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MUMFORD-TATE GROUPS AND THE THEOREM

OF THE FIXED PART

Yves Andre

The present paper grew out of an attempt of understanding group-

theoretically the consequences of Hodge theory which are explained

in Deligne [4] II 4, with an eye towards applications to algebraic

independence.

After some preliminaries about representations of linear

algebraic groups, we define and study Mumford-Tate groups of mixed

Hodge structures over noetherian subrings R of the field E of real

numbers. Though in the sequel we restriet ourselves to the crucial

case R = Z , we refer to the appendix for a study of some

pathologies which may occur in the case of other ground rings. We

then turn to a more precise study of Mumford-Tate groups arising

from 1-motives (see [4] III 10).

In the fourth parahraph a mild generalization of a result by

Deligne about the monodromy of variation of Hodge structure is

giveni we also present our main object of study, that is Streenbrinqk-

Zuckerls notion of a good variation of mixed Hodge sructure.

In paragraph 5, we give a group-theoretic formulation of the
I

theorem of the fixed part proved in [12]: for almost all stalks of

a given polarizable good variation of mixed Hodge structure, the

connected monodromy group Hx
is anormal subgroup of the derived
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Mumford-Tate group VGx . We then state straightforward consequences

about monodromy groups. In the next paragraph, we study ho~ big can

VG ; we end by applying these considerations to thex

study of algebraic independence of Abelian integrals depending on

some parameters.
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1. Some facts about linear algebraic groups

Let K be a field of characteristic o , and V;;:; KN some

K-vector space. We~shall consider closed an algebraic subgroup

G c GL(V) = GL
N

• For non-negative integers m,n , we set

Tm,n = Tm,n(V) = V~m~0 Von, where V denotes the dual space

of V (with the contragredient action of G~). By "representation

of G 11 as "G-module ll
, we shall always mean a finite-dimensional

rational one. The following three properties are well-known

[ 1 3',; 3. 5 § 16 . 1 ], [6; I 3. 1 ] :

1) every representation of G is a subquotient representation

of a finite direct sum of Tm,n 's ,

2) G is the stabilizer of some one-dimensional L in some finite
m. ,n.

direct sum $ T 1 1 : G = Stab L ,

3) (not used here) if G is reductive (that is, if V is a semi-

simple representation of G), one can choose L so that G acts

triviallyon it; for 1 a generator of L, we then write G = Fix 1 .

Fer any representation W of G , and any character X E XK(G)

of G over K , we denote by wG the fixed part of W under G

and by wX the submodule of W on which G acts according to

X . We write EndGW for the endomerphisms of the G-module W , so

"that EndGW = G and we denote by Z(EndGW) its center.(EndKW) ,

'Lemma 1. Assurne that G is connected, and let H c G be a closed

subgroup. The following conditions are equivalent:
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i) H <I G , that is, H is normal in G,

ii) for every tensor space Tm,n, and for every X E XK(H)

(Tm,n)x is stable·under G,

iii) every H-isotopical component of any representation of G is

stable under G.

If moreover G is reductive, these conditions imply that

Proof: iii)·~ ii) 1s obvious, and we shall first prove that f1) .,. i) ,

independently of the connectedness assumption on G . We know by 2)
m. ,n.

that there exists some one-dimensional L in some (Jj T 1 1 such that

H = Stab L . Let W be the G-module 'spanned by L . The line L

defines a character X E XK(H) ; we have L c wX , and
m. ,n.

wX = w n teT 1 l),X = W , according to the hypothesis ii). Let ~ be

the natural morphism G -> GL (End W) i it is clear that He ker ~ .

Conversely if g E ker ~ ,g commutes with any endomorphism of.

W , that is, g is scalar; t~is implies that g stabilizes L,

so that gEH. Hence H = ker ~ is anormal subgroup.

We now prove i) q ii1). Let W be aG-module, and W' the G-sub-

module of the sum of its irreducible submodules. It suffices to

prove that the H-isotypical components of WI are G-stable. Let

H I
, GI denote the natural images of Hand G respectively in

GL(W') , so that HI <I. GI • The normality property implies that

(End W1 )H
I

is stable under GI , inside the G'~module End W1

For w E EndH,W I
, let C be the kernel of the commutator mapw

[w, • ] in EndH,W' . It is easy to derive- the formula gC = Cw gw
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so that Z(EndH,W') = n Cw is again a G'-module. But
WEEndH,W'

Z(EndH,W') is a finite-dimensional semi-simple algebra over K;

by the connectedness of G' , the morphism G' --> AutK(Z(EndH,W'»

thus has trivial target, that is, Z(EndH':~) is a trivial G' -module.

Now the H-isotypical components of W' are given by p.W' , where

p runs among the minimal indempotents of Z(EndH,W') We just

proved that p commutes with the action of G' on W' , and this

implies that p.W' is stable under G'

When G is reductive, we have V' = V , and the above proof shows

that Z(EndHV) is a trivial G-module, whence an obvious imbedding

Z(EndHV) c Z(EndGV)

o
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2. Mumford-Tate groups

We first recall some definitions. Let R be some Noetherian

subring of lli such that K := R ~ W is a field. Let V be a

noetherian R-module. A (pure R-) Hodge structure of weight MEZ

over

hw(x)

V is a morphism h : Res[ARffim --> GL(VR ~Rm) such that

Mis the multiplication by x ; here w denotes the embedding

ffimm C-> Res~ARffim given by ~x c ~x . Equivalently, it is a

bigraduation on V"@lli =: V~ = e vp,q with vp,q = Vq,p ,or
~. . _ R p+q=M

or else.,a decreasing filtration FP on Va: such that

FP EIl F(M-p+ 1 )....:::::...> VCI: (FP = L_. v P ' ,M-p') . For instance, there is one
pI ~P

and only one Hodge structure of weight -2M on V ='(2nl=T)MR ,

called "the Tate twist" and denoted by R(M) . A polarisation of

the Hodge structure (V,h) of weight M is a morphism of Hodge

structures (in the obvious sense) ~: V 0 V --> R(-M) such that
M .

(2nl=T) ~(.,h(I=1).) is a scalar product on ~:= V 0~ . Elements,

of Tm,n(V
K

) := v0m 0 (Hom(V,R))0n ~ W (endowed with the natural
Z

K-Hodge-structure of weight (rn-n)M) which are of type (0,0)

are called "Hodge tensors". In fact Hodge tensors are nothing but

elements of FO(Tm,n(Va:)) n Tm,n(V
K

) .

A mixed R-Hodge structure (M.H.S) is aonoetherian R-module V,

together with a finite filtration W of the K-space VK := V 0 W ,
z

and a finite decreasing filtration F I of Va: such that the

w W(Gr (VK) , Gr (F)) are K-Hodge structures of weight n respectively.n n

We shall consider the category of mixed R-Hodge structures up to
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isogeny, whose objects are mixed R-Hodge structures, and whose

morphisms are the homomprphisms of the associated K-vector space

which preserve the filtrations. We say that a M.H.S. V is of

type E C Z x Z if its Hodge numbers hP,q are 0 for

(p,q) V. E •

The category of mixed R-Hodge structure5 up to isogeny i5 an

Abelian K-linear tenso~ category [4; th 12.10] which is rigid and

has an obvioU5 exact faithful K-linear tensor functor

w : (V,~,F) ~> VK . Let < V > denote the Tannakian subcategory

generated by (V,W,F) , and wv .the restrietion of the fiber

functor to < V > • Then the functor Aut 0 (wv) iso representable

by some closed K-algebraic subgroup G = G(V) of GL(VK) , and w_

defines an equivalence of categories < V > .....:::::..-> RepKG , cf. [6; 11.2.11].

We call G the Murnford-Tate group of (V,W,F)

Lemma 2. The Mumford-Tate group G is connected. Any tensor fixed

by G in some Trn,n is a Hodge tensor (an element of

FO(Tm,n(V~)) n Tm,n(V
K

)) and G is the biggest subgroup of

GL(VK) which fixes Hodge tensors. If (V,W,F) arises from a

pure Hodge structure (V,h) ,G is the K-Zariski closure of the

image of h in GL(VK) , and if moreover V i5 polarizable, then

G i5 reductive.

Rernark: the definition of Murnford-Tate group above is slightly

distinct from that given in [6; I, 3~2] in the case of pure Hodge

5tructures; however if the weight is non-zero, this leads to an

isogenious group.
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Proof cf the lemma: let usfirst prove the second and third

assertions. Any invariant tensor 1 under G span a trivial

representation L K corresponding to a M.H.S., say L , such that

< L > is equivalent to vectK . Thus L is a trivial M.H.S., that

is to say, 1 1s a Hodge tensor. By 1 • 2) , we know that G i5 the
m. ,n.

stabilizer of some line LK in EBT J. J. , which corresponds to a

M.H.S. of rank one (up to isogeny) , that is, to some Tate twist

weight of Det WN(VK)
v
VK instead of VK

,

have the same sign. Let

K , and let 1 be a

say N2 , is non-zero. Taking if necessary

one can assume moreover that N
1

and N2

r be the rank of the M.H.S. WN (VK) over

L = R(N 1) . We can assume V non-trivial (up to isogeny); thus

there exists an integer N such that the

generator of the one-dimensional subspace

e I'N 2 I r (92 IN 1Im.,n. (9 IN" I r (92 I N 1 I
L

K
0 (A WN(V

K
)) inside ($T J. J.) G (9 (A VK)

Then G = Fix(l) . The arguments given in [6; I, 3, 4-6] , with

minor modifications in order to take into account the difference of

definitions, prove the statements about pure Hodge structures.

To prove. that G i5 connected in the general-case, it suffices to

show that any K-space VI
K

on which G acts through a finite group

is in fact a trivial representation. Such a VK correspond to some

M.H.S. Vi , and we have to show that VI is trivial up to isogeny.

The group G acts on each quotient Gr~VK through the Mumford-

Tate group GI
n

of this pure Hodge structure over K , which is

therefore finite. By the description of the Mumford-Tate group of

a pure Hodge structure as a Zariski closure over K of some real
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is trivial, so that Gr~VK is a

trivial Hodge structure (that is, of type (0,0) . This implies

that for n * 0 , and finally that VI
K

is a

trivial representation of G by definition of the Mumford-Tate

group.

o

Rernark: the description of Murnford-Tate groups by their invariant

tensors irnplies some restrictions on the groups which may occur;

for exarnple, G cannot be a Borel subgroup of GL(VK )

cf. [6; I 3.2]. However, there are other restrictions on the

structure of Murnford-Tate groups, as we shall see now:

Lemma 3. Let G be the Murnford-Tate group of a M.H.S. over R

say V, such that GrWv is polarizable. Then the abelianized

group Gab = GI is a torus. The group of real points ot its
VG

quotient Gabl is compact.
Gabna;

m

Proof: since all morphisms in < V > are strict, one has

GrWv' E Ob<GrWV> for any V' E Ob<V> , thus GrWv, is polarizable.

Take for Vi the M.H.S. corresponding to a faithful representation

VK of the quotient U of Gab by its maximal torus. We find that

G(GrWV ' ) = 0 (see lemma 2). Thus V' , which is a successive

extension of trivial H. S. , is also a trivial H. S. , and

G (V') = U = 0 . Now let X E Xa:(G) = X (Gab) , and let '1R bea:
some real plane - twisting asuch that V" ~ X EI} X ; after la Tate,a:
Det ~ corresponds to a trivial real H.S. Therefore
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acts triviallyon Det v; , which yields lxi = 1 . All representations

of Gab / , are unitary, so that this torus is compact.
Gabna; Im

lR

o

Remark. The same argument shows in the same situation that if G is

nilpotent, then G = es x T (or
m

G = T if V is pure of weight 0) ,

where T denotes a compact torus.
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3. Mumford-Tate groups of 1-motives

We recall that a 1-motive over ~ , denoted by

is the following couple of data:

u
M = [X -+ E] ,

i) an extension 0 -+ T -+ E -+ A -+ 0 of an Abelian variety A by

a torus T,

ii). a morphism u from a free Abelian group X to E (CI:) _ One

associates to a 1-motive a mixed Hodge strueture

v = V(M) = (Vz, V!' F-) , given by:

Vz = {(l,x)E Lie E x X / exp 1 = u(x)}

Wo = Vw
W = H

1
(E)CS}(D and Gr is polarizable,-1 -1

W_ 2 = H1 (T) ~CD

F
O

= Ker(W00CI: -+ Lie E) , see [4 ] 111 10_

We denote by G the Murnford-Tate group of V, and by G_ 1 that of

W_ 1 · Let E' be the Zariski elosure of u(X) , and let us write

F := End EI ° W .

Proposition 1. Let H <I G such that w~ '= W_ 1 (for instance we

may take H = G ). Let us assume that E is a split extension. Then

U(H) := Ker(H -+ G(W_
1

)) is eanonically isomorphie to

U : = HomF (F . u (X) i H1 (E') ° (D) •

Proof (inspired from Kummer's theory of division points on Abelian

varieties): the map U(M) : W_ 1 : 0 ~> am-rn, depends only on the

image (under u) of the class of m E Wo modulo W_
1

. This map
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defines therefore a G-equivariant homomorphism

U(H) ~> H0Inz (u(X); W_
1

) . The vanishing of <'p(a) implies that

a fixes Wo ' which is a faithful representation of H; thus

a = 1 , and this shows the injectivity of <.p. Because of Poincare's

complete reducibility lemma, the exact sequence of 1-motives,

o ~ [X~E'] ~ [X~E] ~ [O~E/E'] ~ 0 splits (up to isogeny) .

. It follows that

c Ker(H I ---> G(H 1 (E I ») ;

where H' = H n G(V([X~E']» . Thus <.p factorizes through

HOmz(u(X); H1 (EI) ~ W) ; also it is easily seen that elements in the

image of <.p are F-linear in some suitable sense: <.p(U(H» ~ ij .

Replacing E by EI and X by u(X)/torsion ' we rnay now

assurne that u is a dominant embedding; we identify X and u(X)

Since E is a split extension, we have F ~ EndG W_ 1 ' whence
-1

EndG ff ~ (EndF FX)oP"; also W_ 1 ' whence U (with trivial action of
-1

G_ 1 on FX), is a semi-simple G_ 1-module. Thus <'p(U(H» i5 the

kernel of some G_ 1-equivariant endomorphism W of U; that is to

say, there exists f € F such that (w<.p (a) ) • m = a fm - fm -= 0 ,

U(H) FX If <'p(U(H» '" then 0 thereforeVa € , Vm € . * U , W * , we

can find x € FX such that U(H)x = x and x * 0 .
We set X = Zx , M = [Xx C-..> E) , and we denote by a subscriptx x

x the objects Gx ' Vx etc. ... associated to this 1-rnotive. By

construction the natural rnappings

Hx
= H n have the same image, and i is
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1s a direct sum ofinjective. Since E splits " Wx .,-1 ~ W_ 1

polarizable pure Hodge structures, so that j::H <I j G.x x
is reductive.

wo' whichx,

indeed,

F . Therefore

u.

~ Wx ,-1 so that Hxx = x

) on W O/W whose type is (0,0)
x, 1x,-

implies the corresponding inclusionwb :: W_ 1 j thisthat

w since H cornmute with the action ofx,-1

a contradiction, and deduce that ~(U(H)) =

acts trivially (like

Recall
H

W x c
x,O

we get

Therefore W is a direct summand in the Hx-module
x,-1

means that we could choose x

Corollary. If E splits (E = AxT) with A non trivial, one

"'"has a split exact sequence 0 ~ U ~ G ~ G(H
1

(A)) ~ 0 .

Remark: if one drops the assumption that E is split U(G) can

f"'oJ

be much smaller than U. In IIDeficient points on extensions of

abelian varieties by {Gm "J. Number theory - (1987), o. Jacquinot

and K. Ribet have build some examples (by means of endomorphisrns of

A which are antisymrnetric with respect to a polarization) where

U(G) = 0 , corresponding to some selfdual 1-rnotives.
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4~. Variations of mixed Hodge structure

In the sequel we shall.concentrate on the case R = Z (see

the appendix for other ground rings). By a variation of M.H.S., we

we shall. rnean a finitely filtered object in the category of local

systems of noetherian X-modules over a fixed connected eomplex

rnanifold X,

, W Vz c W 1 Vz 'n - n+-

together with a decreasing filtration of the complex bundle

attaehed to y~ := Yz @ ~ by subbundles FP , such that on eaeh

(W,F) induees a M.H.S. and that the flat eovariantfibre Y7l , s '

derivative 'V satisfies P p-1 1
'VF c F @ nx . A morphism of variation

of M.H.S. is a morphism of loeal system whieh respeets Wand

whose cornplexification respects the filtration FP pointwise.

This yields an abelian eategory (any morphism is strictly compatible

with the fibrations).

We call such a variation (Yz'~' F) a qraded-polarizable one 1f

each of the families Gr~ ~x· carries abilinear from with~values

in 'z(-n)x which is a morphism of loeal system and pointwise·~·

polarization. Any subquotient of a polarizable variation and any

object isogenious to a polarizable one are polarizable.

The integral relative eohomology modules of the complernent of a

divisor with relatively normal erossings in a projective smooth

X-scheme furnish examples of polarizable variations of M.H.S. over
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the algebraic variety X (see [7; 4.3] for instance).

For a variation of M.H.S. , and for a point x of X I we denote

by Hx
the connected monodromy group, that is the neutral

component of the smallest algebraic subgroup of GL(Vm ) con
'MIX

taining the image of w
1

(X,x) . We also denote by Gx the

Mumford-Tate group of the M.H.S. carried by the stalk Vz .
,X

o
Lemma ··4 (see [5; 7.5]) On the complement X of some meager

subset of X I G is loeally constant. If the variation is
x

polarizable , then H c G
x x

o

for any x EX.

Proof: for a polarizable variation of pure Hodge strueture I this

1s stated in loe. cit. , without much detail abouth the proof how-

ever. So we shall write down a detailed proof , though (thanks to

lemma 2) there is no new complication involved with the M.H.S .. Let

X be the universal covering of (X,O) I for some base point ° EX.

The inverse image of the (polarized) variation of M.H.S. is a

(polarized) variation of M.H.5. over X I whose underlying filtered

local system (V
z

' w.) is constant. For 1 E Tm,n (rV(11) " TU ,n (V(11,0)

we set

t"'J m n roJ

:= {x E X / lET I (Vm )
x 'MIX

is a H~dge tensor}

Since FO is a subbundle, X(l) is an analytic subvariety of X
and its natural projection TI*X(l) on X is an analytie subvariety
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x . By definition
"-1 0

X o E TI X is a

, which is a (dense)

, whose stalk at some

x .......

1 E Tm,n(rV )
(0

x =

0-- -

x , ariy

o

too. We set

cf

U
1

such that TI*X(l)*X

countable intersection of dense open subsets of

Hodge tensor, is in fact a Hodge tensor at any point of X. For
o

o
x .

is then the biggest subgr~up of GL(Vm ) which fixes
'M'X

which lift to FOTm,n(rV~)

x EX, G
x

the various tensors in Tm,n(V )
(O,X

Therefore. Gx is locally constant on

We now assume that the variation is polarized and we shall see

acts (through a finite group) on the spaces

of Hodge tensors in

that TI 1 (X,x)

Tm,n(V )
CO,x

o
for any x EX; this will be

sufficient to prove the lemma, since G can be described as
x

Fix(l) ,"for one element 1
m. ,n.

of one space ffiHT 1 1. We have seen
x

of tensors which lift to

is locally constant. Hence x

F 0 Tm , n (rV ")
~

HTm,n is the rational stalk at
x

o
x EX) is the 5ubspace of Tm,n(V ) composed

(O,x

; in particular this subspace

(forthat

associated to a sub-variation of M.H.S. (yz,W., F I
·) of

(Tm,n(yz)' Tm,n(W.), Tm,n(F·»:, which is actually pure of type

,(0,0) and which inherits a polarization. This polarization W on

~,x i5 a scalar product, invariant under TI 1 (X,x) . Thus TI
1

(X,x)

factors through the discrete group

through the compact orthogonal group

Aut V~ on one side, and
a,X

O(~,X' w) on the other

side; hence the connected group H
x

acts·triviallyon HTrn,n
x •

o

Remark: a variation of M.H.S. V is said to be serni-simple if

for any x EX, the relevant category < V >-x is semi-simple

(notations of § 2). It is easily seen that a polarizable M.H.S.
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is semi-simple if and only if it is a finite direet sum of

variations of pure H.S. up to isogeny. Indeed, using lemma 1, we

can see that both eonditions imply the reduetivity of G
x

for

°any x EX. Conversely, assume that for some x EX, Gx is

Gy for any y EX.

Now eonsider a section 0 of the inclusion

reduetive. Then by loeal eonstaney of

for
o

G ony

o
X the same is true

let Yy,z be a path

°z in X . Then because

and the loeal constaney

by transporting a alongof (G) EXo , the seetion y (a) dedueedy y y,z

Yy,z is a seetion of (W) c (W 1) in the eategory <v > • Thusrn z - rn+ z z

~Ix is a direet surn of variations of pure H.S. up to isogeny, whieh

extend to X by continuity. The serni-simplicity of V follows from

of the horizontality of the filtration W.

(Wm)y ~ (Wm+1)y in the category <vy > , and

(up to hornotopy) from y t~ a nearby point

this.

We shall now reeall a eoneept introdueed by Steenbrinck-Zucker [12]

(cf. also [15])~ Let us now assume that 'x is a smooth eonnected

algebraic variety over ~ . The variation of mixed Hodge structure

is considered good if it satisfies the following condition at

-
infinity: there exists a compactification X of X, for which

-X - X is a divisor with normal crossings, such that

i) The Hodge filtration bundles pP extend over X to sub-bundles

~p ~ c
P of the canonical extension v~ of V~ , such that they induce

the corresponding thing for GrW(yz,w. , PO)

1i) for the logarithm N.
J

of the unipotent part of a Ioeal mono-

dromy transformation about a eomponent of X, X I the weight
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filtration of N. relative to W exists.
]

The fact that these conditions are sufficient to imply those

of [12] (3.13) is pointed out in [15] 1.5, and follows from [16] 4

and [12] A. T~e following classes of variations of M.H.S. are good:

1) polarizable semi-simple variations of M.H.S. over algebraic

ba ses [1 0 ], [1 4 ]

2) relative cohomology modules of the complement of a divisor

with relatively normal crossings in a projective smooth X-scheme, at

least when X i8 a curve, see [12] S.7. Moreover, the category of

good variations of M.H.S. over X is stable under standard con-

structions of linear algebra, e, @ , duality

Example: smooth 1-motives.

. .. , see [1 2] A •

Recall from [4] II! 10.1.10 that a smooth 1-motive M over X is

the following couple of data:

i) an extension 0 -. T -. E -. A -+ 0 of a (polarizable) Abelian

Jf
X

scheme A over X by a torus T over X

ii) a morphism u : X -. E from a group scheme X over X to E;

one assurnes that locally for the etale topology on X , X is constant

and defined by a free Z-module of finite type.

The construction y(M) = (~Z' W., F·)

~ = Wo (~z) = Lie ~/X x X
E

W" = Ker exp = R1
fan Z

~1 *
W = (Xa:(!»v-2

F
O

= Ker (Vc
-+ Lie ~/X) . ,([

defined by the exponential sequence,
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whieh is fibrewise eompatible with that of § 3, yields a polarizable

variation of M.H.S. over X .

Lemma 5. Assume that X is a eurve. Then the variation V(~)

assoeiated to the smooth 1-rnotive M is good.

(Sketch of) Proof: aceording to M. Raynaud [C.R.A.S. 262 (1966)

413-416], there exists a Neron model of E over the srnooth completion

x of X, such that ~ extends to u

srnooth group scheme E/- X

X --> E ; note that the
-\II-

X

is not of finite type in general. Replaeing

X by a ?ubgroup-scheme of finit;. index, which yields a~ isogeneous

variation of M.H.S., we may assurne that ~(~) lies in the neutral

cornponent -0
E of E . Condition i) defining good variations is

fulfilled with .......0 -0 - e =ü
F = Ker (( Lie ~ / X x~~) -+ Lie ~ / X) •

In order to verify ii), we may proceed by induetion since we know

that both W_ 1 (by point 2) above: the geometrie situation) and

WO/ w (by duality of 1-motives and point 2) ) satisfy ii); the point
-2

is that Nj W_ 1 n W_ 2 = 0 .

Granting ii) for W_ 1 ' it follows from theorem 2.20 of [12]

(forrnula 2.21) that ii) for Wo reads equivalently:

here M(-2) -1-1

is the relative weight filtration of W_ 2 , whieh is W-
1

- 1 since

the unipotent part of the loeal monodromy of:, W_ 2 is trivial (see

[12] 2.14; the point is that T is necessarily locally constant).

Therefore (*) follows from property ii) for wO/w .
-2

o
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5. Normality

We keep the notations of the previous paragraph-. The following

result is a simple consequence of the theorem of the fixed part

(Griffiths-Schmid-Steenbrinck-Zucker) .

Theorem 1. Let ~ = (~Z' W., F·) be a (graded-) polarizable

good variation of mixed Hodge structure over a smooth connected
o

algebraic variety X . Then for any x EX, the connected monodromy

group Hx is a normal subgroup of the deri~ed Mumford-Tate group

Proof: we first prove that Hx <I Gx ' using the implication

oii) ~ i) in lemma 1. Since we already know that H c G = G ,
x x x

it suffices to prove ii) for H, G . Since TI
1

(X,x) acts on thex x

free Z-module Tm,n(Vz,x)/torsion, any action of TI
1

(X,x) on a

line inside Tm,n(V ) must factor through {± 1} (the only
<I},x

possible eigenvalues). Thus the connected group H has only
x

trivial rational character. Hence it suffices to prove that for

any VI = (Tm,n(yz)' Trn,n(W.), Trn,n(F-))., the fixed part of

V'(D,x under Hx
is the rational space w· (VII)

VZ,x
of a subobject

V" of VI in < Vz > (notations of § 2). Replacing X by the,x

finite covering defined by the maximal subgroup (of finite index)

of 7r 1 (X,x) which factors through the connected component Hx of

the :monodromy group, we are reduced to prove that the largest
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constant sub-Ioeal system of VI-z is a (eonstant) sub-variation

of M.R.S .. For a finite direct surn of polarizable variation of

pure H.S., this is precisely the theorem of the fixed part of

Griffiths-Schmid, see [3][10]. For a general polarizable good

variation of M.H.S. in Steenbrinck-Zueker l sense, this is the

theorem of the fixed part of these authors, see [12] 4.19. In

faet, in loe. eit., this theorem is stated for a one-dimensional

basis X, but we can reduee to this ease by eonsidering eurves in

x i see [7] § 4.3.4.0, for the detailed argument.

So far we have proved that

is

H <Ix
G ab

x

Gx ; to show that

We know that H ab c
x

H <Ix

= HxVHx
it remains to prove that

a torus (lemma 3). Let X a complex eharaeter of Hx . We just

proved that Hx ICI: <I Gx 1CI ' so that according to i) .. ii) in

lemma 1 for K = er (Trn , nv )X + .( Tm, nV ) X is stable under
, <I,x <I,x

GxlCI: ; it is even the cqmplexification of -a real spaee ~ stable

under G
x1m

. Thus for some suitable Tate twist m(n)

Det ~ ~m(n) : is a trivial Gx~-module. It follows that Det ~

is a trivial Hx1m-module, which yields the equality: lxi = 1 •

Therefore all representations of Hab are unitarYi this means thatx

H~~ is a compact torus.
m. ,n. b

Let VI c $ T 1 lV a faithful representation of Ha . A sub-W,X x

group of finite index of TI
1

(X,x) acts on VI through
m. ,n.

GL(V I n $ T 1 lV ) which is discrete, and also through aX,x

compact torus. Because of the conneetedness of Hx ' it follows

that VI is a trivial H -module, that is: H = VHx x x

o
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Corollary 1 (see [4; 4.2.6-9]). The local system YW underlying

a polarizable variation of pure Hodge structure is serni-sirnple;

each isotypical component carries a sub-variation of pure Hodge

structure ; the center of End (YW) is purely of type (0,0)

For any x EX, the connected monodromy group H
x

is semi-sirnple.

o
Proof: since H <I VG for x EX, and since OGx is a semi-x x

simple group (lemma 2), it follows that H
x

is serni-simple; since

Hx is locally constant on X , H
x is in fact semi-simple for any

and the first assertion follows (the normality

x EX. This implies the complete reducibility of the action of

on V(D,x

would suffice here). By i) ~ iii) in lemma 1, applied to
o

H ~ G for x EX, we get on each stalk of each isotypical compo-x x

nent of the local system Ywl~ a Hodge sub-structure. By continuity,
o

these Hodge sub-structures extend across X'X and patch together

to give rise to a sub-variation of W-Hodge structure on the

isotypical component of Yw • The third assertion follows from

lemma 1 in the same manner.

o

Corollary 2 (see [4; 4.2.9b]). The radical of the connected monodromy

group Hx associated to a polarizable variation of M.H.S. is

unipotent .

Proof: let p be the subgroup of GL(VW ) which respects the
x ,x

weight filtration Wl , and N the subgroup of p which actsx

trivially 'on W Then and isGr (Vw ) . H c P N unipotent.,x x x x
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Moreover the eonneeted monodromy group, say GrH , of
x

at x is the image of Hx
in p IN . Heneex x Hx is an extension

o~ GrH , whieh (aeeording to the previous eorollary) satisfiesx

GrH = V GrH , by a (neeessarily unipotent) subgroup'of Nx x x

o

Rernark: a sirnilar argument shows that the Mumford-Tate group of

a M.H.S. over R c~ , say V, is an extension of the Mumford-Tate

group of the direet surn of K-Hodge 8truetures GrWv, by a unipotent

K-group (notations of § 2). In partieular if V is polarizable,

G(GrWV) is the quotient of G(V) by its unipotent radieal.

Rernark: eorollary 2 shows in partieular that if Gx i8 solvable
o

for seme x EX, then the variation of M.H.S. is unipotent in the

sense of [15].

Rernark: theorem 1 applies to the geometrie situations eonsidered

in § 4 sinee in the course of proving it, we have made a restrietion

to eurves.

Counterexarnple: we produee an example, following Deligne-

Steenbrinek-Zucker (see [12] 3.16), to show that some extra hypo-

thesis upon the variation of M.H.S. is neeessary.

n ~
nx

consider the srnooth 1-motive M = [z c > {lj ] over X = (Gmm
0

a:x a:xHere the set X is ...... tors The corresponding good variation

of M.H.S. V is an extension of X by· !l!.l inside CI: . We
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denobe by E:_ 2 the generator + i of ! (1) ~ W_ 2 and by E: O any

element of v ........ W 2-z - then spans ~z · For some suitable

determination of

section E: O : = ':0

a section of V~
o

log x (depending on the choice of E: O ) I the

- log x E: of VC spans FO and extends to
2in -2 re

over F 1 . We now cornbine notations from § 3 and

§ 4. Fer x E X I we have U(H (M)) = U(G (M)) = U ~ ffi according
x - x - a

'to proposition 1. On the other side H (M) = U(H (M)) according to
x - x -

the previous corüllary.

Für any entire function f I let us now consider the following

perturbation vf
of f W~) (Yz; w. ) but (Ff) 0 isV : (~I =

spanned by
f"oJ

The corresponding Hx (~f) I G (Mf )E:
O

+ f e: -2
. groups

x -

admit the same description. The following assertions are easily seen

to be eq~ivalent:

a) vf is good

b) f extends analytically at co

c) f is constant

d) Vf
~ V

e) V' f is good.: = Hom(~/~ )

The group H (VI) is isomorphic to ffia ; viewing it at a subgroup
x -

of GL 2 x GL 2 acting on (V v 0,V; ) I its "typical ll element is
(D/X w,x

of the shape

(-~
0

) x
( 1 + a )

1 \ 0 1 .. •

The "typical" element of G (VI) is of the shape
x -

C1~b 0
) x (

b
~ ) ,1 0 a being independent of c if
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(and only if) Vf ~ ~ . Therefore we see in this example that

H (VI) 4 VG (VI) if and only if V' 1s good.
x - x -
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6. Maximality

Let (Yz,~, F·) a polarizable good variation of ~ixed Hodge
o

structures on X. Let x E X as in lemma 3. By the theorem,

we know that H <I VG '. We now study how big can H be inx x x

Proposition 2.
o

for any x E X

Assume that for some

H = VGx x

Y EX, G
Y

is nilpotent. Then

Proof: according to the remark which follows lemma 3, G
Y

is actually a torus. Since the assertion is invariant under taking

finite coverings of X, it suffices to show that any tensor

1 E Tm,nVW,x invariant under, TI
1

(X,x) spans a Gx-module W
x

on

which the action of Gx is abelian. It follows from the "fixed

part" theorem that W
x

is fixed by TI
1

(X,x) , and the Iocal constancy

of

TA!
"x

o
G on X, together with an argument of continuity, shows thatx ,
extends to a constant sub-variation of M.H.S., say (~I,W~,F'·), of

(Tm,nVm , Tm,nh ) . In particular the action of G on Vi ~ VI is
-w x -x x

the same as the action of G on Vi , which is abelian.y -y
[J

Before turning to applications, we propose a conjecture:

conjecture: under the general assumptions of this paragraph,

assume moreover that, except possibly for one Tate twist, no

Jordan-Hölder constituent of (~,W.,F·) is a locally constant

variation of M.H.S .. Then
o

H = VG , for any x EX.x x
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Remark: this is obviously true, taking into account the normality

property, if~for some
o

x € X , the W-group VGx is simple. By

way of example, we consider a polarized (analytic) family of

Abelian varieties with many endomorphisms over a complex algebraic

base X ; by this, we mean that the generic fibre f of f (this
n

makes sense since f is automatically algebraic) enjoys the

following property: (End f ) 0 W is a division ring which
n Z

contains a commutative field of degree dirn f over W. Then
n

the derived Mumford-Tate group of the stalk (R1f*W)x can be

computed for any Weil generic point x of X (so that

= End f
x

: it turns out that VGx ~ Res + G, where
Z /W

denotes the maximal totally real subfield of the center of

End f n

(End f
n

) ~Z W , and G is an absolutely simple group over z+

(in f~ct GI~ - SL2 ) ; thus in this case VGx is simple over W

(see also the appendix, and [9, lemma 2.3], [1, th. 2]). However,

P. Deligne has constructed some Abelian varieties whose derived

Mumford-Tate groups VG are not simple over W (letter to the

author) .

Remark: in the case when G is solvable, the conjecture holds

and is compatible with the results of [15]. In the reductive

case, when the variation arises from geometry, the conjecture

seems to be compatible with Grothendieck's conjecture about

algebraic independence of periods of algebraic integrals, see

[ 1 ] •
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7. Algebraie independenee of Abelian integrals

Let M be a smoöth 1-motive over X; its generie fibre

M := M is a 1-motive over the function field ~(X) .-n
Aeeording to [4] III 10.1.7, there exists a universal extension

~~- of M by a veetor group:

-0 > ',X = X

1 1 1
o --> Ext 1 (M, es ) *: --> E# --> E -->. Q. .a

The DeRham eohomologieal realization of M is by definition

1 . t
H

DR
(M) : = Co Lie E • Moreover, the exaet sequenee

o --> Hom(X, ffi ) -->,Ext1 (M, ffi ) --> Ext
1 (E, ffi ) --> 0a a a

induees an exaet sequenee

(*) --> 1
HDR(E) --> 0

where
1

H
DR

(E) is the De Rham eohomologieal realization of the

1-motive [0 -> E] , identified with the usual first De Rham

algebraie eohomology group of E.

Let Kx denote the fraction field of the loeal ring o at
X

an ,x
some x € X • Construetion [4] 111 10.1.8 then yields a eanonical

isomorphism:
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the flat connection over such that
an

(VC) 'V
CI: = ~ •

According to Griffiths, Gr~ 'V
an

has only regular singular points

(see [3]). It follows that Van itself has only regular singular

1points, henceforth is induced by a connection 'V over HDR(M)

In fact (*) is a sequence in the ca tegory of a:.(X) -vector spaces

with a:(X)/a:-connection, inducing the Gauss-Manin connection on

H6R(E) , and a trivial connection on Hom(X, ffi a )

By definition of 'V, we have

(* *) inside v 0 Ka:,x x

Let us translate (*) and (**) in more down-to-earth terms, assuming

that uX --> E is injective, and that x is constant over x .

Then X may be considered as a group of sections of fE --> X ,

and ~z is spanned by < logE~' Ker eXPE > , at least if we restriet

ourselves to the subset of X where u is fibrewise injective. By

means of suitable bases, a fundamental solution matrix of a Picard-

Fuchs differential system of order one associated to

be expressed in some rieighbourhood of X
o

E X by:

1H
DR

(M) can

Z : =
~

~
if> wi J k-4w.
y. o-~

J

where wi (resp. Yj , resp. ~k ) runs

1
through some basis of HDR(~/X) ® 0x,x

o

are elements

o
(resp. of OR1f~na:)

Xo
that the entries of Z

, of X ), so
-xC

of 0 an · In the first quadrant, we can recognize the classical
X . ,xo

"period matrix ll solution of a Picard-Fuchs differential system

associated to the quotient H6R(E) ; such a matrix Z was already
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considered by Y. Manin [17].

Gur next theorem deals with a smooth 1-motive of the form

[0 -> E] •

Theorem 2. Assume that some fibre of f
E --> X is split:

by all the "per iods"

E = T x A , and that A is of CM type.x
1

x
1

x 1 x 1
Then the transcendence degree of the ~(X)-extension generated

~ w. (y., w. as above) equals the dimension
y. 1 J 1

1

of the IIgeneric" derived Mumford-Tate group VG.

Proof: by 11 generic ", we mean the dimension 0 of V (Gx (Y ( [0 -+ ~]) ) )

o
for any x EX. The groupe G is a torus, according to the CM

x 1
type hypothesis. Since the variation of M.H.S. is good (at least

when restricted to curves, see the example at the end of § 4),

proposition 2 applies to establish the equality o = dirn H . Since
x

the connection has only regular singular points, we get furthermore

that 0 is the dimension of the differential Galois group associated

1
to HDR(E) . But differential Galois theory teIls us that this

dimension is the transcendence degree of the ~(X)-extension generated

by the entries of the fundamental solution matrix Z (see [1], [2]).

o

Gur last theorem is concerned with a smooth 1-motive of the form

[~ ~~ ~] , where f
A --> X is an Abelian scheme.

Theorem 3. Assume that, over any finite etale covering of X, the

map induced by u: X -> A/fo d tremain.s injective. Then the- - lxe par

transcendence degree of the ~(X) ((p w.) ) - extension generated
1 iO

Yj J
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by the germs of analytie funetions

the dimension of the generie group

t,:k
f
",0
U

as above), equals

introduced in § 3.

Proof: using similar arguments from differential Galois theory,

we ean see that it is enough to show that

:= U(H )
x

apply proposition 1, it suffiees to show that

Aeeording to theorem 1, we have H <\
X

Gx
; thus in order to

H
wo

x
c W 1 •,x - -,x

At the eost of replacing X by a finite etale eovering, we may

assurne that H is the whole monodromy group (not only itsx

neutral eomponent) . We identify X with its image in A and-H
eonsider it as a group of seetions of f Let v E W x . it. x o,x

,

extends to a global seetion v of ~ setting t,: = exp v E X

we thus have 1,](d/ )f~(x)w 0 for seetion of 1= , any w rlA/ Xdx 0 x
and any derivation d/dx of CI: (X) . Aeeording to Manin [ 17] ,

this implies that ~ belongs to the fixed part of A. However

the hypothesis we have made upon u implies in turn that ~ = 0 ,

so that v E r~_1 .

o

Remark: this result is the geometrie variant of the "Kummer

theoryll on ,Abelian varieties, which studies the extension qf the

field of rationality of some torsion points, generated by the

division points of some non-torsion points.

Remark: the exaet sequence (*) of a:(X)-vector spaces with

connection splits if and only if U(H ) = 0 .
x
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Appendix

Automorphisms of certain Hodge structure over number fields

So far we have been concerned only with polarized Hodge structures

(HZ,h,~) over Z , and we used some variants of the argument

that the automorphisms of (~,h,~) form a finite group, say

G : indeed G imbeds both into the discrete group GL(HZ) and

into the cornpact orthogonal group O~ = Aut(HZ ~m , ~(·,h(i) .»
If Z is replaced by the ring of integers R of some totally

real number field, the group GL"(HR) is no longer discrete in

general; even if one tries to use Weills restrietion of scalars

fram R ta Z , it could happen that the "con jugates" of OlJl

are not compact. Here we shall study thos~ polarized Hodge

structures over R which arise naturally as pieces of the

cohomology of Abelian varieties with many endomorphisms, and

show how the finiteness of G involves arithmetical questions.
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8. Classification of Abelian varieties with many endomorphisms

Let X a complex simple Abelian variety of dimension

g > 0 , such that D::: End X eZ-W contains some cornmutative

field E of degree g over W. Since X is simple, D is

a division ring whose center is denoted by Z . Any polarization

W of X defines a positive involution * over 0; this implies

that the subfield z+ of Z fixed by * is a totally real nurnber

field. After Albert's classification (cf [8] 11), four cases can

occur apriori:

Type I: Z+ ::: Z ::: E ::: D ; X is then called-a "Hilbert-Blumenthal ll

Abelian variety.

Type 11: Z+::: Z and for every real place p of Z,

According to [8] loc. cit., there exists a E D , such that the

reduced trace TrD/Z(a) vanishes, and such that the involution

* is given by -1
x* ::: a[TrD/Z(x)-x]a for any x E D . Since D

is a quaternion algebra over Z, there exists b E D , such that

the reduced trace TrD/Z(b) vanishes, and which anticornmutes with

a . We-then have b*::: b . So Z(b) is totally real and one can

assume that E::: Z(b)

Type 111: Z+ ::: Z and for every place p of z, D
Z

em is, p

isomorphie to "the Hamilton quaternion algebra E . In

fact this case does not occur under our assurnptions on

X . Indeed the representation; of End
JII

[H 1 (Xan,JR) ~Z, P JR]
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over H (Xan~) 0 m yields, after comp~exification,
1 Z, P

two copies of the standard representation of 802

([9, lemma 2.3]). This representation thus decomposes

into four sub-representations of degree one, whose

endomorphism algebra has to be lli ~ ~ ~ M2(~) : this

is impossible.

Type IV: Z is a totally imaginary quadratic ,extension of z+.

Either [Z:W] = 2g in which case X is said of

lICM type" and we can choose +E = Z , or [Z:(D] = g

and we can assume that E is a totally imaginary

quadratic extension of its subfield +
E fixed by * ,

whence the following diagram of extensions:

~E~+
Z~+~E

Z

since [D:W]' S 2g ,

[ E : Z] $ [D: E] (from the

commutativity of E), and

[E:IJn = g

[E:Z] S 2

we find that

Except in the ,CM case, E is a maximal commutative subfield of

D , and in any case we shall write E+ for the subfield of E

fixed by * , K for the Galois ~ctosure of +
E fn 'JR, and . R for

the ring of integers of K .
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9. The Hodge structures H
II

over R

Let us pick some primitive element of +
E over m in

the order (End X) n E+ of E+ . This element acts via ~* on

the free R-module H1 (Xan ,R) , and its characteristic polynomial

has rational integral coefficients and the same roots as the

minimal polynomial of ~; that characteristic polynomial thus

equals some power of this (separable) minimal polynomial, so that

some essential R-submodule of H'(Xan,R) decomposes into a direct

sum of free R-modules H , the indices running among the imbeddings
~

cf E+ into K . Let L be the compcsitum in CI: of K and the

image of E through seme complex irnbedding, so that L = K

except in the non-CM type IV case. Then the rank of H is
11

2g/[E:W] = 2[L:K] . The free R-module H is naturally endowed
11

with a structure of polarized Hodge structure (B11,h~,~v) cf type

(0,1) + (1,0) over R, and there is an isomorphism of polarized

(H
1

(X
an , K) , h , ~ ) =K-Hodge structures e+ (H ~R K, h", ~ )

~:E ~K ~ ~ 11
Furthermore when L * K , W~ comes from a L-herrnitian form ~~

on the L-vector space H~ eR K .
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(H , h , 1J1
11

)

~ ~ ,...

Proposition 3. The group G of L-linear automorphisms of

(H~, h~, 1J1~) is infinite if and only if one of the following

statements holds:

i) K = L , and there exists some non-totally positive

element k E KX
. such that the multiple Ik.C of the

Weil morphism C = h (1=1)
~

on

ii)

endomorphism of H~ 0 R K ,

K * Land the direct summand

H~ 0 R ~ is bihomogeneous.

of

We begin the proof with the case K = L .

Let us ehoose aR-basis of H such that the Riemann form
1.1

lJ1 = <.,.> is represented by the matrix (0 e) for some
~ . -e 0

e E RX
, and let us eonsider the matrix of C in the basis

(viewed as a basis of

( -aß -Yß\)has the shape

Hl.1 0 R ffi ): sinee C
2 = -1 , this matrix

, for (a,ß,y) Em3 satisfying the equation

ay = 1 + 'S2 • It follows that ay * 0 . The symmetrie form

<·,C("» is represented by Q = (~: ~:). Let e E G , so that

e E Aut H n 0 (H 0 m, Q) , and let us write e.. E R for the
II ~ 1.J

eoefficients of the matrix of e. The equation t SQS = Q is

equivalent to the system
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(E) et811812 + ß(812 821 + 8 11 822 - 1)--+ Y8 21 8 22 = 0

2 2
0.8

12
+ 2ß 8

12
S22 + Y(8

22
-1) = 0 •

a) Let us first deal with the case when C is defined over some

totally real algebraic extension of K . Then a,ß,y are

totally real algebraic numbers. Let 0 E Gal(K/W) , and let

C' C' C'
et , ß , y be conjugates (necessarily real) of a,ß,y

QC' = (o.C'eC' ßOeO)
respectively, above 0. Setting ßO ° ° ° ' we find

e _ y e

+eoQoso = QO , and det 0° = (eo)2 > O· , so that SO belangs

to the compact orthogonal group 02(QO) . By restrietion of

scalars a la Weil from K to W G imbeds into

(ResK/W~Aut(H~ @R K) (X) (which is di5crete) and into TI 02(QO)

°. -(wh ich i5 compact), so that G is f inite in this case. :

Here we point out that the CM type is a special case: indeed

the Hodge bigraduation of HlJ. @R er: comes from the CM decom-

position H €) LI = [H 1 (Xan , (0) €) LI] m [H 1 (Xan , (0) €) LI]
lJ. R

,
Z,V Z,v

for same complex place '\) of Z over ~ (here we denote by LI

the compositum K·V(Z) which is a quadratic totally imaginary

extension of K). Let us write LI = K(h) with' h 2 = -g E m

the matrix of C (in some basis adapted to the above decompo-

(
1.

0
. 0 '\

sition) reads -i) , thus C is defined over the totally

real number field K(Ig) = K(ih) .
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b) Let us now assurne that a,ß,y span a line over K; since

xay * 0 , we write ß = ba, y = ca , for some (b,c) E K x K .

This yields 0
2 = ~2 E K n m+ . Getting rid of the above

a-b

possibility 2), we are reduced to the case i) of the proposition,

with k = c-b2 . Since any 0 E G cornmutes with

1 ( -1 - c ) (X
y

-cy )äC = 1 b ' 8 has the shape x+2by for x,y,cy and

2by ER. The set of all these matrices is an order R' in

the field K' = K(/bT=C) = K(ia) , as is seen by identifying

( X -cy ) ~with (x+by) + yvb--c . Since 8 is invertible,
\y x+eby

it is identified with some unit in R' . The equation

+8Q8 = Q then reads x2 + 2bxy + cy2 = 1 , that is

(x+by) + y/bT=C E Ker NK' / K .

But NK'/K has maximal rank as a morphism between unit groups

(R')x --> RX
• By assumption, K' is not totally imaginary,

so that by Dirichlet's theorem rk(R')x > rk RX
• Thus the

kernelof NK'/K in (R')x contains infinitely many elements,

and so does G in this case.

c) It remains to deal with the case when a,ß,y span a K-vector

space of dimension at least 2. This implies that all minors

of (E) vanish. In particular,

( 1 ) 2 1) 2.
( ,811 -1) ( 8

1
2 821

+ 811 822 '- = 2 811 812 821

(2 ) 2 811 822 - 1) 2( 822 -1) ( 8
12

8
21

+ = 2812822822

( 3)
2 2 2 2(822 -1) (822 -1) = 812 8

21
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2 2from which it follows that ( 812 821 + 811 822 -1) 612 621 =
2 2

2811812821822' so that 812 821 = 1-;·+ 822 811 if 812 821 * 0 .

Sqaring, we find (using (3) again) that 8
11

= -822 in this

2case, and from (1) we get 812 821 = 1-811 i that is, det 8 = -1

and tr 8 = 0 I from which it follows that 82
= 1 . If

8
12

8
21

= 0 I we get fram the vanishing af the other minors) that

2' 2
811 = 822 = 1 ,and moreover that 8

11
822 = -1 if 812 and

821 do not vanish simultaneouslYi so we are reduced to the

previous case where 811 = - 822 ' except if ·8 = ±1 . From

this description we see that any two elements of G I distinct

fram ±1 I are inverse up to- sign i this implies that G is

finite (with at most 4 elements) .

We now turn to the case K * L .

Let us choose aR-basis of H such that the L-hermitian form
lJ

~~ = <","> is represented by the matrix (~~), fer seme

(e,f) E (Rx )2 . We identify L 0K~ with ~ by means of an

element h of L such that h 2 = -g E K n ml i since L ,is

totally imaginary (like E) I g is totally positive. The Weil

morphism C is linear with respect to the complex structure

induced by L 0K m on HlJ ~Rm , since it comrnutes with L.

a) Let us first deal with the case when (HlJ 0 R K)0L ~ is not

bihomogeneous. Through the isomorphism ~ ~ L 0 K m ,

(HlJ 0 R K)0L ~ can be identified with the complex 2-plan

HlJ 0 R m ,and C denotes the two eigenvalues ±i on
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for t Em , ~a,y) E ~2 , and with the follo~in~
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H~ 0 R m . Since ~~ is a morphism of the Hodge structure and

since C is ~-linear, C belongs to the unitary group of

Using this property, and the equations C2 ~ -1 and tr

: (ht
-0.

equation:

(*) gt
2

1a.y + = and fa = ey .

Let us write Ci. = v + hw , for (v,w) E m2 . Taking into aecount .

(*), we find the following matrix representation for the symmetrie

form Re h / g <., C ( • ) > in the real basis of attached to

the chosen complex basis:

Q~
~ -et 0 fw -fv

O,t' -get fv gfw
E m3'~,

for (t,v,w) .
fw fv ft 0

-fv gfw ° gft

Since has maximal rank and index 0, the first main 1-minor

is non zero: t * ° .
Let us first assume that a * 0 • Sinee e E G commutes with C ,

we find that e has following matrix representation:

-yy/o. )

x+2hty/o.
=

-fa.y/a

x+2hty/a
) , for (x,y) E L

2 .
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Furthermore, the relation te;(~ ~)(a = (~ ~). yields the system

(E ' ) xx + f/e - yy = 1 ( 1 )

(f/e
2 -

1 2ht/··-(axY + (ixy) (2 )xx + + 4gt / -)yy = +
00:. 0:.0:

-- ( 3 )2htyy = axy - ctxy

Eliminating xx between (1) and (2) and yy between (2) and (3),

one obtains xy = 0 ; reporting this equation in (1) and (3) gives

y = 0 and xx = 1 _ (Note that sihce e is invertible, x is a

uni t in L)_

If on'the contrary Cl = 0 , then y = 0 according to (*), so that

a is diagonal and xx = 1 again_ In both cases, to show that

G is finite, it suffices to prove that the unit in Ker NL/ K form

a finite group_ Since L is a totally imaginary quadratie extension

of K, the unit groups UL and UK have the same rank [K:~] - 1 ,

thus the desired statement comes from Dirichlet's theorem_

b) It rernains to deal with the case ii) of the proposition_ In

this case C is the homothety with scale ±i E L ~Km on"

H~ 0 R m _ The matrix of the symmetrie form Re h <-,C(-» in the

real basis of H~ 0 R m attached to the chosen complex basis reads:

Q = ;g
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Since Q has maximal rank and index 0, it follows from Sylvester's

criterium that the product 0103 of the.first and third main

minors of Q is positive: ef > 0 .

Let K' the imaginary quadratic session of K generated by

!=elf . We shall show that K' is not totally imaginary. Indeed,

according to a result of Shimura [11, th 5], there exists at least

one place o~ of K (0 E Gal(K/W)) such that H falls in ease
O~

same

a). We apply Sylvester's eriterium to the matrix

-
~

Qo~
0 0 fOw 0

;;;: -e t -f v

0 ° 0 . °' O'fO' eonsidered in-g e t f v g w

fOw fOv fOt 0 ease a) for

°' °fO' 0 gOf0t-f v g w H
O'~

The produet °1 03 is -(e 2f) O't 2 (fov2 + fOgOw 2 + gOeOt 2 ) . Beeause

of the relations (*), this ean be simplified: 0103 ;;;: -(eofOt)2e o f o .

We find eOfo < 0 , so that K ' is not totally imaginary.

Let e E G and 0 its L-determinant. The relation

t e (e 0\ 8 ;;;: (~ ~) yields the shape (~ -f/e co) for theo...f). äo
matrix of e , with 00 ;;;: 1 and eaa + fee ;;;: e . Ta show that

G is infinite, it suffices to consider the case where a,c E R

and 0 = 1 . Then the set of matrices (~ -f~e c) with

2(a,e) E K is a field isomorphie to K' . The subring eonsisting

of matriees with entries in R i5 an order R' , and the subgroup'

of (R')x consisting of unimodular matrices satisfying

ea2
+ fc 2 ;;;: e is the kernel of N in (R')x. The

K'/K
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argument as in part of the proof (K = L , case b), shows that

this group~is infinite. This completes the proof of the

proposition.

o

Along the lines of [4; 11 4.4.8], proposition 3 can be used

to reprove the conjeeture of § 6 for families of Abelian varieties

with rnany endornorphisms. The point is that, exeept in case ii),

the Hodge filtration of H
-1-1

is locally constant if and only if

the rnonodromy is finite. Indeed, the Ioeal constaney of F·

irnplies that the monodromy group (whose neutral cornponent is

serni-simple) imbeds into the auto~orphism group G whieh is

finite except in eases i), ii) and which is a torus in case i)

here G denotes the Zariski closure of the group G deterrnined

by proposition 3..



- 44 -

References

[1] ANDRE Y., "Sur certaines algebres de Lie associees aux

schemas abeliens ll
, Note CR.A.S. t. 299 I n° 5 (1984),

137-140.

[2] ANDRE Y., "Quatre descriptions des groupes de Galois

differentiels", to appear in the proceedings of the

"Seminaire d'algebre de Paris", Springer L.N.

[3] CORNALBA M., GRIFFITHS P., "Some transcendental aspects of

algebraic geometry", Proc Symp pure Math. vol XXIX, AMS

1975, 3-110.

[4] DELIGNE P., "Theorie de Hodge" 11, Publ. Math. IHES 40 (1972),

5-57; 111, Publ. Math. IHES 44 (1974) 5-78.

[5] ·DELIGNE P., "La conjecture de Weil pour les surfaces

K 11 , I nv. Mat h • 1 5 ( 1 97 2), 2 0 6- 2 2 6 •3 __ _ _..

[6] DELIGNE P. and al., Hodge cycles, Motives and Shimura Va

rieties, Springer L.N: 900 (1982) I Hodge ~ycles on Abelian

varieties 9-100; 11 Tannakian categories 101-228.

[7] KATZ N., "Algebraic solutions of differential equations",

Inv. Math . 18 (1 972), 1-11 8 .

[8] MUMFORD D., Abelian Varieties, Oxford Univ. Press, Oxford

(1970) .

[9] MURTY V.K., ItExceptional Hodge Classes on Certain Abelian

varieties", Math. Ann. 268 (1984), 197-205.

[10] SCHMID W., "The singularities of the period mapping", Inv.

Math . 22 ( 1973), 21 1- 319 .



- 45 -

[11] SHIMURA G., "On analytic families of polarized Abelian

varieties and automorphic functions ll
, Ann. of Math. 78

(1963), 149-192.

[12] STEENBRINCK J., ZUCKER S., Variation of mixed Hodge

structure I Inv. math. 80 (1985), 489-542.

[13] WATERHaUSE W., Introduction to Affine Group Schemes,

Springer, Heidelberg, 1979.

[14] CATTANI E., KAPLAN A., SCHMID W., Degeneration of Hodge

structure Ann. Math. 123 (1986) 457-535.

[15] HAIN R.M., ZUCKER S., Unipotent variations of mixed Hodge

structure, Inv. math. 88 (1987), 83-124.

[16] KASHIWARA M., Variation of mixed Hodge structure (Pre

print 1986).

[17] MANIN Y., Algebraic curves over fields with differentiation,

AMS Translations (2) 37, 59-78.


