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Abstract

The Welschinger invariants of real rational algebraic surfaces are natural
analogues of the Gromov-Witten invariants, and they estimate from below the
number of real rational curves passing through prescribed configurations of
points. We establish a tropical formula for the Welschinger invariants of four
toric Del Pezzo surfaces, equipped with a non-standard real structure. Such
a formula for real toric Del Pezzo surfaces with a standard real structure (i.e.,
naturally compatible with the toric structure) was established by Mikhalkin
and the author. As a consequence we prove that, for any real ample divisor
D on a surfaces Σ under consideration, through any generic configuration of
c1(Σ)D − 1 generic real points there passes a real rational curve belonging to
the linear system |D|.

Introduction

The Welschinger invariants [22, 23] play a central role in the enumerative geometry of

real rational curves on real rational surfaces, providing lower bounds for the number

of real rational curves passing through generic, conjugation invariant configurations

of points, whereas the number of respective complex curves (Gromov-Witten in-

variant) serves as an upper bound. Methods of the tropical enumerative geometry,

developed in [14, 15, 18], allowed one to compute and estimate the Welschinger

invariants for the real toric Del Pezzo surfaces, equipped with the standard real

structure [8, 10, 19]: the plane P2, the plane P2
k with blown up k = 1, 2, or 3 real

points, and the quadric (P1)2.

Along the Comessatti’s classification of real rational surfaces [1, 2] (see also

[12]), besides the standard real toric Del Pezzo surfaces, there are five more types,

having a non-empty real points set, which we call non-standard and denote as S2, the

quadric whose real point set is a sphere, S2
1,0, S

2
2,0, S

2
0,2, the sphere with blown up one

or two real points, or a pair of conjugate imaginary points, respectively, and, at last,
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(P1)2
0,2, the standard real quadric with blown up two imaginary conjugate points.

In the present paper we derive the tropical formula for the Welschinger invariants

of S2, S2
1,0, S2

2,0, and S2
0,2

1. The surface (P1)2
0,2 will be considered in a forthcoming

paper.

As application we prove the positivity of some Welschinger invariants of the

four considered surfaces, which immediately implies the existence of real rational

curves belonging to given linear systems and passing through generic configurations

of suitable number of real points.

We notice that the available technique of the tropical enumerative geometry

applies only to toric surfaces, and among them the Welschinger invariant is well-

defined only for unndodal2 Del Pezzo surfaces, i.e., the plane, the plane with blown

up k = 1, 2 or 3 points, and the quadric.

Welschinger invariants. For the reader’s convenience, we recall the definition of

Welschinger invariants. Let Σ be a real toric Del Pezzo surface with a non-empty

real part, L a very ample real line bundle on Σ, and let non-negative integers r′, r′′

satisfy

r′ + 2r′′ = −c1(L)KΣ − 1 . (0.1)

Denote by Ωr′′(Σ,L) the set of configurations of −c1(L)KΣ − 1 distinct points of Σ

such that r′ of them are real and the rest consists of r′′ pairs of imaginary conjugate

points. The Welschinger number Wr′′(Σ,L) is the sum of weights of all the real

rational curves in the linear system |L|, passing through a generic configuration

p ∈ Ωr′′(Σ,L), where the weight of a real rational curve C is 1 if it has an even

number of real solitary nodes, and is −1 otherwise. Since the complex structure

of Σ determines a symplectic structure, which is generic in its deformation class,

by Welschinger’s theorem [22, 23], Wr′′(Σ,L) does not depend on the choice of a

generic element p ∈ Ωr′′(Σ,L) (a simple proof of this fact can be found in [9]). The

definition immediately implies the inequality

|Wr′′(Σ,L)| ≤ RΣ,L(p) ≤ NΣ,L , (0.2)

where RΣ,L(p) is the number of real rational curves in |L| passing through a generic

configuration p ∈ Ωr′′(Σ,L), and NΣ,L is the number of complex rational curves in

|L|, passing through generic −c1(L)KΣ − 1 points in Σ.

A tropical calculation of the Welschinger invariant. Our approach to calcu-

lating the Welschinger invariants is quite similar to that in [8, 19], and it heavily

1On the real toric Del Pezzo surfaces with empty real point set there are no real rational curves,
and thus, Welschinger invariants vanish.

2Like in [8, 10] ”unnodal” means the absence of (−n)-curves, n ≥ 2.
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relies on the enumerative tropical algebraic geometry developed in [14, 15, 18]. More

precisely, we replace the complex field C by the field K =
⋃

m≥1 C{{t1/m}} of the

complex, locally convergent Puiseux series endowed with the standard complex con-

jugation and with a non-Archimedean valuation

Val : K∗ → R, Val

(
∑

k

akt
k

)
= −min{k : ak 6= 0} .

A rational curve over KR, belonging to a linear system |L|K and passing through

a generic configuration p ∈ Ωr′′(ΣK,L), is viewed as an equisingular family of real

rational curves in Σ over the punctured disc. We construct an appropriate limit of

the family of surfaces and embedded curves at the disc center. The central surface

is usually reducible, and the adjacency of its components is encoded by a tropical

curve in the real plane, which passes through the configuration Val(p) ⊂ R2. The

central curve is split into components called limit curves. The pair (tropical curve,

limit curves) is called the ]it tropical limit of the given curve C ∈ |L|K.

We precisely describe the tropical limits of real rational curves passing through

generic configurations of real points in ΣK, then compute the Welschinger weights

of the respective tropical curves, i.e., the contribution to the Welschinger invariant

of the real algebraic curves projecting to the given tropical curve. The result, accu-

mulated in Theorem 1 (section 1.3), represents the Welschinger invariants W0(Σ,L)

as the numbers of some combinatorial objects, forming finite discrete sets.

The proof is based on the techniques of [18, 19], both in the determining

tropical limits and in the patchworking construction, which recovers algebraic curves

over K from their tropical limits. We should like to remark that the answer rather

differs from that for the standard real Del Pezzo surfaces. Namely, in the canonical

case, the tropical limits are basically encoded by tropical curves, which are rational

and irreducible. In the non-standard case, one obtains a relatively small number

of possible tropical curves, which all split into unions of some primitive tropical

curves. In contrast, the weights of the tropical curves are large and are defined in a

non-trivial combinatorial way.

We also notice that the patchworking theorems from [18, 19] cover our needs

in the present paper. In contrast, the determination of tropical limits requires to

deal with extra difficulties, caused by the fact that the generic configurations of

real points on the surfaces under consideration project by Val : (K∗)2 → R2 to

non-generic configurations in R2 (cf. a similar problem in [18]).

Applications to enumerative geometry. From Theorem 1 we immediately de-

rive the positivity of the Welschinger invariants in the considered situations, which
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in view of (0.2) results in Corollary 1, section 1.3, which says that , for any real very

ample line bundle L on a non-standard real toric Del Pezzo surface Σ = S2, S2
1,0,

S2
2,0, or S2

0,2 and any generic configuration of −c1(L)KΣ − 1 real points on Σ there

exists a real rational curve C ∈ |L| passing through the given configuration.

A detailed study of the asymptotics of the Welschinger invariants will be per-

formed in a forthcoming paper [11].
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1 Formula for the Welschinger invariants

1.1 Lattice polygons associated with the non-standard real
toric Del Pezzo surfaces

The non-standard real toric Del Pezzo surfaces S2, S2
1,0, S2

2,0, S2
0,2, and (P1)2

0,2
3 can

be associated with the following polygons ∆, respectively (see Figure 1):

• a square Conv{(0, 0), (d, 0), (0, d), (d, d)}, d ≥ 1,

• a pentagon Conv{(0, 0), (0, d), (d− d1, d), (d, d − d1), (d, 0)}, 1 ≤ d1 < d,

• a hexagon Conv{(d2, 0), (0, d2), (0, d), (d − d1, d), (d, d − d1), (d, 0)},
1 ≤ d1 ≤ d2 < d,

• a hexagon Conv{(0, 0), (0, d− d1), (d1, d), (d, d), (d, d1), (d1, 0)}, 1 ≤ d1 < d,

• a hexagon Conv{(0, 0), (d1 − d3, 0), (d1, d3), (d1, d2), (d3, d2), (0, d2 − d3)},
1 ≤ d3 < d2 ≤ d1.

For the first four surfaces, the conjugation acts in the torus (C∗)2 by Conj(x, y) =

(y, x), and acts in the tautological line bundle L∆, generated by monomials xiyj,

(i, j) ∈ ∆ ∩ Z2, by Conj∗(aijx
iyj) = aijx

jyi, (i, j) ∈ ∆, resembling the reflection of

∆ with respect to the bisectrix B of the positive quadrant. For the fifth surface, the

action in (C∗)2 is Conj(x, y) = (x−1, y−1), and the action in L∆ is Conj∗(aijx
iyj) =

ai,jx
d1−iyd2−j, (i, j) ∈ ∆, resembling the reflection of ∆ with respect to its center.

3The last surface is mentioned for completeness.
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Figure 1: Polygons associated with S2, S2
1,0, S2

2,0, S2
0,2, and (P1)2

0,2

Observe that −c1(L∆)KΣ − 1 = |∂∆| − 14.

1.2 Admissible lattice paths and graphs

Let ∆ be one of the four polygons shown in Figure 1(a-d). Denote by (∂∆)+ the

union of the sides of ∆ which are not orthogonal to B and lie above B. The integral

points divide (∂∆)+ into segments si, 1 ≤ i ≤ m := |(∂∆)+|. An admissible

lattice path in ∆ is a map γ : [0, m] → ∆ such that (see example in Figure 2(a))

- image of γ lies in the upper half-plane supported by B,

- γ(0) and γ(m) are the two endpoints of (∂∆)+,

- composition of the functional x + y with γ is a strongly increasing function,

- γ(i) ∈ Z2 , and γ
∣∣
[i,i+1]

is linear as i ∈ Z,

- there is a permutation τ ∈ Sm−1 such that γ([i − 1, i]) is a translate of the

segment sτ(i), i = 1, ..., m,

- γ([0, m]) ∩ B = (∂∆)+ ∩ B.

An admissible lattice path γ determines a γ-admissible subdivision of ∆ as

follows. The part of ∆ between an admissible lattice path γ and its symmetric

4Here and further on the symbol | ∗ | applied to lattice segments or lattice broken lines, means
the lattice length.

5



-

6
B

(a)

@
@

@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@

-

6

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@

B

(b)

Figure 2: Lattice paths and subdivisions of ∆

image with respect to B is divided by the segments, joining integral points on γ with

their symmetric images (see Figure 2(a)), and the remaining part of ∆ is uniquely

divided into parallelograms with integral vertices and Euclidean area 1. Denote the

segment, joining the point γ(i) with its symmetric image by σi, i = 0, ..., m.

A γ-admissible graph G is defined as follows. First, we describe some sub-

graph G′. Connected components of G′ are lattice segments (or points) G′
i =

[(ai, i), (bi, i)] ⊂ R2, i = 1, ..., n := |∂∆| − m, with positive odd weights w(G′
i)

such that

- 0 ≤ ai ≤ bi ≤ m for all i = 1, ..., n,

- ai ≤ ai+1, and in addition bi ≤ bi+1 if ai = ai+1 as i = 1, ..., n − 1,

- for all i = 0, ..., m, ∑

(i,j)∈G′
j

w(G′
j) = |σi| , (1.3)

- if ai = 0 or bi = m then w(G′
i) = 1.

We then introduce new vertices (i− 1
2
, 0), i = 1, ..., m, of the graph G and the

new arcs, joining any vertex (i− 1
2
, 0) with the endpoint (i− 1, j) of any component

G′
j satisfying bj = i+1, and with the endpoint (i, j) of any component G′

j satisfying

aj = i. Our final requirement is that the obtained graph G is a tree.

A marking of a γ-admissible graph G is a vector s = (s1, ..., sn) ∈ Zn such

that ai ≤ si ≤ bi, i = 1, ..., n, subject to the following restriction:

si ≤ si+1 as far as ai = ai+1, bi = bi+1 .
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At last we define the Welschinger number

W (γ, G, s) = 2v
m∏

k=0

nk!




∏

0≤a≤b≤m
c=1,3,5,...

nk,a,b,c!




−1

,

where v is the total valency of those vertices (i + 1
2
, 0) of G, for which |σi| = |σi+1|,

and

nk := #{i : si = k, 0 ≤ i ≤ m}, nk,a,b,c = #{i : si = k, ai = a, bi = b, w(G′
i) = c},

k = 0, ..., m, 0 ≤ a ≤ k ≤ b ≤ m, c = 1, 3, 5, ...

1.3 Main results

Theorem 1 In the notation of sections 1.1 and 1.2, if Σ = S2, S2
1,0, S2

2,0, or S2
0,2,

then

W0(Σ,L(∆)) =
∑

W (γ, G, s) , (1.4)

where the sum ranges over all admissible lattice paths γ, all γ-admissible graphs G,

and all markings s of G.

It is an easy exercise to show that there always exist an admissible lattice path

and a corresponding admissible graph, and hence

Corollary 1 In the above notation, for any surface Σ = S2, S2
1,0, S2

2,0, or S2
0,2,

and any line bundle L(∆), the Welschinger invariant W0(Σ,L(∆)) is positive, and

through any −c1(L(∆))KΣ−1 generic real points on Σ there passes at least one real

rational curve D ∈ |L(∆)|.

1.4 Examples

1.4.1 Linear systems with an elliptic general member

Let Σ = S2, S2
1,0, S2

2,0, or S2
0,2, and let ∆ be a respective associated lattice polygon

as shown in Figure 1 and such that a general curve in |L(∆)| is elliptic. Then ∆ is

as depicted in Figure 3.

The Welschinger invariant W0(Σ,L(∆)) can be computed by counting rational

curves in the pencil of real curves in |L(∆)| passing through (−c1(L(∆))KΣ − 1)

generic real points. Integrating along the pencil with respect to the Euler character-

istic and noticing that the curves in the pencil have one more real base point, and
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Figure 3: Linear systems with an elliptic general curve

χ(RD) = 1 or −1 according as D ∈ |L(∆)| is a real rational curve with a solitary

or a non-solitary node, we obtain (cf. with the case of plane cubics [10], section 3.1)

W0(Σ,L(∆)) = −c1(L(∆))KΣ − χ(RΣ) ,

which equals 6, 6, 6, or 4 as Σ = S2, S2
1,0, S2

2,0, or S2
0,2, respectively.

In turn in Theorem 1 we have a unique admissible path γ (fat line in Figure

3) and a unique subdivision of ∆ (dashes in Figure 3). The subgraphs G′ of the

γ-admissible graphs, their markings and Welschinger numbers are shown in Figure

4 (the weight of any component of G′ is here 1). The result, of course, coincides

with the aforementioned one.

1.4.2 Linear systems of digonal curves

We illustrate Theorem 1 by two more examples, where one can easily write down

a closed formula for the Welschinger invariant (a similar computation has been

performed for digonal curves on (P1)2 [10], section 3.1). Namely, we consider the

surfaces Σ = S2
2,0 and S2

0,2 and the linear systems associated with the polygons ∆

shown in Figure 5(a,b), respectively.

In the case Σ = S2
0,2 (see Figure 5(b)) we have a unique admissible path γ going

just along (∂∆)+, a unique γ-admissible graph G, and a unique marking (see Figure

5(e)). Hence we obtain W0(S
2
0,2,L(∆)) = 4d−1, d being the length of projection of

∆ on a coordinate axis.

In the case Σ = S2
2,0, d > 2, there are two admissible lattice paths γ1, γ2 (shown

by fat lines in Figure 5(c,d)). The subgraph G′ of an admissible graph G, and a

marking s should look as shown in Figure 5(f), where we denote by k (resp., l) the

number of components [(1, j), (2, j)] (resp. [(2, j), (3, j)]), and k1 (resp. l1) is the

number of the marked points (2, j) on components [(1, j), (2, j)] (resp. [(2, j), (3, j)]),
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Figure 4: Admissible graphs and markings, I

and where (k, l, k1, l1) run over the sets J(γ1) and J(γ2) defined by

0 ≤ k1 ≤ k ≤ d− 1, 0 ≤ l1 ≤ l ≤ d− 1, d− k − l = 2a + 1, a ≥
{

1, if γ = γ1,

2, if γ = γ2

Here the weights of all the components of G′ are equal to 1, except for the one-point

component on the middle vertical line, whose weight is 2a + 1 or 2a − 1 according

as γ = γ1 or γ2. Thus, we obtain

W0(S
2
2,0,L(∆)) =

2∑

i=1

∑

(k,l,k1,l1)∈J(γi)

(d − 1 − k1)!(d − 1 − l1)!(k1 + l1 + 1)!

(d − 1 − k)!(d − 1 − l)!(k − k1)!(l − l1)!k1!l1!
.

2 Tropical limits of real rational curves: general

setting

2.1 Preliminaries

Here we recall definitions and a few facts about tropical curves and tropical limits of

algebraic curves over a non-Archimedean field, presented in [7, 5, 14, 15, 17, 18, 19]

in more details.
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By Kapranov’s theorem the amoeba AC of a curve C ∈ |L∆|K, given by an

equation

f(x, y) :=
∑

(i,j)∈∆

aijx
iyj = 0, aij ∈ K, (i, j) ∈ ∆ ∩ Z2, (2.5)

with the Newton polygon ∆, is the corner locus of the convex piece-wise linear

function

Nf (x, y) = max
(i,j)∈∆∩Z2

(xi + yj + Val(aij)), x, y ∈ R . (2.6)

In particular, AC is a planar graph with all vertices of valency ≥ 3.

Take the convex polyhedron

∆̃ = {(i, j, γ) ∈ R3 : γ ≥ −Val(aij), (i, j) ∈ ∆ ∩ Z2}

and define the function

νf : ∆ → R, νf(x, y) = min{γ : (x, y, γ) ∈ ∆̃} . (2.7)

This is a convex piece-wise linear function, whose linearity domains form a subdivi-

sion SC of ∆ into convex lattice polygons ∆1, ..., ∆N . The function νf is Legendre

dual to Nf , and thus, the subdivision SC is combinatorially dual to the pair (R2, AC).

Clearly, AC and SC do not depend on the choice of a polynomial f defining the curve

C.

We define the tropical curve, corresponding to the algebraic curve C, as a

balanced graph, supported at AC , i.e., this is the non-Archimedean amoeba AC ,

whose edges are assigned the weights equal to the lattice lengths of the dual edges

of SC . The subdivision SC can be uniquely restored from the tropical curve AC .

By the tropical limit of a curve C given by (2.5) we call a pair

(AC , {C1, ..., CN}), where Ck, 1 ≤ k ≤ N , is a complex curve on the toric sur-

face Tor(∆k), associated with a polygon ∆k from the subdivision SC , and is defined

by an equation

fk(x, y) :=
∑

(i,j)∈∆k

a0
ijx

iyj = 0 ,

where aij(t) = (a0
ij + O(t>0)) · tνf (i,j) is a coefficient from f(x, y). We call C1, ..., CN

limit curves. Their geometrical meaning is as follows (cf. [18], section 2). By a

parameter change t 7→ tM , M >> 1, we can make all the exponents of t in the

coefficients aij = aij(t) of f integral, and make the function νf integral-valued at

integral points. The toric threefold Y = Tor(∆̃) fibers over C so that Yt, t 6= 0, is

isomorphic to Tor(∆), and Y0 is the union of Tor(∆k) attached to each other as the

polygons of the subdivision SC . Equation (2.5) defines an analytic surface C in Y

such that the curves C(t) = C ∩ Yt, 0 < |t| < ε, form an equisingular family, and

C(0) = C ∩ Y0 = C1 ∪ ... ∪ CN , where Ck = C ∩ Tor(∆k).
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Figure 6: Bad polygons

2.2 Rank of a tropical curve

Assume that a tropical curve AC is symmetric with respect to the bisectrix B of the

positive quadrant of R2 (as well as the respective Newton polygon ∆ and its dual

subdivision SC). The set of tropical curves, which are combinatorially isotopic to

AC and are symmetric with respect to B, is parameterized by a convex polyhedron,

whose dimension we denote by rkB(AC). Put

rkvir(AC) := #V (SC) − 1 −
∑

∆k∈P (SC)

(#V (∆k) − 3) ,

where V (∆k) is the set of vertices of ∆k, and V (SC) is the set of vertices of SC .

Introduce the following auxiliary notation: P (SC) is the set of all the polygons

of SC , PB(SC) ⊂ P (SC) is the set of the polygons, whose interior crosses B, Nm(B) is

the number of m-gons in PB(SC), N ′
2m(B) is the number of 2m-gons having no sides

orthogonal to B, Npar
2m the number of 2m-gons in P (SC)\PB(SC), whose opposite

sides are parallel (further on we call them parallelogons).

A polygon ∆′ ∈ P (SC)\PB(SC) is called bad, if it has no sides, orthogonal to

B, and there is a side σ(∆′) ⊂ ∆′ such that ∆′ is contained in the quadrangle (or

triangle) spanned by σ and its orthogonal projection prBσ on B (see Figure 6(a)).

Lemma 2.1 In the above notation, it holds

rkB(AC) = rkvir(AC) + dB(AC) , (2.8)
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where

2dB(AC) ≤
∑

m≥2

((2m − 3)N2m − Npar
2m − N2m(B))

+
∑

m≥1

((2m − 2)N2m+1 − N2m+1(B)) . (2.9)

Furthermore, if

• either P (SC)\PB(SC) is empty or contains only triangles and parallelogons,

and PB(SC) contains a polygon having at least three sides, which are not or-

thogonal to B,

• or P (SC)\PB(SC) contains only triangles and parallelogons, among them a

polygon with ≥ 6 sides,

• or P (SC)\PB(SC) contains a polygon, which is neither a parallelogon, nor a

bad polygon,

then

2dB(AC) ≤
∑

m≥2

((2m − 3)N2m − Npar
2m − N2m(B))

+
∑

m≥1

((2m − 2)N2m+1 − N2m+1(B)) − 1 . (2.10)

Proof. We follow the lines of the proof of Lemma 2.2 [18], where similar

bounds have been established for arbitrary plane tropical curves.

Step 1. Iso-combinatorial deformations of AC are parameterized by the values

Val(aij), corresponding to the vertices of SC . The dependence between these pa-

rameters is caused by vertices of valency > 3, which means that m planes forming

the graph of ν intersect at one point. An extra dependence comes from the sym-

metry condition, for example, the vertices lying on B must remain on B along the

deformation. To estimate the number of independent parameters, we introduce a

linear order of the polygons ∆1, ..., ∆N ∈ P (SC), and then, for any k = 1, ..., N ,

count how many new independent conditions are imposed by the set of vertices

V (∆k)\
⋃

i<k ∆i.

Step 2. Take a vector a = (−1, 1 + ε) ∈ R2 with a small nonzero ε. It defines

a partial order on P (SC) as follows: for ∆i, ∆j ∈ P (SC) with a common edge σ, put

∆j � ∆i if a enters ∆i crossing σ. We then extend this partial order up to a linear

one, assuming that the polygons ∆i ∈ P (SC)\PB(SC) which lie below B precede the

polygons ∆j ∈ P (SC)\PB(SC) which lie above B.
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If ∆i is a 2m-gon which either belongs to PB(SC), or is a parallelogon, then it

imposes at least m− 1 new independent conditions. If ∆i ∈ PB(SC) is an (2m + 1)-

gon, and a enters ∆i through the edge orthogonal to B, then ∆i imposes at least

m − 1 new independent conditions. If ∆i ∈ PB(SC) is an (2m + 1)-gon, and a

emanates from ∆i through the edge orthogonal to B, then ∆i imposes at least m

new independent conditions: when m ≥ 2 the conditions mean that the m planar

faces of the graph of νf pass through a point determined by the preceding polygons,

and when m = 1 we impose the condition that the vertex of AC dual to ∆i lies on

B.

Next, if ∆i, 1 ≤ i ≤ N , is not as above, denote by ea(∆i) the number

of edges of ∆i, through which a emanates from ∆i. Then ∆i imposes at least

min{ea(∆i) − 1, #V (∆i) − 3} new independent conditions.

Doing a similar count for the vector −a and summing up all the conditions,

and observing that

min{ea(∆i) − 1, #V (∆i) − 3} + min{e−a(∆i) − 1, #V (∆i) − 3} ≥ #V (∆i) − 3 ,

we obtain (2.9).

Step 3. Assume that P (SC)\PB(SC) is empty or consists of only triangles and

parallelogons, and there is ∆i ∈ PB(SC) with at least three sides, which are not

orthogonal to B.

Using the above vector a, we define a partial order on P (SC) as follows: for

∆i, ∆j ∈ P (SC) with a common edge σ, put ∆j � ∆i if (i) σ crosses B or lies in the

closure of the upper component of R2\B, and a crosses σ entering ∆j, or (ii) σ lies

in the lower component of R2\B, and a crosses σ entering ∆i. We then extend this

partial order up to a linear one, assuming that the polygons from PB(SC) precede

the polygons from P (SC)\PB(SC).

As in Step 2, we obtain that any 2m-gon ∆j ∈ P (SC)\PB(SC) imposes at least

m−1 new independent conditions. Among the polygons of PB(SC) there are at least
1
2

∑
N2m+1(B) + N even(B of those, which have no predecessors in the partial order

defined, where N even(B) denotes the number of even-gons in PB(SC), which have no

sides orthogonal to B. Each of these polygons ∆k imposes #V (∆)− 2 independent

conditions, and any other polygon ∆k ∈ PB(SC) imposes at least #V (∆k) − 3 new

independent conditions. Altogether this yields that

2dB(AC) ≤
∑

m≥2

(2m − 4)Npar
2m −

∑

m≥1

(2m − 3)N2m+1(B) − 2N even(B) . (2.11)

By the hypotheses of Step 3, there is ∆i ∈ PB(SC), which is either an odd-gon with
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at least 5 sides, or an even-gon with at least 6 sides, or an even-gon without sides

orthogonal to B. In each case (2.11) immediately implies (2.10).

Step 4. Assume that P (SC)\PB(SC) consists only of triangles and parallelo-

gons, and there is ∆i ∈ P (SC)\PB(SC) such that #V (∆i) ≥ 6. Then we again order

the set P (SC) := {∆1, ..., ∆N} as described in Step 3, assuming without loss of

generality that the polygons in P (SC)\PB(SC) lying below B precede the polygons

from PB(SC), and the latter polygons precede the polygons in P (SC)\PB(SC) lying

above B. Let ∆i be the first polygon in P (SC)\PB(SC) with ≥ 6 sides. We then

change the order in P (SC) in the following way:

∆1 � ∆2 � ... � ∆i−1 � ∆N � ∆N−1 � ... � ∆i .

Notice that, for any parallelogram ∆k, 1 ≤ k < i, again the number of sides which

are not contained in its predecessors is equal to 2, and thus, it again contributes one

new independent condition. On the other hand, since ∆i has now no predecessors,

it imposes #V (∆i) − 3 > 1
2
(#V (∆i) − 2) independent conditions, which improves

the upper bound (2.9) up to (2.10).

Step 5. Assume that ∆i ∈ P (SC)\PB(SC) is neither a parallelogon, nor a bad

polygon. Comparing with the computation of Step 1, we see that to gain an extra

1 in the right-hand side of the upper bound to 2dB(SC), the number of independent

conditions imposed by ∆i and its symmetric copy ∆i′ with respect to B should be

at least #V (∆i) − 2. This is the case for any non-bad polygon: either (choosing a

suitable sign of ε in the definition of a, if necessary) we have e±a(∆i) ≥ 2, and then

min{ea(∆i) − 1, #V (∆i) − 3} + min{e−a(∆i) − 1, #V (∆i) − 3}

= ea(∆i) + e−a(∆i) − 2 = #V (∆i) − 2 ,

or we have ea(∆i) = 1 with ∆i lying below B, respectively, e−a(∆i) = 1 with ∆i

lying above B, and then ∆i′ imposes #V (∆i′) − 2 = #V (∆i) − 2 new independent

conditions (including the requirement that the vertices of AC dual to ∆i and ∆i′ are

symmetric with respect to B). 2

3 Tropical limits of real rational curves on non-

standard real toric Del Pezzo surfaces

Let Σ = S2, S2
1,0, S2

2,0, or S2
0,2, and C ∈ |L∆|K a real curve, passing through a

configuration p = {pi : i = 1, ...,−c1(L∆)KΣ − 1} of real generic points in Σ.
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We can define C by an equation (2.5) with aji = aij, (i, j) ∈ ∆, ∆ being the

suitable polygon shown in Figure 1(a,b,c,d). Since the anti-holomorphic involution

acts on (K∗)2 ⊂ ΣK by Conj(ξ, η) = (η, ξ), the configuration p should satisfy pi =

(ξi(t), ξi(t)), i = 1, ...,−c1(L∆)KΣ−1, in particular, the configuration x = Val(p) ⊂
Q2 must lie on the line {x = y}. We choose p to be generic in Ω0(ΣK,LK). Observe

also that the tropical curve AC ⊂ R2 is symmetric with respect to B, and so is the

subdivision SC of ∆.

3.1 Tropical curves and dual subdivisions

Proposition 3.1 In the above notation, let p ∈ Ω0(ΣK,LK) be a generic configura-

tion, C ∈ |L(∆)|K a real rational curve passing through p. Then

(1) AC has precisely |(∂∆)+| vertices on B, and they all belong to x; the set

AC\B is a union of rays emanating from the vertices of AC on B, two from each

vertex;

(2) the subdivision SC is as follows: there is an admissible lattice path γ in ∆

*in the sense of section 1.2) such that the part of ∆ between γ and its symmetric

with respect to B image is divided by the segments, joining each integral point on

γ with its symmetric image, and the remaining part of ∆ is divided into lattice

parallelograms with Euclidean area 1.

In particular, Proposition 3.1 yields that

- V (SC) ∩ ∂∆ consists exactly of all the integral points on ∂∆, which are not

interior points of the sides orthogonal to B;

- PB(SC) consists of |(∂∆)+| polygons, which are triangles, or trapezes with a

pair of edges orthogonal to B.

To describe limit curves, we introduce a few notations.

For a polygon ∆k ∈ P (SC), we denote by Tor(∂∆k) the union of the divisors

in Tor(∆k), associated with the edges of ∆k.

If ∆k ∈ PB(SC), denote by (∂∆k)⊥ the union of its edges orthogonal to B.

The edges σ ⊂ (∂∆k)⊥, ∆k ∈ PB(SC), are dual to the edges of AC lying on B. Let

xi = (αi, αi), i ∈ I ⊂ {1, ..., |∂∆| − 1}, be all the points in x, which are interior

points of the edges of AC lying on B. Introduce the set

Φ =
{

(ξ
(0)
i , ξ

(0)
i ) ∈ P1 : pi = (ξ

(0)
i , ξ

(0)
i )t−αi + O(t−αi+1), i ∈ I

}
. (3.12)

On the divisors Tor(σ), where σ ⊂ (∂∆k)⊥, ∆k ∈ PB(SC), we have the naturally

defined coordinate systems, and hence, for any such divisor, we obtain the set Φσ of

the points with the coordinates (ξ
(0)
i , ξ

(0)
i ) ∈ Φ.
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Proposition 3.2 Under the hypotheses of Proposition 3.1, it holds that

(i) any curve Ck, corresponding to a parallelogram ∆k 6∈ PB(SC), is a union of

curves defined by binomials,

(ii) any curve Ck, corresponding to a polygon ∆k ∈ P (SC), is a union of a real

rational nodal curve C ′
k and some real curves defined by binomials; the curve

C ′
k crosses each divisor Tor(σ), σ ⊂ ∂∆k\(∂∆k)⊥, precisely at one point, and

crosses each divisor Tor(σ), σ ⊂ (∂∆k)⊥, at some points of Φσ, furthermore,

C ′
k is non-singular along ∂∆k; the binomial components of Ck cross each divi-

sor Tor(σ), σ ⊂ (∂∆k)⊥, at some points of Φσ\C ′
k,

(iii) if ∆k ∈ PB(S)C) is a triangle or a trapeze with two non-parallel sides, then C ′
k

is non-singular; if ∆k ∈ PB(SC) is a rectangle, then C ′
k has no solitary nodes.

The main ingredients of the proof are similar to that used in [18], section 3.3,

and [19], section 2.2. For the reader convenience, we divide our reasoning in few

steps.

3.2 Proof of Propositions 3.1 and 3.2: preliminary estimates

Step 1. The points xi, i ∈ {1, ..., |∂∆| − 1}\I, are either vertices of AC , or lie on

edges of AC orthogonal to B (and which are dual to edges of SC , lying on B). Due

to the general position of the configuration x on B,

rkBAC ≥ |∂∆| − 1 − #I . (3.13)

In view of (2.9), we obtain

2#V (SC) − 2 − 2

N∑

k=1

(#V (∆k) − 3) + 2dB(AC) ≥ 2|∂∆| − 2 − 2#I ,

and then, using the Euler formula,

2#E(SC) − 2

N∑

k=1

(#V (∆k) − 2) + 2dB(AC) ≥ 2|∂∆| − 2 − 2#I ,

where E(SC) is the set of edges of the subdivision SC , and we end up with

#E(SC , ∂∆) + N3 −
∑

m≥5

(m − 4)Nm + 2dB(AC) ≥ 2|∂∆| − 2 − 2#I , (3.14)

where E(SC , ∂∆) is the set of edges of SC lying on ∂∆.
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Step 2. Consider now the limit curves C1, ..., CN . Let Cij, 1 ≤ j ≤ ni, be all

the components of Ci, 1 ≤ i ≤ N , counting multiplicities, and let sij be the number

of local branches of Cij centered along Tor(∂∆i). The curves Cij are rational (see,

for instance, Step 1 in the proof of Proposition 2.1 [19]). Denote by Cb the set of

components Cij, defined by irreducible binomials, and by Cnb the set of remaining

components Cij. Then

2 ≤
N∑

k=1

∑

Ckj∈Cnb

(2 − skj) + s(∂∆) , (3.15)

where s(∂∆) stands for the number of local branches (counting multiplicities) of the

curves C1, ..., CN centered at Tor(σ) with σ running over all the edges of ∆. Notice

that the equality in (3.15) can be attained only when in the deformation C (t), t ≥ 0,

(E1) the intersection points of distinct components Cij, Cil, which belong to

(C∗)2 ⊂ Tor(∆i), persist, and

(E2) in a regular small neighborhood U of any point z ∈ Cij ∩ Ckl ∩ Tor(σ),

σ = ∆i ∩ ∆k, in the threefold Y = Tor(∆̃), the Euler characteristic of the normal-

ization of C(t) ∩ U , t 6= 0, is zero.

Step 3. Next we have

∑

∆k 6∈PB(SC)

∑

Ckj∈Cnb

(skj − 2) ≥
∑

m≥1

(N2m+1 − N2m+1(B))

+
∑

m≥2

(N2m − N2m(B) − Npar
2m ) , (3.16)

where the equality is attained only when

(E3) for each parallelogon ∆k 6∈ PB(SC), the limit curve Ck splits into binomial

components, for any other polygon ∆k 6∈ PB(SC), precisely one of the components

Ckj of Ck satisfies skj = 3, it is non-multiple, and all the other components are

binomial.

To estimate ∑

∆k∈PB(SC)

∑

Ckj∈Cnb

(skj − 2) , (3.17)

we introduce an auxiliary graph G̃. Write Φ = {zi : i = 1, ..., #I}, where numbering

reflects the natural order of the points xj, j ∈ I, on the line B. Let σ1, ..., σm

be all the naturally ordered edges from
⋃

∆k∈PB(SC)(∂∆k)⊥. A point (i, j), where

1 ≤ i ≤ m, 1 ≤ j ≤ #I, is chosen as a vertex of G̃ if zj ∈ Tor(σi) ∩ Ck, where

σi ⊂ (∂∆k)⊥. We join two points (i, j), (i + 1, j) of G̃ by a segment if σi and

σi+1 are edges of the same polygon ∆k ∈ PB(SC), and the corresponding points in
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Tor(σi) and Tor(σi+1) are joined by a binomial component of Ck. The obtained

graph we denote by G̃′. Next, we introduce new vertices wi, i = 1, ..., n, of G̃, which

are in 1-to-1 correspondence with the components Ckl ∈ Cnb of all the curves Ck,

∆k ∈ PB(SC). We join a vertex wi with a vertex (j1, j2), j2 > 0 by an arc, if the

corresponding to (j1, j2) point of Tor(σj) belongs to the component Ckl ∈ Cnb of the

curve Ck, corresponding to wi, as σj ⊂ (∂∆k)⊥.

Observe that the expression (3.17) is at least the total valency of the vertices

wi of G̃. The subgraph G̃′ ⊂ G̃ splits into components. Denote by J the set of the

univalent vertices of G̃, which belong to the subgraph G̃′. Then

∑

∆k∈PB(SC)

∑

Ckj∈Cnb

(skj − 2) ≥ 2#I − #J , (3.18)

where the equality is attained only when

(E4) Ck ∩ Tor(σ) ⊂ Φσ for any σ ⊂ (∂∆k)⊥, ∆k ∈ PB(SC);

(E5) the vertices of G̃′, located on one horizontal line, belong to the same

component of G̃′;

(E6) if ∆k ∈ PB(SC), then the components of Ck, belonging to Cnb, are not

multiple, they intersect each other only in (C∗)2 ⊂ Tor(∆k), they are unibranch at

the points of intersection with Tor(∂∆k), and, furthermore, any such component

crosses
⋃

σ⊂∂∆k\(∂∆k)⊥
Tor(σ) precisely at two points;

(E7) if z ∈ Φσ, where σ = ∆k ∩∆i, ∆k, ∆i ∈ PB(SC), then z belongs precisely

to one component of (Ck)red and to one component of (Ci)red;

(E8) the total number of branches of the non-binomial components C ′
k

of the curves Ck for all ∆k ∈ PB(SC), centered on the divisors Tor(σ), σ ⊂
⋃

∆k∈PB(SC)(∂∆k\(∂∆k)⊥, is equal to 2#I − #J .

Step 4. Inequalities (3.14), (3.15), (3.16) together with (3.18) give

2dB(SC) ≥
∑

m≥1

((2m− 2)N2m+1 −N2m+1(B)) +
∑

m≥2

((2m− 3)N2m −N2m(B) −Npar
2m )

+2|∂∆| − #E(∂∆, SC) − s(∂∆) − #J . (3.19)

Notice that

#E(∂∆, SC) + #J ≤ |∂∆| + δ , (3.20)

where δ is the number of the sides of ∆ orthogonal to B (i.e., is 0 for S2, is 1 for S2
1,0

and 2 for S2
2,0). The equality here happens only when

(E9) for each side of ∆, orthogonal to B, there is a polygon ∆k ∈ PB(SC)

with an edge σ = (∂∆k)⊥ ∩ ∂∆; the corresponding limit curve Ck satisfies

Ck ∩ Tor(σ) ⊂ Φσ, and (Ck · Tor(σ))z = 1 for any point z ∈ Ck ∩ Tor(σ);
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(E10) all the edges of SC on ∂∆, which are not contained in
⋃

∆k∈PB(SC)(∂∆k)⊥,

have lattice length 1.

Thus, (2.9) and (3.19) yield

M − δ ≤ 2dB(SC) ≤ M ,

where

M :=
∑

m≥1

((2m − 2)N2m+1 − N2m+1(B)) +
∑

m≥2

((2m − 3)N2m − N2m(B) − Npar
2m ) .

3.3 Proof of Propositions 3.1 and 3.2 for Σ = S2, S2
1,0, and

S2
2,0

3.3.1 The case 2dB(SC) = M − δ

Under the assumption made, relations (3.13), (3.14), (3.15), (3.16) (3.18), (3.19),

and (3.20) turn into equalities, and hence conditions (E1-E10) hold true.

Step 1. We have

|∂∆| − 1 − #I ≤ #PB(SC) + #{σ ∈ E(SC), σ ⊂ B}}

≤ #PB(SC) + 2#{σ ∈ E(SC), σ ⊂ B}}
1

2

∑

σ⊂∂∆k\(∂∆k)⊥
∆k∈PB(SC)

|σ| + 2
∑

σ∈E(SC)
σ⊂B

|σ| ≤ |(∂∆)+| (3.21)

(the latter inequality coming from the projection to ∂∆ in the direction orthogonal

to B). This yields, in particular,

#I ≥ |∂∆| − |(∂∆)+| − 1 .

In view of

#J ≤ |∂∆| − 2|(∂∆)+|

we derive that the total number of branches of the non-binomial components C ′
k

of the curves Ck for all ∆k ∈ PB(SC), centered on the divisors Tor(σ), σ ⊂
⋃

∆k∈PB(SC)(∂∆k\(∂∆k)⊥, is at least

2#I − #J ≥ #I + |(∂∆)+| − 1 .

Since the graph G̃ has no cycles (otherwise, in the deformation C (t), t ≥ 0, the

curves Ck for all ∆k ∈ PB(SC) will glue up into a curve of a positive genus), we

obtain that the number of the non-binomial components of the curves Ck for all
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∆k ∈ PB(SC) plus #I is at least #I + |(∂∆)+|, and hence the number of the non-

binomial components of the curves Ck for all ∆k ∈ PB(SC) is at least |(∂∆)+|, which

implies
1

2

∑

σ⊂∂∆k\(∂∆k)⊥
∆k∈PB(SC)

|σ| ≥ |(∂∆)+| .

Together with (3.21) this turns all the above relations into equalities, whose meaning

is as follows:

(E11) #I = |∂∆| − |(∂∆)+| − 1, #J = |∂∆| − 2|(∂∆)+|, #PB(SC) = |(∂∆)+|;
(E12) SC has no edges lying on B; the edges of SC on ∂∆ are the sides of ∆,

orthogonal to B, and the remaining ones are vertical and horizontal unit segments; all

the vertices of AC on B belong to x; the polygons in PB(SC) are triangles or trapezes

with a pair of edges orthogonal to B, and the projection of any such polygon to ∂∆

in the direction orthogonal to B is a vertical or horizontal unit segment.

Step 2. Arguing on the contrary, we shall show that the polygons in

P (SC)\PB(SC) are only parallelogons.

Assume that there is ∆k ∈ P (SC)\PB(SC), which is not a parallelogon, and

lies above B. The dual to it vertex vk of AC lies above B as well. Due to (E3), vk is

odd-valent. Let a straight line 〈a, (x, y)〉 = ck pass though vk, where a is the vector

introduced in Step 2 of the proof of Lemma 2.1.

Suppose that, for any odd-valent vertex vk of AC , lying above B, the number

of edges of AC , emanating from vk and crossing the line 〈a, (x, y)〉 = ck + t in a

neighborhood of vk, is always greater for t > 0 than for t < 0. However, this

contradicts the fact, that, for a suitable c < min{ck} and sufficiently small ε, the

line 〈a, (x, y)〉 = c crosses all the edges of AC , emanating from the vertices of AC ,

which lie on B, to the upper half-plane of R2\B, and, along (E11, E12), the number

of these edges is equal to |(∂∆)+|, and on the other hand, the line 〈a, (x, y)〉 = c,

c > max{ck} crosses precisely |(∂∆)+| (unbounded) edges of AC , not lying on B.

Hence there is an odd-valent vertex vk of AC , lying above B and such that the

line 〈a, (x, y)〉 = ck + t crosses fewer edges of AC , emanating from vk, as t > 0 than

for t < 0. That is, the polygon ∆k has two sides, σ′, σ′′, through which the vector a

enters ∆k, and such that a non-binomial component C ′
k of the limit curve Ck crosses

Tor(σ′) and Tor(σ′′). In turn, σ′ is a side of some ∆l ∈ P (SC), preceding ∆k in

the order determined by the vector a. If ∆l 6∈ PB(SC), then for any component C ′
l

of Cl, which contains the point C ′
k ∩ Tor(σ′), there is an edge σ′

1 of ∆l, through

which a enters ∆k and such that C ′ + l ∩ Tor(σ′
1) 6= ∅. Proceeding in this manner,

we shall necessarily obtain a polygon ∆i ∈ PB(SC) with a marked edge, which is

not orthogonal to B. Similarly, starting with the edge σ ′′ we build a sequence of
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polygons ending with some ∆j ∈ PB(SC). Of course, the polygon ∆k′ symmetric to

∆k with respect to B is joined with the same ∆i, ∆j ∈ PB(SC) via mirror sequences

of polygons (see, for example, Figure 6(b)). In the deformation C (t), t ≥ 0, The

non-binomial components C ′
k and C ′

k′ glue up with the respective components of

the limit curves, corresponding to the polygons in the constructed sequences, and,

in particular, with the non-binomial components C ′
i, C

′
j of the limit curves Ci, Cj.

But then we obtain a curve with a positive genus, which contradicts our initial

assumptions, and thus, completes the proof of the assertion of this Step.

Step 3. We finally show that the subdivision SC and the limit curves C1, ..., CN

are as stated in Propositions 3.1 and 3.2.

Since the polygons of P (SC)\PB(SC) are parallelogons, AC\B is a union of rays

emanating from the vertices of AC lying on B. Since these vertices are elements of

the generic (on B) configuration x (property (E12)), the rays have only double in-

tersection points. Furthermore, the rays in the upper half-plane must be orthogonal

to the sides of (∂∆)+, and their number is equal to |(∂∆)+|. hence P (SC)\PB(SC)

consists of unit squares. Notice also that

∂




⋃

∆k∈PB(SC)

∆k


 ∩ B = ∂∆ ∩ B ,

that is the situation like that shown in Figure 2(b) is not possible, since otherwise

one would get a family of reducible curves C (t), t > 0. By the same reason, the

graph G̃, constructed in Step 2 of section 3.2, is a connected tree.

Thus, all the requirements of Propositions 3.1 and 3.2 are fulfilled. In partic-

ular, the case of Σ = S2 is completely settled.

3.3.2 The case 2dB(SC) = M − δ + 1, and Σ = S2
1,0 or S2

2,0

Observe that in this case, the number of the odd-gons in PB(SC) is of the opposite

parity with δ. That means, there is a side σ of ∆, which is orthogonal to B, has

even length ≥ 2, and does not contain edges of polygons from PB(SC). Then, as in

Step 1 of section 3.3.1, we derive that

• the number of the non-binomial components of the limit curves Ck for all

∆k ∈ PB(SC) does not exceed |(∂∆)+|;

• #J ≤ |∂∆| − 2|(∂∆)+| − |σ|;

• the total number of the arcs of the graph G̃, joining the vertices in G̃\G̃′ with

the components of G̃′ is at least

2#π0(G̃
′) − #J ≥ #π0(G̃

′) + #I − #J ≥ #π0(G̃
′) + |(∂∆)+| − 1 + |σ| .
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The latter expression is greater than #π0(G̃
′) + |(∂∆)+|, which bounds from above

the number of the vertices of the graph G̃ after contracting the components of G̃′ to

points. Hence G̃ has cycles, and thus, in the deformation C (t), t ≥ 0, we necessarily

obtain a curve of a positive genus.

The case asserted in the title does not occur. In particular, the consideration

of Σ = S2
1,0 is completed.

3.3.3 The case 2dB(SC) = M and Σ = S2
2,0

In the considered situation, the number of odd-gons in PB(SC) is even. That is

either no side of ∆ contains an edge of a polygon from PB(SC), or both sides of ∆,

orthogonal to B contains edges of polygons from PB(SC).

The case when no side of ∆ contains an edge of a polygon from PB(SC) can

be prohibited by means of the argument of section 3.3.2. In the case when each of

the two sides of ∆, orthogonal to B, contains an edge of a polygon from PB(SC),

we repeat the computations of Step 2 in section 3.3.1 and derive the properties

(E11,E12).

By Lemma 2.1, P (SC)\PB(SC) should consist of parallelogons and bad poly-

gons. However, bad polygons cannot occur, what one can establish as in Step 2 of

section 3.3.1 by reducing the existence of bad polygons to the positivity of the genus

of the curves C(t), t 6= 0.

Furthermore, as in Step 3 of section 3.3.1, the property (E12) yields that

P (SC)\PB(SC) consists of only unit squares. Next we notice that a limit curve Ck,

corresponding to a square ∆k ∈ P (SC)\PB(SC) splits into binomial components,

since otherwise, in (3.16), the right-hand side should be raised by 4 (counting the

contributions of ∆k and its symmetric image with respect to B), which together with

other estimates would lead to an impossible inequality 2dB(SC) ≥ M−δ+4 = M+2.

Thereby we end up with all the requirements of Propositions 3.1 and 3.2, which

moreover, imply 2dB(SC) = M − δ.

The case Σ = S2
2,0 is completed.

3.4 Proof of Propositions 3.1 and 3.2 for Σ = S2
0,2

The results of section 3.2 say that 2dB(SC) = M , and the conditions (E1-E10) hold

true.

By Lemma 2.1, P (SC)\PB(SC) consists of parallelogons and bad polygons.

Let ∆k ∈ P (SC)\PB(SC) be a bad polygon, lying above B. Clearly, the pro-

jection of its side σ(∆k) (see Figure 6(a)) on B has Euclidean length ≥
√

2.
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If σ(∆k) ⊂ ∂∆, then σ(∆k) is just the unit length segment parallel to B.

Assume that σ(∆k) is an edge of another polygon ∆k+1 ∈ P (SC)\PB(SC). If ∆k+1

is a parallelogon, we take its edge σ1 opposite and parallel to σ(∆k), and which,

in fact is a translate of σ(∆k) due to (E3). If ∆k+1 is a bad polygon, we take

σ1 = σ(∆k+1. Checking whether σ1 ⊂ ∂∆, and taking, if not, an adjacent polygon

∆k+2, we continue the procedure, building a sequence σ1, σ2, ... ∈ E(SC), which ends

up with some σn ⊂ ∂∆. Observe that the Euclidean length of the projections on B
does not decrease in the sequence σ1, σ2, ..., and even jumps when the corresponding

polygon ∆k+j is bad. On the other hand, σn can only be a unit lattice length

segment parallel to B.

So, we deduce that ∆k is a triangle, the edge σ(∆k) is a unit lattice length

segment, parallel to B, which is joined with its translate σ′(∆k) on ∂∆ via a sequence

of parallel opposite sides of parallelogons. Moreover, σ ′(∆k) 6= σ′(∆l) for distinct

bad triangles ∆k, ∆l lying above B.

Applying the procedure of Step 2 in section 3.3.1, we can join the two other

sides of ∆k by sequences of parallelogons with edges σ′, σ′′ of some polygons ∆i, ∆j ∈
PB(SC) (see Figure 6(b)). Notice again that the edges σ ′, σ′′ are different from the

corresponding edges, which can be obtained from any other bad triangle.

If the points Ci ∩ Tor(σ′) and Cj ∩ Tor(σ′′)5 both belong to non-binomial

components of the limit curves Ci, Cj, then we obtain a contradiction as it was in

Step 2 of section 3.3.1. Hence, say, the point Ci ∩ Tor(σ′) belongs to a binomial

component of Ci. Since σ′ is not parallel to B, we deduce that, for another edge σ

of ∆i, lying above B, at least one point in Ci ∩ Tor(σ) belongs to another binomial

component of Ci.

Let n ≤ d1 be the number of bad triangles, lying above B (d1 being the

parameter of ∆ indicated in Figure 1(d)). Counting the intersections of the non-

binomial components of the limit curves Ci for all ∆i ∈ PB(SC), with the divisors

Tor(σ), σ ⊂ ∂∆i\(∂∆i)⊥, and taking into account that any such edge σ is joined

via a sequence parallelogons with its translate in a bad triangle or on ∂∆, we obtain

that the number of such non-binomial components does not exceed 2d − d1 − n,

whereas the number of polygons in PB(SC) does not exceed 2d − d1 (d being the

parameter shown in Figure 1(d)). As in Step 1 of section 3.3.1, we successively get

that

#I ≥ |∂∆| − |(∂∆)+| − 1 = 2d − d1 − 1 ,

the number of arcs of the graph G̃, joining the vertices in G̃\G̃′ with the components

5Clearly the lattice length of the segments σ′, σ′′ is 1, and thus, the intersections are one-point
sets.
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of G̃′, is at least (here J = ∅, because ∆ has no sides orthogonal to B)

2#π0(G̃
′) ≥ #π0(G̃

′) + #I ≥ #π0(G̃
′) + 2d − d1 − 1 .

If n > 0, the latter expression is greater or equal than #π0(G̃
′) + 2d− d1 −n, which

bounds from above the number of the vertices of the graph G̃ after contracting the

components of G̃′ to points, and hence G̃ has cycles, which in turn results in the

existence of a positive genus curves in the deformation C (t), t ≥ 0 (cf. section 3.3.2).

By Lemma 2.1, the absence of bad polygons says that the remaining polygons

in P (SC)\PB(SC) are parallelograms. Then the properties (E1-E10) complete the

proof of all the statements of Propositions 3.1 and 3.2 for Σ = S2
02.

4 Proof of Theorem 1

4.1 Restoring the subdivision S and the tropical curve A

out of the configuration of points

We start with an admissible lattice path γ as defined in section 1.2, and then con-

struct the uniquely determined γ-admissible subdivision S of ∆ again as described

in section 1.2.

To restore the tropical curve A, we pick |(∂∆)+| points in the configuration

x, appoint them as vertices of A, dual to the polygons in PB(S). Then we take

rays, not lying on B, emanating from the chosen vertices and orthogonal to the

respective sides of the polygons of PB(S). Then we take the segment joining the

extreme vertices and, in case ∆ has sides orthogonal to B, append rays, lying on B
and emanating from the extreme vertices.

The tropical curve A and the subdivision S determine the convex piece-wise

linear function ν : ∆ → R uniquely up to multiplication by a constant and addition

of a linear affine function.

Now we explain how to choose the vertices of A once we know a marking s.

The vertices of G, located on the horizontal coordinate axis (see section 1.2) divide

the axis into |(∂∆)+| − 1 segments and two rays. Then we pick |(∂∆)+| points in x

so that the distribution of the remaining points xi ∈ x, i ∈ I ⊂ {1, ..., |∂∆| − 1},
in the complement of the chosen vertices in B will coincide with the distribution of

the coordinates of s in the segments and rays on the horizontal axis.

4.2 Restoring limit curves

The points pi, i ∈ I, determine a finite set Φ in each of the divisors Tor(σ), σ ⊂
⋃

∆k∈PB(S)(∂∆k)⊥, as defined by (3.12). We define a correspondence between the
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components of the subgraph G′ and the points of the set Φ as follows. Divide

the plane by certain |(∂∆)+| horizontal lines into |(∂∆)+| − 1 strips and two half-

planes so that the distribution of the components of G′, ordered by increasing height,

among these pieces will coincide with the distribution of the naturally ordered points

xi, i ∈ I, in the complement of the vertices of A in B. Then we establish the

correspondence between the components of G′ and the points of Φ in each element

of the distribution in an arbitrary way. The integral points in the components of G′

correspond to the respectively ordered edges σ ⊂ ⋃
∆k∈PB(S)(∂∆k)⊥. For a trapeze

or a rectangle ∆k ∈ PB(S), we include into the limit curve Ck a binomial component,

passing through some point τ ∈ Φ if and only if the corresponding component of

G′ contains the segment, joining the integral points associated with the sides of ∆k

orthogonal to B. The weight of a component of G′ determines the multiplicity of

respective binomial curves in the limit curves Ck, ∆k ∈ PB(S). The non-binomial

components C ′
k of the limit curves Ck, ∆k ∈ PB(S), correspond to the vertices of

G lying on the horizontal coordinate axis, and the intersections of such components

with the divisors Tor(σ), σ ⊂ (∂∆k)⊥, are defined by the arcs of G emanating

from the given vertex, where the intersection multiplicities are the weights of the

corresponding components of G′.

If ∆k is a triangle or a trapeze, then C ′
k is determined uniquely. Indeed, an

equation for C ′
k can be written as

αxayb
∏

i

(xξ
(0)
i − yξ

(0)
i )mi + βxcyd

∏

j

(xξ
(0)
j − yξ

(0)
j )mj = 0, α, β ∈ R ,

where (ξ
(0)
i , ξ

(0)
i ) runs over the set C ′

k ∩ Tor(σk−1), and (ξ
(0)
j , ξ

(0)
j ) runs over the set

C ′
k ∩ Tor(σk). Substituting (x, y) = (ξ

(0)
l , ξ

(0)
l ), where xl is the vertex of A dual to

∆k, into the above equation, we determine α/β.

If ∆k is a rectangle, then the number of real curves C ′
k, satisfying the given

requirements can be derived from

Lemma 4.1 Let ∆0 be the rectangle with vertices (m, 0), (m + 1, 1), (0, m), and

(1, m + 1), the real structure of the surface Tor(∆0) is given by Conj(x, y) = (y, x),

(x, y) ∈ (C∗)2, and we are given

• generic distinct real points (αi, αi) ∈ Tor(σ′), 1 ≤ i ≤ p, σ′ = [(m, 0), (0, m)],

• generic distinct real points (βj, βj) ∈ Tor(σ′; ), 1 ≤ j ≤ q, σ;′ =

[(m+, 1), (1, m + 1)],

• positive integers m1, ..., mp and n1, ..., nq such that m1+...+mp = n1+...+nq =

m,
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• a generic real point (ξ0, ξ0) ∈ (C∗)2 ⊂ Tor(∆0).

Then there are precisely 2p+q distinct real rational curves D ∈ |L(∆0)|, which pass

through (ξ0, ξ0) and satisfy

(D · Tor(σ′))(αi,αi) = mi, 1 ≤ i ≤ p, (D · Tor(σ′′))(βj ,βj)
= nj, 1 ≤ j ≤ q .

All these curves are nodal and non-singular along Tor(σ ′) ∪ Tor(σ′′).

Proof. A curve D in the assertion can be parameterized as follows. Assuming

that D crosses Tor(σ′) for the distinct parameter values t = 0, λ1, ..., λp−1 ∈ R,

crosses Tor(σ′′) for the distinct parameter values t = µ1, ..., µq−1,∞, crosses the

other two toric divisors of Tor(∆0) at t = τ, τ , τ ∈ C\R, and passes through (ξ0, ξ0)

at t = 1, we obtain

x = aβq
t − τ

t − τ
· tmp

p−1∏

i=1

(t − λi)
mi

(
q−1∏

j=1

(t − µj)
nj

)−1

,

y = aβq

t − τ

t − τ
· tmp

p−1∏

i=1

(t − λi)
mi

(
q−1∏

j=1

(t − µj)
nj

)−1

with certain a ∈ R∗. The conditions imposed on D read as equations to the un-

knowns a, λ1, ..., λp−1, µ1, ..., µq−1, τ :

(τ

τ

)2

=
αpβq

αpβq
at t = 0,

1 − τ

1 − τ
=

ξ0

aβq

p−1∏

i=1

(1 − λi)

(
q−1∏

j=1

(1 − µj)

)−1

at t = 1 ,

(
λi − τ

λi − τ

)2

=
αiβp

αiβp
at t = λi,

(
µj − τ

µj − τ

)2

=
βjβp

betjβp
at t = µj .

Due to the generic choice of ξ0, αi, βj, the first two equations determine four distinct

values of τ , and, for each of them, the remaining equations give two independent

values for any of λ1, ..., λp−1, µ1, ..., µq−1. 2

At last we observe that, given limit curves Ck for ∆k ∈ PB(SC), the curves Cl

for ∆l ∈ P (SC)\PB(SC) are determined uniquely.

4.3 Computation of Welschinger invariants

Observe that the Welschinger number W (γ, G, s) is just the number of ways to

restore the subdivision S, the tropical curve A and the limit curves Ck, ∆k ∈ P (S)

along the above procedure. We claim that the restored data produce precisely
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one real rational curve C ∈ |L(∆)|K passing through the configuration p, and its

Welschinger sign is +1.

For, we apply the patchworking theory, presented in [18], section 5. First,

we should complete the given data by deformation patterns associated with the

components of G′, and which similarly to [18, 19] are represented by real rational

curves with Newton triangles like Conv{(0, 0), (0, 2), (m, 1)}, m being the weight of

the corresponding component of G′. The completed data satisfy the hypotheses of

Theorem 5 from [18], and give rise to families of real rational curves C (t) ∈ |L(∆)|,
t > 0, which in turn smoothly depend on |∂∆| − 1 extra real parameters, which can

be fixed from the condition to pass through the configuration p (considered as a real

configuration depending on the parameter t). Recall that a family C (t), t 6= 0, can

be interpreted as a real rational curve C ∈ |L(∆)|K.

We notice here that whenever an even weight m is assigned to a component of

G′, either there are no suitable deformation patterns, or there are two deformation

patterns having distinct parity of the number of solitary real nodes (see [18], proof

of Proposition 6.1), and hence the produced real curves in |L(∆)|K contribute zero

to the Welschinger invariant. At last, if m is odd then there exists precisely one

suitable real deformation pattern, and it has an even number of solitary nodes (see

again [18], proof of Proposition 6.1). The conditions to pass through the points of p

have unique real solution (all the solutions, as presented in formula (5.4.26) of [18],

contain m-th root of unity among which only one is real), and hence (1.4) follows.
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