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On the integer points of some toric varieties

B.Z. Moroz

1. Let T be an algebraic torus defined over Q. We shall describe a class of affine varieties over
Z, say {Xa}, each of these varieties Xq contains a T- orbit Y as a (Zariski) open dense
subset. Moreover, any two of these varieties are Q - (but not, in general, Z- ) isomorphic.
Our primary interest lies in studying the distribution of the integer points Yq(Z) in the
real locus Yg(R) of Y. To this end, we develop a theory of ideals on T and, for a grossen-
cha.ré.cter x of T, define a Draz! L - function L(T'; s, x) known, 2], to be meromorphic in
the half-plane {s| € C, Res > 0}. The standard analytic argument gives now an asymp-
totic formula for the number of integer points of bounded height; moreover,under certain
restrictions on T one can prove that the integer points are equidistributed with respect to
a properly chosen measure on Yg(R), and in this case one obtains an asymptotic formula
for the number of integer points in a "smooth” domain on Yg(R). As an application of
these results, one can generalise and strengthen my results, [9], on the integer points of
norm - form varieties. Actually the theory developed here is applicable to a wider class
of toric varieties associated with T, however for a general toric variety the Diophantine

problem is not as clear-cut as in the special case to be considered here.

As usual, Q, R, C stand for the fields of rational, real, and complex numbers respectively,
and Z denotes the ring of integers in Q; we write B* for the group of units of a ring B. In
what follows a number field ié, by definition, a finite extension of @, and Gal(IK|k) denotes
the Galois group of a normal extension I{'|k of number fields. Sometimes [S| denotes the

cardinality of a (finite) set S.



2. Let K|k be a finite normal extension of number fields, and let Cat(K|k) denote the category

of algebraic tori defined over & which split over K5 let T € Cat(K

k). The algebraic torus
T is uniquely defined by an integral representation p: G — GL(d, Z),G := Gal(IK|k); here
d is equal to the dimension of T (as an algebraic variety). This representation is afforded

by the module of characters
T={zlz €2 oz = plo)z};

let

™ = {z]z' € Z% oz = zp(c™ 1)}

be the dual module (given a set S, we write S¢ for the set of columns of the length d with
entries in S, the upper affix ' denotes matrix transposition). For a commutative group
S and u in % we let u’ = w with w; = f[l w;j‘(”),cr € G,p(o) = (rij{0))1<ij<d- One
may view T" as a (covariant) functor frornjfgle category of commutative k-algebras to the

category of abelian groups. Let A be a commutative k - algebra, and let B = 4 % K. One

sets, by definition,

T(A) = {ala € (B*)?,0a =a° for o€ G},

where o(u @ z):=u @ oz foru € A,z € K,0 € G. Let I(}') and I,(K) denote the group

of fractional ideals of i” and the monoid of integral ideals of K respectively. By definition,
I(T)= {ala€ I(K)*,ca=a° for o€G},

and I,(T) = I(T)NI,(K)?. To describe the structure of the group I(T') and of the moniod

I,(T) we introduce the following notation. For u € S,y’ € Z°, let
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u? = v,v € §% v; = u¥,1 <i < d ( assuming S is a commutative group); if y; > 0 for
1 <i < dwewrite y > 0. Let p be a prime divisor in k, choose a prime p in I,(K) with

plp and write p =[] (rp)*(#), where Gp = {o|op = p for 0 € G} is the decomposition
re$
p

group at p and e(p) is the ramification index of p in K. Let

={ala€T*,0a20 for o€G},Cp:=C*n(T")%

We introduce the group

IPT) = {azlaa = [] (70),a € (7*)°P}
TG\QP

of p-primary ideals, and the monoid

I(T) = {aalaa = [ (rp)™,a € C}}

rGEQp

of p - primary intergral ideals.

If C* # {0}, then on choosing a in C*\{0} and letting b = ¥ oa we see that T¢ # {0}
o€l

(since b € T*G\{0}). Conversely, if T¢ # {0} one may choose a in T*G\{0} as a basis

vector in T*, then a € C* and therefore C* # {0}. If ¢ # {0}, the torus is to be called

isotropic; if TG = {0}, then T is anisotropic. In what follows it is assumed that T' is

isotropic and C* # {0}, unless an explicit assumption to the contrary has been made.

Proposition 1. We have:

D) =[1"(T), and L) =[] L) (1)

p P



furthermore, after a possible change of basis in T, it may be assumed that I,(T) generates

the group I(P)(T). Here p ranges over all the prime divisors of of k.

d
Proof. Let b € I”(T), say b = a,. We have b7 = [] 67°” for 0 € G, or b” =
=1

1
rE%

each 7, and therefore b € I,(T). Thus I""Y(T) C I(T),I,(T) C I(T) for every p. Let

(rp)°”'"® = oa, = ob, so that b € I(T). Moreover, if a € C* then ra > 0 for

a € I(T); we write 0; = [] (Tp)“"(’)b,- with (p,b;) = 1. Since ca = a? for ¢ € G, it
Tegp

follows that oa(r) = a(o7) for o € G; therefore we may let a(r) = b with b € (7*)P.

This proves (1). Let now a € C*\{0}(C* # {0} by assumption !}, and let b = >_ ca.
oeG

On changing basis in T, if necessary, we may assume that a > 0; then b > 0. Clearly,
be C*N(T*)C. Let c e (T*)Gp, then Nb+c € Cy for a sufficiently large positive N; thus

c=c¢; —cg,{e1,62} C C'ﬁ. Therefore CE generates (T")Gp, as asserted.

d
For a € I(T), let Na = I1 Na; and NK/ka=
2

d
J —

Niia;. Clearly, N/pa = pliel/e(®) for
1
d ~
a, € I(P)(T), where || a |:= T |oa|, and |a| := 3 a; for a € T*. Let

o€ =1

)

C*(m)={alae C”, ||a|=m},

and let

x =min{m|m € Z,m > 0,C*(m) # ¢} (2)

Let x : I,(T) — C; U {0} satisfy two conditions : (i} it is multiplicative, that is x{a;a;) =
x(ay)x(az) for a; € I,(T),; = 1,2, and (i) x~!1({0}) = Hpes I(T) with |S| < oo (here
|S| stands for the cardinality of the set S, and C, := {z]|z € C*,]z| = 1} ).
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The L-function of T associated to x is defined by a Dirichlet series

L(T;s,x)= Y x(a)Na=*/x (3)
aer,(T)

The series (3) converges absolutely for Res > 1 since

L(T;s,x) = [[ Lo(T; 5, %) (4)

with

L(Tis,x)= Y x(a)Na=*/*
aer,(T)

by Proposition 1, or

Ly(T;s,x) = Y, x(ag)Np~liells/e(x, (5)

a€C?
p

so that the Euler product (4) may be majorised by the product

H(l +Np—Rca/e(P)(1 +A.Np—Rca/Kc(p)))
P

with some positive A. Let B € I[,(T'), we say that P is a prime ideal if a| = a =P
for a € I,(T)\{1}; a prime ideal ‘B is called a strict prime if a|B" = Im(a = P™) with
n,m ranging over non-negative integers. Let P(T) denote the set of prime ideals, and let

Ps(T) stand for the subset of strict primf;s.

Proposition 2 (i) The set P(T) generates the group I(T); (ii) there is a sequence of

polynomials Q,(t) in Q[t] such that Q,(t) = 1(mod t*) for each p, and

LTis,x)= [ Q=-x@®Np/*) [ @p(vp=/=)) (6)

‘BE'pn(T)

for Res > 1.



Proof. Since P(T) C UI,(T) and I,(T) is generated by the finite set P(T) N I,(T),
P

assertion (i) follows from Proposition 1. Let P, = P, (T) N I,(T); it follows from a

theorem on the solutions of linear homogeneous Diophantine equations, {14, theorem 2.5},

that

Lp(T;s,x) = [] (1= x(BINP/*)71Qy(Np~/==(?)) (7
Perp,

Identity (6) is a consequence of (4) and (7).

Remark 1. An element of I,(T) is called an integral ideal, the elements of U I,(T') are
P
primary ideals. By Proposition 1, an integral ideal can be uniquely factorised into primary

ideals; however, factorisation of primary ideals into primes is not, in general, unique {cf.

[14]).

Needless to say, one does not expect the function
s+— L(T;s,x) (8)

to possess an analytic continuation beyond the half-plane {s|Res > 1} of absolute con-
vergence of the series (2) for a generic multiplicati\}e character y. In the next sections
we introduce grossencharacters, and following [2] prove that the function (8) allows for
analytic continuation to a meromorphic function in the half-plane C = {s|Res > x/x+1}

when y is a grossencharacter.

. Let L be a number field, we denote by Sy(L), S2(L), So(L) the sets of all the real places,
all the complex places, and all the finite places of L respectively, and write

Seo(L) := S1(L) U S3(L),S(L) := Seo(L) U So(L). As usual, L, stands for the completion
of L,p € S(L); let o (and O} denote the ring of integers of k (and '), then o, (and Op)
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stands for the ring integers in k, (and in Kp), p € So(X),p € So(X'). Given a commutative

0 —algebra A, let B := A ®p O, and let, by definition
T(4) = {ala € B*,oa =a° for o€ G}.
Let Gp = Gal(Kplky) be the ramification group at p, and let

T(I1,) = {a]a = (777" ),TER A (T*)Gb},

where  is a fixed prime in K. Clearly T(II,) = I)(T).
Lemma 1. Let peSo(k), then T(k,) = T(0,). T(IL,).

Proof. By definition,
T(ky) = {a|ae(B;)d , ca=0a° for oeG},

and
T(0p) = {a]ae(A;)d , ca=a’ for ceG},

where B, = kp @ K , 4, = 0, @0 O. Let aeT(k,). Since B; = [] K}y, one may
TE

write @ = (...,ar,...) with a,e(I{:p)d; moreover, it follows from the equation ca = a”
that o, = TC!{—I. On writing oy = em® with e € (Da)d,a € T* one deduces from the same
equation that ge = €”,0a = a for 0 € Gp. On the other hand, if o, = (re”~!)(r77%)
with a € (T')Gp and e satisfying oe = ¢° for 0 € Gp , € € (Dp)? then a € T(k,). Since

A =
> GH%

D7p, the same argument shows that

T(o,) = {a|a = (...,re"_l,...),e € (Di‘,)d,ae =¢ for o€ Gp}
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This proves the lemma.
Let ;2 be the rank of the Z-module 7.

Lemma 2. Letp € Seo(k), then

T(kp) = RY” x (Z/2Z) " X (sl)dp, (9)

where 7, is the rank of the Z- module vl for a place p in So(K') above p.

Proof. If k, = Ky then T(k,) = (k})%, and (9) is immediate. Otherwise, k, = R, Kp =

C, and we have:
T(kp) = {a|a,~ = (v @iy e ), T E},‘% , ar;, €C* |, ca=a° for o€ G} ,

where Gp = {1,0p}, and opor; = & for 1 < ¢ < d. As in the proof of Lemma 1, it
follows that a, = ra]™', and opay = a:p. Let | = {ey,...eq} be a new basis in 7' such
that oe; =eifor: < pu, 0 € G, ope; =¢; for i <rp, and opei = —e; for 1 > r,. This

basis induces an isomorphism ! : T(k,) — (R*)™ x (S')? with d, = d — r,. This proves

the lemma.

Let A be the adele ring of k, and let ® be a finite subset of S(k) with & 2 S (k); one

introduces a group

To(Ar) = [ T(ky) x [ T(0,),

ped pe¢d
by definition, T'(Ax) = ¢:>£E'J . Te(Ak). The group T(k) may be regarded as a discrete
subgroup of T(Ay). Let Too(Ar) = [] T(kp); by lemma 2, there is an isomorphism
PESc (k)

L Tuo (Ar) 2 (REIHT X (2/22)" x (')
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- d .
withp+r= 3 rpv<p+r ForzeT, a €T(A) welet z(a) = [] o, where 4

PESe (k) i=1
is an o—(or a k-) algebra; it follows from definitions that z(a) € A* if z € TG a € T(A).
Let

T'(44) = {ola € T(Ax) 2(e) =1 for =€},

where, by definition, |#| = [] |8|, for B € A,|.|p being the normalised absolute value
on k,. Clearly, T(Ak)/Tl(x::)S{z-’;)(Rl)" and we rnay.write T(Ax) = (RL)* x TY Ag) if we
embed (R} )¥ in one of the groups T(k,),p € Seo(k); by the product formula,

T() C T'(Ar). Obviously, Too(Ax) = (R%)* x TL(Ax) with

TL(Ax) = (RY)" % (Z/2Z) x (5')%=, and on writing

Ti(Ax)=Ti(Ax)x [l  T(kp) x [[ T(op) one obtains

PEP\Ses (K) pge
TYAx) = _U Ti(Ag). The main theme of the rest of this section is an interplay

$25e0 (k)
between "idéle groups”, that is different objects defined in terms of T(Ay), and "ideal
groups”, that is some objects defined in terms of I(T). Let ¢, : I®?(T) — T(II,) be the
isomorpishm defined by ¢, : aa — (...,777%,...) , a € (T")Gp. One defines a monomor-
phism
#(®) = ,E& ¢p @ Is(T) — T'(Ax), where we let I(T) = [ I®(T). It follows from

ped
Lemma 1 that

T'(Ax) = To(Ak) - 4(2)(1a(T)). (10)

Let f, = peg(k)pml’ y,mp €L, mp 20,and m, =0 for p ¢ @, let f, be a subgroup of
(Z/2Z), and write § = (f,,fo ). For a € T(k) relation o = 1(f) means that

a; = 1(p™),1 < i < d,p € S,(k) and a) € f, where ¢ : T'(Ay) — (Z/2Z)" is the
natural epimorphism and T(k) is regarded as a subgroup of T'( Ay).

Let I;"'(T) = {(a)|la € T(k),a = 1(f)}, and let CI(T) = Iq,(T)/If’"(T) be the correspond-

ing ray class group modulo f. The group CI;(T) is known to be finite, [11] (cf. also [15,
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pl48], and [2, p453]). By (10),
CH(T) = T (Ax) / TH(ARTY(R) )

where Tf(k) = {a]ja € T(k) , a = 1(f)}. Let Tf(o) = T(o)N Tf(k); by a generalisation

of the Dirichlet unit theorem, [13],
Ti(o) = Z" x A with [A| < o0.
Therefore
TL(A) / Ty(o) = T, (12)

where Tf = (Z/2Z)% x (S')de*r | v, < v. Let Tf(Ak) = fo x ]I Tf(op) with
PES, (k)
Tf(op) = {ala € T(op),a = 1(p™?)}, and let &(f) = Tl(Ak)/T(k)Tf(Ak); we write, for

brevity, ® := &(f).

Proposition 3. We have

6= Tf X le X Bf with |Bfl < 00, (13)

Proof. It follows from Lemma 1 and equation (10) that

& = To(A) x [] T(k)/T5(0p) ><¢¢(I¢( ) foo-T(k)
pEd,

where we write, for brevity, ®, := ®\S(k). Since

I7"(T) = Ty(k)/Ty(o),

relation (12) and the definition of le(T) give (13) with

;= ( I 70)/00 ) /(70710 ). (1)

pEd,
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Finiteness of the group Bf follows from the relation |CI(T)| < oo, where CI(T) :=

I(T)/IP7(T) is the class group of T; here I?"(T) := {(a)|a € T(k)}.

Remark 2. As f varies, the groups Bf show to what extent the weak approximation
principle for the set @, fails; in particular, it follows from the theorem on weak approx-
imation in an algebraic torus, [12, §7.3], (15, §VL.6], that By = {1} if (f,, D(K|k)) =1,

where D(I{k) denotes the discriminant of the extension K|k.

Composing the map ¢(®) with the natural epimorphism T!(A4;) — &, one obtians a map
g(f) : Is(T) — ®; we are interested in the distribution of integral ideals with respect to

the (normalised) Haar measure on ®.

. Let x : T'(Ax) — C; be a continuous homomorphism, then {plp € S,(k), x(T(0,)) # 1} is

finite and, moreover, for each p inS,(k) there is an integer m such that
{ala € T(0,) , a=1(p™)} C Kery.

Therefore, on writing §f < f when f. C f., and {’|f,, one may let

f(x) = min{ﬂTf(Ak) C Keryx}. Composing x with ¢(®) for & = So(k)U @, , &, =
{plp € S.(k), plf,} we define a multiplicative function x : Is(T) — C, that can be
extended to a character x : I,(T) — €' U {0} with x~'({0}) = [[ I,(T). This character
is said to be a (normalised) grossencharacter if T(k) C Kery; lzq’(o?rf(T) be the group of
all the grossencharacters x with f(x) < f, and let Gr(T) := LfJGrf(T) be the group of all
the grossencharacters. It follows from Proposition 3 that G'rf(T) = B(f)*; on the other
hand, Gr(T) = (T'(Ai)/(T(k))* by definition (here G denotes the group of (continuous)

characters of a (locally compact) group G).
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Example 1. Let T = Gk, then the group Gr(T) coincides with the group Gr(k) of
all the normalised grossencharacters of k, and L(T); s, x), for x € Gr(T), is just a Hecke
L-function L(y, s) known to be a meromorphic function of s with the only pole at s =1

when x¥ = 1, and having no-poles if x # 1.

Example 2. Let ko|k be a finite extension of number fields, and let T = Resg, /xTo,
where T, is a torus defined over k,. Then T(k) = T,(k,), and T(Ax) = T,(Ax,), [16];
therefore Gr(T) = Gr(T,), Grf(T) = Grf(To) if f is defined over k, and LT} s, x) is equal
to L(To; s, x) up to a finite number of Eulér factors (however, f(x) is not necessarily equal

to the conductor, say {'(x), of x in T,, although {'(x) < f(x) over k,).

Lemma3 Let {T,T,} C Cat(K|k), and let f : T; — T* be a G-homomorphism. Then

there is a natural homomorphism f4 : To(A) — T(A) for each k-algebra A.

Proof Let B = A®;K. On writing fa(a) = 8 with §; = [[a;” fora € B*¥° | B € B*d,
f
where d and d, denote the dimensions of T and T, respectively and where (a;j)1555<a, is
' 1€1 €4

the matrix of the transformation f in an appropriate basis, one notes that f4(oa) = o f(a)

and fa(a?) = fa(a)?, and the assertion follows.
We are now ready to prove the following important result due to P Draxl, [2].

Proposition 4. For T € Cat(K|k), let x € Gr(T). There are number fields k; and

characters x; such that x; € Gr(k;) , kCk;CK, 1< ;< B, and

B
L(T;s,x) = [ L(xj, 9)L(T; 8, x), (15)
=1

where the function s — L(T;s,x) 13 holomorphic and has no zeros in the half-plane
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Cx := {s|s € C,Res > F7} (with k defined by (2)).

. . . . . B(m)
Proof The finite set C*(m) being G-invariant, one can write C*(m) = Y D;, where
1=

D; = G.a; is a G- orbit. Thus

B(m)
Yo ox@) =) Sidx) , Six):= Y. x(a) (16)
Qaelp(T) 1=1 Aa€1p(T)
a€C*(m) a€D;

Let H; = {o|lec € G, g.a; = a;} be the stabilizer of a;, and let k; be the H;-invariant

subfield of K, so that H; = Gal(K|k;) , 1 <7 < B(m). Let T; = Resy, jxGm x;, we have

a(t)€Z, oe, =e5r for c€G, TER)

T ={ Y a(res

G
re H;

One defines a G-homomorphism f; : T,-‘ — T* by letting filer) = 7.a;. By lemma 3, there

is a homomorphism f; : Ti(Ax) — T(Ar); let xi = Xof;, clearly x; € Gr(T;). Moreover,

x{as) = xi(ae,) for a = 1.a; , 8, € I(T), a., € I,(T}), and therefore

Six) = ), xilae,) (17)
feﬁ.,

Ao, €15(T;)
Suppose e(p) = 1 (that is, plD(Klk)), then p splits completely in ki, and the sum in (17)
is equal to

S0 = xi(w), (18)
pPir

where p ranges over all the prime divisors of p in k; ( we have identified Gr(T;) with Gr(k;),
cf. Examples 1 and 2). On the other hand, if we take m = & it follows from (5) that

B
Lp(T;SaX) =1+ Z Si(X)NP—a + O(Np-(Rcs)(n-H)/x), (19)

i=1
where B := B(x). Equation (15) and the assertion of Proposition 4 follow from (16), (18),
(19), and (4).
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Remark 3. Equation (15) defines the function (8} in the half-plane C,; by Proposition

4, it is holomorphic in C,\{1} and has a pole of order
b(x):=card {j1<j<B , x;=1} (20)

at s = 1. Proceeding by induction on m, one can continue this function to a meromorphic
function in C4 := {s|s € C, Res > 0}, {2]. It is an interesting open problem to describe
the class K of tori for which L-functions (8) are meromorphic in C. This clz;ss is closed
with respect to the restriction of scalars (Example 2). By example 1, G, € K. More
generally, given extensions kj|k , 1 < 7 < v, of number fields one defines a norm-form

torus T by letting

GGHB? , Np;jjaai =N a0 B.'1=A(%ki , 1SiSV};

T(A) = {a

=1
the L-functions of this torus T are known to have the line {sjs € C , Res = 0} as their
natural boundary for analytic continuation, unless either |I| < 1, or |I| = 2 and [k; : k] = 2

foriel, I:'={i]l <i<v, k;+#k},in which cases T € X, [4], [8].

Remark 4 By construction, if x ='1 then b(x) = B. The converse assertion is not,
in general, true (cf. for instance, [5]); however, if C*(x) generates T* then a weaker
implication

b(x) = B = x is of finite order (21)

has been proved, [2], to hold true. We do not know whether (21) holds for any torus T

A well-known argument (cf, for instance, [7]) rooted in the classical analytic number theory
allows us to deduce the following estimates for character sums over integral ideals and over

prime ideals from Proposition 4.
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Theorem 1  Let x € Gr(T). Then

Y~ x(a) =yPy(logy) + O(y' "),y >0 (22)
ael,(T)
Nagy=

where Py (1) is a polynomial of degree b(x) — 1 if b(x)> 1, and P (logz) =0 if b(x) = 0;

Y
du i SToa v
> x(p) =b(x)] o T O(ye™ ©9¥),m > 0. (23)
&Ep‘i('r) 2 g
’K

We omit the proof of this theorem.

Let, in notation of (13),

®, = (Z/QZ)V° x Cly x B, (24)

so that
® Tf(") x B, (25)
where ’Tf(a) (§1)4~*7 is a flat torus. Let grf(T) be the subgroup of Grf(T) consisting of

all the characters of finite order; clearly,

gr(T) = el (26)

Corollary 1. Let A € B,; let N(A,y) = |N(a,y)| with

N(4,y) := {ala € I(T) , (a,f,) =1, g(f)(a) € A, Na <y},

and w(A,y) = |M(A, y)] with M(A,y) := N(A,y) N P(T). Then

N(4,y) = yz X(A)Py(log y) + O(y'~7) , 7 > 0, (27)
and
m(A,y) = x(A)b(x) +O(ye™ V¥ ) 1 >0, (28)
” / log u



where

z;‘:m; 2

° xeyrf(T)

Proof Relation (27) (resp. (28)) follows from (26) and (22) (resp. (23)).
Corollary 2. IfL(T)N A # ¢ then

N(A? y) = yPa(log y) + O(yl_ﬁ)"y > 0, (29)

where P4(t) 18 ¢ non-vanishing polynomial of degree lower than B.

Proof By (28),
7r(I’" (T),Y) Z b(y)—(l +0(1)) > ——-
therefore it follows from (27) that A (I{’(T),y) > y. Let a, € I,(T) N A. Clearly
{ao(a)l(a) € I;'(T) NI(T), N(a) < y“Na;'} < N(A4,y),

so that N(4,y) > N(I;"'(T), yNa;!) > y, and (29) follows from (27).

Remark 5. Let r be a smooth subset of Tf(o) (in the sense of [6], [7]), let MN(7,A,y) =
N(A,y) Ng(f)~'(7), and let M(r, 4,y) = N(r, A,y).ﬂ P(T). If the torus T satisfies con-
dition (21) and B = 1, then the considerations of [6], [7] may be easily adopted to the
present situation and one can prove asymptotic formulae for the number of integral ideals
IN(r, A, y)| and for the number of prime ideals |9(7, 4, y)|. Thus in this case both integral
and prime ideals from a given class 4 in &, are spatially equidistributed in the sense of E.

Hecke. If condition (21) is satisfied but B > 1, we can still obtain an asymptotic formula

for [N(r, A, y)| gaining, however, only a power of log y in the error term.
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Corollary 3. Suppose that B =1, and let H = {x|x € grf(T) , b(x) = 1}; write H =

HL. Then
N‘f’ﬂ) for Ae H 30
(4y) = !HI./logy ( ’ (30)

and m(A,y) = O(ye™" V™9 ¥) for A ¢ H. Moreover, if A € H then (29) holds with

PA(t) =ca,c4 >0, v>0.

Proof. The estimates for 7(A,y) follow from (28). The last assertion follows from (27)

and (30).

Remark 6. Already in the case of norm-form tori relation (29) (with P4(t) # 0) does
not imply that the class A contains infinitely many prime ideals, [5]. One should note
that if B = 1, then a better estimate 7(4,y) = O(y'~'/**!) for A # H follows from the

definition of the characters x; , 1 £ j < B, in (15).

. Let T € Cat(K|Q) with [ : Q) = n. For a € I(T), we define an affine toric variety Xgq

as follows. Let a; = ) w?)Z, 1 €17 € d; let us introduce a set of independent variables
j=1
{zi;1 €1 <d, 1<j<n}and write

Zz,,w(} , ot; Z:r:.-jaw;i) forceG, 1< 1<d.
i=1

The variety Xq 1s defined by the set of equations:

ot =17

, 0€G; (31)

this is a system of polynomial equations with integral rational coefficients, so that Xq is
a variety of dimension d defined over Z. The torus T may be embedded in Xq as an open

d
subset Yy defined by the condition [] #; # 0. We shall study the distribution of integer

=1
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points Yg(Z) in the real locus Yq(R). By definition, Too(AQ) = T(R) and therefore, by
lemma 2, To(AQ) = RI'H' X (Z/2Z)" x (§1)4> with v = r+ p , v+de = d; by

construction, Yg(R) is homeomorphic to TOO(AQ). Thus there is a homeomorphism
ly: Ya(R) = RYH x (Z/2Z)" x (S'); (32)

to describe this homeomorphism explicitly, let us choose a basis {e;|]l < i < d} in T
satisfying the same conditions as in the proof of lemma 2: ¢; € TGfori<p, e € TP
for i < r + p, and ope; = —e; for 1 > r + y; here p is a fixed prime in So(K) and op
denotes the generator of Gp if Seo(H') = S2(K), Gp = {1} withdew =0,r + p=dif K is
a totally real field. We introduce new coordinates, say,

d
U; = H t;nj‘ with (mij)15i,de € SL(da Z) (33)

j=1

corresponding to the chosen basis {e;|1 <7 < d}. By (31),
ui(a) ER* for i < r+ y, and ui(a) € C, fori >r+p, a € Ya(R),

and the homeomorphism (32) may be described as follows: let a € Ya(R), then, by def-

ug

inition, Iy(a) = b with b = |ui(a)] for i <7+ p, biy; = By fori <v, 1< <
v, biy, = ui(a) for 1 > v (here we let t;(a) = 3 afj/\p(wj(‘-i)), where Ap : K — C denotes
=1

the isomorphism corresponding to p, and define u by (33)). Let

U(y) = {a|a € Ya(R), |Nt(a)] <y", = < |uj(a)] Syfor u < j < u},

1
y
d

where Nt := [[ [] ot
i=1o0€C

Proposition 5. If T i3 an anisotropic torus, then

card {U(y) N Ya,(2)} = cx(log v)" (1 ; m@)),cl >0, (34)
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where a,; =D for1 <:<d, a=aq,.

Proof If T is anisotrpic, then I,{T) = {1}. Therefore the map a — t(a) establishes an
one-to-one correspondence between Yq,(Z) and T(Z). Relation (34) follows from the unit

theorem, [13].

Returning to our study of isotropic tori we are now ready to prove the following estimate

for the number of integer points in the "cube-like” domain U(y).

Theorem 2. Let Z; = {ala € Ya(Z),t(a) = 1(§)}. We have:

card (Zf NU(y)) = cay(log y)° (1 + 0(% ), (35)

withc2>0ifzf#¢,b20,bez.

Proof. The map t: a t(a) is an one-to-one map from Ya(tho a N T(Q), and
{(t{a))]a € Zf} C I;"(T). Thus {(¢(a))|a € Zf} = {b.alb € A71 N I,(T)}, where
AeC lf(T), a € A. Therefore (35) follows from (27) and the unit theorem [13]. Moreover,

if Zf # ¢ then ¢ > 0 by Corollary 2.

Remark 7. Introducing a height function h: Yg(R) — Ry one can rewrite the asymp-

totic formula (35) as follows:

card {ala € Z; , ha) < y} = cay(log y)’ (1 +0( Io; y))’

where h(a) := max,<j<, {|Nt(a)|'/% , |uj(a)|, |u;(a)]~'}. One should note that Xq may
be regarded as an affine toric variety corresponding to the cone C* (cf. for instance, (3,

§1.2]). Let us recall now that a Draxl L-function Li(T,C, z,x, S;s), [2], depends on two
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parameters: z in TC¢ and a z-admissible cone C. In our case z € TC |

zi = EG Zd: rijlc) for 1 <1 < d, and C is a cone in T dual to C*. 1t is clear from the
=1

deﬁnizieon; that the choice of :z determines the height h. On the other hand, a different

choice of the basic cone C* would lead to a different theory of ideals; a Diophantine problem

relating to such a generalisation is yet to be discovered.

Remark 8. If B = 1 and condition (21) is satisfied, one can prove an equidistribu-
tion formula in the spirit of my work on norm-form varieties (see [7], [9] and references
therein). Namely, the number of integer points in a smooth subset of Yg(R) is seen to be

asymptotically proportional to the (properly defined) measure of this set.

Remark 9. Given a torus T defined over a number field &, one can pass to the torus

Res T and then apply the theory developed in this section.

Remark 10. In my work on norm- form tori (loc. cit.) a few questions have been left
open; as an application of the theory developed here, one can now answer these questions.
Let T be the norm-form torus defined in Remark 3. First of all, we note that condition
(21) is satisfied for the torus Res; ,@T since in this case C*(k) generates T*. Thus one
can treat general norm-form tori without making additional assumptions on the fields
k,ky,...,k,. Moreover, if %y,...,k, are linearly disjoint over &, then B = 1, and we obtain
a generalisation of results in [9] to arbitrary ground fields. Finally let us recall that in the

previous work, [7], [9], I restricted myself to the variety given by the equations

lfilz)l = ... = [fu(z )],

rather than treating the original variety

V:filz1) =...= fu(z,)
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[1]

2]

(3]
4l

(5]

(here f; is a full norm-form associated to a module in k; , 1 < j < v). This restriction
may also be removed now. In view of the detailed considerations in [9], we may omit the

details here.

Remark 11  We have not tried to obtain sharp error terms in the asymptotic formulae;

in (23) and (28) one can, of course, improve the error term slightly, even if we require the
estimates to be uniform in all parameters (cf [1]). To determine the exact value of ¥ in
(22) and (29) may be of some interest also (cf. [7], where this question has been touched
upon in the case of norm-form tori). A preliminary report on this work, [10], may appear

elsewhere.
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Exercises in Analytic Arithmetic on an
Algebraic Torus

B.Z. Moroz

Dedicated to Professor F. Hirzebruch
with deep respect and gratitude

1. The multidimensional arithmetic of E. Hecke, [4], [5], [7], may be regarded as
a study in analytic number theory on the torus Res;;oGnx for a number field k
of finite degree over the field @ of rational numbers. Here we shall try to generalise
these considerations to an arbitrary algebraic torus defined over a number field. After
applying Weil’s restriction of scalars, if necessary, we may suppose that our torus 7’
is defined over @; it splits over a finite normal extension K| Q. Let G = Gal(K| Q)
be the Galois group of K, let [I{ : Q] = n be its degree, and let d = dim T denote
the dimension of T. Such a torus is uniquely defined by an integral representation

p: G— GL(d,Z2) ,

where Z is the ring of rational integers, [12] (cf. also [15]). Consider a G-module
Klz], z :== {zi;] 1 <i<d, 1 <j<n}, choose an integral basis {w;| 1 < i < n} of
K|@Q, and let

Equations



where
n d -
otii= Y wyow; , 1= 177 p(0) = (rylo)) L 1<ij<d,

define an algebraic variety, say
X = Spec Q[z]/J ,

J being the defining ideal of X; the torus T' may be regarded as a Zariski open
subset of X given by the condition |—| t # 0. We view X(Z) as a generalisation

of the ring of integers of an algebralc number field (if T = Resy/qGm one may
identify X (Z) with the ring of integers of &), and intend to play the usual game of
analytic number theory on this set.

2. On choosing a fixed embedding Q «— C we shall regard the field @, the algebraic
closure of @, as a subfield of the field C of complex numbers. For a commutative
k-algebra A, k C C, let Ay = A ®, I, where kg = K Nk (the fields k and K are
linearly disjoint over kg since K|Q is normal). If one defines an embedding
t: T(A) — Al
in a natural way, T(A) may be viewed as a subset of Gy—invariants, where Gy :=
Gal(K|ko), that is to say
T(A) = {t(a)] a € A™, ot(a) = t°(a) for o € Gy}

(a word about notation, t(a) := (£1(a),...,te(a)), ti(a) = )n: aijwi, ¢ = {a;| 1 <
j=1

i<d, 1<j<n}t°:= t7), etc.). Since

Gt
d
X(Q\T(Q) C U b= {z|zeqQ a;=0for1 <j<d},

we may often replace X{A) by T(A) causing no damage to the type of problems
discussed here.



Before proceeding any further let us introduce the G-module of characters
T = {z| z € 2% oz = p(o)z for 0 € G} ,

and its dual
T"={yly' €2z oy=yp(c™') foro € G} ,

where the upper affix ! denotes matrix transposition. The G-module
M={t*|z €T, ot* =t foro € G} ,

and its submonoid
Mg={t“’|x€’f", x > 0}

d
furnish us with a convenient parametrization of T(A4). Here ¢t := [—!tf", and z > 0
=
means z; > 0forl <:<d.

3. Let I(K) and Iy(K) denote the group of fractional ideals of K" and the monoid
of integral ideals of K respectively, and let

d
IT) = {2 Ae(K), o =[] for ceG 1<j<d},
L(T) = IT)nL(K)* .

One defines the norm homomorphism N : I(T) — @} by letting N = [1 N,

1<j<d
for A € I(T). We say that A is a primary ideal if A € I)(T) and N2 is a prime

power in Q. For a rational prime p, let

I(T)(:=1,) = {A A € Ih(T), NU = p" for some n}

be the submonoid of p—primary ideals. To analyze the structure of I, let us introduce
the G-module of one-parameter subgroups

M, ={u|ye€ T*, qu¥ = u’¥}
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where u¥ 1= (u¥',. .., u¥). Clearly, (ox)(ouw¥) = z(u¥) if we let z(u¥) := (u¥)® = w¥~
forz € T, u¥ € M,.

" Let us choose a prime p in [(K) dividing p, and let
Gp ={olop=p, 0 € G}
be the decomposition group of p, so that

p= [ (Tp)"(”) in I(K) ,
rmod Gp

where 7 ranges over G. Let 2 € I, then

A = |_| (Tp)“i(’) with aj(1) €2, a;(t) >0,
rmod Gp

and

d
(1) O'QIJ' = [—IQ(:U(U) = [_I (Tp)(ﬂ(")‘ﬂ(f’))j .
i=1 rmod G

On the other hand,

od; = M (orp)®™ |
rmod Gp

and in particular :
I = p% Y, with  pf; .
But
T = Tl with  p f,
in view of (1). Therefore
a(r) = a-p(r7") |
and, moreover,
a-plc)y=a for o€Gp,

where we write a(e) = a and denote by e the unit element of G. Thus {cf. [1])

(2) L=L(T)={%| %= [] () aec;},

rmod Gp
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where

C ={aaeT, c-a>0foroc€G} ,

and
Cp=Crn(T")° .

If C* # {0} let a € C*\{0}; clearly

> oace (T)4\{0} ,

e

so that 76 # {0}, and T is not anisotropic. Therefore Io(T) = {1}, and consequently
T(z) = X(Z) for an anisotropic torus T. Suppose now that T is not anisotropic (that
is TG # {0}), then after a possible change of basis in T it may be assumed that
C*N(T*)C # {0}, and in particular Cp # {0},

Let
X: Io(T) — C U {0}

be such a homomorphism that
o =111 with  #S<oo;
P

here €, := {z] z € C, |¢| = 1}. Let

(3) L{x,s) = ) x(WNA;
Aeclo(T)

clearly

(4) Lix.s) = 1Ly(x.s)

where p ranges over all the rational primes, and

Ly(x,s) = > x(A)NU* .
Aeip

Both the Dirichlet series (3) and the Euler product (4) converge absolutely for
Res > 1. By a well-known theorem (going back to D. Hilbert), the cone C* and

3



therefore the monoid I, are finitely generated. The generators of I, are the prime
ideals of T'; it can be shown that the theorem on the uniqueness of factorization of
the primary ideals into primes does not hold in this generality. Let P(T') be the set
of all the prime ideals in [p{T'), and let P € P(T); we say that ‘B is a strict prime if

A P" = (A=P™ for some m) .

Let P,(T) be the subset of the strict primes. From a theorem in combinatorics, {14,
theorem 2.5], one concludes that

(5) Lixs)=, 1 @-xpnpg 1,6 |

PeP.(T)

with Q,(z) € Clz], Q,(0) = 1.

Lemma 1. For 2, € I, one has
(6) N2, = pb(a) ) b(a)e(p) =a-z,

with z; = ¥ 7,(0); moreover, z € TC,
*0€G,1<5<d

Proof. Let Np = p/®._ It follows from (2) that

N, =p/P"  with b= 5 |raf
7mod Gy

d . .
where |a| := ¥ a; for a € T*. Since Cp C(T7 )P we have
i=l
by Z loal = Z Z ity (0
IG l ol IC l ce(G 1<i,j<d ’

Relation (6) follows now from the equation [Gp| = e(p)f(p); the last assertion is
obvious.



Write now

(7) Lﬂ(x,s>=§0p-"' T ) .

a-sme(p)n
A.eip

For HC G,let C; =C*N (T')", and let
B(H):=min{a-z|a#0, a€ Cy
By construction,

B(H) = (min{ > ]'ra”a?éO, a€ C’;,}) - |H| ,

rmod i

and therefore
(8) |H| < B(H) <0 .

Clearly B(H,) < B(H,) if H, C Hj, so that

(9) Elgiléﬁ(H) =0 , fo=0({e}) .

By (7)-(9),

(10) Lx,s)=1+ Y p™ > x{(%) .
e(p)n2po 0;6(2-'

Lemma 2. Both the Dirichlet series (3) and the Euler product (4) converge absolutely

for Res > -;:

Proof. It follows from (10) and the definitions (3), (4).

Clearly
A.€l, , a z=p(Gp) = U, isprime .
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Let
Pu(T) ={U| a € C”, a-z= [y}

be the set of the minimal primes. It follows from (5) that

(1) L(os) =g L1 (= x(PNE™) T L0 s)
where

1} — v —-s\~1 (1)yf,.—s
(12) sy =, L1 = x@Ne) T L 1006™)

with Q;,”(a:) € Clz], QI(D”(O) = 1, and the Euler product (12) converges absolutely
for Res > 31 .

Corollary 1. The set
D(B)={ala€eC"ya-2=8} , B>0,

is a finite G-invariant set.

Proof. It follows from Lemma 1 that D(f) is G-invariant since z € T'¢; moreover,
a-z= Y |oa| > |a] for a € C*, and therefore
g€G

ID(B)| < card{a] a €2% a >0, |a| < f} < o0 .

Let

o

D(6o) = \J D;

=1
be the decomposition of the set D(f;) into G~orbits

D;=G-a |, 1<i<B,

and let
Di(p) = {U.| %, € I,(T), a € D;} .



We have

13 M (1= PN = fs) [1 s

(13 sy (1= XBNE) = 1(0) B 6000

with

14 sy= [1] 1+ —Bos/e(p)y

(14 909 = 1 (14 xR0

where f(s) is equal to an Euler product absolutely convergent for Res > 5= > 5.
Let

H; = {o| 0 € G, gd') = al¥}
be the stabiliser of a!?, and let
ki={z|z € K, ox =z for o € H;}
be the subfield of K" corresponding to H;; let
T; = Resy;qGmy; , 1<i< B,

so that
T = { > afo)o] o €G, alo) € Z} .
emod H;
There is an injective homomorphism f; : ’f‘,-‘ — T™, uniquely defined by the condition
filo) = o+ a; clearly f;(T7) coincides with the submodule [D;] generated in T by
D;. By construction,

HT) = {A| % € I(k:), W; =AY, 1< j < di}

where G = U Hioj,d; = |D;| = [k; : Q]. Therefore we can define a homomorphism
1<j<d;
Xi: Ig(k,) — G U {0}

as follows: let B, € Iy(k;) with NB; = p’ for a rational prime p, and let B; = B,
1 < j £d;; then B € I(T;), say B = U, witha € f’,-*, and we may set y;(By) =
X(Ug;(ay) for the uniquely defined ideal Ay, in I[,(T). Let

(15) Lixis)= [ 1 (1= xdp)np=)™" .



Proposition 1. We have

B
(16) L(x,s) = [1L(x:, Bos) LP(x; s)

where L(?)(Y, s) is represented by an Euler product absolutely convergent for
Re s > ﬁ'ﬁﬁ moreover,

(17) xi=1 for 1<i<B<=Xxlp nn=1".

Proof. In view of (11) — (15), it suffices to note that

E'(p) = {Q‘lf.'(a)I Qla =B with le =p Be IP(T‘l)} .

Proposition 1 may be regarded as a formal counterpart of a theorem of Draxl’s (cf.
[1], equation (2.1)).

4. Now we are ready to proceed to the main part of this investigation and to comment
on the structure of X(Z) as a discrete subset of X(R). To begin with let

Gy = Gal(K| KNR) ,

so that .

1 if FCR
|Go| = .
2 otherwise

Since both T'/7C? and 762 /TC are torsion—free there is a Z-basis {u;]1 <7< d} of
T such that {u;] 1 < j < u} is a basis of 7%, while {u;] 1 < j <+ 7} is a basis of
TGz, Clearly

T(R) = {a] a € R™, u"(a) = Tu(a) for 7 € Ga} ,

and we can define a surjective map

f:T(R) — R™¥ x(SHh

a +—— (ul(a),...,up+,.(a),...,%2—;|,...) ,

10



where p + 7 +.d1 =d,d; >0,i> pu+r. By a generalisation of the Dirichlet unit
theorem, [12], [13],
T(z)=2zZ"xA with | <oo ;

therefore T(R)/T(Z) = R} x T, where
T = (S")** x (z/2z)"

and o < p+r.

Given a set
S={ooc}USy , SoC {p|pisarational prime} ,
let
Tu(8) = 17(@) x | 1T(z,) |
and let
Ta= |J Tal(s) .
|§)<o0

Clearly Ty = T(Ag), where Aq is the adéle-algebra over Q. Let
Ti = {a| a € Ty, |z(a)| =1 for z € T} ;

clearly T(Q) C T} (if one identifies T(Q) with its image under the diagonal embedding
into T4 ). By a well-known theorem, [12], [15], T'}/T(Q) is a compact group. We have

T(Qy) = {a|a € I\;'ﬁd,aa =a° for o€ Gp} ,

where p is a fixed prime in I(K’) with p|p. Therefore there is a natural embedding
g : I, = T4(S) with § = {00, p} such that g(I,), = 1 for ¢ ¢ S, and ¢(2U,), = «
for A, € I, with a € T(Q,), @ = 7%, where ¢ € o{,", p = (7), op being the ring of
integers of Kyp; moreover, it may be assumed that g(I,) C T} if one adjusts g(J,)o
properly. One extends ¢ to an embedding

g: I(T) =T} .

11



Given a character
i: T}i/T(k’) — Cl ’

the set So = {p| Xp(T(Z,)) # 1} is finite; for p ¢ Sy we let x, = Xp0 g, if p € Sp let
xp(Ip) = 0. This procedure gives rise to the group Gr(T') of Hecke characters

X IO(T) ——>C1 U{O} .

If vy € Gr(T) then x; € Gr(k;), 1 < i < B, where Gr(k) denotes the group of all
the Grossencharakteren of a number field k. The following result may be regarded
as a corollary of Satz 1 in [1].

Corollary 2. Suppose that y € Gr(T). Then equation (16) defines ﬁ(x,s) as a
meromorphic function of s in the halfplane {s| seC, Res> B.Tl.ﬁ}l with the only
possible pole at s = 1/,.

Proof. It is an immediate consequence of Proposition 1 since L(y;,s), 1 < i < B,
is a Hecke L—function of k; in this case.

The usual machinery of analytic number theory (see, for instance, [9] and references
therein) yields now the following results:

(18)  card{plpeP(T), Np<y*} =B [’ du +0 (yemevms?)

logu
with ¢>0 ,
and
(19) card (U] % € I(T), NA < y*} = yp(logy) + O(y'~)
with ¢; >0,

where p(z) € C[z], degp= B — 1.
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The infinite component Y in the decomposition ¥ = X - [;1 Xp may be regarded as
a character of T(R)/T(Z), say

i’oo: R;_pXT—’Cl .
The grossencharacter x obtained from y is said to be normalised if )Eoolk;" = 1.
Write
fo(X) = {0 @ € (2/22)", Xeo(@) #1} ,

and let fo(x) = I;Ip"‘*’, where
m, = min {m| @ € T(Z,), a = 1(mod p™) = x,(a) =1} .

The pair f(x) = (§fo (), fo(x)) is said to be the conductor of x. The group Gro(T, f)
of all the normalised grossencharacters having a given conductor § is isomorphic to
Zz* x B(f), where B(f) is a finite Abelian group. Moreover, B(f) may be chosen
to coincide with the subgroup of all the characters of finite order in Gro(7T, f). Let

B = {A A€ L(T), x(A) =1 for x € B(f)} ,

and let
(T) = {] x(A) # 0 for x € Gro(Tf)} .

The ray class group H(f) = I‘](T)/%(f)l is finite, [12] (cf. also [15]), and B(f)
may be regarded as the group of characters of H(f). In a usual way one obtains the
following asymptotic formulae for the number of integral ideals and for the number
of the prime ideals in a given ideal class. Let A € H(f), we have

(20) card {p|p € P(T) N A, Np < y*}
( Y " x(A)g \)/ —"+O(J6-°2 logy )
xe€B(f)
and
(21)  card {Qll Aed, NA< yﬂﬂ} =y 3" X(Apyllogy) + O(y'~>) ,
x€B(f)
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where ¢ > 0,¢3 >0, &7 7(5- ¥, py is a polynomial of degree g(x) — 1 whose
coefficients may depend on y, g(x) = card{i| 1 < i < B, x; = 1} (if g(x) = 0 we
let p, =0).

Although our ultimate purpose is to investigate the distribution of integer points
on X in the real locus X(R), the methods of this paper fall short of such a goal,
and we should be content with somewhat weaker results on the integer points of
the variety ¥ defined as follows. For a € K*? let €(a,0) = (oa)(a®)~!, and write
€(a) : o €(a,0), 0 € G, define an equivalence relation ~ :

€(a) ~ €(a’) <= ¢(a) = €(a’)e(b) for some b in EL |
where E; denotes the group of units of K, and let
A= {e(a)] a € K™, ¢(a,0) € E§- foro € G} .

Let B be a set of representatives for A/ ~ containing the identity €® (here &® :=
€(1), €i(1,0) =1 for 1 < i< d). We set

Y=V,
c€B

the variety V, being defined by the equations
at = e(o)t? , c€eG ;

ctliearly V.o = X, so that X C Y. The open subset V, of V, defined by the condition

Q t; # 0 is a T-homogencous space, and we identify V,(R) with T(R). Moreover,
(t(a)) € Io(T) <= a€Y(Z) ,

with ¥ := |J V,. Making use of the theory developed here we obtain now an estimate
€EB

for the number of integer points on Y in the “rectangular” compact domain U(y)
in T(R) given as follows:

U(y) = {al e € TR), [Nt(a)] <y, v~ Slusla)l Syforp+1<j<ptr)
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where Nt(a) := E!Q:(a’t,)(a)

Corollary 3. Let 2, € I}(T), and let
M(2) = {a| a € Y(Z), (t(a)) C Yo, (t(a)) € Bo(f)*} .

We have

(22) card(U(y) N M () = c1(o}y(logy)**" (1 + O(IOIgy)) ’

with0 < b< B —1.
Proof. Clearly
a € M(2) & (t(a)) =AY, with A€ 4 |

where A € H(f), %y € A™!. By the unit theorem,

card{al (t(a)) = (t(ao)), e € M) NU(y)} = co(logy)” (1 + O(lolgy))

Relation (22) follows from this estimate when combined with (21).

Proposition 2. If T is anisotropic then

(23) ' card(X(2)NU(y)) = c3(logy)" (1 + O(%))

Proof. In this case Iy{(T) = {1}, so that X(Z)N U(y) coincides with T(Z) N U(y).
Therefore (23) follows from the unit theorem.

Remark 1. The constants ¢;(2g) and ¢ can be explicitly evaluzé.ted-; if M(2y) # {0}
(resp. X(Z) # {0}) then ¢;(2p) > 0 (resp. c3 > 0). '
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5. Proposition 2 provides a complete solution of the problem of counting integer
points on an anisotropic torus, although further refinements in the spirit of [3] may
be probably obtained. Thus henceforth we assume again that the torus T under
consideration is not anisotropic. The deeper results on the spatial (“multidimensional”)
distribution of the integer points as well as of the integral (or of the prime) ideals
depend on the following condition

(24) xi=1 for 1 <i< B=>yx € B(f) for some {

to be satisfied. If (24) holds and B = 1 then a complete analysis in the spirit of 8], [9],
[11] is possible. If (24) holds but B # 1 we can still prove a spatial equidistribution
theorem for integral ideals gaining, however, only a power of logarithm of the
main term in the error term (this being insufficient for finer applications to an
equidistribution theorem for integer points, as exhibited in [11)).

In view of (17), condition (24) holds true {with an even stronger conclusion) if the
set Pp(T) of minimal primes generates the monoid Iy(T') of integral ideals. The
following observation [1, Satz 1] lies deeper, and it is more useful.

Lemma 3. If C*(f,) generates the group T* then (24) holds true. HereC*(m) :=
{ale€e C*,a-z=m}, meZ,m>1.

Proof. It is an immediate consequence of the last assertion in [1, Satz 1].

Example 1. The norm-form (or Vinogradov) torus T can bhe defined as follows. Let
k be a field of algebraic numbers of finite degree over Q; let k;]k, 1 < i < v, be a
finite extension. The torus T} is defined by the following condition (cf. [1]):

Ti(B) = {bl be Q (B ®r k)", Nog,k,/8b1 = Npgi,/pbi, 1 <1< V}

for any k-algebra B; we let T = Res; qT}. It follows from Lemma 3 that the torus
T satisfies (24), and therefore one can prove a theorem on the equidistribution of
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integral ideals having equal norms (cf. [8], where & = Q@ and the fields k; are assumed
to be linearly disjoint over k). Moreover, if the fields k;, 1 < ¢ < v, are linearly
disjoint over k then B = 1; therefore a complete theory in the spirit of [§], [9], [11]
(where we have assumed & = Q) can be developed in this case.

An open question. A Drax] L-function L(s, x) of an algebraic torus is known to be
meromorphic in the half-plane {s| s € C, Res > 0}, [1]. Moreover, if T is a norm-
form torus considered in Example 1, then L(s, x) has the line {s| s € C, Res =0}
as its natural boundary for analytic continuation, unless either #{i| k; # k} <1, or
#{i| ki # k} = 2 and [k; : k] £ 2 for each 7 in which cases L(s, x) is meromorphic on
the whole complex plane, [6], [10]. Therefore we may ask under what conditions on
T the function s — L(s, x) can be analytically continued to a meromorphic function
on C.
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