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On the arithmetic of some division algebras

Ernst—Ulrich Gekeler

Introduction

As is well known since Deuring’s pioneering work [5], there is a close relationship between
the theory of elliptic curves in positive characteristic p, and -the arithmetic of the definite
quaternion algebra H(p) over Q ramified at p . Deuring’s results relied heavily on
Eichler’s class number formula for H(p) {8], proved shortly before by analytical means.
A more geometrical interpretation (and independent proof) of these results has later been
given by Igusa [16], and in particular by Deligne and Rapoport [2]. The main feature is
that supersingular elliptic curves (i.e., special points on a certain modular scheme) are in
1-1 correspondence with the set of left ideal classes in a maximal order of H(p) . That
correspondence may be used to derive properties of the modular scheme from those of

H(p) , but also vice versa.

Now the question arises whether the same type of relationship holds if one replaces
"elliptic curves" by objects that in many other respects Behave similarly, namely by
"Drinfeld modules". In this case, instead of H(p), one considers division algebras
D= D(r, o) of dimension 2 over their center K (a global field of positive
characteristic), and that ramify at precisely two places 4, ® of K, with invariants 1/r,

—1/r , respectively.

* supported by a Heisenberg grant of DFG
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Let A Dbe the subring of K of elements regular away from o . It turns out that
(definitions to be given below) "supersingular Drinfeld A—modules of rank r in
characteristic "

(i) have maximal A—orders B in D as their endomorphism rings;

(i) their isomorphism classes correspond to the left ideal classes of a fixed A—order B .

In some cases, enough is known about the modular schemes for Drinfeld modules to be able
to count the number of supersingular points. This way, we arrive at class number formulas
for D(r,/,m) that could not be obtained otherwise. This is notably the case if r =2
[14] , orif K is a rational function field IFq(T) and " o " is the usual place at infinity.
The latter case will be treated in detail. In particular, we shall describe the associated
modular scheme and its supersingular locus. The principal result, Theorem 5.13 , is an
explicit expression for the number of ideal classes with a fixed weight. We also obtain the

Mass formula 5.11 , which generalizes Deuring’s formula

Y 1/4 (Aut(E)) = (p-1)/24 .

Recall that the sum on the left hand side is over the supersingular classes of elliptic curves
in characteristic p , and (p—1)/24 is one half the value of the Riemann zeta function at

—1, deprived from its Euler factor at p.

Besides the relationship with Drinfeld modules mentioned above, our proof relies on
(a) the transfer principle (3.5);
(b) the reducedness of the supersingular locus (4.3);

(c) some calculations (see section 6) special to the case of a polynomial ring A .



From (b) and (c) we derive the Mass formula, which, combined with (a), yields the

theorem. But note that both (a) and (b) do not depend on specific assumptions on A .

In principle, our Drinfeld module interpretation of the division algebra D should also
allow to determine its type number (= number of cbnjugacy classes of maximal orders). At
least, Propbsition 7.5 yields a geometrical description of the set of types. As an example,
we present the case r = 2, which is quite analogous with the elliptic curve case. However,
for r> 2, further research is needed for a numerical evaluation through zeta values and

commutative clags numbers.

Some of the results of this paper (e.g. Thm. 5.13) have been announced in the C.R.
note [13].

1. Notations

Throughout, K will denote a function field in one variable over the finite field [F q gith q
elements, of characteristic p. We assume that [F q is the exact constant field of K . We
fix, once for all, a place "o " of K, and let A be the subring of elements of K regular
away from o . The places of K different from @ arein 1-1 correspondence with the
maximal ideals ("primes") of A . We will not distinguish between the two concepts; for 7
such a prime, [F p is the field A/ . Associated with o, we have the normalized
absolute value " |?| " and the degree function "deg" on K defined by

deg x = log q | x| . The basic example is given by
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(1.1) K= IFq(T) a rational function field,
o the usual place at infinity, and

A=TF q [T] the polynomial ring.
Then deg x agrees with the degree of the polynomial x € A .

For any r € N and prime 4, the central division algebra D = D(r,£) over K is

determined up to isomorphism by the following data:

(1.2) (i) dimp (D) = r*
(i) invﬂ(D) =1/r
(1ii) invm(D) =-1/r
(iv) inv (D) =0,if v# 40 .

("inv_ " is the local invariant at the place v of K, cf. [17].) We call these algebras of

Drinfeld type; as we will see, their ideal theory is related to Drinfeld A—modules.

(1.3) An order in D will be a maximal A—order in D, i.e., a subring B of D that (i)
contains A ; (ii) is finitely generated as an A—module; (iii) satisfies KB = D, and is
maximal with these properties. A left ideal of B is an A—lattice 0# £ C D that satisfies
B £C £ . Two left ideals «, £’ are in the same class if there exists f € D* such that
4’ = 4 {. The right order of £ is BY = {feD|L1{C £} . For the convenience of the
reader, we collect the most important properties (which are well known and hold in much

greater generality):

(1.4) (i) the type number t(D) of conjugacy classes of orders in D is finite.
(ii) Fix an order B in D . The number of left ideal classes of B is finite and independent
of B, therefore an invariant of D . It is called the clasg number h(D).
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(iii) Each order B’ in D is the right order of B® of some left ideal £ of B.In

particular, t(D) < h(D).

*
All the orders B’ in D contain the unit group [ q of A, which "generically" is
the full unit group of B’ . We define the weight w(4) of a left ideal & of B as

L*
w(d) =#((B") )/(a-1) -

(1.5) Finally, we let ((s) be the zeta function of K [18]. It is a rational function

P(q_s)/(l—q_s)(l—ql_s) in q °. The polynomial P(X) has integral coefficients, degree

2g (where g is the genus of K ), and satisfies P(1) = class number of K . For a finite set

S of places of K, we put
G 58 =T ] (a8 Fyte)

In practice, S will be {/,0} ,s0

Lo orot) (1 1)
(1.6) CK,s(S)— () (l—q_s)(l—ql—s)

where d and dm are the degrees of £ and w, respectively. Thus for the example (1.1)

and S as above,

Ck 5(6) = (1= /(14" .



2. Review of Drinfeld modules

In positive characteristic p, the additive group scheme Ga has non—trivial module
structures, due to the existence of non—scalar endomorphisms. More precisely, let T be
the Frobenius endomorphism x +—— xP . For any field L of characteristic p, the ring of
L—endomorphisms End;(G_) is the non—commutative polynomial ring L{-rp} with the
commutator rule TpX = xprp for constants x€L. Weput 7= T = 'rIf) ,if q= pf.
Let now L be equipped with an A—structure 7: A— L ,ie., L is an extension of K or
of some [ , .
S
(2.1) A Drinfeld A—module of rank r over L is a structure of A—module on G,IL,

given by a ring homomorphism
¢:A—End;(G,) = L{Tp}

n-——1¢n

(necessa.rilj taking its values in L{7} ), such that for 0#n€ A, é, = 2 g(én) A , the

following conditions are satisfied:

() gy(dm) = 2(n)
(ii) deg_ ¢, =1-degn .

The characteristic of ¢ (orof L)is 4, if [F/z CL,and o if KCL. Morphisms of
Drinfeld modules are morphisms of group schemes compatible with the A—actions. We put
End;(¢) for the ring of L—endomorphisms of ¢, i.e., for the centralizer of §(A) in
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L{7} . Further, for 0#n € A, we denote by p¢ the scheme in A—modules ker ¢ .
Conditions (i) and (ii) imply that it is flat and finite of degree |n|®. For an ideal « of
A,weput _¢=n ¢,n running though «.Itis étale if and only if # is relatively
prime with the characteristic of L . In this latter case, the abstract A—module of points of
8 over the algebraic closure T of L isisomorphic with (A/#)" . Also, one may define
Drinfeld mddules, morphisms, the schemes a¢ ... over arbitrary A—schemes. Thus one

has level structures, modular schemes ... for Drinfeld modules. For all of this, see [6],
[11], [1].

2.2 Example: If A=F q [T] asin (1.1), a rank r Drinfeld A—module ¢ is determined
by ¢T , which must have the form

bp=1T)+ AT+ .. + A1 () €L)
with the single condition A #0.

(2.3) Let now 4 bea prime of A . A Drinfeld module ¢ in characteristic 4 is called
supersingular if ﬁcﬁ is local, or equivalently, /¢(E) = 0. This is also equivalent with
End(¢) béing projective of rank > as an A-module [7] [12]. Therefore, rank one
Drinfeld modules are always supersingular. Also, in the situation of (2.2), the module ¢ in
characteristic (T) determined by ¢ =A 7 is s.5.. All the s.8. Drinfeld modules in
characteristic # may be defined over‘some finite extension L of the "prime field" [ &
If m is the order of 4 in the class group PicA of A, one may actually take the
extension L of [ p of degree m’ =m-r ([12], Prop. 4.2). In particular, the set
Xr, ) of F /i—isomorphism classes of supersingular Drinfeld modules of rank r is finite.

The connection with D(r, ) is through the next theorem, which is similar to

Deuring’s theorem on elliptic curves:



2.4. Theorem ([12], Theorem 4.3): Let ¢ be a supersingular Drinfeld module of rank r
over the A—field L of characteristic 4, and suppose that L is large enough such that
End; (¢) = Endg(¢) .

(1) The K—algebra End(¢) ® K is isomorphic with D(r, 4).

(ii) B = End(g) is an order (i.e., maximal) in End(¢)®K .

(iii) ~ There is a canonical bijection from the set LI(B) of left ideal classes of B to

(e, f)

We briefly describe the bijection: For b€ B, let b¢ be the subscheme ker b of Ga. ,
and for a left ideal £CB, ,f=n ¢ (b€ 4). The latter is the kernel of some
morphism ¢ — ¢‘{ of Drinfeld modules, where ¢‘t is uniquely determined up to

isomorphism. Moreover, ¢'t

is supersingular, its class depends only on the left ideal class
of £, and the induced map (&) —— ($%) from LI(B) to X(r, ) is bijective.
Thus LI(B) may be described through 3(r,4). Our strategy will be to identify
X(r, ) with a certain set of geometric points on a suitable modular scheme. Classical
geometric arguments will then lead to the determination of its cardinality. The
corresponding modular schemes are sufficiently well known for that purpose in the cases (at
least):
(@) r=2,
(b) A=F q [(T] .
In case (a), i.e., if D is the quaternion algebra ramified in 4 and w, all the ingredients
for a discussion a la Deligne—Rapoport are available [10], [11]:
—  Drinfeld module analogues MO( #) of Hecke modular curves with conductor 4 ;
—  structure of the special fiber (only ordinary double points on MO( A)xF 4 and
these agree with the supersingular points);
—  calculation of the genus of MO( 7).

Some complications arise, however, from the existence of non—principal ideals in A . Using
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this approach, one can prove the following result (for details, see [14] ):

2.5. Theorem: Let B anorderin D = D(2,4).
(i) The weight w(4) of aleft ideal & of B is 1 or q+1.Let h; (h,) be the number
of ideal classes () with w(4) =1 (w(d4) = q+1), respectively.

(ii) If at least one of the degrees d of 4 and d_ of w iseven, we have
h; =d P(1)P(q)Q and h,=0 .
If d and dm are odd, we have

h, = d_P(1) [P(q)Q — P(-1)/(q+1)] and hy=d_P(1)P(-1) .

Here,

d,
_(q —1)(q -1)
(a-1)(a*-1)

(iii) In any case, the mass formula holds:

Y w( T =d_PO)P()Q .
£€LI(B)

Note that by (1.5) and (1.6), d_P(1) is the order of the class group Pic A, whereas
P(q)Q = CK,S(_l) . Our mass formula therefore "agrees" with Deuring’s (see also (5.11)).

In case (b), if the rank r is strictly greater than two, these arguments do not apply.
In what follows, we will develop what is needed to handle that case.
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3. Trangfer pringiple

In this section, all the Drinfeld modules ¢ are defined over the A—field L=TF rx and
End(¢) = End[(¢) . The automorphism group Aut(¢) is the finite subgroup of elements
of L* that commute with all the operators ¢n , n€ A . As is easily seen, this is the
multiplicative group of some extension of [ q of degree s, say. We call s =s(@) the gize
and w = w(g) = (¢®~1)/(q—1) the weight of ¢. Since Aut(#) generates a commutative

subfield of End(¢) , it follows that
(3.1) s(¢) is a divisor of r = rank(g) .

(3.2) The map £ +~— ¢‘{ of (2.4) induces an isomorphism of the right order BY of £
*

with End(¢‘{) [12, 3.8]. In particular, the unit group (B‘{) is isomorphic with

Aut(¢'f) . Therefore, w(£) as defined in (1.4) agrees with w(¢‘{) )

3.3. Lemma: The size of a supersingular Drinfeld module ¢ over L is always relatively
prime with d and dm. (Recall that d and d are the degrees of 4 and o,
respectively.)

Proof: By assumption, the constant field extension K of K of degree s =s(¢) embeds
into D =End(¢)® K. As is well known [17], this means that the ramified places 7

and o extend uniquely to K. This in turn implies (s,d) =1=(s,d ).

In what follows, t will be a divisor of 8 = size(¢) . Let A, and K, = Quot(A ) be the

constant field extensions of degree t of A and K, respectively. As stated above, there
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are unique extensions to K, of £ and o, denoted by 74 and o . Having closen an

embeddingof F , = A,‘//it into L, the rank r Drinfeld A—module ¢: A — L{7}

A

has a unique extension to a Drinfeld A\—module ¢’ :A — L{r}. Since 4 = ¢
(n€A),and F ¢ 18 the exact constant field of K,

q
(3.4) (i) 1’ =rank(¢’) =1/t
(ii) 8’ =size(¢’) =8/t
(iii) ¢’ is supersingular if and only if ¢ is.

We put X(r,4,q,8) for the set of L—isomorphism classes of supersingular Drinfeld
A—modules of rank r andsize 8 over L=TF rx Thus X(r, ) is the disjoint union of the

3r,£,q,8) , 8 running through the divisors of r coprime with d and dm . Furthermore,

the lift ¢ — ¢’ defines a map

L, : 25, £,0,8) — Bt/ 4,0 5/0)

3.5. Proposition: f't is bijective.
Proof: The inverse of £, is given by restricting ¢’ to A.

Clearly, the decomposition according to sizes and the above "transfer principle" also
apply to the si;udy of ideal classes of D(r,/) . It would be interesting to know to what
extent this generalizes to division algebras not necessarily of Drinfeld type. In our case,
considering‘ simultaneously A and all its extensions At , we will use an induction

procedure to calculate
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(3.6) (5, A08) = # 55, 0) -

4. Th gingular locus

Let M® be the coarse modular scheme for rank r Drinfeld modules in characteristic 7
[6] [1] . It is the fiber product with L = IF/‘ of the A—scheme called M'(1) in [11].
The L—valued points of M" correspond bijectively to the L—classes of rank r Drinfeld
modules. Recall that d is the degree and m the order of /) in Pic A, ie., /m = (f)

with f€ A.For i =1...1-1, let

(4.1) B,(¢) = coefficient of A9 ih the polynomial ¢, in 7.

This is a modular form of weight qidm—l ([15], [11]), the i—th Hasse invariant.

(Clearly, it depends on the choice of the generator f of /ﬁm , but this doesn’t matter).
We have the trivial equivalences

(42) ¢ supersingular ¢ ¢ a monomial const. 774™ in 7 e H(g) =0,

Therefore, we define the supersingular locus ¥ = X(r, £) in M” as the zero locus of the

r—1 forms Hi(¢). It is a finite subscheme of M" with the set X(r, ) of (2.3) as its
L—valued points. The double use of the symbol 3(r, ) is justified by the next proposition.

4.3. Proposition: The scheme 3{(r, 4) is reduced.

Proof: This is more or less a restatement of (a special case of) the results given in [6],
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sections 4 and 5. We show how (4.3) follows from loc. cit., using the terminology given
there. Also, the next few references are with respect to loc. cit.. Let ¢ correspond to
x € X(r, £)(L) , and let ? be an infinitesimal deformation, i.e., a Drinfeld module over the
dual numbers L[e] , where €2 = 0. Now the deformation theory of ¢ agrees with that
of its s—divisible module (Prop. 5.4), and, since ¢ is supersingular, with that of its

formal A ,—module (Prop. 4.5, A
s (Prop 43, 4 4

element, and write ¢1r , EF for the corresponding formal module operators derived from

¢, B , respectively. The supersingularity condition translates to ¢1r = const. ‘Trd

= completion of A at ). Let #€ A be a prime

+ higher

terms. Proposition 4.2 implies that 3 is isomorphic with some formal module ¥ given by

, id
$.=¢ +e ) 7% (LEL).
1€i<r—1

Let @ correspond to the L[ e]—valued point X of M", and suppose that

() X factors through 1, )

(i.e., 9 supersingular, too). If m =1, we may take x =1, and (*) says t. =0,
i=1..r-1. It is not hard to see that also for m > 1, (*) implies the vanishing of the t, .

That means, each deformation X of x in ¥(r,£) is constant, which gives the assertion.

44. Remark: The analogous result in the elliptic curve case states that Deuring’s
polynomial

2 .
)= 3 [V e#zetime s=(-1/2)
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has only simple roots (see [16]). It is also equivalent with the fact that the two irreducible
components of the Hecke modular curve X (p) x[F D intersect iransversally in
supersingular points [2].

5. The case of lynomial rin

From now on, we assume that A is the polynomial ring [F q [T] . Let the prime ideal 4
be generated by the monic irreducible polynomial p of degree d . ( p = char [Fq will not
further be used.) All our Drinfeld modules will be defined over L =1[F 4 Two such, ¢,
¢’ , given by the coeficients A A‘i' of ¢p, ¢.i‘, respectively (compare (2.2)), are

isomorphic if and only if there exists ¢ € L* such that

(5.1) ' A{ = cq‘—l/\i (i = 1...r = rank(@) = rank(g¢")) .

Now consider J; as an indeterminate of weight e, = (qi—-l) /(g-1) . Let M =M" be the
scheme ProjL[A;,.,A] and M=M'<—M the open subscheme defined by
A 4 0. From (5.1) it follows that M is the modular scheme considered in the last section.
(The "natural" weight for the indeterminate A; would be qi—l . Dividing through the
ged q—1 doesn’t of course change the resulting M .) Later on, we will need the following

observation:
(5.2) For natural numbers i, j, we have

ilje (ql—ll) 1(d-1) & ei|ej .



This implies that the greatest common divisor of e, and € is e, , where k = ged (i,j) .

Next, we specify the supersingular locus X =2X(r,#) on M. I ¢ is given by
A=(Ap2) €L e,

bp=AT)+ Y27,

¢p may be written

where gi(A) depends polynomially on A . More precisely, gi(A) is an isobaric polynomial

of weight e, , and

(5.3) Hi(¢) = Hi(i) = %d(i) ;

of weight f, = (qid—l)/(q—l) ,i6 the i—th Hasse invariant.

5.4. Lemma: The M-locus VM(HI""’Hr—l) of H,.H_, is contained in M .

Proof: Let A= (Al,...,Ai,O,...,O) €L' with A #0, 0<i<r. Then Hi(A) is the
leading coefficient of ¢p, where ¢ is the rank i Drinfeld module defined by A .
Therefore, Hi(1) # 0, ie., Vg(H,..H _;,2)=0.

Let N be the projective (r—1)-space over L with projective coordinates SR

e.
and let 7:N—— M be defined by «(€;:..:¢)=(A;:..:2), where A = Eil . We
further let u(e;) be the group of e,~th roots of unity in L,
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*x

G'= TT ue) . G=0 xue) .

I<i<r

G acts effectively on N through (..c;.)(.. :¢;.) = (.. :cje;..) , and 7 is the associated

quotient morphism. If N = Spec L[tl,...,f.r_l] denotes the complement of VN-(?.I) in
* *

N, the quotient N = N/G is the affine space Spec L[Al,...,Ar_l] , and

M=N/G=N/ue) ,

* —ei &
where ¢ € p(er) actson N by c(..,Ai,..) = (..,C Ai,..) . Define the schemes ¥ and &

as the fiber products

5 S
= 2;{ N, u=X 4 1:1* N,
respectively. Hence in the diagram
$ » N = » N
*
1 b1 }G
* " % M
(5.5) Y ood < »Y < *» N =« + N/G
| | |2 }ue)
Y« »M < » M

all the rectangles are cartesian, where the upper (lower) vertical arrows are quotients by

*
G (,u(el_)) , respectively. In what follows, "points" of these schemes are points over

L=|F/d.
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*
5.6. Lemma: Let x € N (L) and ¢ be the Drinfeld module associated with (x) . The

stabilizer of x in (e ) has order w(¢).

Proof: Let x=(A},sA_;). Then w(¢) = (a®~1)/(q-1) with
s=5(¢) =max{t|A, #03t]i, i=1.r-1}. The stabilizer is the subgroup

e.
{c€nle)|r$03c '=1, i=1..r}, which has order ged({e;| A, #0} U {e }) . The
latter equals w(¢@) , as follows from (5.2).

*

In particular, ¥ is in general not reduced; from (4.3) and the above we see that its points
*

occur with multiplicity w(x) = w(¢) . Next, for i =1..1—1, we define the functions H,

*
on N by

*
B (Apeod_y) = E(A0d 1)

* * *
It is clear that their common zero locus X =V *(Hl’""Hr;l) is contained in ¥ and
N

*
agrees set—theoretically with X .
* *
5.7. Proposition: X is the reduced scheme Er eg underlying ¥ .
It has to be shown that X is reduced. Since the proof is somewhat technical and
doesn’t connect with the present material, it will be given in the next section. Note
however that the reducedness in points of size 1 results directly from (5.6).

Finally, we define the polynomial H, (i =1..r-1) by

() =Bi(Apd)
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. €. :
where A §= L jJ . Then ﬁi is homogeneous of degree f, = (qld—l)/(q—l) , and from (5.4)
and (5.7),

S=vgH, B _)) .
Its degree (number of points counted with multiplicity) is therefore given by

(5.8) deg®)=TT §, .

1<i<r

On the other hand, (5.6) implies that the multiplicity of y €% in the fiber

*
X x N=Y x,N is w(x(y)) times its multiplicity in ¥. Together with (4.3), this
M N

yields
(5.9) deg(®) = deg(r) ¥ w(x)™
x€EX
with
deg(r) = TTe; -
1<isr

Let I be the largest divisor of r coprime with d, so the possible sizes of supersingular
rank r Drinfeld modules over L are the divisors of r, . Putting 8 = 8(r,,q) for the

measure of X = X1, £},
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(5.10) B=(q-1) ) wix) =) Chagudsl
x€X 8|1 q -1

and comparing with (1.6), we arrive at the

5.11. Mass formula:

8(r, 4,0) = (-1 TT (@%0)/(aF 1) = (-7 TT ¢ o) -

1€i<r 1<i<r

Since this depends only on d = deg 4 , we will also denote it by 6(r,d,q) .

5.12. Remark: The number B is in fact the Haar measure of a certain adelic double coset
associated with the algebra D [3]. The word "mass" is an erroneous but commonly used

translation of the german word "Ma8" = "measure" [9].

Now it is easy to calulate the class number o(r, /,9,8) . Recall it is the number of classes
of supersingular Drinfeld A—modules of rank r and size s in characteristic 4, or,

equivalently, the number of left ideal classes of size s in a maximal order B in D(r, £).

Let p(i) be the Mobius function: (i) = (1) if n is a product of n different prime

factors, and u(i) = 0 if a square divides i .

5.13. Theorem: o(r, 4,q,8) = o(r,d,q,8) depends only on the degree d of 4. It is given by

8_ jd-1
olrdas) == Y ul) TT %—.
TLil(ryfs)  o<j<r T

j=0(is)
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Proof: First note that in the situation of (3.5), we have

() o(r,£,8) = olt/t, p.a"8/t) -

If r;=1,0nly s=1 contributes to the measure in (5.10), so (5.11) gives the result. Now

let > 1. For s > 1, the inversion formula reads

1== ) i) .
1#i |8

Therefore,

B(r,d,q) —o(r, A1)/ (q-1) = ) dhsﬁ"q"ﬂ

q -l
1#s8 |1,

=- § dngas y oG

1#s |1, q -1 1#i|s

ole/i,f ;0 9/i)
== ) A ) T
1#i |1 8|1y q'*M
s=0(1)

S T
1#i |1,

o(t,p00) = (1) Y w(0)B(r/id,d) -
i|ry
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The right hand side depends only on the degree d of 4 . Hence (5.11) yields the wanted

formula for s =1 and, together with (%), for general s .

6. Proof of (‘5.7)

Let ¢ be the Drinfeld module over L =1[F p defined by

where Ay = 7(T) and A = 1. Write

_ i
¢p - 2 &7 -
0<i<rd

Then g, =p) =0, Bq=1 and gy=H (i=1.r-1). We will show the

nonsingularity of the functional matrix

1

(7]
TXidij=1.011

in supersingular points A = (A,,..,A _,1) .

First, we have ¢ b © ¢p=ép o ¢p in L{7} . Equating the "rk—coefﬁcients yields

k—
(6.1) [k]g, + 2 [gn/\ﬁfn—gg nAk_n] =0 .
n<k
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k
Here, k is any non—negative integer, [k] is the residue of TY —T in F , CL and

. 7
A=0if i £ {0,...,r}, g =0if i ¢ {0,...,td} , respectively. Note that

(6.2) [k] =0 if and only if k is divisible by d .
We abbreviate g, /A j by B i Applying 8/8A j to (6.1) gives

n J
¢ _.9 _
[K]ay ;+ ) 3 Mhn 8y =0
n<k

since g, =0. Now, if A is as above and supersingular, By—j = 1 if k—j=rd and

gk—j = 0 otherwise, i.e.,

n 0 (k # rd+j)
q —
(6.3) [Kla ;+ Y By My = Y
k—r<n<k (k = rd+j) .
Put for the moment h, =g 4 tior
6.4. Lemma: Let 0 <1i,j<r.Then
7; 1 (i=i) .

In particular, the matrix is nonsingular.

Proof: Since A =1, (6.3) gives a linear recursion for a, i in terms of B with

n > k—r. This shows that ak—r,j =0 as long a8 k> rd+j, a.qd ak—r,j=1 for
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k = rd+j . Putting k = rd+i gives the assertion.

6.5. Lemma: Consider A j 98 indeterminate and the g, as elements of the polynomial
ring L[A,...,A, ;] .If id Lk < (i+1)d, g, lies in the ideal generated by H,,...,H, .

Proof: If k=id, g =H, . If k>id, [k] #0 by (6.2). Now use (6.1) and induction.

End of the proof of (5.7): By the above, the functions h. may be written h, = u. \H,
. kK
with some (r—1,r—1)-matrix (v, ) in L[A;,..,A ;] . Thus

oh, 6H

. du.

_ ik k
=) [—ax‘— Hk"'“i,k'a}\_.] :
iy j j
Evaluating at a supersingular A (i.e., where the H, vanish) shows that the nonsingular
matrix (&h,/dA j)(A) is the product of (u; ;)(A) and (62 j)(A) . Hence the latter is also

nonsingular.

Again, the result generalizes the squarefreeness of Deuring’s polynomial (see (4.4)).

7. Examples and Complements

Recall that X(r, 4,q,8) corresponds bijectively to the subset of those left ideal classes ()
of a fixed order B in D = D(r, £) for which w(d) = (¢-1)/(q=1) , or, equivalently, for

*
which the order B‘{ has a unit group isomorphic with ([F 8) . In such situations, one
q

usually doesn’t know which unit groups actually occur. In our case, the answer is given by
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7.1. Corollary: Let d =deg # > 1. Then for each divisor s of I there exists a

*
(maximal) A—order B in D(r, ) whose unit group is isomorphic with (F ) .
. q

Proof: From the above, we have to show that o(r,/,q,8) is positive. This follows by an

easy estimate from (5.13).

7.2. Example: In the missing case d = 1, our formula gives o(r, /£,q,8) =0 if s <r and
1 if 8 =r, so the class number h(D) is one. Of course, this can be seen directly, using a
well known construction. Assume, without restriction, that 4 is the ideal (T). Then D
may be con-structed as the full quotient ring B®K of B=L{7}, where L is the

extension of degree r of F , =F . A isembedded in B by mapping T to 7', which

y

makes B into a projective A—module (left or right) of rank 2. Moreover, B is a

maximal A—order in B® K . Since L{7} isleft euclidean, its class number is one.

7.3. Example: Let = 1, i.e, each prime divisor of r divides d. Then
R(D(r, £)) = (-1)B(r,£0) = TT (g ()

1€i<r
7.4. Example (see also [4]): If r is prime then

(a-1)8(r, £,9) (d = 0(r))

h(D(r, £)) =
(Dlr:2) (a-1)B(r, £,0)+(a"—)/(a"-1) (d =0(r)) .

In principle, the Drinfeld module description of D(r,) also allows the determination of
the type number. Namely
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1.5. Proposition ([12], Prop. 4.6): (i) Each element of X(r, ) is isomorphic to one

defined over the extension L of degree r of A (ii) The bijection of (2.4) (iii) induces a
bijection of the set of conjugacy classes of maximal orders in D with the set of orbits of
X(r, £) under Gal(L|IF/I).

This latter set may be studied geometrically, using the description given in the last section.
Its cardinality is related to class numbers of certain abelian extensions of K. We limit
ourselves to give the result in the least complicated case where r =2 and char(IFq) $2.

Here, D(r,z) is the quaternion algebra over K ramified in 4 and o.

7.6. Theorem ([12], see also [10]): Let the characteristic be different from 2. The type
number of D = D(2, #£) is given by

d .
(D) %[gflh 1+ %(h1+h2)] (d odd)
(D)=,
% [27?11+ % h] (d even) .

Here, hl’ h2, h are the class numbers of the rings of A-integers in the quadratic field
extensions of K , namely:
hl’ h2: the two extensions ramified in 4 and o ;
h: the unique extension ramified in 4 and inert at w .
Note that t(D) is less stable than h(D) in that it depends effectively on , and not only

on its degree d .

(7.7) In determining the class number of D, our basic ingredients were the transfer
principle 3.5 and the mass formula 5.11 (or 2.5. (iii)). It seems possible that one can prove

similar mass formulas in the general case, where A is any ring as described in section 2,
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i.e., a function ring with one place at infinity. Having both ingredients available, the proof
scheme of Thm. 5.13 could be applied. Also, the transfer principle might turn out to hold
for a larger class of algebras D than those of Drinfeld type. Together with the properties
of the zeta function of D [3], [4], this would yield a method to attack the class number

problem for that larger class.
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