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Abstract

Let Emb(Sj, Sn) denote the space of C∞ -smooth embeddings of the j -sphere in the n-sphere.
This paper considers homotopy-theoretic properties of the family of spaces Emb(S j , Sn) for
n ≥ j > 0. There is a homotopy-equivalence Emb(Sj , Sn) ' SOn+1 ×SOn−j

Kn,j where Kn,j is
the space of embeddings of Rj in Rn which are standard outside of a ball. The main results of
this paper are that Kn,j is (2n − 3j − 4)-connected, the computation of π2n−3j−3Kn,j together
with a geometric interpretation of the generators. A graphing construction ΩKn−1,j−1 → Kn,j

is shown to induce an epimorphism on homotopy groups up to dimension 2n − 2j − 5. The
graphing construction turns out to be a variant of Litherland’s ‘deform-spinning.’ This gives a
new proof of Haefliger’s theorem that π0Emb(Sj , Sn) is a group for n− j > 2. The proof given
is analogous to the proof that the braid group has inverses. Relationship between the graphing
construction and actions of operads of cubes on embedding spaces are developed. The paper
ends with a brief survey of what is known about the spaces Kn,j , focusing on issues related to
iterated loop-space structures.
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1 Introduction

Haefliger proved that the isotopy classes of smooth embeddings of S j in Sn form a group
provided n−j > 2, with the connect-sum as multiplication. This paper starts with a new proof of
Haefliger’s result, showing not only that π0Emb(Sj , Sn) is a group, but the reason it is a group is
that every element is spun. The inverse of a spun knot is its mirror-reflection, as in braid groups.
The key strategy revolves around a pseudo-isotopy fibre-sequence Kn+1,j+1 → Pn,j → Kn,j .
The fact that the pseudo-isotopy embedding space Pn,j is connected implies the result. In
his dissertation, Tom Goodwillie [22] gave a very detailed study of (general) pseudo-isotopy
embedding spaces. His results include that Pn,j is at least (2n− 2j − 5)-connected. This allows
for the computation of the first non-trivial homotopy groups of Kn,j and Emb(Sj , Sn) provided
2n − 3j − 3 ≥ 0. The 2-fold spinning construction π2K4,1 → π0K6,3 = π0Emb(S3, S6) ' Z

is shown to be an isomorphism, answering a question posed in [7]. This also allows for a new
construction of explicit generators of π2n−3j−3Kn,j for all n, j such that 2n − 3j − 3 ≥ 0.

Definition 1.1 • Dn := {x ∈ Rn : |x| ≤ 1} is the unit n-disc, with Sn−1 = ∂Dn the
(n − 1)-sphere.

• I = [−1, 1] = D1 is the standard interval.

• Given a topological space (resp. smooth manifold) X with base-point, denote the space
of continuous (resp. smooth) functions f : R → X such that f(R \ I) = ∗ by ΩX .

• Emb(Dj , Dn) denotes the space of embeddings f : Dj → Dn which are ‘neat’ in the sense
that f(Dj) ∩ Sn−1 = f(Sj−1) and f intersects Sn−1 transversely.

• The space of smooth embeddings of a j -sphere in an n-sphere is denoted Emb(S j , Sn).

• Kn,j denotes the space of ‘long’ embeddings of Rj in Rn . This is the space of all smooth
embeddings f : Rj → Rn such that f(t1, t2, · · · , tj) = (t1, t2, · · · , tj , 0, · · · , 0) provided
(t1, · · · , tj) /∈ Ij and f(Rj) ∩ ∂In = ∂Ij × {0}n−j . If f ∈ Kn,j , let Kn,j(f) denote the
path-component of Kn,j containing f .

• Let Pn,j denote the space of embeddings f : Rj → Rn such that:

– f(t1, t2, · · · , tj) = (t1, t2, · · · , tj , 0, · · · , 0) for (t1, · · · , tj) /∈ [−1,∞) × Ij−1

– there is a g ∈ Kn−1,j−1 such that for all (t1, · · · , tj) ∈ [1,∞)×Rj−1 , f(t1, t2, · · · , tj) =
(t1, g(t2, · · · , tj)).

– f(Rj) ∩ ∂In = f(∂Ij) × {0}n−j .

In the literature, Pn,j is sometimes given the notation PE(Dj−1, Dn−1), C(Dj−1, Dn−1)
or cemb(Dj−1, Dn−1), and is either called a pseudoisotopy embedding space, or concor-
dance embedding space respectively. Here it will be called the pseudoisotopy embedding
space.

• EC(j,M ) is defined to be the space of embeddings f : Rj × M → Rj × M such that
supp(f) ⊂ Ij × M , where, supp(f) = {x ∈ Rj × M : f(x) 6= x}. ‘EC’ stands for
‘cubically-supported embeddings’. These embeddings are not required to send boundary
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to boundary.

PSfrag replacements

f ∈ EC(1, D2)

1−1

• PEC(j,M ) is the space of embeddings f : Rj × M → Rj × M such that supp(f) ⊂
[−1,∞)×Ij−1×M and there exists some g ∈ EC(j − 1,M ) such that f(t1, t2, · · · , tj ,m) =
(t1, g(t2, · · · , tj ,m)) for all (t1, t2, · · · , tj ,m) ∈ [1,∞)×Rj−1×M . The letters ‘PEC’ stand
for ‘cubically-supported embedding pseudo-isotopy space.’

• A diagram of two maps A → B → C is a homotopy fibre sequence if there exists a
commutative diagram

A //

��

B //

��

C

��
F // E // B

such that F → E → B is a fibration and the vertical maps are homotopy-equivalences.

• Diff(Dn) denotes the space of smooth diffeomorphisms of Dn which restrict to the identity
on the boundary. Diff(Sn) is the group of diffeomorphisms of Sn .

All embedding spaces are endowed with the weak C∞ -topology [33], sometimes also called the
Whitney topology. Many classical results on the homotopy properties of embedding spaces that
will be repeatedly used in this paper appear in Cerf’s [15] paper, such as the fibration properties
of restriction maps, and the homotopy-classification of spaces of tubular neighbourhoods.

In the definition of Kn,j replacing the cubes In and Ij with discs Dn and Dj gives a homotopy-
equivalent space. Similarly for the definition of Diff(Dn) and EC(j,M ). The proof is a typical
argument when one deals with these spaces, see for example [7] Corollary 6.

Section 2 briefly covers the most elementary relationships between the spaces defined above:
Kn,j , Emb(Sj , Sn), Emb(Sj , Rn), Emb(Dj , Dn), Pn,j , EC(j,Dn−j) and PEC(j,Dn−j). This
section also includes a generalisation of an observation of Goodwillie and Sinha [73] concerning
the Smale-Hirsch map Kn,j → ΩjVn,j . The Goodwillie-Sinha result is that this map is null-
homotopic for j = 1. The generalisation that appears here is that the map factors as a composite
Kn,j → ΩjVn−1,j−1 → ΩjVn,j where the map ΩjVn−1,j−1 → ΩjVn,j is the j -fold loop of the fibre
inclusion in the Stiefel fibration Vn−1,j−1 → Vn,j → Sn−1 .

Section 3 is the heart of the paper. A proof of Haefliger’s theorem, that for n − j > 2
π0Emb(Sj , Sn) is a group is given. The proof permutes some of the main concepts of Haefliger’s
original argument. It has two essential steps: 1) The construction of a homotopy-equivalence
Emb(Sj , Sn) ' SOn+1 ×SOn−j

Kn,j together with fibrations Pn,j → Emb(Dj, Dn) → Vn,j and
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Kn,j → Pn,j → Kn−1,j−1 reduces the problem to 2) proving that Emb(Dj, Dn) is connected.
Thus, the argument boils down to showing the monoid π0Kn,j is a group because it is the image
of the group π1Kn−1,j−1 . Further, it is shown that the ‘boundary map’ gr1 : ΩKn−1,j−1 → Kn,j

has a geometric interpretation as a variant of Litherland ‘deform spinning.’ In this case it is
given by the formula

(gr1f)(t0, t1, · · · , tj−1) = (t0, f(t0) (t1, · · · , tj−1)) .

In Proposition 3.9, Goodwillie’s dissertation is used to prove that gr1 : ΩKn−1,j−1 → Kn,j

induces an epimorphism of the on homotopy groups πi for i ≤ 2n− 2j − 5. By comparing with
the work of Turchin and Sinha this allows the computation of π2n−3j−3Kn,j . An enumerative-
geometry argument is used to construct a cohomology class ν2 ∈ H2n−6(Kn,1; Z), which is
used to find an explicit generator of π2n−6Kn,1 ' Z. The generator can be thought of as the
resolutions of a long immersion of R in Rn having two regular double points, corresponding to
the

⊗

chord diagram. The generators of the groups π0Kn,j for 2n− 3j − 3 = 0 are constructed
as iterated graphs of the generator of πj−1Kn−j+1,1 .

Section 4 investigates the extent to which the fibration Kn,j → Pn,j → Kn−1,j−1 , and its framed
analogue are equivariant with respect to natural actions of operads of cubes. PEC(j,M ) is shown
to have an action of the operad of j -cubes, the map PEC(j,M ) → EC(j − 1,M ) is shown to
be equivariant with respect to the j -cubes action defined in [7]. The graphing construction
ΩEC(j − 1,M ) → EC(j,M ) is shown to be equivariant with respect to the (j +1)-cubes action.

Section 5 covers, in a rather terse survey manner, many of the basic properties the spaces Kn,j

which have not already been mentioned. A curiosity is put forward: two seemingly distinct null
homotopies of the inclusion Kn,1 → Kn+1,1 are described, giving a mysterious map ΣKn,1 →
Kn+1,1 . This leads to a question about the existence of a ‘Freudenthal suspension’ Σ2Kn,1 →
Kn+1,1 . Basic properties of other natural maps such as Kn,j → ΩKn,j−1 and the Smale-Hirsch
map SH : Kn,j → ΩjVn,j are described.

Part of this manuscript was produced while visiting the University of Rome ‘La Sapienza’,
Louvain-la-neuve, the American Institute of Mathematics, the University of Tokyo and IHÉS.
I would especially like to thank the Max Planck Institute for Mathematics, in Bonn, for giv-
ing me the freedom to pursue this line of enquiry. I would like to thank my hosts for their
hospitality: Riccardo Longoni, Paolo Salvatore, Corrado De Concini, Magnus Jacobsson, Pascal
Lambrechts, Victor Turchin, and Toshitake Kohno. Victor Turchin’s comments on the first draft
of this manuscript were particularly helpful. I would like to thank several mathematicians whose
comments, knowingly or not, have helped me in putting this paper together: Greg Arone, John
Rognes, Tom Goodwillie, Larry Siebenmann, Dev Sinha, Arkadiy Skopenkov, Lee Rudolph,
Matthias Kreck, Paolo Salvatore and Danny Ruberman.

2 Basic relations between embedding spaces

This section describes some basic relationships between the spaces: Kn,j , EC(j,M ), Emb(Sj, Sn),
Emb(Sj , Rn), Emb(Dj, Dn), Pn,j and PEC(j,M ). The essential spirit of the results is that most
homotopy questions about these spaces reduce to studying Kn,j and Pn,j .

Given a neat embedding f : Dj → Dn , the restriction to the boundary is an embedding
f|∂Dj : Sj−1 → Sn−1 . On a global level, restriction defines a function

Emb(Dj , Dn) → Emb(Sj−1, Sn−1)
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which is a fibration [15, 59]. In this paper ‘fibration’ means Serre fibration. The above map is
known to be more than a fibration, it is a locally trivial fibre-bundle [59]. Fibrations need not
be onto. In this example, the fibration is onto the isotopy classes of ‘slice’ knots (and not all
knots are slice, see [37] for examples). Thus, the homotopy-type of the fibre can change as one
changes base-space components, and fibres are allowed to be empty.

Consider Emb(Sj−1, Sn−1) to be a based space, with base-point the standard inclusion S j−1 ⊂
Sn−1 . The fibre of Emb(Dj , Dn) → Emb(Sj−1, Sn−1) over the base-point has the homotopy-
type of Kn,j . There is a similar fibration Kn,j → Pn,j → Kn−1,j−1 defined by restriction to the
‘free face.’ The next theorem shows that this fibration induces the fibration Emb(D j , Dn) →
Emb(Sj−1, Sn−1).

Theorem 2.1 For n − j > 0 there are homotopy-equivalences:

Emb(Dj , Dn) ' SOn ×SOn−j
Pn,j

Emb(Sj−1, Sn−1) ' SOn ×SOn−j
Kn−1,j−1

Moreover, the homotopy fibre sequence Kn,j → Emb(Dj , Dn) → Emb(Sj−1, Sn−1) fits into a
commutative diagram of 6 homotopy fibre sequences:

Kn,j
//

��

Pn,j
//

��

Kn−1,j−1

��
Kn,j

//

��

Emb(Dj , Dn) //

��

Emb(Sj−1, Sn−1)

��
* // Vn,j

// Vn,j

Proof In [10] a homotopy-equivalence SOn ×SOn−j
Kn−1,j−1 → Emb(Sj−1, Sn−1) was con-

structed. The basic idea is to consider Sn−1 to be the one-point compactification of Rn−1 ,
this gives an inclusion Kn−1,j−1 → Emb(Sj−1, Sn−1). The action of SOn on Sn−1 gives
an extension SOn ×SOn−j

Kn−1,j−1 → Emb(Sj−1, Sn−1). SOn ×SOn−j
Kn−1,j−1 fibres over

Vn,j = SOn/SOn−j by projection onto the first coordinate. Emb(Sj−1, Sn−1) fibres over a space
homotopy-equivalent to Vn,j by restriction to a fixed hemi-sphere B ⊂ Sj−1 , Emb(Sj−1, Sn−1) →
Emb(B,Sn−1) ' Vn,j [15]. This makes SOn ×SOn−j

Kn−1,j−1 → Emb(Sj−1, Sn−1) a map of fi-
brations.

The same idea can be applied to Emb(Dj , Dn). Let B ⊂ ∂Dj = Sj−1 be as above. Let
Emb(Dj rel B,Dn) denote the subspace of Emb(Dj , Dn) which is fixed point-wise on B . There
is a fibre bundle Emb(Dj rel B,Dn) → Emb(Dj , Dn) → Emb(B,Sn−1) given by restriction
to B . The base-space has the homotopy-type of Vn,j ' SOn/SOn−j and as in the previous
paragraph, there is a map of fibrations

SOn ×SOn−j
Emb(Dj rel B,Dn) → Emb(Dj , Dn).

That Emb(Dj rel B,Dn) has the same homotopy-type as Pn,j is a fairly standard argument,
see for example the 2nd half of Corollary 6 of [7].
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6 Ryan Budney

When n = j , the above argument proves that Emb(Dn, Dn) has the homotopy-type of On×Pn,j .
Similarly, Emb(Sn−1, Sn−1) = Diff(Sn−1) has the homotopy-type of On ×Kn−1,n−1 . This case
appears in [29].

There is a similar relationship between Emb(Sj , Rn) and Kn,j . For this proposition, identify Rn

(the one-point compactification of Rn) with Sn via stereographic projection. This makes SOn

the stabiliser of ∞ under the SOn+1 action on Sn . Denote the projection map SOn+1 → Sn

by π . Given f ∈ Kn,j let f ∈ Emb(Sj , Sn) be the one-point compactification of f . Notice that
the space

{(A, f) : A ∈ SOn+1, π(a) ∈ Sn \ img(f ), f ∈ Kn,j}

fibres over C o Kn,j with fibre SOn , for

C o Kn,j = {(p, f) : p ∈ Sn \ img(f ), f ∈ Kn,j}.

Denote {(A, f) : A ∈ SOn+1, π(a) ∈ Sn \ img(f), f ∈ Kn,j} by (C o Kn,j)
∗(π). Consider

(C oKn,j)
∗(π) to be the pull-back of π over Rn . Since π is trivial over Rn , the pull-back must

be as well.

SOn × (C o Kn,j) ' (C o Kn,j)
∗(π).

Notice that SOn−j acts on (C o Kn,j)
∗(π) from the left, by considering SOn−j ⊂ SOn+1 to be

the group that leaves Sj = Rj in Sn fixed point-wise.

Proposition 2.2 Provided n − j > 0 there is a homotopy-equivalence

SOn−j\(C o Kn,j)
∗(π) → Emb(Sj, Rn).

Induced by the map (A, f) 7−→ A−1 ◦ f . Moreover, there is a homotopy-equivalence

SOn−j\(C o Kn,j)
∗(π) → SOn ×SOn−j

(C o Kn,j)

where the action of SOn−j on SOn is by left multiplication.

Proof Observe that Emb(Sj , Rn) fibres over Vn,j . The fibre can be identified with {f ∈ Kn,j :
0 /∈ f(Rj)}. C o Kn,j fibres over a ball with fibre {f ∈ Kn,j : 0 /∈ f(Rj)}, thus there is a
homotopy-fibre sequence

C o Kn,j → Emb(Sj , Rn) → Vn,j

(CoKn,j)
∗(π) similarly fibres over Vn,j giving a commutative ladder of homotopy fibre sequences

C o Kn,j
// Emb(Sj , Rn) // Vn,j

C o Kn,j
//

OO

(C o Kn,j)
∗(π) //

OO

Vn,j

OO

Let (A, f) ∈ (CoKn,j)
∗(π), then A is a matrix whose first column vector is π(A), the remaining

vectors are in the tangent space to Rn at π(A). Let [A]π(A) denote the representation of A
with respect to the standard framing of Rn at π(A). Consider the map (C o Kn,j)

∗(π) →
SOn×(CoKn,j) given by sending the pair (A, f) to

(

[A]π(A), (π(A), f)
)

. This map is equivariant
with respect to the action of SOn−j since if B ∈ SOn−j then B.(A, f) = (BA,Bf), which is sent
to

(

[BA]π(BA), (π(BA), Bf)
)

=
(

[BA]Bπ(A), B.(A, f)
)

, but [BA]Bπ(A) = B[A]π(A) by a change
of variables argument, giving the result.
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A basic fact and conventions about homotopy-fibres is given for future reference.

Lemma 2.3 Let p : E → B be a fibration. Let e ∈ E and b ∈ B be the base-points of E and
B respectively, with p(e) = b. Let i : F → E be the fibre inclusion. Let R(F ) = {(a, h) : a ∈
F, h : [0, 1] → E, h(0) = p(a)} then the map R(i) : R(F ) → E given by evaluation h(1) is a
fibration, and πF : R(F ) → F given by projection onto F is a homotopy-equivalence. The fibre
of the map R(i) : R(F ) → E is the space HF (i) = {h : [0, 1] → E, h(0) ∈ F, h(1) = e}, and
the map p∗ : HF (i) → ΩB given by post-composition with p is a weak homotopy-equivalence,
giving a fibration:

ΩE → HF (i) → F

and a homotopy-commutative diagram

ΩB F
i // E

p // B

ΩE // HF (i)

p∗

OO

//

::uuuuuuuuuu

R(F )

' πF

OO

R(i)

<<zzzzzzzz

The map HF (i) → F is sometimes called the ‘connecting map’ or the ‘boundary map’ as
it induces the same map as the connecting map in the homotopy long exact sequence of the
fibration p.

The next two results are a modest generalisation of observations due to Goodwillie (unpub-
lished), Sinha [73], Turchin [79] and Salvatore [67], concerning the monodromy of the fibration
EC(j,Dn−j) → Kn,j and the Smale-Hirsch map Kn,j → ΩjVn,j .

Theorem 2.4 The homotopy fibre sequence

ΩjSOn−j → EC(j,Dn−j) → Kn,j

is trivial for j = 1, and also for n − j ≤ 2. There is a pull-back diagram of homotopy fibre
sequences:

ΩjSOn−j

��

// ΩjSOn−j

��
EC(j,Dn−j)

��

// PΩj−1SOn−j

��
Kn,j

cl // Ωj−1SOn−j

Where ΩjSOn−j → PΩj−1SOn−j → Ωj−1SOn−j is the path-loop fibration of the space Ωj−1SOn−j .
The classifying map cl : Kn,j → Ωj−1SOn−j fits into a commutative diagram

ΩjVn,n−j

��
ΩjSOj

// ΩjVn,j
// ΩjGn,j ≡ ΩjGn,n−j

mono

��
Kn,j

SH

OO

cl // Ωj−1SOn−j
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where ‘SH ’ is the Smale-Hirsch map, Vn,j is the Stiefel manifold of j linearly independent
vectors in Rn , SOj → Vn,j → Gn,j is the canonical fibration for the Grassmanian of oriented
j -dimensional subspaces of Rn . ‘mono’ is the j -fold looping of the classifying map Gn,n−j →
BSOn−j for the bundle SOn−j → Vn,n−j → Gn,n−j . Identify Gn,j with Gn,n−j via the oriented
orthogonal complement.

Framed and unframed pseudoisotopy embedding spaces are more directly related, as the forgetful
map PEC(j,Dn−j) → Pn,j is a homotopy-equivalence.

Proof The observation of the existence of the above pull-back diagram first appears in Turchin’s
work [79] for j = 1. The idea is to divide Ij into I× Ij−1 . Given a knot f ∈ Kn,j , let νf be its
normal bundle, and consider parallel transport (using the connection inherited as a submanifold
of Euclidean space Rn ) from νf|{−1}×Ij−1 to νf{1}×Ij−1 , this is an element of Ωj−1SOn−j . The

map EC(j,Dn−j) → PΩj−1SOn−j is defined similarly, only along the paths I × {x} ⊂ I× Ij−1

f ∈ EC(j,Dn−j) one has a pre-defined framing of νf|Rj×{0}n−j which can be compared to the
parallel transport framing, giving the bundle map.

Observe that the way Kn,j → Ωj−1SOn−j is defined, it factors as a composite Kn,j → ΩjGn,j ≡
ΩjGn,n−j → Ωj−1SOn−j . Kn,j → ΩjGn,j is the ‘tangent space map.’ Gn,j is the Grassmanian
of j -dimensional subspaces of Rn . mono : ΩjGn,n−j → Ωj−1SOn−j is the j -fold looping of the
classifying map of the bundle SOn−j → Vn,n−j → Gn,n−j .

For the fibration PEC(j,Dn−j) → Pn,j observe the fibre has the homotopy-type of the path-
space PΩj−1SOn−j .

The homotopy-class of the Smale-Hirsch map SH : Kn,j → ΩjVn,j is not so well understood.
There are results concerning the induced map SH : π0Kn,j → πjVn,j in two cases: Kervaire
proved it to be trivial provided 2n− 3j ≥ 2 [40]. In the co-dimension 2 case n− j = 2, Hughes
and Melvin showed that SH : π0Kn,j → πjVn,j has non-trivial image if and only if j ≡ 3 mod 4
[35], moreover they gave a rather appealing description of the immersions that can be realised
as embeddings. Eckholm and Szücs [18, 19] have recently given more geometric interpretations
of the obstruction to an immersion having a representative that is an embedding.

Theorem 2.5 The Smale-Hirsch map SH : Kn,j → ΩjVn,j fits into a homotopy-commutative
diagram

Kn,j

%%KKKKKKKKKK

SH // ΩjVn,j

ΩjVn−1,j−1

Ωj(i)

99rrrrrrrrrr

where i : Vn−1,j−1 → Vn,j is the fibre-inclusion of the fibration Vn−1,j−1 → Vn,j → Sn−1 .

Proof Consider the commutative diagram of spaces and maps:

Kn,j
//

SH
��

Pn,j
//

SH
��

Kn−1,j−1

SH
��

ΩjVn,j
// Ωj−1HF (i) // Ωj−1Vn−1,j−1
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HF (i) is the homotopy-fibre of i. By Proposition 2.3, there is a homotopy-equivalence HF (i) '
ΩSn−1 .

The Smale-Hirsch map SH : Pn,j → ΩjSn−1 is given by differentiation in the vertical ‘pseudo-
isotopy’ direction. The map h : [0, 3] × Rj ×Pn,j → Sn−1 given by:

h(t, x1, · · · , xj , f) =







n( ∂f
∂x1

(x1, · · · , xj)) t = 0

n(f(x1 + t, x2, · · · , xj) − f(x1, · · · , xj)) 0 < t ≤ 2
pt−2(n(f(x1 + 2, x2, · · · , xj) − f(x1, · · · , xj))) 2 ≤ t ≤ 3

is a null-homotopy of the Smale-Hirsch map, provided p : [0, 1] × Sn−1 \ {−1} → Sn−1 \ {−1}
is a deformation-retraction of Sn−1 \ {−1} to {1} ⊂ Sn−1 , and n : Rn \ {0} → Sn−1 is the
function n(v) = v

|v| .

Theorems 2.4 and 2.5 combine to give a commutative diagram involving the maps cl : Kn,j →
Ωj−1SOn−j and SH : Kn,j → ΩjVn,j .

ΩjVn−1,n−j

��
ΩjVn,j ΩjVn−1,j−1

oo Ωj⊥ // ΩjGn−1,j−1 ≡ ΩjGn−1,n−j

��
Kn,j

SH

ffLLLLLLLLLL

OO

cl // Ωj−1SOn−j

3 Spinning and graphing in high co-dimensions

This section is devoted to the concepts surrounding a new proof that π0Kn,j is a group, provided
n − j > 2. The proof is quite simple: show that the total-space of the fibration Kn,j → Pn,j →
Kn−1,j−1 is connected. This forces the boundary map π1Kn−1,j−1 → π0Kn,j from the homotopy
long exact sequence to be an epi-morphism. Showing that Pn,j is connected reduces to showing
that every neat embedding of Dj in Dn is isotopic (through neat embeddings) to a linear
inclusion. The remainder of the section elaborates on ingredients used in the proof and its
consequences. The boundary map ΩKn−1,j−1 → Kn,j is shown to be homotopic an explicitly-
defined graphing map gr1 : ΩKn−1,j−1 → Kn,j in Proposition 3.2. Propositions 3.4 and 3.6
demonstrate that gr1 is a variant of Litherland’s deform-spinning construction [47]. Goodwillie’s
dissertation is invoked, showing that gr1 is a surprisingly highly-connected map. This allows the
computation of the first non-trivial homotopy groups of Kn,j provided 2n − 3j − 3 ≥ 0. Using
some computations of Victor Turchin and a quadrisecants argument, an explicit generator is
constructed for π2n−6Kn,1 . Via spinning, this gives new explicit constructions of Haefliger’s
spheres π0Kn,j for 2n − 3j − 3 = 0.

The next proposition is an old result which is known to hold in far greater generality [34, 22].
Goodwillie’s generalisation will later be used in this paper. So strictly speaking, this proposition
is redundant. The proof is included as several later developments in this section build on it,
making it the natural starting point.
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Proposition 3.1 Provided n− j > 2, the map π1Kn−1,j−1 → π0Kn,j is an epi-morphism. The
spaces Emb(Dj, Dn) and Pn,j are connected.

Proof Once Emb(Dj , Dn) is shown to be connected, the remaining results follow from the ho-
motopy long exact sequences of the fibrations Kn,j → Pn,j → Kn−1,j−1 and Pn,j → Emb(Dj , Dn) →
Vn,j from Theorem 2.1.

• Consider n = 4. The path-connectivity of Emb(D1, D4) is well-known and appears in
many places. Let f ∈ Emb(D1, D4), and isotope it to be standard on the bound-
ary: f(−1) = (−1, 0, 0, 0) and f(1) = (1, 0, 0, 0). Let v ∈ S3 . By Sard’s theorem,
the projection of f into the orthogonal complement of v is generically an embedding.
Choose one such value for v such that c = 〈v, (1, 0, 0, 0)〉 > 0. Then the formula
f(t) − a〈f(t), v〉v + act · v describes a path (parametrised by a ∈ [0, 1]) in Emb(D1, D4),
starting at f and ending at a function which is monotone increasing in the direction of v ,
thus isotopic to t 7−→ (t, 0, 0, 0) by the straight-line homotopy.

• Consider n = 5. As in the previous case, isotope f ∈ Emb(D2, D5) to be standard on
the boundary, and let fa : D2 → D5 for a ∈ [0, 1] be the straight-line homotopy from f
to the standard inclusion. By the weak Whitney immersion theorem, one can assume fa

is generically an embedding, with only finitely many times a for which it has an isolated,
regular double point. Wu [85] developed a 1-parameter ‘Whitney trick’ for this situation,
to remove the double points from the family.

• Consider the case n ≥ 6 and let e : Dj → Dn be a proper embedding. Let B ⊂ Dj be
the open ball of radius 1

2 , centred about the origin. Consider Dj = Dj × {0}n−j ⊂ Dn .
By a local linearisation, isotope e so that it agrees with inclusion on B , e(x) = x for all
x ∈ B . Let U be the open ball of radius 1

2 centred about 0 in Dn , and isotope e so
that e(Dj) ∩ U = e(B). Let W = Dn \ U , M1 = ∂U and M2 = ∂Dn . ∂W = M1 t M2 .
Mi → W is a homotopy-equivalence for i ∈ {1, 2}, since W is a product. Let V = e(Dj\B)
with V1 = W1 ∩ V , V2 = W2 ∩ V , and let f : V1 × [12 , 1] → W be the map defined by
f(v, t) = e(2tv). f maps V1×[12 , 1] diffeomorphically to V . Corollary 3.2 of [76] states that
f extends to a diffeomorphism of pairs f : (W1, V1)× [12 , 1] → (W,V ). Therefore it further
extends to a diffeomorphism of pairs f : (Dn, Dj) → (Dn, img(e)). So e = f ◦ h where h
is the standard inclusion h : Dj → Dn . Given an orientation-preserving diffeomorphism
f of Dn it acts on Emb(Dj , Dn), but the action is trivial on π0Emb(Dj , Dn) – the idea is
that one can linearise f on the complement of a neighbourhood of a point in the boundary
of Dn .

The earliest claim in the literature that Emb(Dj , Dn) is connected for n − j > 2 seems to be
made by Haefliger. It appears in his AMS math review [28] of Zeeman’s paper [87]. Perhaps
the above proof is similar to what Haefliger had in mind, as he states the result follows from
Smale’s paper [76]. It would be interesting to know if there are any more elementary proofs.

The fibre-sequence Kn,j → Pn,j → Kn−1,j−1 ‘backs-up’ to a fibre-sequence ΩKn−1,j−1 → Kn,j →
Pn,j by Lemma 2.3. The remainder of this section is devoted to the properties of the ‘connecting
map’ ΩKn−1,j−1 → Kn,j and its relatives.
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Proposition 3.2 The connecting-map ΩKn−1,j−1 → Kn,j is homotopic to

ΩKn−1,j−1
gr1 //

����

Kn,j

����

f � // [(t0, t1, · · · , tj−1) 7−→ (t0, f(t0)(t1, · · · , tj−1))]

and the connecting map ΩEC(j − 1,M ) → EC(j,M ) is homotopic to

ΩEC(j − 1,M )
gr1 //

����

EC(j,M )
����

f � // [(t0, t1, · · · , tj−1,m) 7−→ (t0, f(t0)(t1, · · · , tj−1,m))]

.

Proof The two cases are essentially the same, so restrict attention to the fibration

EC(j,M )
i // PEC(j,M )

p // EC(j − 1,M ) .

By Lemma 2.3

HF (i) = {f : [0, 1] → PEC(j,M ), f(0) = IdRj×M , f(1) ∈ EC(j,M )}.

The map HF (i) → ΩEC(j − 1,M ) defined in Lemma 2.3 is a weak homotopy equivalence.
Palais has proved that every embedding space has the homotopy-type of a CW-complex [60].
Strictly speaking, he proves embedding spaces are dominated by CW-complexes, but at that
time it was a well-known theorem of Whitehead’s that a space dominated by a CW-complex
has the homotopy-type of a (perhaps different) CW-complex [84]. The further fact that the
various loop space and homotopy-fibre constructions send spaces with the homotopy-type of
CW-complexes to spaces having the homotopy-type of CW-complexes is due to Milnor [54].
Thus, HF (i) → ΩEC(j − 1,M ) is a homotopy-equivalence.

An explicit homotopy-inverse of ΩEC(j − 1,M ) → HF (i) is exhibited. Given f ∈ ΩEC(j − 1,M ),
consider the object

(t, t1, · · · , tj ,m) 7−→

{

(t1, f(t1)(t2, · · · , tj,m)) for 2t − 1 ≤ t1
(t1, f(2t − 1)(t2, · · · , tj ,m)) for t1 ≤ 2t − 1

This would be the ‘right’ map ΩEC(j − 1,M ) → HF (i) (with loop-space parameter t) if it was
a smooth function in the variable t1 . Consider a smooth ‘wet blanket’ function b : R → R with
the properties:

• b(x) = x for all x ≤ 0

• b(x) = 1/2 for all x ≥ 1

• b′(x) ≥ 0 for all x ∈ R.

Such a function can be obtained in closed-form as

b(x) =

∫ x

0

(

1 −

∫ x

0
B(x)dx

)

dx

where B : R → R is any smooth function such that B( 1
2 + x) = B( 1

2 − x) and B(x) ≥ 0 for all
x ∈ R, with B(x) = 0 for all |x − 1

2 | ≥
1
2 and

∫ ∞
−∞ B(x)dx = 1.

For t ∈ R define bt : R → R as bt(x) = b(x − t) + t. Consider the function ΩEC(j − 1,M ) →
HF (i) defined by sending f ∈ ΩEC(j − 1,M ) to f̃ ∈ HF (i) by the formula

f̃(t)(t1, · · · , tj,m) =
(

t1, f(b−3+5t
2

(t1))(t2, t3, · · · , tj,m)
)

(∗)
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The composite ΩEC(j − 1,M ) → HF (i) → ΩEC(j − 1,M ) is obtained by setting t1 = 1 in (∗),

thus f is sent to the map
[

(t, t2, · · · , tj ,m) 7−→ f(b−3+5t
2

(1))(t2, · · · , tj ,m)
]

∈ ΩEC(j − 1,M )

which is just a reparametrisation of f by b−3+5t
2

(1) (thought of as a function of t). Since

b−3+5t
2

(1) is an increasing function of t it is homotopic to the identity.

Zeeman proved that the complements of certain co-dimension two ‘twist-spun’ knots fibre over S 1

[88]. Litherland later went on to formulate a more general notion of spinning, at the time called
‘deform-spinning,’ further generalising Zeeman’s theorem to this context [47]. The Zeeman-
Litherland results are important for a number of reasons – one being that they are an excellent
source of embeddings of 3-manifolds in S4 , as the Seifert-surfaces of embeddings of S2 in S4 .
The next proposition points out that the connecting map gr1 : ΩKn−1,j−1 → Kn,j is a mild
variation of Litherland’s spinning construction.

Given a topological space X , denote the space of continuous functions f : S 1 ≡ R/2Z → X by
LX called the ‘free loop space of X .’ Define P2 : I2 → I2 by P2(t1, t2) = ( t2+2

3 cos(πt1),
t2+2

3 sin(πt1))
and Pn : In → In as Pn = P2 × IdIn−2 . Notice Pn is an embedding on the interior of In , and is
globally one-to-one except for the equality Pn(−1, t2, t3, · · · , tn) = Pn(1, t2, · · · , tn).

PSfrag replacements

Pn

Definition 3.3 Given f ∈ LKn−1,j−1 , let h : Rj → Rn be the function h(t0, t1, · · · , tj−1) =
(t0, f(t0)(t1, · · · , tj−1)), and consider the composite Pn ◦h◦P−1

j . It is well-defined on the image

of Pj . On ∂Pj(I
j) it agrees with the standard inclusion Rj → Rn . Define gr1(f) ∈ Kn,j to be

the unique extension of Pn◦h◦P−1
j such that gr1(f)|Rj\Pj(Ij) agrees with the standard inclusion.

Proposition 3.4 The diagram

LKn−1,j−1
gr1 // Kn,j

ΩKn−1,j−1

OO

gr1

99ssssssssss

is homotopy-commutative.

Proof There exists a 1-parameter family Pn(t) : In → In for t ∈ [0, 1] satisfying Pn(0) = Pn ,
Pn(1) = IdIn , such that for all t ∈ (0, 1] the function Pn(t) : In → In is an embedding.
Substituting Pn(t) for Pn in the definition of gr1 : LKn−1,j−1 → Kn,j gives the desired homotopy.

In the literature, Litherland spinning is not defined as the map gr1 : LKn−1,j−1 → Kn,j , but
what Litherland defined in [47], when appropriately adapted to the smooth category, turns out
to be precisely gr1 . This is the content of Proposition 3.6.
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EC(n, ∗) is the group of diffeomorphisms of Rn whose support is contained in In , thus it acts
(by composition on the left) on Kn,j . Notice that if n− j > 0, f ∈ Kn,j and g ∈ EC(n, ∗) then
g ◦ f is in the the same path-component of Kn,j as f . In fact, much more is true. Let Kn,j(f)
denote the path-component of f in Kn,j .

Lemma 3.5 Provided n − j > 0 and f ∈ Kn,j , the map EC(n, ∗) → Kn,j given by sending
g ∈ EC(n, ∗) to g ◦ f is a null-homotopic fibration whose image is Kn,j(f). The fibre of this
fibration is denoted Diff(In, f).

Proof That the map is a fibration is classical [15]. That the image contains Kn,j(f) follows from
the isotopy extension theorem. Consider an orientation-preserving affine-linear transformation
L : Rn → Rn such that L(In) ⊂ In . Given g ∈ EC(n, ∗) notice that L ◦ g ◦ L−1 ∈ EC(n, ∗),
moreover the support of L ◦ g ◦ L−1 is contained in L(In). The space of orientation-preserving
affine linear transformations of Rn which preserves In is connected, thus there is a path Lt in
this space such that L0 = IdRn and L1 = L. The function

[0, 1] × EC(n, ∗) //

����

Kn,j

����

(t, g) � // Lt ◦ g ◦ L−1
t ◦ f

is a null-homotopy of the map EC(n, ∗) → Kn,j provided L(In) ∩ f(Rj) = φ, which can always
be arranged provided n − j > 0, by Sard’s theorem.

The map π1Kn,j(f) → π0Diff(In, f) is therefore a bijection onto the subgroup of π0Diff(In, f)
which is the kernel of the forgetful map π0Diff(In, f) → π0EC(n, ∗). Given an element g ∈
π1Kn,j(f), let g̃ ∈ π0Diff(In, f) be its image. Given g ∈ π1Kn,j(f) and gr1g ∈ Kn+1,j+1 denote
the one-point compactification by gr1g ∈ Emb(Sj+1, Sn+1).

Starting from an element h ∈ Diff(In, f) which is in the kernel of the forgetful map Diff(In, f) →
π0EC(n, ∗), Litherland gave a ‘surgery’ description [47] of an embedding S j+1 → Sn+1 . Consider
In+2 to be the product In+2 = In × I2 , so ∂In+2 = In × (∂I2)∪ (∂In)× I2 . Think of In × (∂I2)
as a trivial In -bundle over ∂I2 , therefore it is diffeomorphic to the bundle over ∂I2 with fibre
In and monodromy given by h. Call this space In ×h ∂I2 . Since h acts as the identity on ∂In ,
the boundary of In ×h ∂I2 is canonically identified with ∂In × ∂I2 . Thus the union

(

(In, f) ×h ∂I2
)

∪ (∂In, ∂Ij) × I2

makes sense as a manifold pair. Identify ∂In+2 with Sn+1 ⊂ Rn+2 by radial projection from the
origin. Thus,

(

(In, f) ×h ∂I2
)

∪ (∂In, ∂Ij) × I2 describes an embedding of Sj+1 in Sn+1 . This
is Litherland’s deform-spun knot construction [47].

Proposition 3.6 Given g ∈ π1Kn,j(f), the ‘Litherland spun’ knot
(

(In, f) ×g̃ ∂I2
)

∪(∂In, ∂Ij)×
I2 and gr1g ∈ Emb(Sj+1, Sn+1) are isotopic, once Sn+1 is identified with ∂In+2 via radial pro-
jection.

Proof The key step is to remember that the identification of In× (∂I2) with In×g̃ ∂I2 is made
via the null-isotopy of g̃ when considered as an element of EC(n, ∗). Under this identification,
the two definitions are identical.
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Given f ∈ Kn,j and g ∈ ΩKn,j(f), let Cf be the complement of an open tubular neighbourhood

of f in Sn . By the above argument, the complement of gr1(g) in Sn+1 is diffeomorphic to
Cf og̃ S1 union a 2-handle and an (n − j + 1)-handle. Here Cf og̃ S1 indicates the Cf bundle
over S1 with monodromy induced by g̃ . This gives a presentation

π1Cgr1(g) ' π1Cf/〈g̃.x = x ∀x ∈ π1Cf 〉

where 〈g̃.x = x ∀x ∈ π1Cf 〉 is the normal subgroup of π1Cf generated by the relations g̃.x = x
for all x ∈ π1Cf .

Example 3.7 If g ∈ ΩK3,1(f) is the Gramain element (rotation by 2π about the long axis),
its action on π1Cf is conjugation by the meridian. Thus π1Cgr1(g) is trivial, as all knot groups
are ‘normally generated’ by a meridian. This observation anticipates the Zeeman-Litherland
theorem, which states that gr1(g) is the unknot [88, 47] whenever g is the Gramain element.
The Zeeman-Litherland theorem is stated in full generality in Section 5.

The spaces Kn,n = EC(n, ∗) are the groups of diffeomorphisms of a cube, and have the homotopy-
type of Diff(Dn), the group of diffeomorphisms of a disc which are the identity on the boundary.
The maps gr1 : ΩKn,n → Kn+1,n+1 have been studied in this context. Define gr2 : Ω2Kn,j →
Kn+2,j+2 to be the composite gr1 ◦Ωgr1 where Ωgr1 : Ω2Kn,j → ΩKn+1,j+1 is the induced map
of gr1 . Similarly define gri : ΩiKn,j → Kn+i,j+i . In the literature [4, 83, 24] elements of π0Kn,n

which are in the image of gri : πiKn−i,n−i → π0Kn,n but which are not in the image of gri+1 are
typically said to have Gromoll degree i.

Definition 3.8 An element f ∈ π0Kn,j has (Gromoll) degree i if it is in the image of the i-th
graphing map gri : πiKn−i,j−i → π0Kn,j but not in the image of the (i + 1)-st graphing map
gri+1 .

Proposition 3.9 (1) The Gromoll degree of the elements of π0Kn,j is at least 2n − 2j − 4
for all n ≥ j > 0.

(2) Kn,j is (2n− 3j − 4)-connected for all n ≥ j ≥ 1. Provided 2n− 3j − 3 ≥ 0 and n− j > 2
the first non-trivial homotopy group of Kn,j is

π2n−3j−3Kn,j '

{

Z j = 1 or n − j is odd
Z2 j > 1 and n − j is even

The elements of π0Kn,j for 2n − 3j − 3 = 0 have Gromoll degree (j − 1), ie: grj−1 :
πj−1Kn−j+1,1 → π0Kn,j is onto.

(3) Emb(Sj , Sn) is min{(2n − 3j − 4), (n − j − 2)}-connected for all n ≥ j ≥ 1. Let m =
min{2n− 3j − 3, n− j − 1}. Provided 2n− 3j − 3 ≥ 0 and n− j > 2 the first non-trivial
homotopy-group of Emb(Sj , Sn) is

πmEmb(Sj, Sn) '























Z 2n − 3j − 3 < n − j − 1, (j = 1 or n − j odd)
Z 2n − 3j − 3 > n − j − 1, n − j even
Z2 2n − 3j − 3 < n − j − 1, j > 1 and n − j even
Z2 2n − 3j − 3 > n − j − 1, n − j odd
Z ⊕ Z2 2n − 3j − 3 = n − j − 1
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(4) Emb(Sj , Rn) is min{2n − 3j − 4, n − j − 2} connected for all n ≥ j + 2 ≥ 3. Let
m = min{2n − 3j − 3, n − j − 1}. Provided 2n − 3j − 3 ≥ 0 and n − j > 2 the first
non-trivial homotopy group of Emb(Sj , Rn) is

πmEmb(Sj , Rn) '























Z 2n − 3j − 3 < n − j − 1, (j = 1 or n − j odd)
Z2 2n − 3j − 3 < n − j − 1, j > 1 and n − j even
Z 2n − 3j − 3 > n − j − 1
Z2 2n − 3j − 3 = n − j − 1, (j = 1 or n − j odd)
Z ⊕ Z2 2n − 3j − 3 = n − j − 1, j > 1 and j even

(5) Pn,j is (2n − 2j − 5)-connected for all n − j > 2.

(6) Emb(Dj , Dn) is (n − j − 2)-connected for all n − j > 2.

Proof (5) That Pn,j is 2n − 3j − 5 connected follows directly from Goodwillie’s dissertation
[22] (see Theorem C on page 9, and the comments immediately afterwards).

(6) This result follows from (5) and Theorem 2.1.

(1) Consider the homotopy fibre-sequence ΩKn−1,j−1 → Kn,j → Pn,j from Proposition 3.2.
Since Pn,j is (2n − 2j − 5)-connected, π1Kn−1,j−1 → π0Kn,j is epic for n − j > 2. Moreover,
π2Kn−2,j−2 → π1Kn−1,j−1 is also epic, as π1Pn−1,j−1 is trivial. The result follows by induction.

(2) There is a computation of the 3rd stage of the Goodwillie tower for Kn,1 in [9]. This is a
(2n − 6)-connected map Kn,1 → AM3 . AM3 is known to have the homotopy-type of the 3-fold
loop-space on the homotopy fibre of the inclusion Sn−1 ∨ Sn−1 → Sn−1 × Sn−1 , thus Kn,1 is
(2n−7)-connected. The first non-trivial integral homology group of Kn,1 is computed by Victor
Turchin [78] (see the computations for the homology of the complexes CT0D

even and CT0D
odd

for j = 4, i = 2). Turchin’s result is that H2n−6(Kn,1; Z) ' Z, so by the Hurewicz Theorem,
π2n−6Kn,1 ' Z. That verifies the result for Kn,1 .

Consider the space Kn+j,j+1 for j ≥ 1. The fibre-sequence

ΩKn+j−1,j → Kn+j,j+1 → Pn+j,j+1

has a (2n − 7)-connected base-space. In the special case of j = 1 the fibre has first non-trivial
homotopy group in dimension 2n−7. But π2n−7Pn+1,2 is trivial, thus π2n−6Kn,1 → π2n−7Kn+1,2

is epic with kernel generated by the image of π2n−6Pn+1,2 , giving the isomorphism

π2n−7Kn+1,2 ' π2n−6Kn,1/img (π2n−6Pn+1,2) .

Repeat the argument for j > 1, inductively assuming that the first non-trivial homotopy group
of ΩKn+j−1,j is π2n−j−6ΩKn+j−1,j and isomorphic to π2n−6Kn,1/img (π2n−6Pn+1,2). Since
Pn+j,j+1 is (2n − 7)-connected, the map π2n−j−6ΩKn+j−1,j → π2n−j−6Kn+j,j+1 is an iso-
morphism of first non-trivial homotopy-groups, thus for all j ≥ 1 there is an isomorphism
π2n−j−6Kn+j,j+1 ' π2n−6Kn,1/img (π2n−6Pn+1,2).

Setting j equal to 2n − 6 gives the isomorphism

π0K3n−6,2n−5 ' π2n−6Kn,1/img (π2n−6Pn+1,2) .

Haefliger’s computations [27] completes the proof:

π0K3n−6,2n−5 '

{

Z2 for n ≥ 4 odd
Z for n ≥ 4 even.

MPIM2007-34



16 Ryan Budney

(3) Theorem 2.1 gives us a homotopy equivalence Emb(S j , Sn) ' SOn+1 ×SOn−j
Kn,j . Since

SOn+1/SOn−j ≡ Vn+1,j+1 is (n − j − 1)-connected, the homotopy long exact sequence of the
fibration Kn,j → Emb(Sj , Sn) → Vn+1,j+1 tells us that Emb(Sj , Sn) is min{n−j−1, 2n−3j−4}-
connected. Since the bundle Emb(Sj , Sn) → Vn+1,j+1 is split, the first non-trivial homotopy
group of Emb(Sj , Sn) can be computed directly.

(4) For Emb(Sj , Rn) use the homotopy equivalence Emb(Sj, Rn) ' SOn×SOn−j
(C o Kn,j) from

Proposition 2.2. The bundles C o Kn,j → Kn,j and SOn ×SOn−j
(C o Kn,j) → Vn,j are split, so

the computation follows directly.

An interesting corollary is that there are ‘exotic families’ of smooth 2-discs in the 6-disc.

Corollary 3.10 π2n−6Pn+1,2 has rank at least 1 provided n ≥ 5 is odd.

Brian Munson gave a lower bound of min{2n − 3j − 4, n − j − 2} on the connectivity of
Emb(Sj , Rn). Proposition 3.9 proves that Munson’s lower bound is sharp.

The rest of this section is devoted to a geometric construction of the generators of π2n−6Kn,1

for n ≥ 4. Take a ‘long’ immersion f : R → R3 ⊂ Rn having two regular double points
f(t1) = f(t3), f(t2) = f(t4) with t1 < t2 < t3 < t4 ∈ R such that one of the four resolutions of
f in R3 is a trefoil knot. Let Tfi be the tangent space to f(R) at ti . Let P1 be the orthogonal
complement to Tf1 ⊕ Tf3 in Rn , and P2 the orthogonal complement of Tf2 ⊕ Tf4 in Rn . P1

and P2 are (n − 2)-dimensional, so if S1 and S2 are the unit sphere of P1 and P2 respectively
they are both (n− 3)-dimensional. There is a ‘resolution function’ r : S1 × S2 → Kn,1 given by
perturbing f near the double points via bump-functions whose directions are prescribed by the
pair (v1, v2) ∈ S1 × S2 . The claim is that r is a generator of H2n−6(Kn,1; Z) ' Z.

. .
PSfrag replacements

Rn

P1
P2

One could potentially trace through the computations of Turchin and Vassiliev [78, 81] to verify
that r generates H2n−6(Kn,1; Z). The following approach is perhaps more direct. It is inspired
by the quadrisecant description of the type-2 Vassiliev invariant for knots R3 [9]. The idea is
to construct an integral co-homology class ν2 ∈ H2n−6(Kn,1; Z) such that if x ∈ H2n−6(Kn,1; Z)
is represented as an oriented (2n − 6)-dimensional manifold mapping into Kn,1 then ν2(x) can
be computed as a signed count of the number of alternating quadrisecants along the family
of long knots represented by x. Every class in H2n−6(Kn,1; Z) is realisable as a map from an
oriented (2n−6)-dimensional manifold M to Kn,1 since Kn,1 is (2n−7)-connected (Proposition
3.9). Moreover, by the Hurewicz theorem, M can be assumed to be S2n−6 , as π2n−6Kn,1 '
H2n−6(Kn,1; Z).
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Definition 3.11 Given two points x, y ∈ Rn let [x, y] denote the oriented line segment in Rn ,
starting at x and ending at y . An alternating quadrisecant in C4(R

n) is a point (x1, x2, x3, x4) ∈
C4(R

n) such that [x1, x4] ⊂ [x3, x2] as an oriented subinterval. CkM denotes the configuration
space of distinct k -tuples of points in M , CkM = {x ∈ Mk : xi 6= xj ∀ i 6= j}. Provided
M is a manifold, let Ck[M ] denotes the (real oriented) Fulton-Macpherson compactification of
CkM , as in [9]. Ck[M ] is a compact manifold, provided M is compact. The ‘real oriented’
Fulton-Macpherson compactification has the property that the inclusion CkM → Ck[M ] is a
homotopy-equivalence.

Let AQn ⊂ C4[R
n] denote the closure of the set of all alternating quadrisecants in C4(R

n).
Let C ′

4[R] = {t ∈ C4(R) : t1 < t2 < t3 < t4} . Given f ∈ Kn,1 let AQn(f) ⊂ C ′
4[R] denote the

pull-back of AQn . More generally, if f : M → Kn,1 is smooth, define AQn(f) ⊂ M × C ′
4[R] as

the pull-back of AQn .

Given a closed, oriented (2n − 6)-dimensional manifold M and a map f : M → Kn,1 such
that f∗ : M × C ′

4[R] → C4[R
n] is transverse to AQn , AQn(f) ⊂ M × C ′

4[R] is a 0-dimensional
submanifold whose normal bundle is oriented by the map. A well-defined integer invariant
ν2(f) ∈ Z is defined as the signed count (of the relative orientations) of the points in AQn(f).
The sign of each point of AQn(f) could be computed by a formula analogous to the one in
Proposition 6.2 of [9]. Lemma 3.12 is the key technical lemma needed to show that ν2(f) is an
invariant of the homology class of f .

Given f ∈ Kn,1 let Γ(f) ∈ (0,∞] be the ‘cut radius’ of f in Rn , defined as the supremum
over all R such that the exponential map from f ’s radius-R normal disc bundle to Rn is an
embedding. Γ : Kn,1 → (0,∞] can be shown to be a continuous function, as Γ(f) is the
minimum of two continuous quantities 1) the focal radius of f (which can be computed in terms
of the 2nd fundamental form of f ) and 2) the minimum of the distances L such that there exists
two geodesics segments, each of length L, emanating from a point in Rn and terminating in
f(R), orthogonal to the tangent space of f(R). This kind of continuity argument is standard in
differential geometry, see Proposition 4.1 in §III of [66] for example.

Lemma 3.12 Every x ∈ H2n−6(Kn,1; Z) represented by a manifold f : M → Kn,1 can be
perturbed so that f∗ is transverse to AQn .

Proof Let R be the cut radius of f , R = min{Γ(f(x)) : x ∈ M}. Let b : R → R be a
C∞ -smooth function satisfying:

• b(x) = 0 for all |x| ≥ 1

• b(x) = b(−x) for all x ∈ R

•
∫ ∞
−∞ b(x)dx = 1

• b′(x) > 0 for all −1 < x < 0.

For ε > 0 and t ∈ R let bε,t : R → R be defined as bε,t(x) = 1
ε
b(x−t

ε
). By a compactness

argument, there exists an m ∈ Z (perhaps very large) such that if I1, · · · , Im is the partition
of I into m equal-length sub-intervals, then for all x ∈ M and j ∈ {1, 2, · · · ,m}, f(x)(Ij) is
contained in the radius R/2 tubular neighbourhood of f(x).
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Consider the function f̃ defined as

M × (Rn)m × R
f̃ //

����

Rn

����

(x, v1, · · · , vm, t) � // f(t) +
∑m

j=1 b 3

2m
,pj

(t)vj

where pj ∈ Ij is the mid-point of the interval Ij . Since embeddings are an open subset of the
space of all ‘long’ smooth maps from R to Rn [33], in some neighbourhood U of 0 in (Rn)m , a
restriction of f̃ can be thought of as a map f : M×U → Kn,1 . Consider a point (x, y, t1, t2, t3, t4)
of AQn(f) ⊂ M×U×C ′

4[R]. For each i, ti and ti+1 cannot both be elements of some common Ij

since (f(t1), f(t2), f(t3), f(t4)) is an alternating quadrisecant. Thus f ∗ : M×U×C ′
4[R] → C4[R

n]
is transverse to AQn . By the Transversality Theorem [25], f can be approximated by a map
M → Kn,1 such that the induced map M × C ′

4[R] → C4[R
n] is transverse to AQn .

Theorem 3.13 ν2 ∈ H2n−6(Kn,1; Z) is a well-defined cohomology class. Moreover, ν2(r) = ±1,
forcing r to be a generator of H2n−6(Kn,1; Z) ' Z.

Proof An alternating quadrisecant can never appear on ∂(M ×C ′
4[R]) nor can a 1-parameter

family of alternating quadrisecants run off to infinity, thus, by the Transversality Extension The-
orem (see for example Chapter 2 of [25]) ν2(f) is well-defined integer invariant of the homology
class of f .

In the picture of the ‘immersed trefoil’ f : R → R3 ⊂ Rn there are no quadrisecants, except the
‘degenerate’ quadrisecant that consisting of the secant between the two pairs of double-points.
Consider all the possible resolutions r of this immersed trefoil. r only has 4 resolutions in
R3 ⊂ Rn , so these are the only 4 resolutions that could possibly have quadrisecants. Moreover,
only the resolution which is a trefoil in R3 has a quadrisecant.

Since Kn,1 is (2n− 7)-connected, by the Hurewicz Theorem π2n−6Kn,1 ' Z is generated by any
map r̃ : S2n−6 → Kn,1 homologous to r . One can explicitly construct such a map – attachment
of an (n−3)-handle to S1×S2×[0, 1] along S1×{∗}×{1} gives a cobordism between S1×S2 and
S2n−6 . r|S1×{∗} is null so r extends over the cobordism. r̃ can be chosen to be the restriction
of this cobordism to S2n−6 .

4 Actions of operads of little cubes on embedding spaces

This section is devoted to the study of the iterated loop-space structures on the embedding
spaces Kn,j and EC(j,Dn), especially focusing on the compatibility of these structures with
Litherland spinning gr1 . The context of these results comes from the work of Boardman, Vogt
and May [5, 49, 50]. They give a very simple criterion for recognising if a space X has the
homotopy-type of an n-fold loop-space, being that X admits an action of the operad of little
n-cubes, and that the induced monoid structure on π0X is that of a group. A useful reference
for operads relevant to topology, including operads of cubes, is the book of Markl, Shnider and
Stasheff [48].

There is an action of the operad of j -cubes on the spaces EC(j,M ) and Kn,j given by concate-
nation (see Definition 4.2). The first instance of an action of the operad of (j +1)-cubes on any
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space of the form EC(j,M ) was given by Morlet [56]. The Cerf-Morlet ‘Comparison Theorem’
states that EC(j, ∗) ' Ωj+1(PLj/Oj) (see [12] or [42] for a proof). Here PLj is the group of
PL-automorphisms of Rj (given a suitable topology) and Oj is the group of linear isometries of
Rj .

PSfrag replacements

f#g

g#f
f

g

The first ‘hint’ of a higher cubes action on the spaces EC(j,M ) for M non-trivial would
perhaps be the work of Schubert [68]. Schubert demonstrated that the connect-sum pairing
turns π0K3,1 into a free commutative monoid on the isotopy-classes of prime long knots, where
the demonstration of commutativity involved ‘pulling one knot through another’ as in the figure
above.

In ‘Little cubes and long knots’ [7] this idea was extended to construct a (j +1)-cubes action on
the spaces EC(j,M ) for an arbitrary compact manifold M . By some elementary considerations,
this also gives an action of the operad of (j + 1)-cubes on Kn,j for all n − j ≤ 2. Schubert’s
theorem that π0K3,1 is a free commutative monoid over the isotopy classes of prime long knots
generalises in this context to say that K3,1 is a free 2-cubes object over the based space P t{∗}
where P ⊂ K3,1 is the subspace of prime long knots. This can be thought of as a precise ‘space
level’ non-uniqueness result for the connect-sum decomposition of knots, whereas Schubert’s
result states uniqueness on the level of isotopy classes of knots.

There is a major conceptual gap between the Cerf-Morlet ‘Comparison Theorem’ and the freeness
of K3,1 as a 2-cubes object. Getting a better understanding of this defect was one of the primary
motivations behind this paper.

Definition 4.1 • A (single) little n-cube is a function L : In → In such that L = l1×· · ·×ln
where each li : I → I is affine-linear and increasing ie: li(t) = ait + bi for some 0 ≤ ai < 1
and bi ∈ R.

• Let CAutn denote the monoid of affine-linear automorphisms of Rn of the form L =
l1 × · · · × ln where li : R → R affine linear and increasing, and L(In) ⊂ In .

• Given a little n-cube L a mild abuse of notation is to consider L ∈ CAutn by taking the
unique affine-linear extension of L to Rn .

• The space of j little n-cubes Cn(j) is the space of maps L : tj
i=1I

n → In such that the
restriction of L to the interior of its domain is an embedding, and the restriction of L to
any connected component of its domain is a little n-cube. Given L ∈ Cn(j) let Li denote
the restriction of L to the i-th copy of In . By convention Cn(0) is taken to be a point.
This makes the union t∞

j=0Cn(j) into an operad, called the operad of little n-cubes Cn

[49].
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• There is an action of CAutn on EC(n,M) given by

µ : CAutn × Emb(Rn × M, Rn × M) → Emb(Rn × M, Rn × M)

µ(L, f) = (L × IdM ) ◦ f ◦ (L−1 × IdM )

In the above formula, L−1 is the inverse of L in the group of affine-linear isomorphisms
of Rn . The above action is denoted µ(L, f) = L.f . There is an action of CAutj on Kn,j

defined essentially the same way.

An action of the operad of j -cubes on both Kn,j and EC(j,M ) where the associated multipli-
cation on π0Kn,j is the connect-sum operation, is given next.

Definition 4.2 ki : Cj(i)×(Kn,j)
i → Kn,j , ki : Cj(i)×EC(j,M )i → EC(j,M ) is defined by the

rule ki(L1, · · · , Li, f1, · · · , fi) = L1.f1◦· · ·◦Li.fi . In the case of the space Kn,j , given f, g ∈ Kn,j

with disjoint support, f ◦ g is defined so that f ◦ g(x) =

{

f(x) if f(x) 6= x
g(x) if otherwise.

Definition 4.3 extends the j -cubes action on EC(j,M ) to a (j + 1)-cubes action.

Definition 4.3 • Given j little (n + 1)-cubes, L = (L1, · · · , Lj) ∈ Cn+1(j) define the j -
tuple of (non-disjoint) little n-cubes Lπ = (Lπ

1 , · · · , Lπ
j ) by the rule Lπ

i = li,1 × · · · × li,n
where Li = li,1 × · · · × li,n+1 . Similarly define Lt ∈ Ij by Lt = (Lt

1, · · · , Lt
j) where

Lt
i = li,n+1(−1).

PSfrag replacements
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• The action of the operad of little (n + 1)-cubes on the space EC(n,M) is given by the
maps κj : Cn+1(j) × EC(n,M )j → EC(n,M) for j ∈ {1, 2, · · · } defined by

κj(L1, · · · , Lj, f1, · · · , fj) = Lπ
σ(1).fσ(1) ◦ Lπ

σ(2).fσ(2) ◦ · · · ◦ Lπ
σ(j).fσ(j)

where σ : {1, · · · , j} → {1, · · · , j} is any permutation such that Lt
σ(1) ≤ Lt

σ(2) ≤ · · · ≤

Lt
σ(j) . The map κ0 : Cn+1(0) × EC(n,M)0 → EC(n,M) is the inclusion of a point ∗ in

EC(n,M), defined so that κ0(∗) = IdRn×M .

Theorem 4.4 [7] For any compact manifold M and any integer n ≥ 0 the maps κj for
j ∈ {0, 1, 2, · · · } define an action of the operad of little (n + 1)-cubes on EC(n,M ).
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Example 4.5

PSfrag replacements
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Lt
1 < Lt

3 < Lt
2 so σ = (23) and κ3(L1, L2, L3, f1, f2, f3) = Lπ

1 .f1 ◦Lπ
3 .f3 ◦Lπ

2 .f2 , which explains
the figure-8 knot being ‘inside’ of the trefoil on the left hand side of the picture.

In the definition of EC(n,M), if one replaces the condition that the support of f is contained in
In×M with it being contained in Dn×M one obtains a homotopy-equivalent space ED(n,M).
By a similar construction to Definition 4.3, one also obtains an action of the operad of unframed
little (n+1)-discs on ED(n,M). Since π0Kn,j is a group for n−j > 2, EC(j,Dn−j) an (n+1)-
fold loop space. Next is a construction of analogous operad actions on the spaces PEC(n,M ).

Definition 4.6 κj : Cn(j) × PEC(n,M )j → PEC(n,M) for j ∈ {1, 2, · · · } is defined by

κj(L1, · · · , Lj , f1, · · · , fj) = Lσ(1).fσ(1) ◦ Lσ(2).fσ(2) ◦ · · · ◦ Lσ(j).fσ(j)

where σ : {1, · · · , j} → {1, · · · , j} is any permutation such that Lt
σ(1) ≤ Lt

σ(2) ≤ · · · ≤ Lt
σ(j) .

Proposition 4.7 The maps κ∗ define an action of the operad of little n-cubes on PEC(n,M).

Proof There are three axioms to verify.

(1) Identity. Let IdIn be the identity n-cube, then κ1(IdIn , f) = IdIn .f = f by design.

(2) Symmetry. We need to verify that κn(L.α, f.α) = κn(L, f), for α ∈ Σn .
Let

κj(L, f) = Lσ(1).fσ(1) ◦ Lσ(2).fσ(2) ◦ · · · ◦ Lσ(j).fσ(j)

and

κj(L.α, f.α) = Lασ′(1).fασ′(1) ◦ Lασ′(2).fασ′(2) ◦ · · · ◦ Lασ′(j).fασ′(j)

where σ, σ′ ∈ Sn satisfy Lt
σ(1) ≤ · · · ≤ Lt

σ(n) and Lt
ασ′(1) ≤ · · · ≤ Lt

ασ′(n) . Up to the

ambiguity in our choice of σ and σ′ one can assume σ′ = α−1σ , giving the result.
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(3) Associativity. We need to verify the diagram below commutes:

Cn(m) ×
(

Cn(j1) × PEC(n,M)j1 × · · · × Cn(jm) × PEC(n,M )jm

)

//

��

Cn(m) × PEC(n,M )m

��
Cn(j1 + · · · + jm) × PEC(n,M )j1+···+jm // PEC(n,M)

Given something in the top-left corner, consider what it maps to in the bottom-right
corner, going around both ways. Either way around the diagram, one gets a composite of
functions of the form Li.Li,p.fi,p , in some order. The difference in the order of composition
is irrelevant as our definition only allows functions to appear in different relative orders if
they have disjoint supports.

Proposition 4.8 Both the fibre-inclusion and projection maps in the fibration

EC(n,M ) → PEC(n,M) → EC(n − 1,M )

are maps of little n-cubes objects. The graphing map gr1 : ΩEC(n − 1,M ) → EC(n,M ) is a
map of (n + 1)-cubes object.

Proof The map PEC(n,M) → EC(n − 1,M ) is of course restriction to the {1} × Rn−1 × M
‘face’, followed by the natural identification with Rn−1 × M .

κj(L1, · · · , Lj , f1, · · · , fj) = Lσ(1).fσ(1) ◦ Lσ(2).fσ(2) ◦ · · · ◦ Lσ(j).fσ(j)

Once restricted to {1} × Rn−1 × M it becomes the composite

Lπ
σ(1).fσ(1)|{1}×Rn−1×M ◦ Lπ

σ(2).fσ(2)|{1}×Rn−1×M ◦ · · · ◦ Lπ
σ(j).fσ(j)|{1}×Rn−1×M

which is precisely
κj(L1, · · · , Lj , f1|{1}×Rn−1×M , · · · , fj|{1}×Rn−1×M ).

Consider the (n + 1)-cubes action on ΩEC(n − 1,M ). Given i little (n + 1)-cubes L =
(L1, · · · , Li) let Lα = (Lα

1 , · · · , Lα
i ) ∈ C1(1)

i be the projection on the 1st coordinate, and

let Lβ = (Lβ
1 , · · · , Lβ

i ) ∈ Cj(1)
i be their projections on the remaining n coordinates. The

(n + 1)-cubes action on ΩEC(n − 1,M ) is given by κ′ defined below:

κ′
i(L1, · · · , Li, f1, · · · , fi) := κi(L

β
1 , · · · , Lβ

i , Lα
1 .f1, · · · , Lα

i .fi) (1)

= Lβπ

σ(1).L
α
σ(1).fσ(1) ◦ Lβπ

σ(2).L
α
σ(2).fσ(2) ◦ · · · ◦ Lβπ

σ(i).L
α
σ(i).fσ(i) (2)

Lα
i .fi is the C1 -action on ΩEC(n − 1,M ) (reparametrisation in the loop-space coordinate) and

Lβ
i acts on this via the Cn -action on EC(n − 1,M ). σ ∈ Σi is any permutation such that

Lβt

σ(1) ≤ Lβt

σ(2) ≤ · · · ≤ Lβt

σ(i) .

Consider applying the map gr1 :

gr1 : ΩEC(n − 1,M ) 3 F 7−→ ((t0, t, v) 7−→ (t0, F (t0)(t, v))) ∈ EC(n,M)

Observe that gr1(L
βπ

σ(p).L
α
σ(p).fσ(p)) = Lπ

σ(p).gr1(fσ(p)) thus

gr1(κ
′
i(L1, · · · , Li, f1, · · · , fi)) = Lπ

σ(1).gr1(fσ(1)) ◦ Lπ
σ(2).gr1(fσ(2)) ◦ · · · ◦ Lπ

σ(i).gr1(fσ(i)) (3)

= κi(L1, · · · , Li, gr1(f1), · · · , gr1(fi)) (4)

since gr1 commutes with ◦.
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5 Survey

Much of this paper has been devoted to studying the map gr1 : ΩKn−1,j−1 → Kn,j and the
pseudoisotopy formalism for embedding spaces. This section is more survey in nature, mention-
ing what is known on the homotopy-type of the embedding spaces Kn,j and the properties of
natural maps into and out of these spaces, focusing largely on the issues most closely related to
iterated loop-space structures on these spaces and EC(j,Dn−j).

Proposition 5.1 is a generalisation of the classical theorem that an embedding of S 1 in S3

unknots in S4 . It is based loosely on the argument in Rolfsen’s textbook [63]. The argument
itself is likely much older.

Proposition 5.1 The natural inclusion Rn → Rn+1 induces an inclusion i : Kn,1 → Kn+1,1

which is null-homotopic.

Proof Two null-homotopies of i will be constructed, giving a map Kn,1 → ΩKn+1,1 .

Let jt : Kn,1 → Kn,1 for t ∈ I = [−1, 1] be defined as jt(f)(x) = f((1+t2)x−t3)+(t3,0,··· ,0)
1+t2

. j0 is
the identity, yet j1 consists of knots which are standard outside of [0, 1], and j−1 consists of
knots which are standard outside of [−1, 0].

Let b : R → R be a C∞ -smooth function with the properties that:

• b(x) = 0 for all |x| ≥ 1.

• b(x) = b(−x) for all x ∈ R.

• b′(x) > 0 for all −1 < x < 0.

Let B : R → Rn+1 satisfy B(x) = (x, 0, · · · , 0, b(x)). Let C : R → Rn+1 satisfy C(x) =
(x, 0, · · · , 0, 0).

Given f ∈ Kn,1 , consider the function F : I× R → Rn+1 defined as

Ft(x) =











i(j3t(f))(x) for |t| ∈ [0, 1
3 ], x ∈ R

(2 − 3|t|) i
(

j t
|t|

(f)
)

(x) + (3|t| − 1)B(x) for |t| ∈ [ 1
3 , 2

3 ], x ∈ R

(3 − 3|t|)B(x) + (3|t| − 2)C(x) for |t| ∈ [ 2
3 , 1], x ∈ R

F , restricted to either [0, 1] × R or [−1, 0] × R is a null-homotopy of i.

It is not known whether or not F : Kn,1 → ΩKn+1,1 is null-homotopic. The adjoint of F ,
ΣKn,1 → Kn+1,1 is the direct-analogue of the ‘Freudenthal suspension map for configuration
spaces’ [17] ΣCkRn → CkRn+1 which is known to induce an isomorphism on the 1st non-trivial
homology groups of the spaces provided n > 1. But in this case, first non-trivial homology
group of ΣKn,1 is in dimension 2n − 5, while for Kn+1,1 it is in dimension 2n − 4.

Using the same constructions, one can construct null-homotopies of the inclusions Kn,j → Kn+j,j

for all j > 0.

Question 5.2 • For each n and j , what is the smallest i such that inclusion Kn,j → Kn+i,j

is null-homotopic?

• Is F : ΣKn,1 → Kn+1,1 defined in Proposition 5.1 null-homotopic?
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• If the answer to the previous question is positive, then does F have two distinct null-
homotopies? Is there a ‘Freudenthal suspension map’ Σ2Kn,1 → Kn+1,1 inducing an
isomorphism of H2n−4Σ

2Kn,1 and H2n−4Kn+1,1?

There is a ‘fibrewise restriction’ map R : Kn,j → ΩKn,j−1 , thinking of Rj as R × Rj−1 . If
2n − 3j − 3 ≥ 0 this map is exactly (2n − 3j − 3)-connected, as the first non-trivial homotopy
groups of the two spaces are in different dimensions. These maps have been studied in some
detail by Morlet and Goodwillie. The ‘Morlet Disjunction Lemma’ (see for example [22], page 9)
is a theorem on the connectivity of this map in the context of arbitrary pseudoisotopy embedding
spaces.

Proposition 5.3 There is a homotopy-equivalence Kn,n → ΩKn,n−1 .

Proof There are homotopy-equivalences Kn,n ' EC(n, ∗) and Kn,n−1 ' EC(n − 1, I) given by
the fibrations in Proposition 2.4. Restriction to Rn−1 × I gives a map EC(n, ∗) → EC(n − 1, I)
which is homotopic to a fibration, whose fibre has the homotopy-type of EC(n, ∗)2 . The fibre-
inclusion map EC(n, ∗)2 → EC(n, ∗) is homotopic to multiplication in the group EC(n, ∗) (the
homotopy is constructed via the (n + 1)-cubes action on EC(n, ∗)). Thus, the homotopy fibre
of the map EC(n, ∗)2 → EC(n, ∗) is EC(n, ∗). By Lemma 2.3, this homotopy-fibre has the
homotopy-type of ΩEC(n − 1, I).

The above argument is a mild variant of Hatcher’s arguments where he gives various equiva-
lent statements of the Smale conjecture [29]. A way to look at the above proposition is that
studying the homotopy-type of the spaces Emb(Sn−1, Sn) and Diff(Sn) ultimately reduces to
studying the homotopy-types of the spaces Kn,n−1 and Kn,n . Since ΩKn,n−1 ' Kn,n , the
study of the homotopy-properties of these spaces is essentially identical modulo π0Kn,n−1 '
π0Emb(Sn−1, Sn). The next result compiles the major theorems on π0Kn,n−1 .

Theorem 5.4 • [51, 6] If f : Sn−1 → Sn is a smooth embedding, then f(Sn−1) bounds a
topological disc.

• [76] The disc Dn has a unique smooth structure for n ≥ 6.

• (Corollary of the above two results) If f : Sn−1 → Sn is a smooth embedding, then
f(Sn−1) bounds a smooth disc provided n ≥ 5. Thus, Emb(Sn−1, Sn)/Diff(Sn−1) is
connected. See [43] for a modern account of the results in Smale’s paper [76].

• For n ∈ {2, 3}, Emb(Sn−1, Sn) is known to be connected. For n = 2 this is the Schoenflies
theorem. See [71] for a historical account. For n = 3 it is the combination of Alexander’s
theorem [2], and Smale’s theorem [75].

• Whether or not Emb(S3, S4) is connected is called the smooth Schoenflies problem in
dimension 4. Scharlemann [70] and Poenaru [61] have some partial results on this problem.

Observe that an element of Emb(Sn−1, Sn) is isotopic to the standard inclusion if and only if it
extends to an embedding of Dn in Sn . The above observation that π0Emb(Sn−1, Sn)/Diff(Sn−1)
is connected for n ≥ 5 allows the extension of the long exact sequence from Theorem 2.1.

· · · → π1Kn−1,n−1 → π0Kn,n → π0Pn,n → π0Kn−1,n−1 → π0Kn,n−1 → 0
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Thus, for n ≥ 5 π0Kn,n−1 is isomorphic to the groups of homotopy n-spheres θn [43]. θn is
known to be finite, and many of these groups have been computed, for example θ5 = 0, θ6 = 0,
θ7 ' Z28 , θ8 ' Z2 , θ9 is known to have 8 elements, θ10 is known to have 6 elements, θ11 ' Z992 .

Theorem 5.5 [16] Pn,n is connected for n ≥ 6. So there is an isomorphism of groups
π0Diff(Dn−1) ' π0Emb(Sn−1, Sn) and an epimorphism π1Diff(Dn−1) → π0Diff(Dn).

A metric g on Sn is said to be round if for any points x, y ∈ Sn there is an isometry of g carrying
x to y which can also be chosen to send an orthonormal basis in TxSn to any orthonormal basis
in TyS

n . Let Mn denote the space of round Riemann metrics on Sn .

Proposition 5.6 [29] Mn has the same homotopy-type as Kn,n ' Diff(Dn).

Proof There is a fibration Mn → (0,∞) given by taking the volume of the metric. The
fibre of this map is a Diff+(Sn)-homogeneous space, with isotropy group SOn+1 . Theorem
2.1 tells us that Kn,n ' Diff(Dn) is also the base-space of such a homotopy-fibre sequence
SOn+1 → Diff+(Sn) → Diff(Dn).

Smale [75] and Hatcher [29] have proved that Diff(Dn) is contractible for n = 2 and n = 3
respectively. That Diff(D1) is contractible follows from an averaging argument, or equivalently
from the ‘length’ classification of connected closed 1-dimensional Riemann manifolds via Propo-
sition 5.6. The space of Riemann metrics on Sn is contractible since it is an affine space, making
the homotopy-type of Diff(Dn) the complete obstruction to Mn being a deformation-retract of
the space of all Riemann metrics on Sn .

Diff(Dn) is an (n + 1)-fold loop space [7, 56, 12] whose (n + 1)-fold delooping is PL(n)/On

[12, 56]. As of yet, their does not appear to be any direct methods of studying the homotopy-type
of PL(n). In particular, essentially nothing is known about the homotopy-type of Diff(D4).
Farrell and Hsiang computed the rational homotopy of Diff(Dn) in a range.

Theorem 5.7 [20] Provided 0 ≤ i < min{n−4
3 , n−7

2 }

πiDiff(Dn) ⊗ Q '

{

Q provided 4|(i + 1)
0 otherwise

The bound i < min{n−4
3 , n−7

2 } is known as Igusa’s stable range [36]. Roughly this the range
where πiPn,n can be related to K-theory. Antonelli, Burghelea and Khan had shown earlier that
H∗Diff(Dn) is not finitely-generated for n ≥ 7 [4].

The spaces Kn+2,n are in the realm of ‘traditional’ co-dimension 2 knot theory, on which there
is a plethora of literature. The majority of the literature focuses on issues related to isotopy
classification, ie: π0Kn+2,n . Some good general references are Kawauchi [37], Hillman [32],
Ranicki [62] and Kervaire-Weber [41].

The homotopy-type of K3,1 is described, component-by-component, as an iterated fibre bundle.

Theorem 5.8 [30, 31, 8, 11, 7] Given a long knot f ∈ K3,1 , let K3,1(f) denote the path
component in K3,1 containing f . Then K3,1(f) has the homotopy-type of:
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(1) {∗} if f is the unknot.

(2) S1 ×K3,1(g) if f is a cable of g .

(3) Cn(R2)×Σf

∏n
i=1 K3,1(fi) if f = f1# · · ·#fn is the prime decomposition of f , with n ≥ 2.

Σf is the subgroup of Σn corresponding to the partition of {1, 2, · · · , n} defined by the
equivalence relation i ∼ j if and only if K3,1(fi) = K3,1(fj).

(4) S1 ×
(

SO2 ×Af

∏n
i=1 K3,1(fi)

)

if f = (f1, · · · , fn)./L is hyperbolically-spliced. Here L is
some hyperbolic link L = (L0, L1, · · · , Ln) in S3 with the L0 component ‘long’. Define
BL to be the group of orientation-preserving hyperbolic isometries of S3 \L which extend
to L, preserving L0 and its orientation. BL → Diff(S3, L0) is a faithful representation,
giving an embedding of BL in Diff(L0) (thus conjugate to a subgroup of SO2 ). Similarly,
there is a homomorphism BL → π0Diff(L1 ∪ · · · ∪ Ln) ≡ Σ+

n the signed symmetric group
of {1, 2, · · · , n}. Σ+

n acts on Kn
3,1 by permutation of the factors and knot inversion. Let

Af be the subgroup of BL ⊂ Σ+
n that preserves

∏n
i=1 K3,1(fi).

Case (2) above is considered to apply to torus knots – think of a torus knot as a cable of the
unknot, thus the component of a torus knot has the homotopy-type of S1 . A hyperbolic knot
is thought of as a hyperbolically-spliced knot where L is a 1-component hyperbolic link, thus
such a component has the homotopy-type of S1 × S1 . Since every knot can be obtained from
the unknot by iterated cabling, connect-sum and hyperbolic splicing operations [11], the above
result describes the homotopy-type of K3,1(f) for any f ∈ K3,1 . To be clear, if the knot f has j
tori in the JSJ-decomposition of its complement, to obtain an answer for the homotopy-type of
K3,1(f), one would have to apply Theorem 5.8 j +1 times. A detailed justification for the above
theorem is given in the reference [8]. The homotopy-equivalence in part (3) of Theorem 5.8 is
induced by the action of the operad of 2-cubes on K3,1 . Another way to state (3) is that K3,1 is
a free 2-cubes object, with generating space P t {∗}, P ⊂ K3,1 the space of prime long knots.
By the work of May [49], the group-completion ΩBK3,1 of the knot space has a particularly
simple structure, ΩBK3,1 ' Ω2Σ2 (P t {∗}). Fred Cohen and the author have used these results
to compute the homology of many components of K3,1 [10]. In the process it became clear that
the homotopy-type and homology of K3,1 would likely have a more elegant description if one
could prove that K3,1 had an action of the operad of framed little 2-discs.

Question 5.9 Can one define an action of the operad of framed (n + 1)-discs on the spaces
ED(n,Dk), in a ‘natural geometric manner’ similar to Definition 4.3? ED(n,Dk) refers to the
comments preceding Definition 4.6.

The topic of π0K4,2 has a few new references. Carter and Saito have constructed an analogue
of Reidermeister theory [14]. Kamada has constructed an analogue of the Alexander-Markov
theorem from dimension 3 [38]. It is possible that there are other types of Alexander-Markov
theorems in dimension four. For example, at present not known if every element of π0K4,2 is
Litherland spun. As an additional advertisement for Litherland spinning, a statement of the
Zeeman-Litherland theorem is given.

Theorem 5.10 [88, 47] (Zeeman-Litherland Theorem) Let g ∈ ΩKn+2,n(f) be such that g̃ ∈
π0Diff(In+2, f) preserves a Seifert surface for f . Let G ∈ π0Diff(In+2, f) denote the Gramain
element (a meridional Dehn twist). If k ∈ Z \ {0} then the complement of gr1(G

kg) ∈ Kn+3,n+1

fibres over S1 .
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For n = 1 Litherland went on to identify the fibre in several cases. From a practical point of
view, the Zeeman-Litherland theorem is a useful tool for constructing embeddings of 3-manifolds
into S4 , as fibres of fibred knot complements [65]. The possible types of Litherland-spun knots
is parametrised by π0LK3,1 . By the results in [7, 8], the group π1K3,1(f) can be computed
directly from the JSJ-decomposition of Cf , perhaps allowing one to answer the questions:

Question 5.11 • Does every 2-knot in S4 have the Alexander polynomial of a Litherland-
spun knot?

• Is gr1 : π0LK3,1 → π0K4,2 onto?

Up to a homotopy-equivalence, the spaces ED(j,Dn−j) and EC(j,Dn−j) admit an action of the
operad of framed little (j + 1)-discs, provided n − j > 2. This is because they are (j + 1)-fold
loop spaces. This argument does not apply when n− j = 2 since π0EC(n,D2) is never a group.
This will be explained in the next proposition.

Proposition 5.12 • π0Kn+2,n is not a group for all n ≥ 1.

• The map π0Kn+1,n → π0Kn+2,n induced by inclusion Rn+1 → Rn+2 is injective and maps
onto the maximal subgroup of π0Kn+2,n provided n ≥ 4.

Proof To prove the first point, non-invertible elements are constructed. Start with f1 ∈ K3,1

a trefoil knot. Then π1Cf is the braid group on 3 strands. Let g1 = 0 ∈ π1K3,1(f1) be the
constant loop, and observe that the complement of f2 = gr1(g1) ∈ K4,2 also has the braid
group on 3 strands as its fundamental group. Continuing, this constructs for all n ≥ 1 a knot
fn ∈ Kn+2,n whose complement has the braid group on 3 strands as its fundamental group. fn is
non-invertible in the monoid π0Kn+2,n by Proposition 2.3.4 of [86]. This is because if h ∈ Kn+2,n

then the complement of the connect-sum fn#h, Cfn#h has the homotopy-type of the union of
Cfn

and Ch where Cfn
and Ch intersect along a meridional circle, so by the canonical form for

amalgamated free products, π1Cfn#h contains π1Cfn
.

By the above argument, if f ∈ π0Kn+2,n is invertible, π1Cf ' Z. By a Mayer-Vietoris sequence
argument, HiCf = 0 for all i > 1. Thus, Cf has the homotopy-type of a circle. By Levigne’s
unknotting theorem [46] (provided n ≥ 4) or Wall’s unknotting theorem [82] (for n = 3), f is
in the image of π0Kn+1,n .

The last item to prove is that the map π0Kn+1,n → π0Kn+2,n is injective. Consider Sn ⊂ Sn+1 ⊂
Sn+2 . Let f : Sn → Sn+2 be an embedding with f(Sn) = Sn . By Theorem 2.1 we could
equivalently prove that if f extends to an embedding F : Dn+1 → Sn+2 , then there is another
extension of f , F ′ : Dn+1 → Sn+1 . Identify the complement of an open tubular neighbourhood
of Sn in Sn+2 with S1 × Dn+1 . Thus, F , if it exists, is an embedding F : Dn+1 → S1 × Dn+1

such that F (∂Dn+1) = {1}×∂Dn+1 . By Farrell’s proof of the relative Browder-Livesay-Leving-
Farrell fibration theorem [21], there is a diffeomorphism G : S1 ×Dn+1 → S1 ×Dn+1 such that
G(F (Dn+1)) = {1} × Dn+1 and G|S1×∂Dn+1 is the identity on S1 × ∂Dn+1 . Farrell’s theorem
requires n ≥ 4.

I would like to thank Larry Siebenmann for suggesting the Browder-Livesay-Leving-Farrell fi-
bration theorem.
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The above proposition implies that EC(n,D2) is not a free (n + 1)-cubes object provided there
exists exotic (n + 1)-spheres, so no direct analogue of [7] is true in high dimensions. Of course,
EC(1, D2) is not a free object, either, as it splits as a product of Z with the free object K3,1 . One
might hope that for n > 1, EC(n,D2) ' Kn+2,n is closely related to a free (n+1)-cubes object,
but there are yet further obstructions. Provided n ≥ 3, π0Kn+2,n/π0Kn+1,n (this is the isotopy
classes of the images of the elements of Kn+2,n ) is not a free commutative monoid. Kearton
proved this in the n = 3 case, which has since been generalised to all n ≥ 3. Bayer-Fluckiger
went on to prove the non-existence of a ‘cancellation law’ ie: one can satisfy a + b = a + c with
b 6= c. See Kearton’s survey [39] for details.

Question 5.13 • What is the group-completion of the monoid π0Kn+2,n?

• Can one characterise the monoid structure on π0Kn+2,n for n ≥ 2?

• If f ∈ Kn+2,n is a connect-sum of two non-trivial knots, the action of the operad of
(n + 1)-cubes on Kn+2,n gives a map Sn → Kn+2,n(f). Is this map a non-trivial element
of πnKn+2,n(f)?

The remainder of the survey will focus on the high co-dimension case: Kn,j for n − j > 2. For
references, Adachi’s survey has been around for a few years [1]. It focuses on topics such as the
Whitney trick, and the Smale-Hirsch immersion theorem. Skopenkov has a recent survey article
[74] which is concerned with π0Kn,j . Goodwillie, Klein and Weiss have recently put put together
a survey of what is known about embedding spaces from the point of view of disjunction [23].

There have been computations of some of the groups π0Kn,j . From Proposition 3.9, the first
non-trivial homotopy-group of Kn,j is in dimension 2n − 3j − 3 (provided 2n − 3j − 3 ≥ 0).
Along the 2n − 3j − 3 = 0 line there is π0K3,1 which is the free commutative monoid on π0P ,
the isotopy-classes of prime long knots [68]. Provided j > 1 and 2n − 3j − 3 = 0, there are
Haefliger’s computations [27]:

π0Kn,j '

{

Z j ≡ 3(mod 4)
Z2 j ≡ 1(mod 4)

The generator being Haefliger’s Borromean rings construction [26], also sometimes called the
‘trefoil’ [74]. The generator has also been described (Theorem 3.13) as an iterated graphing
construction applied to r , the resolution of an immersion of R in Euclidean space, corresponding
to the

⊗

chord-diagram. More recently, another spinning construction involving r has recently
been developed by Roseman and Takase [64].

The work of Haefliger [27], Milgram [53], Kreck and Skopenkov [44] gives π0Kn,j along the
n − j > 2 part of the 2n − 3j − 3 = −1 line. Their computations are:

π0Kn,j '















0 j ≡ 2 or 6(mod 4)
Z12 (n, j) = (7, 4)
Z4 j ≡ 4(mod 8), j ≥ 12
Z2 ⊕ Z2 j ≡ 0(mod 8)

The above results give the next corollary as a direct analogue to Theorem 3.9.

Corollary 5.14 • π6nK3n+4,2 is non-trivial and has Z2 ⊕ Z2 as a quotient for all n ≥ 1.

• π6n+2K3n+5,2 is non-trivial and has Z4 as a quotient for all n ≥ 0 (Z12 for n = 0).
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Question 5.15 What is the structure of the groups π2K5,2 and π6K7,2 . Further, find explicit
geometric representatives for the embeddings, in analogy to Theorem 3.13.

The technique of Haefliger [27] involves two main steps. The first step is the construction of an
isomorphism π0Kn,j ' Cn−j

j where Cn−j
j is the group of concordance classes of embeddings of

Sj in Sn . This step is formally analogous to Proposition 3.1. Using a Thom-type construction,
Haefliger constructs an isomorphism between Cn−j

j and a multi-relative homotopy group Cn
j '

πj+1(G;SO,Gn−j) where SO = lim
−→

(SO1 → SO2 → SO3 → · · · ) is the stable special-orthogonal

group, Gn is the space of degree 1 self-maps of Sn−1 , with G the analogous stable object, defined
via suspensions G = lim

−→
(G1 → G2 → G3 → · · · ). This reduces the computation of π0Kn,j to

rather traditional difficult problems common to surgery theory [62]: homotopy groups of spheres
and orthogonal groups.

Takase [77] has recently proved that any embedding of S4k−1 → S6k can be extended to an
embedding of (S2k × S2k) \ D4k → S6k . Takase gives a rather explicit formula for determining
the isotopy class of an element of Emb(S4k−1, S6k) that simplifies Haefliger’s characteristic class
computations [26].

The work of Volic, Lambrechts and Turchin [45] gives the homology H∗(Kn,1; Q) for n ≥ 4 as
the homology of a differential graded algebra, by showing the collapse of the rational Vassiliev
spectral sequence. Turchin has found a Poisson algebra structure for this DGA [79, 78], which
motivated the author’s construction of the 2-cubes action on K3,1 . Salvatore [67], building
on the work of Sinha [73] has recently constructed a 2-cubes action on Kn,1 for n ≥ 4. The
structure of Kn,1 and EC(1, Dn−1) as 2-cubes objects for n ≥ 4 remains mysterious. One would
hope that constructions having the flavour of Mostovoy’s [57] ‘short rope’ spaces, or Anderson
and Hsiang’s ‘bounded embedding spaces’ [3] could give useful geometric models that one could
use to get homotopy-theoretic information on BjKn,j , B2Kn,1 , Bj+1EC(j,M ). Not only is
there a lack of proofs that these spaces are the appropriate iterated classifying spaces, but, even
if they were, its not clear how one could use such results to study the spaces Kn,j .
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[19] T. Ekholm, A. Szücs, Geometric formulas for Smale invariants of codimension two immersions,
Topology 42 (2003) 171–196.

[20] F. Farrell, W. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs,
spheres and aspherical manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math.,
Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, Amer. Math.
Soc, Providence, R.I., 1978, pp. 325–337.

[21] F. Farrell, The obstruction to fibering a manifold over a circle, Actes du Congès International des
Mathématiciens (Nice, 1970), Tome 2, 69–72.

[22] T. Goodwillie, A multiple disjunction lemma for smooth concordance embeddings, Memoirs of the
American Mathematical Society 86 no 431 (1990).

[23] T. Goodwillie, J. Klein, M. Weiss, Spaces of smooth embeddings, disjunction, and surgery, Annals
of Math. Studies 149, Surveys on surgery theory (vol. 2), 2000, ed. A. Ranicki, and J. Rosenberg,
221-283.

[24] D. Gromoll, Differenzierbare strukturen und metriken positiver krümmung auf sphären, Math.
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