G_{x}^{a b}$ is a torus (lemma 3). Let X a complex character of H_{x}. We just proved that $H_{x \mid \mathbb{C}}<G_{x \mid \mathbb{C}}$, so that according to i) \Rightarrow i) in lemma 1 for $K=\mathbb{C},\left(T^{m, n} V_{\mathbb{T}, X}\right)^{X}+\left(T^{m, n} V_{\mathbb{C}, X}\right)^{\bar{X}}$ is stable under $G_{x \mid \mathbb{C}}$; it is even the complexification of a real space $W_{\mathbb{R}}$ stable under $G_{x \mid \mathbb{R}}$. Thus for some suitable Tate twist $\mathbb{R}(n)$, Det $\mathbb{W}_{\mathbb{R}} \otimes \mathbb{R}(n)$ is a trivial $G_{x} \mathbb{R}^{\text {-module. It follows that }}$ Det $W_{\mathbb{R}}$ is a trivial $H_{x \mid \mathbb{R}}$-module, which yields the equality: $|X|=1$. Therefore all representations of $H_{x}^{a b}$ are unitary; this means that $H_{x \mid \mathbb{R}}^{a b}$ is a compact torus. Let $V^{\prime} \subset \oplus T^{m_{i}}{ }^{n} V_{\Phi, x}$ a faithful representation of $H_{x}^{a b}$. A subgroup of finite index of $\pi_{1}(X, x)$ acts on V^{\prime} through $G L\left(V^{\prime} \cap \oplus T^{m_{i}}{ }^{n} i_{V_{z, x}}\right)$ which is discrete, and also through a compact torus. Because of the connectedness of H_{x}, it follows that V^{\prime} is a trivial H_{x}-module, that is: $H_{x}=D H_{x}$.

Corollary 1 (see [4; 4.2.6-9]). The local system $\underline{V}_{\mathbb{Q}}$ underlying a polarizable variation of pure Hodge structure is semi-simple; each isotypical component carries a sub-variation of pure Hodge structure ; the center of End $\left(\underline{V}_{\Phi}\right)$ is purely of type (0,0). For any $x \in X$, the connected monodromy group H_{x} is semi-simple.

Proof: since $H_{x}<D G_{x}$ for $x \in \stackrel{\circ}{X}$, and since $0 G_{x}$ is a semisimple group (lemma 2), it follows that H_{x} is semi-simple; since H_{x} is locally constant on X, H_{x} is in fact semi-simple for any $\mathbf{x} \in \mathrm{X}$. This implies the complete reducibility of the action of $\pi_{1}(x, x)$ on $V_{Q, x}$ and the first assertion follows (the normality $H_{x}<G_{x}$ would suffice here). By $\left.i\right) \Rightarrow$ iii) in lemma 1 , applied to $H_{x} \triangleleft G_{x}$ for $x \in \stackrel{\circ}{X}$, we get on each stalk of each isotypical component of the local system $\underline{V}_{Q} \mid \stackrel{\circ}{X}$ a Hodge sub-structure. By continuity, these Hodge sub-structures extend across $X \backslash \stackrel{\circ}{X}$ and patch together to give rise to a sub-variation of $₫$-Hodge structure on the isotypical component of \underline{V}_{Φ}. The third assertion follows from lemma 1 in the same manner.
\square
Corollary 2 (see [4; 4.2.9b]). The radical of the connected monodromy group H_{X} associated to a polarizable variation of M.H.S. is unipotent.

Proof: let P_{x} be the subgroup of $G L\left(V_{\mathbb{Q}, x}\right)$ which respects the weight filtration W^{\prime}, and N_{x} the subgroup of P which acts trivially on $\operatorname{Gr}^{W}\left(V_{\Phi, x}\right)$. Then $H_{x} \subset P_{x}$ and N_{x} is unipotent.

Moreover the connected monodromy group, say $\mathrm{GrH}_{\mathrm{x}}$, of $\mathrm{Gr}^{W}\left(\underline{\mathrm{~V}}_{\mathbf{z}}\right)$ at x is the image of H_{x} in P_{x} / N_{x}. Hence H_{x} is an extension of $\mathrm{GrH}_{\mathrm{x}}$, which (according to the previous corollary) satisfies $\mathrm{GrH}_{\mathrm{x}}=\mathrm{DGrH} \mathrm{X}_{\mathrm{x}}$, by a (necessarily unipotent) subgroup of N_{x}.

Remark: a similar argument shows that the Mumford-Tate group of a M.H.S. over $R \subset \mathbb{R}$, say V, is an extension of the Mumford-Tate group of the direct sum of K-Hodge structures $\mathrm{Gr}^{\mathrm{W}} \mathrm{V}$, by a unipotent K-group (notations of § 2). In particular if V is polarizable, $G\left(G{ }^{W} V\right)$ is the quotient of $G(V)$ by its unipotent radical.

Remark: corollary 2 shows in particular that if G_{x} is solvable for some $x \in \stackrel{\circ}{X}$, then the variation of M.H.S. is unipotent in the sense of [15].

Remark: theorem 1 applies to the geometric situations considered in § 4 since in the course of proving it, we have made a restriction to curves.

Counterexample: we produce an example, following Deligne-Steenbrinck-Zucker (see [12] 3.16), to show that some extra hypothesis upon the variation of M.H.S. is necessary.

Consider the smooth 1 -motive $\underline{M}=\left[\mathbf{z} \stackrel{n}{ } \xrightarrow{n} \mathbb{x}_{m}^{n}\right]$ over $x=\mathbb{G}_{m}$. Here the set $\stackrel{\circ}{X}$ is $\mathbb{C}^{\mathbf{x}}, \mathbb{C}_{\text {tors }}^{\mathrm{X}}$. The corresponding good variation of M.H.S. \underline{V} is an extension of $\underline{\mathbf{Z}}$ by $\underline{\mathbf{Z}(1)}$ inside $\underline{\mathbb{Z}}$. We
denote by ε_{-2} the generator $+i$ of $\underline{Z}(1) \simeq W_{-2}$ and by ε_{0} any element of $\underline{V}_{\mathbf{Z}} \backslash \mathrm{W}_{-2}$; then $\left\langle\varepsilon_{0}, \varepsilon_{-2}\right\rangle$ spans $\underline{V}_{\mathbf{Z}}$. For some suitable determination of $\log x$ (depending on the choice of ε_{0}), the section $\tilde{\varepsilon}_{0}:=\varepsilon_{0}-\frac{\log x}{2 i \pi} \varepsilon_{-2}$ of $V_{\mathbb{C}}^{C}$ spans F^{0} and extends to a section of $\widetilde{\mathrm{v}_{\mathbb{C}}^{\mathrm{C}}}$ over \mathbb{P}^{1}. We now combine notations from $\S 3$ and § 4. For $x \in \stackrel{\circ}{X}$, we have $U\left(H_{X}(\underline{M})\right)=U\left(G_{X}(\underline{M})\right)=\widetilde{U} \approx G_{a}$ according to proposition 1. On the other side $H_{X}(\underline{M})=U\left(H_{X}(\underline{M})\right)$ according to the previous corollary.

For any entire function f, let us now consider the following perturbation \underline{V}^{f} of $\underline{V}:\left(\underline{V}_{\mathbf{q}}^{f}, W^{f}\right)=\left(\underline{V}_{\mathbf{Z}} ; W\right.$. $)$ but $\left(F^{f}\right)^{0}$ is spanned by $\tilde{\varepsilon}_{0}+f \varepsilon_{-2}$. The corresponding groups $H_{x}\left(\underline{M}^{f}\right), G_{x}\left(\underline{M}^{f}\right)$ admit the same description. The following assertions are easily seen to be equivalent:
a) \underline{v}^{f} is good
b) f extends analytically at ∞
c) f is constant
d) $\underline{v}^{f} \simeq \underline{V}$
e) $V^{e}:=\operatorname{Hom}\left(\underline{V}, \underline{v}^{f}\right)$ is good.

The group $H_{x}\left(\underline{V}^{\prime}\right)$ is isomorphic to G_{a}; viewing it at a subgroup of $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ acting on $\left(\mathrm{V}_{\mathbb{Q}, \mathrm{x}} \mathrm{V} \otimes \cdot \mathrm{V}_{\mathbb{Q}, \mathrm{x}}^{\mathrm{f}}\right)$, its "typical" element is of the shape

$$
\left(\begin{array}{cc}
1 & 0 \\
-a & 1
\end{array}\right) \times\left(\begin{array}{rr}
1 & +a \\
0 & 1 . .
\end{array}\right)
$$

The "typical" element of $G_{x}(\underline{V})$ is of the shape

$$
\left(\begin{array}{cc}
1 / b & 0 \\
c & 1
\end{array}\right) \times\left(\begin{array}{cc}
b & a \\
0 & 1
\end{array}\right) \text {, a being independent of } c \text { if }
$$

(and only if) $\underline{\mathrm{V}}^{\mathrm{f}} \not \approx \underline{\mathrm{V}}$. Therefore we see in this example that $H_{x}\left(\underline{V}^{\prime}\right) \triangleleft D G_{x}\left(\underline{V}^{\prime}\right)$ if and only if \underline{V}^{\prime} is good.
6. Maximality

Let $\left(\underline{V}_{\mathbf{Z}}, W, F^{*}\right)$ a polarizable good variation of mixed Hodge structures on X. Let $x \in \stackrel{\circ}{X}$ as in lemma 3. By the theorem, we know that $H_{x}<D G_{x}$. We now study how big can H_{x} be in $D G_{\mathrm{x}}$ • :

Proposition 2. Assume that for some $y \in X, G y$ is nilpotent. Then for any $x \in \stackrel{\circ}{X}, H_{x}=0 G_{x}$.

Proof: according to the remark which follows lemma 3, G_{Y} is actually a torus. Since the assertion is invariant under taking finite coverings of X, it suffices to show that any tensor $l \in T^{m, n} V_{Q, x}$ invariant under. $\pi_{1}(X, x)$ spans a G_{x}-module W_{x} on which the action of $G X$ is abelian. It follows from the "fixed part" theorem that W_{x} is fixed by $\pi_{1}(x, x)$, and the local constancy of G_{x} on \dot{X}, together with an argument of continuity, shows that \mathbb{N}_{x} extends to a constant sub-variation of M.H.S., say ($\underline{V}^{\prime}, \mathrm{W}, \mathrm{F}^{\prime} \cdot$), of $\left(T^{m, n_{V}} \underline{Q}^{\prime} T^{m, n_{h}}\right)$. In particular the action of $G \quad$ on $V_{X}^{\prime}=V_{x}^{\prime}$ is the same as the action of G_{y} on $\underline{V}_{y}^{\prime}$, which is abelian.

Before turning to applications, we propose a conjecture: conjecture: under the general assumptions of this paragraph, assume moreover that, except possibly for one Tate twist, no Jordan-Hölder constituent of ($\mathrm{V}_{\mathbf{Z}}, W, \mathrm{~F}^{*}$) is a locally constant variation of M.H.S.. Then $H_{x}=D G_{x}$, for any $x \in \stackrel{\circ}{X}$.

Remark: this is obviously true, taking into account the normality property, if for some $x \in \stackrel{\circ}{X}$, the \mathbb{Q}-group $D G_{x}$ is simple. By way of example, we consider a polarized (analytic) family of Abelian varieties with many endomorphisms over a complex algebraic base X; by this, we mean that the generic fibre f_{n} of f (this makes sense since f is automatically algebraic) enjoys the following property: (End $\left.f_{\eta}\right) \otimes \mathbb{Z}$ is a division ring which contains a commutative field of degree $\operatorname{dim} f_{\eta}$ over \mathbb{D}. Then the derived Mumford-Tate group of the stalk $\left(R_{1} f_{*} \mathbb{D}\right) \mathrm{x}$ can be computed for any weil generic point x of x (so that End $f_{\eta}=$ End f_{x}) : it turns out that $D G_{x} \cong \operatorname{Res}_{Z^{+} / \Phi} G$, where Z^{+}denotes the maximal totally real subfield of the center of (End f_{η}) $\otimes_{Z} \mathbb{D}$, and G is an absolutely simple group over Z^{+} (in fact $G_{\mid \mathbb{C}} \cong \mathrm{SL}_{2}$); thus in this case $D G_{x}$ is simple over \mathbb{Q} (see also the appendix, and $[9$, lemma 2.3], [1, th. 2]). However, P. Deligne has constructed some Abelian varieties whose derived Mumford-Tate groups $D G$ are not simple over \mathbb{Q} (letter to the author).

Remark: in the case when G is solvable, the conjecture holds and is compatible with the results of [15]. In the reductive case, when the variation arises from geometry, the conjecture seems to be compatible with Grothendieck's conjecture about algebraic independence of periods of algebraic integrals, see [1].

7. Algebraic independence of Abelian integrals

Let \underline{M} be a smooth 1 -motive over X; its generic fibre $M:=M_{\eta}$ is a 1 -motive over the function field $\mathbb{C}(X)$.

According to [4] III 10.1.7, there exists a universal extension $M^{f 0}$ of M by a vector group:

The De Rham cohomological realization of M is by definition $H_{D R}^{1}(M):=C o L i e E^{\ddagger}$. Moreover, the exact sequence

$$
0 \longrightarrow \operatorname{Hom}\left(X, \mathbb{G}_{a}\right) \longrightarrow \operatorname{Ext}^{1}\left(M, \mathbb{G}_{a}\right) \longrightarrow \operatorname{Ext}^{1}\left(E, \mathbb{G}_{a}\right) \longrightarrow 0
$$

induces an exact sequence
(*) $0 \longrightarrow \operatorname{Hom}\left(X, G_{a}\right) \longrightarrow H_{D R}^{1}(M) \longrightarrow H_{D R}^{1}(E) \longrightarrow 0$,
where $H_{D R}^{1}(E)$ is the De Rham cohomological realization of the 1 -motive $[0 \longrightarrow E]$, identified with the usual first De Rham algebraic cohomology group of E.

Let K_{x} denote the fraction field of the local ring 0_{x} an,x at some $x \in X$. Construction [4] III 10.1.8 then yields a canonical isomorphism:

$$
\operatorname{Hom}_{\mathbb{C}(X)}\left(H_{D R}^{1}(M), K_{x}\right)=V_{\mathbb{C}, \mathrm{x}} \otimes_{\mathbb{C}} K_{x} .
$$

Let $\nabla^{a n}$ the flat connection over $V_{\mathbb{C}}^{c}$ such that $\left(V_{\mathbb{C}}^{c}\right)^{a n}=V_{\mathbb{C}}$. According to Griffiths, $G r{ }^{W} \nabla^{a n}$ has only regular singular points (see [3]). It follows that $\nabla^{\text {an }}$ itself has only regular singular points, henceforth is induced by a connection ∇ over $H_{D R}^{1}(M)$. In fact (*) is a sequence in the category of $\mathbb{C}(X)$-vector spaces with $\mathbb{T}(X) / \mathbb{C}$-connection, inducing the Gauss-Manin connection on $H_{D R}^{1}(E)$, and a trivial connection on $\operatorname{Hom}\left(X, \mathbb{G}_{a}\right)$. By definition of ∇, we have
$(* *) \quad \operatorname{Hom}_{\nabla}\left(H_{D R}^{1}(M), K_{x}\right)=V_{\mathbb{C}, x}$ inside $V_{\mathbb{C}, x} \otimes K_{x}$.

Let us translate (*) and (**) in more down-to-earth terms, assuming that $x \rightarrow E$ is injective, and that x is constant over X. Then \underline{x} may be considered as a group of sections of $\underline{E} \xrightarrow{f} X$, and $\underline{V}_{\mathbf{Z}}$ is spanned by $<\log _{\underline{E}} \underline{X}, \operatorname{Ker} \exp _{\underline{E}}>$, at least if we restrict ourselves to the subset of X where u is fibrewise injective. By means of suitable bases, a fundamental solution matrix of a PicardFuchs differential system of order one associated to $H_{D R}^{1}$ (M) can be expressed in some neighbourhood of $x_{0} \in X$ by:

$$
Z:=\left(\begin{array}{cc||c}
\begin{array}{c}
\oint_{\gamma} \omega_{i} \\
\gamma_{j}
\end{array} & \int_{0}^{\xi_{k}}{ }_{i \omega_{i}} \\
0 & \text { Id }
\end{array}\right)
$$

where ω_{i} (resp. γ_{j}, resp. ξ_{k}) runs through some basis of $H_{D R}^{1}\left(\underline{E} / X_{X}\right) O_{X, x_{0}}$ (resp. of $\left.\quad \mathbb{R}_{1} f_{*}^{a n} \mathbb{C}\right) \quad$, of $\underline{x}_{x_{0}}$), so that the entries of Z are elements
of $0 \quad x^{a n}, x_{0}$. In the first quadrant, we can recognize the classical "period matrix" solution of a Picard-Fuchs differential system associated to the quotient $H_{D R}^{1}(E)$; such a matrix Z was already
considered by Y. Manin [17].
Our next theorem deals with a smooth 1 -motive of the form $[0 \longrightarrow E]$.

Theorem 2. Assume that some fibre of $\underline{E} \xrightarrow{f} X$ is split: $E_{x_{1}}=T_{x_{1}} \times A_{x_{1}}$, and that $A_{x_{1}}$ is of CM type.

Then the transcendence degree of the $\mathbb{C}(X)$-extension generated by all the "periods" $\oint_{\gamma_{i}} \omega_{i}\left(\gamma_{j}, \omega_{i}\right.$ as above) equals the dimension of the "generic" derived Mumford-Tate group DG .

Proof: by "generic", we mean the dimension δ of $D\left(G_{x}(\underline{V}([0 \rightarrow \underline{E}]))\right.$ for any $x \in X^{X}$. The groupe $G_{x_{1}}$ is a torus, according to the $C M$ type hypothesis. Since the variation of M.H.S. is good (at least when restricted to curves, see the example at the end of § 4), proposition 2 applies to establish the equality $\delta=$ dim H_{x}. Since the connection has only regular singular points, we get furthermore that δ is the dimension of the differential Galois group associated to $H_{D R}^{1}(E)$. But differential Galois theory tells us that this dimension is the transcendence degree of the $\mathbb{C}(X)$-extension generated by the entries of the fundamental solution matrix z (see [1], [2]).

व
Our last theorem is concerned with a smooth 1 -motive of the form $[\underline{x} \subset \underline{U} A]$, where $\xrightarrow{A} \xrightarrow{f} X$ is an Abelian scheme.

Theorem 3. Assume that, over any finite etale covering of X , the map induced by $u: \underline{X} \longrightarrow \underline{A} /$ fixed part remains injective. Then the transcendence degree of the $\mathbb{C}(X)\left(\left(\oint_{\gamma_{j}} \omega_{i j}\right)_{i j}\right)$ - extension generated
by the germs of analytic functions $\int_{0}^{\xi_{k}} \omega_{i}$ (' ξ_{k} as above), equals the dimension of the generic group $\tilde{\mathrm{U}}$ introduced in §3.

Proof: using similar arguments from differential Galois theory, we can see that it is enough to show that

$$
\tilde{U} \simeq \operatorname{Ker}\left(H_{x}(\underline{V}[\underline{X} \rightarrow \underline{A}]) \rightarrow H_{x}(\underline{V}[0 \rightarrow \underline{A}])\right):=U\left(H_{x}\right) .
$$

According to theorem 1, we have $H_{x}<G_{x}$; thus in order to apply proposition 1 , it suffices to show that ${ }_{W_{0}{ }^{H} x}^{x} \subseteq W_{-1, x}$. At the cost of replacing x by a finite etale covering, we may assume that H_{x} is the whole monodromy group (not only its neutral component). We identify \underline{X} with its image in \underline{A} and consider it as a group of sections of f. Let $v_{x} \in W_{0, x}{ }^{H}$; it extends to a global section v of \underline{W}_{0}; setting $\xi=\exp v \in \underline{X}$, we thus have $\nabla(d / d x) \int_{0}^{\xi(x)} \omega_{x}=0$, for any section ω of $\Omega_{\underline{A}}^{1} / X$ and any derivation $d / d x$ of $\mathbb{C}(X)$. According to Manin [17], this implies that ξ belongs to the fixed part of A. However the hypothesis we have made upon u implies in turn that $\xi=0$, so that $v \in \Gamma_{-1}$.

Remark: this result is the geometric variant of the "Kummer theory" on Abelian varieties, which studies the extension of the field of rationality of some torsion points, generated by the division points of some non-torsion points.

Remark: the exact sequence (*) of $\mathbb{C}(X)$-vector spaces with connection splits if and only if $U\left(H_{X}\right)=0$.

Appendix

Automorphisms of certain Hodge structure over number fields

So far we have been concerned only with polarized Hodge structures $\left(H_{z}, h, \psi\right)$ over \mathbf{z}, and we used some variants of the argument that the automorphisms of $\left(\mathrm{H}_{\mathbf{z}}, h, \psi\right)$ form a finite group, say G : indeed G imbeds both into the discrete group $G L\left(H_{\mathbf{Z}}\right)$ and into the compact orthogonal group $0_{\psi}=\operatorname{Aut}\left(H_{\mathbf{z}} \otimes \mathbb{R}, \psi(\cdot, h(i) \cdot)\right) \cdot$ If z is replaced by the ring of integers R of some totally real number field, the group $G L\left(H_{R}\right)$ is no longer discrete in general; even if one tries to use Weil's restriction of scalars from R to Z, it could happen that the "conjugates" of $0, \psi$ are not compact. Here we shall study those polarized Hodge structures over R which arise naturally as pieces of the cohomology of Abelian varieties with many endomorphisms, and show how the finiteness of G involves arithmetical questions.
8. Classification of Abelian varieties with many endomorphisms

Let X a complex simple Abelian variety of dimension $g>0$, such that $D=$ End $X \otimes_{\mathbf{Z}} \|$ contains some commutative field E of degree g over \mathbb{Q}. Since X is simple, D is a division ring whose center is denoted by Z. Any polarization ψ of X defines a positive involution * over D; this implies that the subfield Z^{+}of Z fixed by * is a totally real number field. After Albert's classification (cf [8]11), four cases can occur a priori:

Type I: $\quad Z^{+}=Z=E=D ; X$ is then called a "Hilbert-Blumenthal" Abelian variety.

Type II: $Z^{+}=Z$ and for every real place ρ of Z, D $\underset{Z, \rho}{\mathbb{R}} \mathbb{I} \cong M_{2}(\mathbb{R})$.

According to [8] loc. cit., there exists a $\in D$, such that the reduced trace $\operatorname{Tr}_{D / Z}(a)$ vanishes, and such that the involution * is given by $x^{*}=a\left[T r_{D / Z}(x)-x\right] a^{-1}$ for any $x \in D$. Since D is a quaternion algebra over Z, there exists $b \in D$, such that the reduced trace $\operatorname{Tr}_{\mathrm{D} / \mathrm{Z}}(\mathrm{b})$ vanishes, and which anticommutes with a . We then have $\mathrm{b}^{*}=\mathrm{b}$. So $\mathrm{Z}(\mathrm{b})$ is totally real and one can assume that $E=Z(b)$.

Type III: $Z^{+}=Z$ and for every place ρ of $Z, D_{Z, \rho} \otimes \mathbb{R}$ is isomorphic to the Hamilton quaternion algebra \mathbb{H}. In fact this case does not occur under our assumptions on X. Indeed the representation of $E n d_{\mathbb{H}}\left[H_{1}\left(X^{\text {an }}, \mathbb{R}\right) \otimes_{Z, \rho} \mathbb{R}\right]$
over $H_{1}\left(X^{\text {an }}, \mathbb{R}\right) \otimes_{Z, \rho} \mathbb{R}$ yields, after complexification, two copies of the standard representation of SO_{2} ([9, lemma 2.3]). This representation thus decomposes into four sub-representations of degree one, whose endomorphism algebra has to be $\mathbb{H} \mathbb{\mathbb { R }}_{\mathbb{R}} \mathbb{C} \cong M_{2}(\mathbb{C})$: this is impossible.

Type IV: Z is a totally imaginary quadratic extension of Z^{+}. Either $[2: \mathbb{Q}]=2 g$ in which case X is said of "CM type" and we can choose $E=Z^{+}$, or $[Z: Q]=g$ and we can assume that E is a totally imaginary quadratic extension of its subfield E^{+}fixed by * , whence the following diagram of extensions:

since $[D: \mathbb{Q}] \leq 2 g$,
$[E: Z] \leq[D: E]$ (from the
commutativity of E), and
$[E: \mathbb{Q}]=g$, we find that
$[E: Z] \leq 2$.

Except in the $C M$ case, E is a maximal commutative subfield of D , and in any case we shall write E^{+}for the subfield of E fixed by * , K for the Galois closure of E^{+}in \mathbb{R}, and R for the ring of integers of K.

9. The Hodge structures H_{μ} over R

Let us pick some primitive element ζ of E^{+}over \mathbb{Q} in the order (End X) $\cap \mathrm{E}^{+}$of E^{+}. This element acts via ζ^{*} on the free R -module $\mathrm{H}^{1}\left(\mathrm{X}^{\text {an }}, \mathrm{R}\right)$, and its characteristic polynomial has rational integral coefficients and the same roots as the minimal polynomial of ζ; that characteristic polynomial thus equals some power of this (separable) minimal polynomial, so that some essential R-submodule of $H^{1}\left(X^{\text {an }}, R\right)$ decomposes into a direct sum of free R -modules H_{μ}, the indices running among the imbeddings of E^{+}into. K . Let L be the compositum in $\mathbb{\mathbb { C }}$ of K and the image of E through some complex imbedding, so that $L=K$ except in the non-CM type IV case. Then the rank of H_{μ} is $2 g /[E: \mathbb{Q}]=2[L: K]$. The free R-module H_{μ} is naturally endowed with a structure of polarized Hodge structure ($H_{\mu}, h_{\mu}, \psi_{\mu}$) of type $(0,1)+(1,0)$ over R, and there is an isomorphism of polarized K-Hodge structures $\left(H^{\top}\left(X^{\text {an }}, K\right), h, \psi\right)=\underset{\mu: E^{+} \rightarrow K}{\oplus}\left(H_{\mu} \otimes_{R} K, h_{\mu}, \psi_{\mu}\right)$. Furthermore when $L \neq K, \psi_{\mu}$ comes from a L-hermitian form φ_{μ} on the L-vector space $H_{\mu} \otimes_{R} K$.
10. Automorphisms of $\left(H_{\mu}, h_{\mu}, \psi_{\mu}\right)$

Proposition 3. The group G of L-linear automorphisms of ($H_{\mu}, h_{\mu}, \psi_{\mu}$) is infinite if and only if one of the following statements holds:
i) $\mathrm{K}=\mathrm{L}$, and there exists some non-totally positive element $k \in K^{x}$ such that the multiple $\sqrt{k \cdot C}$ of the Weil morphism $C=h_{\mu}(\sqrt{-1})$ on $H_{\mu} \otimes_{R} \mathbb{R}$ comes from an endomorphism of $H_{\mu} \otimes_{R} K$,
ii) $K \neq L$ and the direct summand $\left(H_{\mu} \otimes_{R} K\right) \otimes_{L} \mathbb{C}$ of ${ }_{H} \otimes_{R} \mathbb{E}^{\mathbb{E}}$ is bihomogeneous.

We begin the proof with the case $\mathrm{K}=\mathrm{L}$.
Let us choose a R-basis of H_{μ}. such that the Riemann form $\psi_{\mu}=\langle\cdot, \cdot\rangle$, is represented by the matrix $\left(\begin{array}{rr}0 & e \\ -e & 0\end{array}\right)$ for some $e \in R^{x}$, and let us consider the matrix of C in the basis (viewed as a basis of $\left.H_{\mu} \otimes_{R} \mathbb{R}\right)$: since $C^{2}=-1$, this matrix has the shape $\left(\begin{array}{rr}-\beta & -\gamma \\ \alpha & \beta\end{array}\right)$, for $(\alpha, \beta, \gamma) \in \mathbb{R}^{3}$ satisfying the equation $\mathrm{a} \gamma=1+\ddot{\beta}^{2}$. It follows that $\alpha \gamma \neq 0$. The symmetric form $<\cdot, C(\cdot)>$ is represented by $Q=\left(\begin{array}{cc}\alpha e & B e \\ \beta e & \gamma e\end{array}\right)$. Let $\theta \in G$, so that $\theta \in$ Aut $H_{\mu} \cap O\left(H_{\mu} \otimes \mathbb{R}, Q\right)$, and let us write $\theta_{i j} \in R$ for the coefficients of the matrix of θ. The equation $t_{\theta Q \theta}=Q$ is equivalent to the system
$(\Sigma)\left\{\begin{array}{l}\alpha\left(\theta_{11}^{2}-1\right)+2 \beta \theta_{11} \theta_{21}+\gamma \theta_{21}^{2}=0 \\ \alpha \theta_{11} \theta_{12}+\beta\left(\theta_{12} \theta_{21}+\theta_{11} \theta_{22}-1\right)+\gamma \theta_{21}{ }^{\theta}{ }_{22}=0 \\ \alpha \theta_{12}^{2}+2 \beta \theta_{12} \theta_{22}+\gamma\left(\theta_{22}^{2}-1\right)=0 .\end{array}\right.$
a) Let us first deal with the case when C is defined over some totally real algebraic extension of K. Then α, β, γ are totally real algebraic numbers. Let $\sigma \in \operatorname{Gal}(\mathrm{K} / \Phi)$, and let $\alpha^{\sigma}, \beta^{\sigma}, \gamma^{\sigma}$ be conjugates (necessarily real) of α, β, γ respectively, above σ. Setting $Q^{\sigma}=\left(\begin{array}{cc}\alpha^{\sigma} e^{\sigma} & \beta^{\sigma} e^{\sigma} \\ \beta^{\sigma} e^{\sigma} & \gamma^{\sigma} e^{\sigma}\end{array}\right)$, we find $+{ }_{\theta}{ }^{\sigma} Q^{\sigma} \theta^{\sigma}=Q^{\sigma}$, and $\operatorname{det} Q^{\sigma}=\left(e^{\sigma}\right)^{2}>0$, so that θ^{σ} belongs to the compact orthogonal group $\mathrm{O}_{2}\left(Q^{\sigma}\right)$. By restriction of scalars à la weil from \mathbb{K} to \mathbb{Q}, G imbeds into ($\operatorname{Res}_{K / \Phi}$ Aut $\left(H_{\mu} \otimes_{\mathrm{R}} \mathrm{K}\right)$) (Z$)$ (which is discrete) and into $\prod_{\sigma} \mathrm{O}_{2}\left(2^{\sigma}\right)$ (which is compact), so that G is finite in this case. :

Here we point out that the $C M$ type is a special case: indeed the Hodge bigraduation of $H_{\mu} \otimes_{R} \mathbb{C}$ comes from the CM decomposition $H_{\mu} \otimes_{R} L^{\prime}=\left[H^{1}\left(X^{a n}, \mathbb{Q}\right) \underset{Z, \nu}{\otimes} L^{\prime}\right] \oplus\left[H^{1}\left(X^{a n}, \mathbb{Q}\right) \underset{Z, \nu^{\prime}}{\otimes}\right]$, for some complex place ν of Z over μ (here we denote by L^{\prime} the compositum $K \cdot v(Z)$ which is a quadratic totally imaginary extension of K). Let us write $L^{\prime}=K(h)$ with $h^{2}=-g \in \mathbb{R}^{-}$; the matrix of C (in some basis adapted to the above decomposition) reads $\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)$, thus C is defined over the totally real number field $K(\sqrt{g})=K(i h)$.
b) Let us now assume that α, β, γ span a line over K ; since $\alpha \gamma \neq 0$, we write $\beta=b \alpha, \gamma=c \alpha$, for some $(b, c) \in K \times K^{x}$. This yields $\alpha^{2}=\frac{1}{a-b^{2}} \in K \cap \mathbb{R}^{+}$. Getting rid of the above possibility 2), we are reduced to the case i) of the proposition, with $k=c-b^{2}$. Since any $0 \in G$ commutes with $\frac{1}{\alpha} c=\left(\begin{array}{rr}-1 & -c \\ 1 & b\end{array}\right), \theta$ has the shape $\left(\begin{array}{ll}x & -c y \\ y & x+2 b y\end{array}\right)$ for $x, y, c y$ and $2 b y \in R$. The set of all these matrices is an order R^{\prime} in the field $K^{\prime}=K\left(\sqrt{b^{2}-c}\right)=K(i \alpha)$, as is seen by identifying $\left(\begin{array}{ll}x & -c y \\ y & x+e b y\end{array}\right)$ with $(x+b y)+y \sqrt{b^{2}-c}$. Since θ is invertible, it is identified with some unit in R^{\prime}. The equation ${ }^{+} \theta_{Q} \theta=Q$ then reads $X^{2}+2 b x y+c y^{2}=1$, that is $(x+b y)+y \sqrt{b^{2}-c} \in \operatorname{Ker} N_{K^{\prime} / K}$.
But $N_{K}{ }^{\prime} / \mathrm{K}$ has maximal rank as a morphism between unit groups $\left(R^{\prime}\right)^{X} \longrightarrow R^{X}$. By assumption, K^{\prime} is not totally imaginary, so that by Dirichlet's theorem $r k\left(R^{\prime}\right)^{x}>r k R^{x}$. Thus the kernel of $N_{K^{\prime} / K}$ in ($\left.R^{\prime}\right)^{x}$ contains infinitely many elements, and so does G in this case.
c) It remains to deal with the case when α, β, γ span a K-vector space of dimension at least 2. This implies that all minors of (Σ) vanish. In particular,
(1) $\left(\theta_{11}^{2}-1\right)\left(\theta_{12} \theta_{21}+\theta_{11} \theta_{22}-1\right)=2 \theta_{11}^{2} \theta_{12} \theta_{21}$
(2) $\left(\theta_{22}^{2}-1\right)\left(\theta_{12} \theta_{21}+\theta_{11} \theta_{22}-1\right)=2 \theta_{12} \theta_{22} \theta_{22}^{2}$

$$
\begin{equation*}
\left(\theta_{22}^{2}-1\right)\left(\theta_{22}^{2}-1\right)=\theta_{12}^{2} \theta_{21}^{2} \tag{3}
\end{equation*}
$$

from which it follows that $\left(\theta_{12} \theta_{21}+\theta_{11} \theta_{22}-1\right) \theta_{12}^{2} \theta_{21}^{2}=$ $2 \theta_{11} \theta_{12}^{2} \theta_{21}^{2} \theta_{22}$, so that $\theta_{12} \theta_{21}=1 \%+\theta_{22} \theta_{11}$ if $\theta_{12} \theta_{21} \neq 0$. Sqaring, we find (using (3) again) that $\theta_{11}=-\theta_{22}$ in this case, and from (1) we get $\theta_{12} \theta_{21}=1-\theta_{11}^{2}$; that is, det $\theta=-1$ and $\operatorname{tr} \theta=0$, from which it follows that $\theta^{2}=1$. If $\theta_{12} \theta_{21}=0$, we get from the vanishing of the other minors) that $\theta_{11}^{2}=\theta_{22}^{2}=1$, and moreover that $\theta_{11} \theta_{22}=-1$ if θ_{12} and θ_{21} do not vanish simultaneously; so we are reduced to the previous case where $\theta_{11}=-\theta_{22}$, except if $\theta= \pm 1$. From this description we see that any two elements of G, distinct from ± 1, are inverse up to sign; this implies that G is finite (with at most 4 elements).

We now turn to the case $K \neq L$.
Let us choose a R-basis of H_{μ} such that the L-hermitian form $\varphi_{\mu}=\langle\cdot, \cdot\rangle$ is represented by the matrix $\left(\begin{array}{ll}\mathrm{e} & 0 \\ 0 & f\end{array}\right)$, for some $(e, f) \in\left(R^{x}\right)^{2}$. We identify $L \otimes_{K} \mathbb{R}$ with \mathbb{C} by means of an element h of L such that $h^{2}=-g \in K \cap \mathbb{R}^{\prime}$; since L is totally imaginary (like E), g is totally positive. The Weil morphism C is linear with respect to the complex structure induced by $L \otimes_{K} \mathbb{R}$ on $H_{\mu} \otimes_{R} \mathbb{R}$, since it commutes with L.
a) Let us first deal with the case when $\left(H_{\mu} \otimes_{R} K\right) \otimes_{L} \mathbb{C}$ is not bihomogeneous. Through the isomorphism $\mathbb{C} \cong L \otimes_{K} \mathbb{R}$, $\left(H_{\mu} \otimes_{R} K\right) \otimes_{L} \mathbb{C}$ can be identified with the complex 2-plan $H_{\mu} \otimes_{R} \mathbb{R}$, and C denotes the two eigenvalues $\pm i$ on
${ }_{H} \otimes_{R} \mathbb{R}$. Since ψ_{μ} is a morphism of the Hodge structure and since C is \mathbb{C}-linear, C belongs to the unitary group of φ_{μ}. Using this property, and the equations $c^{2}=-1$ and $\operatorname{tr} c=0$, we get the following matrix representation for $C:\left(\begin{array}{cc}h t & \gamma \\ -\alpha & -h t\end{array}\right)$ for $t \in \mathbb{R},(\alpha, \gamma) \in \mathbb{C}^{2}$, and with the following equation:

$$
\text { (*) } \quad \alpha \gamma+g t^{2}=1 \text { and } f \bar{\alpha}=\mathrm{e} \gamma .
$$

Let us write $\alpha=v+h w$, for $(v, w) \in \mathbb{R}^{2}$. Taking into account (*), we find the following matrix representation for the symmetric form $\operatorname{Re} h / g<\cdot, \mathrm{C}(\cdot)\rangle$ in the real basis of $H_{\mu} \otimes_{R} \mathbb{R}$ attached to the chosen complex basis:

$$
Q_{\mu}=\left(\begin{array}{cccc}
-e t & 0 & f w & -f v \\
0: & -g e t & f v & g f w \\
f w & f v & f t & 0 \\
-f v & g f w & 0 & g f t
\end{array}\right) \text { for }(t, v, w) \in \mathbb{R}^{3} .
$$

Since Q_{μ} has maximal rank and index 0 , the first main 1 -minor is non zero: $t \neq 0$.

Let us first assume that $\alpha \neq 0$. Since $\theta \in G$ commutes with C, we find that θ has following matrix representation:

$$
\left(\begin{array}{ll}
x & -\gamma y / \alpha \\
y & x+2 h t y / \alpha
\end{array}\right)=\left(\begin{array}{cc}
x & -f \bar{\alpha} y / \alpha \\
y & x+2 h t y / \alpha
\end{array}\right), \text { for }(x, y) \in L^{2}
$$

Furthermore, the relation $t-\left(\begin{array}{ll}e & 0 \\ 0 & f\end{array}\right)\left(\theta=\left(\begin{array}{ll}e & 0 \\ 0 & f\end{array}\right)\right.$, yields the system

$$
\text { (} \left.\Sigma^{\prime}\right)\left\{\begin{array}{l}
x \bar{x}+f / e \cdot y \bar{y}=1 \tag{1}\\
x \bar{x}+\left(f / e+4 g t^{2} / \alpha \bar{\alpha}\right) y \bar{y}=1+2 h t / \alpha \bar{\alpha}(\alpha x \bar{y}+\bar{\alpha} \bar{x} y) \\
2 h t y \bar{y}=\bar{\alpha} \bar{x} y-\alpha x \bar{y}
\end{array}\right.
$$

Eliminating $\bar{x} \bar{x}$ between (1) and (2) and $y \bar{y}$ between (2) and (3), one obtains $\bar{x} y=0$; reporting this equation in (1) and (3) gives $y=0$ and $x \bar{x}=1$. (Note that since θ is invertible, x is a unit in L).

If on the contrary $\alpha=0$, then $\gamma=0$ according to (*), so that θ is diagonal and $x \bar{x}=1$ again. In both cases, to show that G is finite, it suffices to prove that the unit in $\operatorname{Ker} N_{L / K}$ form a finite group. Since L is a totally imaginary quadratic extension of K, the unit groups U_{L} and U_{K} have the same rank [K:Q]-1, thus the desired statement comes from Dirichlet's theorem.
b) It remains to deal with the case ii) of the proposition. In this case C is the homothety with scale $\pm i \in L \otimes_{K} \mathbb{R}$ on $H_{\mu} \otimes_{R} \mathbb{R}$. The matrix of the symmetric form $\operatorname{Re} h\langle\cdot, C(\cdot)\rangle$ in the real basis of $H_{\mu} \otimes_{R} \mathbb{R}$ attached to the chosen complex basis reads:

Since Q has maximal rank and index 0 , it follows from Sylvester's criterium that the product $\delta_{1} \delta_{3}$ of the first and third main minors of Q is positive: ef >0.

Let K^{\prime} the imaginary quadratic session of K generated by $\sqrt{-\mathrm{e} / \mathrm{f}}$. We shall show that K^{\prime} is not totally imaginary. Indeed, according to a result of Shimura [11, th 5], there exists at least one place $\sigma \mu$ of $K(\sigma \in \operatorname{Gal}(\mathrm{~K} / \Phi))$ such that H falls in case a). We apply Sylvester's criterium to the matrix

The product $\delta_{1} \delta_{3}$ is $-\left(e^{2} f\right)^{\sigma} t^{2}\left(f^{\sigma} v^{2}+f^{\sigma} g^{\sigma} w^{2}+g^{\sigma} e^{\sigma} t^{2}\right)$. Because of the relations (*), this can be simplified: $\delta_{1} \delta_{3}=-\left(e^{\sigma} f^{\sigma} t\right)^{2} e^{\sigma} f^{\sigma}$. We find $e^{\sigma} f^{\sigma}<0$, so that K^{\prime} is not totally imaginary. Let $\theta \in G$ and δ its L-determinant. The relation $t_{\bar{\theta}}\left(\begin{array}{cc}e & 0 \\ 0 & f\end{array}\right) . \theta=\left(\begin{array}{ll}e & 0 \\ 0 & f\end{array}\right)$ yields the shape $\left(\begin{array}{cc}a & -f / e \bar{c} \delta \\ c & \bar{a} \delta\end{array}\right)$ for the matrix of θ, with $\delta \bar{\delta}=1$ and ea $\bar{a}+f c \bar{c}=e$. To show that G is infinite, it suffices to consider the case where $a, c \in R$ and $\delta=1$. Then the set of matrices $\left(\begin{array}{cc}a & -f / e \\ c & a\end{array}\right)$ with $(a, c) \in K^{2}$ is a field isomorphic to K^{\prime}. The subring consisting of matrices with entries in R is an order R^{\prime}, and the subgroup of $\left(R^{\prime}\right)^{x}$ consisting of unimodular matrices satisfying $e a^{2}+f c^{2}=e$ is the kernel of $N_{K^{\prime} / K}$ in $\left(R^{\prime}\right)^{x}$. The same
argument as in part of the proof ($\mathrm{K}=\mathrm{L}$, case b), shows that this group:is infinite. This completes the proof of the proposition.

Abstract

\square Along the lines of [4; II 4.4.8], proposition 3 can be used to reprove the conjecture of § 6 for families of Abelian varieties with many endomorphisms. The point is that, except in case ii), the Hodge filtration of \underline{H}_{μ} is locally constant if and only if the monodromy is finite. Indeed, the local constancy of $F^{\text {• }}$ implies that the monodromy group (whose neutral component is semi-simple) imbeds into the automorphism group \bar{G} which is finite except in cases i), ii) and which is a torus in case i); here \bar{G} denotes the Zariski closure of the group G determined by proposition 3.

References

[1] ANDRE Y., "Sur certaines algèbres de Lie associeés aux schémas abéliens", Note CR.A.S. t. 299 I n ${ }^{\circ} 5$ (1984), 137-140.
[2] ANDRE Y., "Quatre descriptions des groupes de Galois différentiels", to appear in the proceedings of the "Séminaire d'algèbre de Paris", Springer L.N.
[3] CORNALBA M., GRIFFITHS P., "Some transcendental aspects of algebraic geometry", Proc Symp pure Math. vol XXIX, AMS 1975, 3-110.
[4] DELIGNE P., "Théorie de Hodge" II, Publ. Math. IHES 40 (1972), 5-57; III, Publ. Math. IHES 44 (1974) 5-78.
[5] DELIGNE P., "La conjecture de Weil pour les surfaces K_{3} " , Inv. Math. 15 (1972), 206-226.
[6] DELIGNE P. and al., Hodge cycles, Motives and Shimura Varieties, Springer L.N: 900 (1982) I Hodge cycles on Abelian varieties 9-100; II Tannakian categories 101-228.
[7] KATZ N., "Algebraic solutions of differential equations", Inv. Math. 18 (1972), 1-118.
[8] MUMFORD D., Abelian Varieties, Oxford Univ. Press, Oxford (1970).
[9] MURTY V.K., "Exceptional Hodge Classes on Certain Abelian varieties", Math. Ann. 268 (1984), 197-205.
[10] SCHMID W., "The singularities of the period mapping", Inv. Math. 22 (1973), 211-319.
[11] SHIMURA G., "On analytic families of polarized Abelian varieties and automorphic functions", Ann. of Math. 78 (1963), 149-192.
[12] STEENBRINCK J., ZUCKER S., Variation of mixed Hodge structure I Inv. math. 80 (1985), 489-542.
[13] WATERHOUSE W., Introduction to Affine Group Schemes, Springer, Heidelberg, 1979.
[14] CATTANI E., KAPLAN A., SCHMID W., Degeneration of Hodge structure Ann. Math. 123 (1986) 457-535.
[15] HAIN R.M., ZUCKER S., Unipotent variations of mixed Hodge structure, Inv. math. 88 (1987), 83-124.
[16] KASHIWARA M., Variation of mixed Hodge structure (Preprint 1986).
[17] MANIN Y., Algebraic curves over fields with differentiation, AMS Translations (2) 37, 59-78.

