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Introduction 

To each isolated hypersurface singularity 

f : (Ek,~) + (~,O) , k = 3(4) , is associated an even lattice, 

which is the homology group of the Milnor fibre in dimension 

k-1 provided with the symmetric intersection form. This lat-

tice will be called Milnor lattice. One of the possible ques-

tions related to this lattice is the following: Which lattices 

occur as Milnor lattices of hypersurface singularities? One 

of the coarse invariants of the lattice is the signature 

is the number of zeros, 

positive terms resp. negative terms on the diagonal after a 

diagonalization of the quadratic form over the real numbers. 

Then for certain values of (po'P+) the answer to the above 

question is wellknown: For p+ = 0 these are the root lattices 

of type An ,Dn ,E6 ,E7 and Ee (po = 0), and the orthogonal 

direct sum of E6 ,E7 resp. Ee with a two-dimensional radical 

(llo ;::: 2) • For po+ = 1 these are the lattices defined by the 

graph T(p,q,r) , 1/p+ 1/q+ 1/r < 1 (cf. Fig. 2) plus a one-

dimensional radical (here }.1 = 
0 

1 ) • So the "first" open case 

is II = 2 + , II = 0 
0 

. If we restrict to the case k = 3 , then 

the hypersurface singularities with Po + P+ = 2 are pre-

cisely the (minimally) elliptic hypersurface singularities 

studied and classified by Laufer (16) {cf. § 4). In this arti-

cle we compute the Milnor lattices of these singularities and 

we calculate Dynkin diagrams of these singularities with 

respect to geometric bases. We use these results to give an 

arith~tic-combinatorial characterization of the occuring lattices. 

The elliptic hypersurface singularities, which will be ab­

breviated EHS in the sequel, contain in particular all uni-
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and bimodal singularites. These are precisely the hypersurface 

singularities in the class of Kodaira singularities. The Ko­

daira singularities are normal surface singularites of arbitra­

ry embedding dimension, characterized by the resolution being 

a Kodaira elliptic curve fitting into Kodaira's classification, 

disregarding the embedding. These were studied in a joint paper 

with C.T.C. Wall l111. The present paper can be considered as 

a sequel to this article. We computed in that paper the Milnor 

lattices of all Kodaira singularities of embedding dimension 

ebd < 5 'and gave a characterization of the occuring lattices. 

One of the purposes of this paper is to extend as far as pos­

sible the results on Milnor lattices of that paper to the 

larger and very natural class of elliptic Gorenstein singulari­

ties. The elliptic complete intersections were classified and 

equations for them given by C.T.C. Wall. This will be published 

elsewhere. Since the tables needed for the classification of 

the occuring lattices are already lengthy for the hypersurface 

case, and the enumeration of elliptic complete intersections 

(not to think of the case ebd = 5 ) involves a lot of cases, an 

analogous study of the Milnor lattices would be laborious. We 

also believe that an extension of our results to the case ebd < 5 

would be analogous. Therefore we restrict ourselves here to 

the hypersurface case. We adopt the notation of the above paper 

and refer to it for all information on the uni- and bimodal 

singularities, and we concentrate ourselves here on the remain­

ing EHS • 

The paper is organized as follows. In the first section 

we introduce the EHS and enumerate their dual graphs. In 

the second section we consider equations of the EBB. In the 
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third section we compute Dynkin diagrams with respect to dis­

tinguished bases. These are used to determine the lattice 

structure of the Milnor lattices in § 4 • It turns out that 

there are many strange connections between the Milnor lattices 

of Kodaira singularities with ebd ~ 5 and EHS • In § 5 

we present an algorithmic characterization of the occuring 

lattices, which is an extension of the corresponding charac­

terization in (11J • We conclude in § 6 by giving examples 

that the restriction to the case k = 3 is a-real restriction 

concerning our original question: There exist singularities 

of corank 4 with (~o'~+) = (0,2) • 
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S 1 The Elliptic Hypersurface Singularities 

Let x be a normal singularity of the two-dimensional 

complex space X and let 11' : M ~ X be the minimal resolu-

tion. The geometric genus h of X is the dimension of the 

complex vector space 1 
H (M,~) , where c.?M is the sheaf of 

holomorphic functions on M. A singularity (X,x) is called 

Gorenstein , if there exists a neighbourhood U of x in X I 

and a nonvanishing holomorphic 2-form on U - {xl • Examples -
of Gorenstein singularities are isolated bypersurface singu-

larities, i.e. x = f-'1 CO) for a function 3 f : a: ... a: I or 

more generally isolated complete intersection singularities, 

i.e. X = F-1 (0) for a mapping F : a:2+ 1 ... a: l • 

If h = 0 , the singularity is called rational. These 

singulari tes were studied by many people, e. g. by Du Val [T]. 

The Gorenstein rational singularities are precisely the rational 

double points, i.e. the rational hypersurface singularities 

of corank 2 • They can be characterized in many different ways, 

see Durfee [6 ]. 

If h = 1 , the singularity is called elliptic. The ellip­

tic Gorenstein singularities were studied by Laufer l16J and 

Reid [21]. They are precisely the minimally elliptic singulari­

ties of Laufer [16j. They have arbitary large embedding dimen-

sion, and .the embedding dimension can be computed as follows. 

-1 V Let E = 11' (x) be the exceptional set of M and E = . c. 
1. 1. 

its decomposition into irreducible components. The fundamental 

cycle Z = E Z.C. 
i 1. 1. 

is the unique minimal positive cycle z 

with Z ·c. < 0 for all i. We call the number D:= -z . Z 
1. -

the grade of the singularity. It is shown in [16J and l21] that 
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(a) the multiplicity of the singularity is max(D,2} 

(b) its embedding dimension is max(D,3) • 

Thus the elliptic hypersurface singularities (EHS) are pre-

cisely the elliptic Gorenstein singularities with D < 3 • For 

D < 2 they have corank 2 and for D = 3 they have corank 3 • 

The resolutions of the EHS have been classified by Laufer 

[16) and Reid [21]. We enumerate the possible types. 

We distinguish between 4 types of EHS. The fundamental 

cycle Z is called almost reduced , if z. = 1 
l. 

except for 

nonsingular rational Ci , Ci ' Ci = -2 • The EHS of t~pe 1 are 

those with reduced fundamental cycle, i.e. z. = 1 
~ 

for all i • 

The ERS of type 2 are those with an almost reduced but not re­

duced fundamental cycle. The exceptional set E is in both 

cases a Kodaira ellipt~c curve, i.e. an exceptional fibre of 

a pencil of elliptic curves, imbedded in a certain way. For 

the ERS of type 1 it is of type In(n ~ 0), II, III or IV 

in Kodaira's classification, for type 2 it is of type 

II*, III* or IV*. See [11] for more details. 

The EHS of t~Ee 3 are those with a nonsingular rational 

component Co with z = 2 and C . C = -3 . Here the grade 
0 0 0 

D takes the values 2 and 3 . The exceptional sets look as 

follows. All components are rational and nonsingular, E has 

only .. normal crossings, and no two components meet more than 

once. So the resolutions can be described by the corresponding 

weighted dual graphs. We list the weighted dual graphs accor~ 

ding to Laufer's classification. We use the following notation: 

To a component with normal degree -b we associate a vertex 
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We abbreviate 

• = *2 , 

We give Laufer's notation for the dual graph, where we extend 

the definition of A 
n,**,o 

to the case n = 0 for simplicity, 

setting 

A = A + A 0,**,0 *,0 *,0 

in this case. So n,m ~ 0 always. The condition D < 3 yields 

the following restrictions for the possible numbers b i > 2 : 

b 2 
* 

t 1 .. .. . ~ 
3 n+1 

* • 
b 1 

• • I 

* • • 
b 1 

• 

• 

• 

f 

b 1 
* 

Q 

y 
n+1 

I 

• 

• 

• 

• 

• 

• 

E(b.-2) < 1 
i 1. 

b 4 
* 
L ts , 

Ym+1 

0 • , 

Q • y 
n+1 

* 
b'} 

A + A + A 
*,0 n,**,o m,**t o 

A' + A 
3,**,0 n,**,o 

D + A 5,*,0 n,**,o 

=<b1 
E +A 

7,0 n,**,o 
*b 

2 

AI +A 
5,**,0 *,0 
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~1 • • • • I • o--~ D + A*,O 
2 7,*,0 

~1 • • • 1 • • • ~2 
At 

7,**,0 

~-1--··----·----·----·----·----·---I----.----o D 9,*,0 

Finally the EHS of type 4 are those with a nonsingular 

rational Co with Zo == 3 and Co' Co = -3 • They all have 

grade D == 3 • What is stated about the exceptional sets in 

the previous case, is also true in this case. So the resolutions 

can again be described by the weighted dual graphs, and we 

again list these graphs with the above conventions. Here all 

numbers b. have to be 2. 
~ 

*0 
3 

• 

A +A +A +A 
1,*,0 1,*,0 1,*,0 1,*,0 
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<* 
b 1 

• • I • • E + A + A 6,0 1,*,0 1,*,0 

* b 2 

~1 • • • • I 0 • ~2 A 7,*,0 + A 1,*,0 

A + A 4,*,0 4,*,0 

*' • • • • • • 6 • • • A 
b1 10,*,0 

• • I • • 0 I • • ~1 E + A 6,0 4,*,0 

•• ~-4 • .---I~--~.~--. __ ~()~--~.~~. __ --4I~~.~--•• E + E 6,0 6,0 

In general the above weighted dual graphs do not completely 

determine the associated singularity. We refer to [16] for the 

numbers of moduli of the deformations of t-ht' n~!;() 1 utions. 
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S 2 Eguations 

Equations for the EHS have already been given by Laufer 

[161- In Table 1 we have listed representatives of the func-

tions which do not in any case agree with Laufer's, but are 

right equivalent to Laufer's functions. The functions are chosen 

to be appropriate for the computation of distinguished bases, 

cf. § 3 • 

We compare the classification of ERS with Arnold's classi-

fication «(4]). 

The ERS of type 1 are precisely the unimodal singularities, 

the ERS of type 2 the bimodal. For corank 2 these singularities 

have a nonzero 4-jet and for corank 3 the 3-jet defines a re-

duced plane cubic curve. 

For D = 2 I the ERS of type 3 have corank 2 , zero 4-jet 

and nonzero 5-jet and thus belong to the class N in Arnold's 

notation. For D = 3 they have corank 3 and their 3-jet is of 

the form x 2y . Therefore they belong to the series V • Rere 

the repeated line x = 0 gives the component Co of the ex­

ceptional set. 

The ERS of type 4 have co rank 3 and 3-jet x 3 . Therefore 

they belong to the series VI • Again the rGpeated line x 

gives the component Co 

Denote by m the number of moduli of the function f with 

respect to right equivalence. By Arnold (4) one has: For an ERS 

of type 1 , m > 1 . We conjecture that we have in fact an equa-

lity ~n all cases. For all ERS of corank 2 it can be checked 

by the method of Arnold-Kushnirenko (cf.(4, p.20J). For the 
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quasihomogeneous EHS the type number equals the inner modality 

(cf. also [25]). The inner modality is also equal to the number of 

moduli of the deformations of the resolutions given by Laufer l16] 

in the quasihomogeneous case. 

We look at the EHS of type 3 and 4 more closely. To each 

EHS belonging to the V - series is associated an EHS belong-

ing to the N - series b¥ the process of A - reduction de­x 

fined by C.T.C. Wall (cf. [23] for the following). Let 

f(x,y,z) = 0 be the equation of an EHS belonging to the V-

series. One can write f in the form 

f(x,y,z} = x 2y + 2Xb(z) + c(y,z) 

with ord b > 3 , ord c ~ 4 • Then the discriminant 

defines an EHS belonging to the N - series. Moreover the re-

solution graphs differ only by the selfintersection number of 

one component. The Milnor numbers satisfy ~(6xf) = 1 + p (f) • 

In general up to two different singularities of the V - series 

can give the same of the series N. The singularities of the 

series N with a nonzero 5-jet were classified by Wall. The 

equivalence of names of Laufer and Wall is given in Table 1 • 

For a notation for the singularities of the series V we 

follow Wall by prefixing V (resp. v*) to the name of 

to obtain a name for f. For the equivalence of names we 

A f x 

again refer to Table 1 . We shall use these names in the se-

quel, where we abbreviate 

NA = NA1 n,m n,m , NBn NB1,n 
(-1) =< 0(-1) etc. 
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There is no similar notation for the eight EHS of type 4 • 

We therefore denote these singularities by V(i) , 1 < i < 8 I 

where the equivalence of names is again given in Table 1 

There are 15 quasihomogeneous singularities among the EHS 

of type 3 and 4 • We give the weights 

these singularities in Table 2 • 

w. 
~ 

and degrees d of 



Table 1 

Dual Graph 

A +A +A +A +A *,0 *,0 *,0 *,0 *,0 

A +A +A +A *,0 n,**,o *,0 *,0 
A +A +A 
*,0 n,**,o m,**,o 

At +A +A 
3,**,0 *,0 *,0 

A' +A 3,**,0 n,**,o 

D +A +A 5,*,0 .,0 .,0 

D +A 5,*,0 n,**,o 

E +A +A 7,0 .,0 *,0 

E7 ,O+An ,··,0 

At +A 5,**,0 *,0 

D +A 
7,.,0 .,0 

At 
7,**,0 

D9 ,.,O 

A +A +A +A +A .,0 .,0 .,0 .,0 .,0 

A +A +A +A *,e n,**,o *,0 *,0 

Normal de­
grees b i 

2,2,2,2,2 

2,2,2,2,2 

2,2,2,2,2 

2,2,2,2 

2,2,2,2 

2,2,2 

2,2,2 

2,2 

2,2 

2,2,2 

2,2 

2,2 

2 

2,2,2,2,3 

2,2,2,2,3 

Notation 

1 
NAO,O 

1 
NA a n, 

1 
NA m n, 

1 
NBO(_l) 

1,n 
NBO (-i) 

1 
NBO(O) 

l,n 
NBO(O) 

1 
NBOO ) 

l,n 
NBO(l) 

1 
Ne(O) 

1 
NCO) 

1 
NF (0) 

1 
NF (1) 

1 
WAO,O 

1 
VNAn,O 

Equation 

5 5 
x +z 

3 3 2 n+2 
(x -z ) (x +z ) 

2 n+2 2 m+2 
(2x-z)«x-z) +x ) (x +(x-z) ) 

2 2 3 4 
(x -z )(x -z ) 

2 n+2 3 4 «x-z) +x ) (x + (x-z) ) 

223 3 
(x -z ) (x -xz ) 

2 n+2 3 3 
«x-z) +x ) ex +x(x-z) ) 

2 2 3 5 (x -z }(x -z ) 
2 n+2 3 5 

«x-z) +x ) ex +(x-z) ) 

4 5 (x-z) (x +(x-z) ) 

4 4 
(x-z)(x +x(x-z) ) 

5 6 x +z 

5 5 
x +xz 

2 4 4 
yx +y +z 

2 4 522 3 b a 
yx +y -zy z -yz +x z 

2a+3b-n+8 

Numbers M
j 

4,4,4,4 

4+n,4,4,4 

4+m,4,4,4+n 

4,5,5,4 

4+n,5,4,5 

4,6,5,4 

4+n,6,4,S 

4,6,6,4 

4+n,6,4,6 

4,5,5,5 

4,5,5,6 

5,5,5,5 

5,5,5,6 

3,3,3,3,3 

l,3,3,3+1,3+j 

i+j-n 

..... 
I\J 



Table 1 (continued) 

Dual Graph 

A +A +A 
.,0 n,**,o m, •• ,o 

A +A +A +A .,0 .,0 .,0 m, •• ,o 

A +A +A 
.,0 n,**,o m,**,o 

At +A +A 
3,*.,0 *,0 .,0 

At +A 
3,.*,0 n, •• ,o 

AI +A +A 
3,*.,0 *,0 *,0 

At +A 
3, •• ,0 n,.*,o 

D +A +A 
5,.,0 .,0 *,0 

D +A 
5,.,0 n,**,o 

D +A +A 5,.,0 .,0 .,0 

D +A 5,.,0 n,**,o 

E +11. +11. 7,0 *,0 *,0 

E +11. 
7,0 n,**,o 

Normal de­
grees b

i 

2,2,2,2,3 

2,2,2,2,3 

3,2,2,2,2 

2,2,2,3 

2,2,2,3 

3,2,2,2 

3,2,2,2 

2,2,3 

2,2,3 

3,2,2 

3,2,2 

2,3 

2,3 

Notation 

VNA
1 
n,m 

1 
VNAo,m 

*' 1 V NAn,m 
1 

VNBO (_l) 

1,n 
VNBO (_l) 

~ 1 
V NBO (_l) 

1,n 
vi*NBO(_l) 

1 
VNBO(O) 

l,n 
VNBO(O) 

#. 1 
V NEO{O) 

l,n 
V~BO(O) 

1 
VNEO (1} 

l,n 
VNBO (1) 

Equation Numbers M
j 

yx +(y-2z)y+(y-2z) y +y +x (y-2z) 3+m,3,3,3+i,3+j 2 3 2 2 m+4 b l 
2a+3b=n+8 i+j-n 

2 1 4 1 2 2 m+4 
yx ~(y-z) --(y-z) y +y 4 2 

2 2 2 n+4 m+4 
(2y-z)x +(y-z) y +(y-z) +y 

2 4 3 5 
yx +(y-z) +(y-z) y-y 

2 3 a b 5 
yx +(y-z) y+(y-z) x -y 

2a+3b=n+8 

2 422 3 
yx +y -y z -xz 

2 2 2 n+4 3 
yx +(y+z) y +y +x(y+z) 

243 4 
yx +(y-z) +(y-z) y-(y-z)y 

2 3 4 a b 
yx +(y-z) y-(y-z)y +(y-z) x 

2a+3b=n+8 

2 1 4 225 
yx ~ +(y-z) y -(y-z) 

2 2 2 n+4 5 yx +(y-z) y +y -(y-z) 

2 436 
yx +(y-z) +(y-z) y-y 

2 3 a b 6 
yx +(y-z) y+(y-z) x -y 

2a+3b=n+8 

3+m,3,3,3,3 

3+n,3+m,3,3,3 

4,3,4,3,3 

4,3,4,3+i,3+j 

i+j-n 

3,4,3,3,4 

3+n,4,3,3,4 

5,3,4,3,3 

5,3,4,3+i,3+j 

i+j=n 

3,4,3,4,4 

3+n,4,3,4,4 

5,3,5,3,3 

5,3,5,3+i,3+j 

i+j=n 

.... 
w 



Table 1 (continued) 

Dual Graph 

AI +A 
5,**,0 *,0 

AI +A 
5,* *,0 *,0 

D +A 7,*,0 *,0 

D +A 
7,*.0 *,0 

A' 
7,**,0 

D 
9,*,0 

A +A +A +A 
1,.,0 1,*,0 1,*,0 1,*,0 

A +A +A 
4,.,0 1,*,0 1,*,0 

E +A +A 
6,0 1,*,0 1,.,0 

A +A 
7,.,0 1,.,0 

A +A 4,.,0 4,.,0 

A 10,.,0 

E +A 
6,0 4,*,0 

E +E 
6,0 6,0 

Normal de­
gree b

i 

2,2,3 

3,2,2 

2,3 

3,2 

2,3 

3 

2,2,2,2 

2,2,2 

2,2 

2,2 

2,2 

2 

2 

Notation 

1 
VNC(O) 

#: 1 
V NC CO ) 

1 
VNC( 1) 

1 hcel ) 
1 

VNF(O) 

1 
VNF (l) 

V(1) 

V(2) 

V(3) 

V(4) 

V'S) 

V(6 ) 

V(7) 

V'S) 

Equation 

245 yx +(y-z) +y 

233 yx +(y-z)y +(y-z) x 

244 
yx +(y-z) +(y-z)y 

235 yx +(y-z)y +(y-z) 

243 yx +y +xz 

245 yx +y +z 

344 x +y +z 

3 4 2 2 3 x +y -z y -z x 

3 422 5 
x +y -z y +z 

3 3 3 x +y(y+z) +xy 

32233 
x +(y-z) y -(y-z) x+xy 

343 x +y -xz 

32235 x +(y+z) y +xy +(y+z) 

32255 x +(y-z) y -(y-z) +y 

Numbers M
j 

4,4,4,3,3 

3,4,4,3,4 

5,4,4,3,3 

3,4,4,4,4 

4,4,4,3,4 

4,4,4,4,4 

3,3,3,3,3,3 

3,3,3,3,4,3 

3,3,3,3,4,4 

3,4,~,3,4,3 

4,4,3,3,3,3 

4,4,3,3,4,3 

4,4,3,4,3,3 

4,4,4,4,3,3 

.... .. 
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Table 2 

a) Type 3 

Sing. w1 w2 w3 d Sing. w1 w2 w3 d 

NAO,o 2 2 5 10 VNAo,o 2 2 3 8 

NC{O} 4 5 12 24 VNC(O} 4 5 8 20 

NC(1 ) 6 8 19 38 ~NC(O) 4 5 7 19 

NF(O) 5 6 15 30 VNC(1) 6 8 13 32 

NF(1) 8 10 25 50 :tt: 
V NC(1) 6 8 11 30 

VNF(O) 5 6 9 24 

VNF(1) 8 10 15 40 

b) :!ype 4 

Sing. w1 w2 w3 d 

Vb) 3 3 4 12 

V(4) 6 7 9 27 

V(6) 8 9 12 36 
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S 3 Geometric Bases 

Let 3 f : (IC ,0) .. (IC,O) be the germ of an analytic func-

tion with an isolated singularity at O. Let Be denote an 

open ball of radius e: in 1t3 around O. Then for sufficient-

ly small e: »6 » 0 

is the Milnor fibre of f [18]. The homology group 

provided with the symmetric intersection form < , > is 

called the Milnor lattice of f. It is an even lattice of 

rank ~ • In a geometric way one can define certain special 

classes of bases of H: the distinguished and weakly distin­

guished bases of vanishing cycles (cf. e.g. [10]). A method 

for computing the intersection matrix corresponding to a dis-

tinguished basis of vanishing cycles is given by Gabrielov l131. 

Intersection matrices for the uni- and bimodal singularities 

were already calculated by Gabrielov. We apply his method to 

compute intersection matrices for the other EHS. For that pur-

pose one has to look at generic hyperplane sections z = 0 for a 

linear function z : ct
3 .. It • For the uni- and bimodal singu-

I 
larities one can choose z such that flz=o has a singularity 

of type A2 ,A3 or D4 . For the other EHS one can choose z 

as follows: 

Type/Series Singularity of flz=o 

Type 3: N A4 

V DS 

Type 4: V' E6 
- ....... ~- - -------
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We have the following result: 

Theorem 3.1 

For each EHS there exists a distinguished basis of vanish-

ing cycles {e . j' 1 < j _< 11' I 1 < rn < !-l.} , where the numbers 
_mJ - to' - - J 

Mj are exhibited in Table 1 , withfue following intersection 

matrix. Here {e.J is ordered by the lexicographic order of 
-rnJ 

the pairs (m,j) • 

(i) The Dynkin diagram corresponding to the intersection matrix 

of {e1 . 11 < j < lIl} is shown in Fig. 1 • It is a Dynkin .... ] - -,... 

diagram with respect to a distinguished basis of fl z=O 
suitable z. 

(ii) We have the following relations: 

<e . ,e . I> = _mJ _mJ 

<e .,e I'> = .... mJ -m J 

<!:1 j '!:1 j'> I 

1 for \m'-m\ = 

<!:mj/~mljl> = -<21j/~1j'> for 

1 I 

I m t -mj = 1 I (m' -m) {j 1_ j} < 0 4 

for 

<e .,e 1'1>= 0 for I ml-m! > 1 or (ml-m) (j l_j) > 0 • 
.... mJ .... m J 

a) 

b) 

c) 

• • • 
1 3 2 

1 3 

1ISI2I5 
: , , 

" , " , 
3 6 4 

• 
4 

5 

Fig.1: Dynkin diagrams of flz=o for elliptic f belonging to 

the series a) Nib} V c) VI • 
,.... ..., #'oJ 
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Remarks on the proof of Theorem 3.1 

Let rz(f) be the polar curve of f with respect to z, 

i.e. the set of critical points of the mapping (z,f):«J _ «2 , 

and let r (f) = V r i be the decomposition of rz(f) into 
Z i 

irreducible components. Let a i be the exponent of the first 

term in the Puiseux expansion of the plane curve Ii' which 

is the image of r i under the mapping (z,f):~J + «2 , and 

where we take (z,f) as coordinates. In order to compute an 

intersection matrix of f ,one has to compute the numbers (J. , 
.1. 

the distribution of the critical points of f I on the com-I z=£ 
ponents r i of the polar curve and an intersection matrix of 

a distinguished basis of vanishing cycles of flz=o satis­

fying certain conditions, in particular the condition that 

the cycles must vanish in the critical points of flz=E. 

A convenient way of calculating the decomposition of ~ 

into irreducible components and the numbers a . 
.1. 

is by computing 

the beginning terms of the generalized Puiseux expansions 

following Maurer [17J. Let us assume that no component of r (f) 
z 

lies in a coordinate hyperplane. Otherwise one can do the same 

with fewer variables. In almost all cases the first step is 

sufficient for the further calculations. For simplicity we treat 

here this case, the general case is analogous. The first step 

gives a "first approximation" of a parametrization of an ir-

reducible component r i as follows 

(i) 

x = wa1 (a(i) + u) 
1 

(il 

Y = 
a i i. (i) 

; ;) ~lt fa.,q ::: 

ti) ~2 
a'· , 

~ w ~ 



with 
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a(~) E <C'\.{O} • The critical points of 
] 

flzAE are given by replacing z=£ in these equations. In 

most of the cases one can choose z and an equation f in 

the II = constant - stratum of the singularity I such that all 

a(;)E~'\.{O} and f(x,y,z) has real coefficients. Then the 

critical points and critical values of fl are approxi-z=£ 

mately real and one can use the method of A'Campo [1] resp. 

Gusein-Zade [14J to compute the required intersection matrix 

of f!Z=O • The equations we used for calculation are given 

in Table 1 • In some cases the intersection matrix of fl z=O 

is not that given in Fig. 1 .' In these cases one still has 

to do transformations to get the intersection matrix indicated 

in the tab Ie. 

In some few cases we did not succeed in finding such a z 

and f as above and also easier methods were not applicable. 

In these cases we proceeded as follows. Using if possible 

symmetry properties (complex conjugated critical points and 

critical values)one can single out a set of possible inter-

section matrices for {~1 j I 1 ~ j ~ 11'} and determine for 

which of these possiblities the intersection matrix of the 

complete basis {e .} 
-m] 

gives the right quadratic form. It 

turns out in the considered cases that the remaining bases are 

all equivalent to the corresponding basis of Theorem 2.1 under 

the action of the braid group Z (cf. [10]) • [] 
II 

Using transformations which transform weakly distinguished 

bases to weakly distinguished bases (like in [9]) one can de-. 

rive from this theorem the following result, which was partly 

announced in [10]. Let S be a graph. For a vertex v E S , 
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the valence of v , val v , is the number of edges incident 

with v . Let r;(S) be the number of cycles of S of the 

form vo 'v1 ,··· ,vr = v 
0 

with val Vo == 3 , val v. == 2 for 
l-

i=l=O . Define 

o (S) = L (val v - 2) + z.; (S) • 
vES 

val v > 3 

Theorem 3.2 

Let f be an ERS which is not simply elliptic or of type 

T p,q,r 

Then there exists a wepk1y distinguished basis B= {e
1

, ••• , e } 
... ....1-\ 

of f satisfying the following properties 

a) 

b) 

< e 1,ell > = 1 .... 1-\- .... 1"' 

<ell ,e.> == O,<e 1,e.> = <e 2,e.> 
-I"' -1. ..... 11 - -1. -1-\ - .... 1. 

for 

For i, j E {1, ••• , 11-2} , ifj I < e. Ie.> E {O, 1} 
.... 1. .... J 

(The matrix (-< e. , e . > ) 1 < . . < 2 is therefore an in-
-1. ... ) _ 1,) _ 1-\-

decomposable symmetric Cartanmatrix of negative type in 

the sense of [15j). 

c) The subgraph S of the Dynkin diagram corresponding to 

{e1 ' ••• , e 2} has no vertices of valence > 3 • 
- -1-\-

c) For f of type 1, o(S) == 1 • 

Remark 

One can change the numbering of S to get other bases 

which are also weakly distinguished bases of the same singula-

r i ty ( c f • [ 8 , Abb . 2 b 1) • 

Some of the possible graphs S for each EHS are con-
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sidered in § 5 • The types of the graphs considered are shown 

in Fig. 2 • 
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S 4 Milnor Lattices 

There are two ways to determine the Milnor lattices of 

our singularities. 

First we can compute these lattices from the resolutions 

as in [11 , Chap.4 ]. In particular one has the following 

formulas: Let 

denote the neighbourhood boundary of X. Then 

11 0 = rk H1 (L, 2Z ) 

II 0 + II + = 2h (Durfee [5]) • 

This implies that the EHS are precisely the hypersurface singu­

larities defined by a function germ f: (~3,~) * (~,O) with 

11 0 + 11 + = 2 • In addi tion 11 0 t 0 only for the (unimodal) 

simply elliptic singularities (ll = 2) and the (unimodal) o 
singularities T (11 = 1) • An analogous consideration p,q,r 0 

as in [11 , Lemma 4.4.1] yields the following estimation for 

the minimal number A (G) of generators of G = TH1 (L) (where 

the prefix T means the torsion subgroup): 

A (G) < 4 • 

Alternatively we can use a basis of Theorem 3.2. We'pro-

ceed here this way. The basis of Theorem 3.2 is a special basis 

in the sense of [9 , Def. (1.2)J. This implies in particular 

that 

H=K..LU, 

i.e. H is the orthogonal direct sum of the lattice 



ll-2 
K = E 

i=1 
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hence the sublattice determined by the graph S I and a uni-

modular hyperbolic plane U. We call K the hyperbolic sub­

lattice of L, since it has signature (t It ,t+) = (ll-3,O,1). 
- 0 

By the arguments of (11, (4.5)1 it is uniquely determined by 

H • 

By the theorems of Nikulin [20] (cf. also (11, (4.5)]) I 

the lattice K is determined by the corresponding discriminant 

quadratic form q : GH .. <D /2 1l or the corresponding dis-

criminant bilinear form b : GH x GH .... <ll/2Z . The finite qua­

dratic or bilinear forms are computed as follows (cf. also 

[11, (4.7)j • 

Let S be one of the graphs of Fig. 2. First we get rid 

of some of the cycles by transformations as in [8 , § 1,2] , 

possibly going over to a graph with less vertices defining a 

stably equivalent lattice. Recall that two even lattices H1 

and H2 are called stably' equivalent, if there exist even uni­

modular lattices M1 and M2 such that H1.L M1 ;; H2 .L M2 • 

Two lattices are stably equivalent if and only if they have the 

same discriminant quadratic form. Then we extend the resulting 

graph by connecting new vertices of length -1 or 0 to the 

free ends, such that the new extended graph defines a unimodu-

lar lattice. We have thus constructed an imbedding of the 

original lattice or a stably equivalent one into a unimodular 

latt.ice. The orthogonal complement H.L of the original lattice 

H or the corresponding stably equivalent one is then described 

by a matrix A of low rank. But 
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and in particular 

disc H z Idet AI 

where disc H denotes the discriminant of H, which is the 

order of GH • 

Thus the calculation of the discriminant bilinear form of H 

(which together with sign H(mod 8) determines the discriminant 

quadratic form of H [20, Theorem 1.11.3]) is reduced to the 

determination of the discriminant bilinear form of the lattice 

gJ.. of low rank, which amounts to the inversion of the matrix A. 

The matrices A for the different types of graphs S are 

listed in Table 5 • The resulting finite quadratic forms for 

the EHS of type 3 and 4 are listed in Table 3 resp. 4 • 

Here we use the following notation, which is also used in 

[11] : Each finite quadratic form splits as the orthogonal direct 

sum 

(1 ) 

of the following forms: 

wE: . 2Z /rl2Z .... W/22Z , where a generator of 2Z /rl'O. p,k . 
mapped to 6p -k 

unit and 

E: = 

and where. p is a prime number, 6 

(~) (Legendresymbol) C {+1 ,-11 for 
p 

a 

is 

p-adic 

and E: _ e (mod 8) , E: E {+1 ,-1 ,+s,-sl for p=2. 



- 25 -

(2b) 'it 

For the systematic description of series we augment this 

notation by the discriminant quadratic forms of simple singu-

larities: 

qA = 2Z / (r+1) 2Z , generator x I q (x) = (r+2) / (r+1) 
r 

u1 I r - o (mod 8) 

v1 I r - 4 (mod 8) 
qD = £ £ ±1 -2e:(mod 8) r w2 ,1 + w2 ,1 I £ = I r -

£ e: w2 ,2 , = ±1 or ±5 , r - -£(mod 8) . 

In the entry of V#NA ,e: - 1-2m (mod 8) and n,m 

n (e:) - £; 1 (mod 2) , n (e:) E { 0 I 1 L 

It turns out that there are many relations among the 

Milnor lattices of the EHS of type 3 and 4 and the singulari­

ties studied in [ 11]. There are many singularities with iso-

morphic Milnor lattices. If X and Yare singularities with 

isomorphic Kilnor lattices, we write 

X=Y 

There are also singularities with stably equivalent Milnor 

lattices. We write 

x .... Y 
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if X and ,Y have stably equivalent Milnor lattices. Some 

of these relations are indicated in Tables 3 and 4 • In the 

case of a series indexed by a number n, the singularities of 

this series are only defined for n > 0 , but there are also 

lattices defined for n < n < 0 , cf. [11, Chapt. 5] • So 
0-

a relation involving a singularity name with index n < 0 re­

fers to the corresponding lattice. In all cases of pairs of 

singularities with isomorphic Milnor lattices, also the mono-

dromy groups are isomorphic by [9] , but the characteristic 

polynomials of the classical monodromy operators are different. 

We point out two remarkable strange correspondances: The 

quadratic forms of the left hand side of the rows of Table 3 

correspond to the quadratic forms of the columns for 1* 
n for 

g=1,2 of the tables in [11] in a certain way_ We get in parti-

cular other examples of hypersurface and complete intersection 

singularities, which are not hypersurface singularities having 

the same Milnor lattices. Five of the eight EHS of type 4 have 

quadratic forms which are stably equivalent to the quadratic 

forms of the top entries of the columns for I~ for g=1,2,3,4 

setting n=-3 in the tables in [11J • 
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A .,0 A' 3,**,0 °5 ,.,0 27 ,0 ", 5,.*,0 D,.*,o A' 
7 .. **,0 D9 ,*,0 

+1. A.",O +" n,.*,o +A n,**,o +1. Q,**,o +1..,0 +A .,0 
+A .... ,0 

IIA .,11 
n 

-(-0 
n 

1'18(0) 
n 

1IB(1) !iC(ol Netl) NF(O) NF (1) 

hi-a, 16+tt+n III+n 19+n :lO+n 19 20 20 21 

16 12 a 4 8 .. 5 2 

~4'" +q°S+n 
-I t 5 1 -1 -1 -1 ", +q 

"'2,I+<In8+n '1n8+n "'2,3 "'2,1""2,1 ", 5,1 w2 ,1 3,1 DS+n 
aU 1 ... 1, ::VNC(t) ;VHF

tU - , 
=02,4+n ::Zl,4+n ::E - J -511 -Z12 -il12 -EU 2,4+11 l,4+n 

WI. •• n 
n VllB
I
_

11 
n 

VNB(o) 
n 

VNBU ) VNC(o) VNC(1} VNF(o) VHF (1) 

br .. l. 15+"'n 17+n 16+n 19+11 18 19 19 20 

32+4n 24+31\ 16+2n S+n 16 8 12 S 

r· <In 4+11 +qA1+n 

-1 1 -I -5 5 -1 -I -1 
w3,l+q"7+n w2 I-t<J ... 

<1"1+n "'2,2+W2,2 "'2,3 "'2,2+"'3,1 w 5,1 
... 1 • 7+n 

.-6 1 ::NC(o) -NF' 
(0) 

-It~ ....,. 
:NAt ,I 

- 1 
1,n 1,n-4 

-5
11 .. NB(_I) -W

12 

yll'NA _,n ylJHB~_ll .;tNB701 ~NC(O) If v NC Il ) 

b
l
-3, 15+"'n 17+n 18+n 18 19 

b{'2, 12 28 20 19 10 

1>1 
1v~,3+ -1 -1 -1 1 -I 

w 7,1 +<10 3+
n "'5,l~6+n wl9 ,1 "'2,1+"5,1 

~a+n+4-2nI£1 
"",2 I 

j;Ki, 4+n ;L1,4+n =& st 
1.4+n rL

t ,_3 
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~ 
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Table 4 

A 1,*,0 
A 

4,*,0 E 6,0 A 7,*,0 

+A 
1,*,0 +A 1,*,0 +A 1,*,0 +A 1,*,0 

+A 1,* ,0 +A 1,*,0 +A 1,*,0 

+A 1,* ,0 
- . _.-

V( 1) V(2) V(3) V(4) 

18 19 20 20 

27 18 9 9 

-1 -1 1 -1 -1 1 1 
Wl ,l+wl ,1 w2 ,1+w3,1 w3,1+w3,1 w3,2 

-1 
+w3 ,1 

1 
+w3 ,1 

... 1 
-VNB( 1) 

-I 1,-3 -u 1,-3 "'212 
""W* 

1,-3 

._---

Legend for Tables 3 and 4: 

We have indicated in an entry: Name of the singularity 

Milnor number }.1 

discriminant 

A 4,*,0 

+A 4,*,0 

V(S) 

20 

12 

1 1 
w2,1+w2,1 
' 1 
+w3,1 

--W1 ,S 

""W 1,-3 

discriminant quadratic form 

singularities with isomorphic (-) 

A 10,*,0 

V(6) 

21 

4 

-1 
w2 ,2 

- 1 -
-NB (1)-£3,5 

-E 3,-3 

-'--

or stably equivalent (-) Milnor lattices 

E 6,0 

+A 4,*,0 

V(7) 

21 

6 

1 1 
w2 ,1+w3,1 

.....z13 

_1.--------

E 6,0 

+E6 ,0 

V'S) 

22 

3 

1 
w3,1 

-E 14 

~ -- ... --.-.------~ 

toJ 
co 
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q r T(p,q,r) 0=1: jP 
q r 2 ,:,(p,q,!) 

q r 3 
0=2: T (p,q,!) 

p 2 P 2 

q r T{p,;1.'E,) 

a=3: 
r t 5 2 n (t;p,q,r,§.) r t s 3 n(tip,q,r,s) 

I I I p q 2 P q 2 

5 

r n (t; p '~I r, §.) 
r n(t: ,p,g,r,s) 

p p 

r 5 

p q 

r 5 
CJ=:4: ~ (t; ,p,q,r,s) 

p q Fig.2 



Table 5: 

T(p.q,r): 

1-p 1 

1 1-g 

1 1 

T(p,q,r): 
= 

1-p 1 

1 1-q 

1 1 

1 

1 

1-r 

1 

1 

B-r 

n (ti2,q,r,.!): 

2-r -2 0 

-2 4-t 1 

0 1 1-q 

0 1 1 

0 0 0 

n <.:!:.i ,2 ,9.,r t.!) ; 

2-r -2 0 

-2 4-t 1 

0 1 4-q 

0 1 3 

0 

1 

1 

4-5 

-2 

0 

1 

3 

4-8 
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T(p,q,!.): 

1-p 1 

1 1-q 

1 1 

0 0 

T(p,s"r): 

1-p 1 

1 4-q 

1 3 

1 

1 

4-r 

-2 

1 

3 

4-r 

0 

0 

-2 

0 

3-p 2 

2 3-q 

2 2 

n(t;2,q,r,s) : - -
0 2-r -2 0 b 

0 -2 4-t 1 1 

0 0 1 1-q 1 

-2 0 1 1 8-s 

0 

JI(t;p,q,r,s): 
- == = 

1-p 0 1 0 -1 

0 1-q 0 1 1 

1 0 4-r 2 -1 

0 1 2 4-9 1 

-1 1 -1 1 3-t 

2 

2 

3-r 
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Table 5 (continued) 

n (t; ,2,~,!.,!.): ~(t;IP,qtr,s): 

3-q 2 1 1 4-p -2 1 0 1 

2 3-9 1 1 -2 4-q 0 1 1 

1 1 4-r -2 1 0 4-r -2 1 

1 1 -2 4-t 0 1 -2 4-5 1 

1 1 1 1 3-t 

ll(t;,p,a,r,s) = A + 2 L T(p,r,t-2} - ~ - q s-
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S 5 Dynkin Diagrams 

In this section we present an algorithm on graphs whiCh 

produces a set of graphs, such that the lattices defined by 

these graphs are exactly the hyperbolic sub lattices of the EBS 

with ~+ = 2 • Moreover all these graphs occur as subgraphs 

of Dynkin diagrams with respect to weakly distinguished bases 

as in Theorem 3.2. 

Let S be the Dynkin diagram corresponding to an inde­

composable symmetric Cartanmatrix multiplied by -1 with only 

o or 1 outside the diagonal. That means that S is a connec-

ted unweighted graph with no multiple edges. We assume in ad­

dition that S has no vertices of valence >3. We recall the 

definition of the transformation '[ D,l (cf. (111) • Let D 

be a subgraph of S ,which is an extended classical Dynkin 

diagram, that is of type Xn ,nn'!6,E7 or ES' Let e l be a 

vertex of S, which is neither contained in 0 nor connected 

by an edge to a vertex of D. Let w be the distinguished 

isotropic vector of 0 I that is the sum of the longest root 

of the corresponding finite root system and the additional vec-

tor. Let 

e (1) = w - e e(1) e 
-1 - -1' -i - .... i 

for 

Then the new basis {e~1)} satisfies again <e~1) ,ei(1»= -2 I 
-1. -1. -

since <!'~l> = <!,!> = 0 • If <!{1) ,!i1 » E {O,1} for itl, 

and the new graph S corresponding to {e~1)} is connected, 
-1. 

then we define 

If 5(1) is not connected or if there exists an i*l with 
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(1) (1) 
1<21 ' ~i >1 > 1 , then 'tO,l is not defined. If finally 

for some i <e(1) ,e~1»= -1 I we shall continue transforming 
.... 1 ..... l. 

as follows. Oefine (l. (j) to be the transformation 
l. 

{f1 ,···,f } -0- {f1 , ••• ,f._1 ,sf (f.),f.+1 , ••• ,fr } 
.,.. ...;r .... .... J ..... J ...... J "" 

where 

Choose 

.... l. 

denotes the reflection corresponding to 

sf ( .... x) = .... x + < X, f .> f. • ,.. _l. .... l. 
... i 

with and let 

f. I i.e • 
.... l. 

Now there are again several possibili tes for the new basis 

a) l<e(2) ,e~2»1 
.... 1 -l. 

> 1 for some ir=l . 
b) <ei2) ,e~2» == .... -l. 

-1 for some i1=l with e~2) 
.... l. 

E 0 . 
c) <e(2) ,e~2» E 

_1 ..... l. {O,1l for all i~l . 
d) <e (2) (~l:>- -1 for some if=l with ( :~) $ 0 1 ,e. - e. • .... ....l. ...,1. 

In cases a) and b) 'tO,l is not defined. In case c) the matrix 

corresponding to {e~2}} is again a Cartan matrix and the cor-
.... l. 

responding graph S(2) has no multiple edges. We define in 

thi.s case 

(2) 
L D, 1 (S) = s . 

In ~ase d) we continue as above until one of the other cases is 

reached, choosing j2 and so on. One easily checks that cases 

a},b} or c) are reached after finitely many, say N, steps, 

and that 'tO,l does not depend on the choice of the sequence 

j1,j2, ••• ,jN ' if it is defined. The graphs different from S 
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obtained by these transformations or sequences of these trans-

formations with the same D but different ~l are called the 

proper transforms of S. 

To a graph S is associated a weighted graph S' I called 

the scheme of S I by replacing subgraphs 

• • 

with val e
i 

= 2 for i~1,l, val e i ~ 2 for i=1,1 by an 

edge weighted by 1 between e 1 'and e l • The weights of S· 

are called the weights of S , the underlying unweighted graph 

the shape of S. If val e i = 1 for i=1 or i=l, then 1 

is called an outer weight, otherwise it is called an inner 

weight. Let S be a graph with weights We define 

+ ~ to be the operation which associates to S the graph of 

the same shape with weights 

satisfies the following conditions: 

W. 
l. 

(i) Wi is' not an outer weight which is adjacent to two inner 

weights. 

(ii) Wi t 2,3; 

(iii) 

or Wi = 2 and there is an adjacent weight Wj - 2; 

or 

If 

W. :. 3 
l. 

and there is !!2 adjacent weight 

is an inner weight, then is greater than 

or equal all the inner weights which belong to edges incident 

with the same two vertices. 

Let 51 and S2 be graphs of the same shape with weights 

w(1) Lt(1) (2) (2) M ~ fl ~ < S l'f the 
1 '···''''r roap. "1 ""'Wr • ,",0 '.Ie ne "1 - 2 I 

outer weight!! llrll lhu tHllnc ahc! the ihIlGt 'lie1gh tIJ satiufy 

",(1) < w~2) • The differencein the number of vertices is called 
i - 1. 
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the ,distance of S1 and S2 and denoted by 0 (S1,S2) • 

A. 

Let :r be a set of graphs as above. Define the set GO 0 

as follows. This is the set of all graphs R such that for 

each chain 

with 

with 

for 

R1 minimal and o (Ri + 1 ,Ri )=1,there is an 1 < i < k 
v 

R. 
l. 

E ~ . Define ~ to be the set of graphs R with 

S E ~ and o (R,S) < 1 • -
Let "de.. be the set of all graphs S wi th cr (S) = i , 

l. 

R < 

which define a hyperbolic lattice. Using the above definitions 

we shall define inductively subsets ~. I:P.>, I Y. c.. "M.. as 
l. l. l. l. 

follows. Assume !:f. 
l. 

is already defined. Then let 

v , v. 

:B. :=~. "(Yl; n (~l.' u 'Sl.')} 
1. 1. 1. 

Define 
t'":-' 

J i +1 
to be the set of all transforms of the set :B . 

1. 
, 

which lie in 'Je, 1 ' under operations 
T D ,1' For i=1 the sub-

1.+ 

diagram D can only be of type E6 /E7 or 

D has to be of type Ar or Dr' Define 

A 

~ i+1:= (~+1)0 n 'lt i +1 

Ee , for i > 

Finally define '3='1 = 9J and ~ 1 c. 'le1 to be the set of all 

graphs of ~1 ' which have no proper transforms. 

With these definitions we have the following ~~eorem 

Theorem 5.1 

(i) ~4 = ¢ and thus 3"i::= ~. = ~. = ¢ 
1. l. 

for i > 5 • -

1 

S 
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(ii) The hyperbolic sublattices of the BHS with ).1+ 
lilt 2 of 

type i are exactly those iiven bl the graphs of ~i .. 

The possible schemes of graphs of ~i , 1 < i < 4 , are 

given in Fig. 2. We adopt the notation of [11} • where the 

case i=1,2 is already treated. We conclude with tables of 

the above defined sets 'which are nonempty. We start with 11 I 

which is the set of graphs corresponding to the 14 unimodal 

exceptional s, ingularities. Then we list the sets ~. 1 ,~. , 
1- 1.. 

'.r i for i > 2 in the following way. We lis t the possible types 

of graphs occuring in ~ .• For each type we give a table of 
1.. 

those weights such that the corresponding graph is in ~i or 

in the set ~i ' which "bounds"tbe set 'ti from below. In 

the case that the weights define an element of ~. , we in-
1.. 

dicate the name of the corresponding singularity in the associa-
n-­

ted entry. In the case that ~~ey define an element of ~i ' 

we indicate the element of ~. 1 ' of which this element is 
1..-

a transform. Thus the set ~ i is the set of those graphs 

corresponding to the entries with singularity names, ~~e set 

~i is the set of those graphs corresponding to entries with 

notations of graphs of ';!t.i_1 ' and finally the set :B i-1 is 

the set of graphs indicated in the entries of ~i • This is, 

however, not quite true for the case i=4, where the sets 
~ '\) 
v i and \ll i-1 are bigger than the above sets. That means that 

they contain other graphs of other types, but which are not re­

levant for the set ~4 ' and which we have not indicated. 

In the case that there is a symmetry in the type of graph 

considered, we give only a part of the table, so it has to be 

completed according to this symmetry. By * in an .. ntry we in-
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dicate that the corresponding graph does not define a hyperbolic 

lattice. 8ince the table for the graphs ~(t;IP,q,r,s) (Table 9) 

gets rather involved, we make here other conventions. We in-

dicate the region of graphs defining hyperbolic lattices by 

drawing the line which separates this region from that for 

which this is not true. Although many of the graphs of ~4 

have more than one pre image in the set :B 3 ' we only indicate 

one. 

The tables now give the result of Theorem 5.1. 0 

Remarks 

1)Each of the graphs of ~. , 1< i < 4 , corresponds to the 
1. - -

subgraph 8 of a weakly distinguished basis as in Theorem 3.2 

of the corresponding singularity. Extend also the graphs of 

~i I 'Ii in an analogous way by two new vertices. Let 8 E:B. 
1. 

and R E ~i+1 be a transform of 8 and denote the corresponding 

extended graphs by s· and R' • Then it seems that 8' and 

R' are equivalent under the group ZO generated by the braid 

group Z and the symmetric group r. • Thin is the grOllp of. 
~ u 

transformations of weakly distinguished bdses (cf. L 10]). More-

over the operation induced on the graphs Sand R is just 

a transformation TO,l (resp. a sequence of these transforma­

tiQna). tlf\fprl:\.lf\i\t:.aly \tI~ }l.~v~ np GCJJlql1·t 1 PlOuf LI)r tlliu fact, 

but checked it in many cases. 

2) Usually there corresponds to a relation S1 ~ S2 between 

two graphs 8,,82 E ~i an adjacency relation between the 

corresponding singularities. So the tables also show some ad-

jacency relations between the EaS. 
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3) The tables show that there are many graphs defining the same 

hyperbolic lattice. There are many other graphs not contained 

in one of the sets ~. defining hyperbolic sublattices of the 
l. 

EHS with p+ = 2 • In [11] we defined the notion of a small 

fundamental valuation for a graph corresponding to an inde­

composable symmetric Cartanmatrix. Not all the graphs of the 

sets ~. possess a small fundamental valuation, but one can 
l. 

find for each ERS with p+ = 2 a diagram (possibly not in any 

of the sets ~i) with a small fundamental valuation. 
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Table 6 ::f1 

T(p,q,r) 

p q r p q r p q r 

2 3 7 E12 2 4 '7 Z13 2 5 6 \'113 

2 3 a E13 3 3 4 Q10 3 4 4 S11 

2 3 9 E14 3 3 5 Q11 3 4 5 S12 

2 4 5 Z11 3 3 6 Q12 4 4 4 U12 

2 4 6 Z12 2 5 5 W12 
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Table 7 l'2' !f2 

p q r r=r r=r +1+n , n > 0 
0 0 0 -

2 3 8 T(2,3,10) E 3,n 

2 4 6 T(2,4,8) Z 1,n 

3 3 5 T(3,3,7} Q2,n 

2 5 5 T(2,6,6) W 1,n 

3 4 4 T(3,5,5) 5 1,n 

p s q+r=s q+r=s +1+n , n~O 
0 0 0 

2 12 T(2,5,7) W
tt 
1 ,n 

3 10 T(3,4,6) # 
5 1 ,n 

4 9 T(4,4,5} U 1,n 

T(p,q,r) 
= 

p q ro r=r r=r +1 r=r +2 r=r +3 r=r +4 r=r +5 r=r +6 
0 0 0 0 0 0 0 

2 3 8 T(2,3,11) E3 ,1 E18 E19 
E20 * * 

2 4 6 T(2,4,9) Z 
1 11 Z17 Z18 Z19 * * 

3 3 5 T(3,3,8) Q2,1 Q16 Q17 Q18 * * 
2 5 5 T(2,6,7) if 

W1 ,1 W17 ' W18 E3 ,3 E20 * 
3 4 4 T(3,5,6) #: 

51 ,1 516 S17 W18 Z19 * 
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Table 7 (continued) 

p q r=4 r=5 r=6 r=7 r=8 

2 8- T(2,6,7} tt: 
W1 ,1 W17 W18 

7 T(2,5,8) W1 ,1 W17 

. 
tf 3 7 T(3,5,6} 8 1 ,1 816 S17 

6 T(3,4,7) S1 ,1 S16 

4 6 T(4,5,5} U1 ,1 U16 

5 T{4,4,6) U1 1 , 

p q r=4 r=5 r=6 

6 6 T(4,5,5) U1 ,1 U16 

5 T(4,4,6) U1 1 
I 
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Table 8 3='3' ~3 

p q r s t=3 t=4 t=5+n 

2 2 2 5+m,m>O T(2,6,5+m) NA n,m 

4 ~(2,6/5+n) 

2 3 2 5+m,m>O T(4,4,5+m) VNAmt-1,0 
tf. 

V NAm+1,n+1 

4 T(4,4,!) VNA VNA +1 0,0 n ,0 

3 T (4,4 ,!) T{4,4/~) 

p r q+s t=3 t=4 t=5 t=6 t=7 t=B t=9 

2 2 9+m,~O T(5,~,4+m VNA VNA VNA VNA VNA etc. 
o,m l,m 2,m 3,m 4,m 

B T(3,5,,,!) T(3,5,~) T(3,5,§) T(3,5,7) T(3,5,!!.) etc. 

2 3 9+n,n:::,.o T (6,z,4+n\ 
n n n 

* * VNAl VNB (-1) VNB(o) VNB(1) ,n 

8 rr(3,4,!!.) rr(3,S,8) T(3,6,B) T (3,7 ,B) * * == == == 

IT(t;p,q,r,s) 
- = 

q r t s=3 s=4 s=5 s=6 s=7 s=B s==9 

2 2 S+n,n::.o T(2,7,5+n 
n n n fit NA NB(_l) NB(o) NB(1) l,n 

4 T(2,5,9) T(2 '~'5!.) T(2,7,9) T(2,8,9) fit = == == == 

3 2 4+n,~0 T(4,5,4+n VNA 
n,l V~~_l) ~NB70) r-

3 T(4,4,7) T(4,5,7) T(4,6,7) lit 
== -- --

2 2 3 7 T(2,J:, 10) NCO) NF (l) * * f* 
6 T(2,6,10) NC{O) NF(o) NF (1) * * ==-
5 T(2,S,10) fA NC(o) NC(1) * • =- 1,0 
.4 II'? r; 1, \ nt''') J t" \ • . - ." m '\ ... . • 
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Table 8 (continued) 

p r t q 5=3 5=4 5=5 5=6 

2 2 4+n,r~ . .o 6 T(4,5,4+n) VNA 1 ~NB~_l) hB~O) n, 

5 T(3,6,4+n) ~NA 
n,l v+t=NB7 -1) 

-- -- --- ------ - - ------- 1------- ------- --- ----
3 6 T(~,§,2) T(,2,§,21 T(§,§.,2> 

5 T(,2t,2,l) T<'2,£,l> 

2 3 7 7 * * * 
6 * * 
5 T(3,1.'~) * * --- ---- --------- --- 1----------- ---------- ---------- ----------

6 6 T(4,~,~) AC(l} VNF (l) * 
5 T(3,6,9) VNC (1) VNF (1) == --- ---- --------- --- 1----------- ---------- ---------- ----------

5 6 T(4,5,8) V'"»C(O) VNF{o) VNF(l} == 

5 T(3,5,9) ~~~J~L ___ VNF{o) ---- = -=----- --------- --- 1----------- ---------- ----------
4 6 T(4,!,~) JtNB~_1) tr. 

V NC(o) ~NC(1) 
5 T(3,4,9) 1 tf, 

... ---- 1--------- == ~~~l:!L __ ~_~~19L __ ---- --- 1----------- ----------
3 6 T(!&,~) T (?".§.., 8) T{.§..,.§../~) 

5 T(1.,,?.,8} T(.?.,.§..,~) 



Table 8 (continued) 

IT(j:i ,p,g,,:,,!) 

p q r s t=3 t=4 t=5 

2 2 6 7 T(2,7,10) 
::. ~ NC (1) 

6 T(2,g,10) NC(o) 

5 T(2,,g, 10) 
1 

NB(_I) 

4 T(2,5,1O) 
= = --- --- ----f---- ---------fo---------1----------

5 7 T(2,6,7) NB
1 - (0) 

6 T(2,6,6) 1 
NB

C
_1) -

5 T(2,6,S) NA . - 1,0 

4 T(2,6,5) ---- --- ----1---- --------- ---------1---------
4 7 T(2,6,7) 

== 
6 T(2,6,6) -
5 T(2,6,S) 

= 

4 

t=6 t=7 

NF (1) * 
NF(o) NF (1) 

NC(o) NC(1) 

T(2,6,lO .= =- T(2,7,lO) 
= =---------- ----------

NC(1) * 
NC(o) NC(1) 

1 
NB (-1) 

1 
NB(o) 

T(2,6,6) - T(2,6,7) ---------- ---------
T{2,7,10 * = = 
T(2,6,10 T(2,7,lO) .. - - .... 
T(2,6,6) T(2,6,7) .. .. 

t=8 

* 
* 

* 
T(2,8,lO) ........ 

----------
* 
* 

1 
NB(1) 

T(2,6,B) -----------
* 

T(2,a,10) 
:: """ 

T(2,6,8) 
:: 

t=9 

* 
* 

* 
* ---------
* 

* 
* 

T(2,6,9) ----------

* 
* 

T(2,6,9) 
= 

t-10 

* 
* 

* 
* ---------
* 

* 
* 

* ---------
* 
* 
* 

.. .. 



Table 8 (continued) 

IT (t;p,q,r,s) (continued) 
- --

p q r s t-3 t-=4 t-5 

2 3 6 6 T(4,6,8) V~(1) VNF(l) = = 
5 T(4,5,8) .;tNC(O) VNF(o) = -
4 '1'(4,4,8) .;tNB~ 1) 

#: 
= = v NC(o) 

3 T(4,4,8) '1'(4,5,8) ..... = = = --- --- --- ----------~-------- ---------
5 6 '1'(4,4,,g) 1 

VNB(o) VNC (1) 

5 '1'(4,4,5) 
= 

1 
VNB(_l) VNC(o) 

1 
4 '1'(4,4,~) VNA

1 VNB(_l) ,0 

3 '1'(4,4,~) T(4,4,~) 

--- --- --- ---- --------- -------- ---------
4 6 '1'(3,5,6) '1'{3,6,9) 

= = = 
5 '1'(3,5,5) 

= 
T(3,5,9) = = 

4 '1'(3,5,4} 
= 

T(3,5,5) = 
3 

-------------' -.~~~ . -----. c.......... ___ ._~ 
-~ .. -

t=6 t=7 

* * 
VNF(l) * 
V#NC (1) 

'1'(4,g,~) 

--------- ---------
* * 
VNC (1) * 

1 1 
VNB(O) VNB (1) 

T(4,4,g) T(4,4,l) 
--------- ---------

* * 
T(3,6,9) 

= = T(3'1,~r 

T(3,5,6) 
= 

'1'(3,5,7) 
= 

t=8 

* 

* 

* 

* ---------

* 

* 

* 
T(4,4,~} 

---------

* 

* 
T(3,5,JP 

t-9 

* 

* 

* 

* ----------
* 

* 

* 
* ---------

* 

* 
'1'{3,5,9) 

= 

tEla 

* 

* 

* 

* ---------

* 

* 

* 

* 
I 

---------

* 

* 

* 
I 

"'" VI 



Table 8 (continued) 

IT (,!.;p,s,.:>!) 

p q s r t=3 t=4 t=5 

2 6 6 5 T(6,6,B) --- --~ --- -- ,..-=---=..:-----------1--------
S 3 T(4,4,8} T(4,..§.,~) 

- -- --- --------- -----=-=--1-----=-=-
4 5 T(~I§.,~) 

--- --- -------- -------------------1---------
3 5 T(4,4,8) T(4,S,8) 

== -----==-'=----- --- ---- -------------------
5 5 6 T(4,4,6) 1 

VNC (1) VNB(O) • :; 

5 T{4,4,S) = 
1 

VNB e- I ) VNC(o) 

4 T(4,4,4) VNAl 
1 

VNB(_I) - ,0 

3 T(4,4,4) T(4,4,S) 
=- -.--- --- -------- --------"" --------------------

4 6 T( 3, 5 ,~) T{3/~,~) 

5 T(3,S,S) T(3,5,9) - --
4: T(3,5,4) T(3,S,S) 

= -
3 

t=6 t=7 

* * ------- --------
T (4 ,~,~) 

--------- ---------

--------- ---------
T(4,6,8) 

= = --------- ---------

* * 
VNC(1) * 

1 
VNB(o) 

1 
VNB(1) 

T(4,4,6) T(4,4,7)· - ---------- ---------
* * 

T(3,6,9) -- T(3,7,9) -.... 
T(3,5,6) T(3,S,1) 

= = 

taB 

* --------
* ---------

* ---------
* ---------

* 
* 

* 
T(4,4,8) ----------
* 

* 
T(3,5,B) -

t=9 

* -------
* ---------
* ---------
* ---------

* 
* 
* 
* ---------
* 

* 
T(3,5,9} ... 

t e 10 

* --------
* --------_. 

* --------_. 

* ---------. 

* 
* 
* 
.. 

---------
* 

* 

* 

".. 
C!'I 



Table 9 ~4 : ~(t;,P/q,r,s) 

(p,r,t) = (3,4,7) 

4 ~ 
s/q 4 

(p,r,t) = (3,4,6) 

5 

4 

3 

s/g 3 
~ 

4 5 

(p,r,t) = (3,4,5), (5,4,3) 

7 

6 

5 

4 

3 

IT(s;2,7,3,q) 
_--=~ __ t . .::._" ___ ~ 

s/q 3 4 5 6 

(p,r,t) z {4,4,6) 

l~ 4 C 

3 

s/q 3 

(p,r,t) = (3,5,5) 

6 

5 

4 

3 

H 

F 

G 

I 

J 
'--

s/q 3 4 

(p,r ,t) = (3,5,4) 

6 

5 

4 TI(s;,2,3,7,q) - == 
3 

s/g 3 6 

(p,r,t) = (4,5,5) 

5 

4 

3 

s/q 3 4 

(p, r I t) = (4,4,5) 

6 
l.-

S I V(4) V(6) 

4 M Vb) v(4) 
3 M I 

s/q 3 4 5 

(p,r,t) = (4,4,4) 

6 Q V(3) V(7) 

5 M V(2 ) V(S) 
4 R V( 1) V(2) 

3 R M 
---~ 

s/q 3 4 5 

V'S) 
V(7) 

Vb) 

Q 
--.. -~-

6 

(p,r,t) = (4,5,4) 

6 

5 I V(4) V(6)1 
4 M V(2) V' I 

( 4)1 
3 0 P I I .r:=. 

-..J 
s/q 3 4 5 6 

(p,r,t) = (3,4,4), (4,4,3) 

8 

7 

6 
~ IT ( ~; I 2 , 3 , 3 , ~) 

5 

4 

3 

s/q 3 4 5 6 7 8 
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Legend for Table 9 

A = n(1;2d.,~,1) J ... n(3,2,7,3,S) - .. .. 
B = n (!; 2 , ~ , l ,]. ) K .. n (~;2,!,~,2) 

c -n (~ ; 2 , ~ , ! ,2.) L .. n(4,2,7,3,S) - = = 
D = n(.&;2,~,1,2) M .. n(~;2,!,!,1) 

E .. n (6,2,~,!.'1) N == n(~12,3,3,!) 

F .. n <,~;2,.?,~,1} 0,- n(4;2,3,3,S) - .. 
G .. n (~ ; 2 '.? I.?' 1 ) p == n(4;2,3,7,Sl 

- = = 
H = n (.?; 2 ,1, 3 , ~) 0 .. n (~; 2 , 3,3,:1) 

I = n (.? ; 2 , .? ' ! ,2.) R ... n(4;2,3,3,4) - ::::: 

The following graphs of 'J' 4 ('\ {~(tiP ,q, r, s)1 are not indicated: 

~(4;2,6,4,s) = n(!;2,3,3,~) I 3 < S < 7 

~(3;3/4,S,6) = n(~;2,.?,~,~) 
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S 6 HYpersurface singularities of corank > 4 with 

(lJo,lJ+) = (0,2) 

In L~is section we consider the hypersurface singulari-

ties of corank > 4 with (UO,U+) = (O,2) for a stably equi­

valent function germ f : (~k,~) - (~/O) with k ~ 3 <mod 4) • 

We first look for quasihomogeneous singularities with these 

conditions. One can classify the possible weights and the de-

qree of a quasihomogeneous function defining such a singulari-

ty using the procedure of [11 , (4.3)J. 

Let f: ~7 + ~ be a quasihomogeneous function with 

weights w1 .::. w2 < ••• .:::. w7 ' wi E ::N I and degree d, and 

assume that f is nondegenerate, Le. 0 is an isolated ... 
critical point of f. Then one can derive the following con-

dition for the corresponding singularity to have 

7 7 
(1 ) I: w. < 3d < 2w 1 + I: w . 

i=1 ~ i=2 1 

This condition shows that a function stably equivalent to a 

cubic form.in 5 variables has llo + ll+ > 2 . Therefore all 

singularities with (Uotll+) = (0,2) have corank < 4 and we 

may assume 

(2) 

For the quasiholooqeneous function f to be nondegenerate, the 

following two necessary conditions have to be satisfied (cf. [3J): 
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( 3) For i=1,2,3,4 there exists a natural number 

and index j E {1,2,3,4} such that 

d = niwi + Wj • 

n. 
~ 

(4) Let i,j E {1 ,2,3,4} , i=4j , be given. Then a) d 

and 

or b) d-w1 for all 1 E {1 ,2,3,4} " {i,jJ can be ex-

pressed as a linear combination of w. and with non-
~ 

negative integers as coefficients. 

Now one can determine in a combinatorial way the possible 

7-tuples of weights and associated degrees satisfying the con­

ditions (1)-(4), and one gets the following four cases: 

Weights wi d Equation 11 disc Notation 

2,2,2,2,3,3,3 6 333 3 2 2 2 
x1+x2+x3+x4+xS+x6+x7 16 64 °16 

6,8,8,9,12,12,12 24 4 2 332 2 2 
x1+x1x4+x2+x3+xS+x6+x7 20 16 °20 

8,10,11,12,16,16,16 32 4 2 2 2 222 
x1+x1x4+x2x3+Y-2x4+xS+x6+x7 21 8 °21 

12,1S,16,18,24,24,24 48 4 232 222 
x1+x1x4+x3+x2x4+xS+x6+x7 22 3 °22 

These are all quasihomogeneous singularities of corank > 4 with 

The first singularity is 016 in Arnold's notation (cf. 

[2]). This is a 5-modal singularity, so the n~~ers of moduli of 

all these singularities are > 5 • A Dynkin diagram with respect 

to a distinguished basis for 016 and 020 can be computed by 

Gabrielov's method [12]. Such a diagram is shown in [9, Fig. 6b] 

where one has to delete row 6 for ° 20 , and row 4 and 6 for 016 • 

The transformations in [9 , (4.3)] for 016 yield the Dynkin dia-
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gram with respect to a weakly distinguished basis shown in 

Fig. 3. 

Fig. 3: A DYnkin diagram of 016 

This diagram satisfies the conditions a) and b) of Theorem 

3.2, but the corresponding subgraph S has also a vertex of 

valence 4 . The number a(S} is again equal to 5 , the number 

of moduli. The Milnor lattice turns out to be 

so in particular 

The singularity 016 is the first member of a whole family 

of singularities of corank 4 with (~O'~+) = (0,2) , which are 

all but 016 not quasihomogeneous. These are the following 

singularities 
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Notation 0 p,q,r,s 

Equation p ~ r s' 222 
x1+x2 x3+x4+x1X2x3+X1x2X4+x1x3x4+x2x3x4TXS+X6+X7 

}l 4 + P + q + r + s 

0 (-1}1l64 

Here 0 denotes the determinant of the intersection matrix, 

which is equal to 

(-1) IIp (1) = (-1 )ll- disc (H) , 

where pet) = det(t-Id-h) is the characteristic polynomial 
* 

of the monodromy operator. This polynomial can be computed 

by the Ehlers-Varchenko method [22]. (In the above quasihomo­

geneous cases one can use the method of Milnor-Orlik [19]). 

The value of 0 shows that all these singularities also 

We do not know whether these singularities are all singu-

larities with these values of the invariants. So 

Problem (cf. [24, Problem D]) 

Classify all function germs 7 f : (a: ,2) ... (a:,O) with an iso-

lated critical point at the origin, which have corank 4 and 
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