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STRAIGHTENING AND BOUNDED COHOMOLOGY
OF HYPERBOLIC GROUPS (PRELIMINARY VERSION)

IGOR MINEYEV

ABSTRACT. It was stated by M. Gromov [4] that, for any (word) hyperbolic group
G, the map from bounded cohomology Hy(G,R) to H*(G,R) induced by inclusion
is surjective in dimensions 2 and higher. The present paper proves that the map
Hy(G,V) - H*(G,V) is surjective in those dimensions for any normed vector space
V over Q. Rather than using quasigeodesic flows for the proof, we introduce a homolog-
ical analog of straightening simplices, which works for any hyperbolic group.

1. INTRODUCTION

It is a simple consequence of the Gauss-Bonnet formula that the areas of geodesic
triangles in the hyperbolic plane are uniformly bounded. This is also true in higher
dimensions, i.e. the volumes of straight higher dimensional simplices are also bounded.
The idea of straightening in H" is that each map of a standard simplex to the hyperbolic
space can be deformed to the straight one, that is, the convex hull of finitely many points.
In homological terms, this implies that the map Hi(G,R) — H*(G,R) is surjective for
i > 2, when G is the fundamental group of a hyperbolic manifold ([3]).

The main result of the present paper is Theorem 7 which is essentially saying that
straightening, in an appropriate homological context, works for a more general class of
groups, namely, hyperbolic groups. The argument is combinatorial. Boundedness of areas
of “straight triangles” in this setting reduces simply to summation of a converging geo-
metric series (see Lemma 6). This is a combinatorial analog of exponential convergence
of geodesic paths in H*. Boundedness of volumes for “straight simplices” in higher di-
mensions follows by induction using the fact that hyperbolic groups satisfy linear higher
dimensional (homological) isoperimetric inequalities ([7]). This implies surjectivity of the
maps Hi(G,V) — H*(G,V) for i > 2 for any normed vector space over Q. W. D. Neu-
mann and L. Reeves [8] showed this for i = 2 when V is any finitely generated abelian
group.

The author is very thankful to Steve Gersten who suggested working on this problem,
and also to Andrejs Treibergs for finding a gap in an earlier version of the paper.

Date: October 1998
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2. DEFINITIONS

Let X be a cellular complex with a cellular G-action. The result of the action of g € G
on a cell a in X will be denoted by g - a. We always equip the 1-skeleton of X with the
path metric d induced by assigning length 1 to each edge.

All chains in X will be assumed to be with Q coefficients.

If G is a group, U, (G) will denote the set of all cellular complexes X equipped with
a free cellular G-action which is cocompact on the i-skeleton X @) for each i. This means
that the quotient of X by the G-action has only finitely many cells in each dimension.
In this paper, X will always stand for an element of U (G). Such a complex X exists
for each hyperbolic (or, more generally, combable) group (see [2, Theorem 10.2.6]), i.e.
Ux(G) is non-empty.

Given a vertex v in X and a number 7, a sphere S(v,r) in X is the set of all vertices w
in X satisfying d(v,w) =r. A ball B(v,r) in X is the set of all vertices w in X satisfying
d(v,w) < r. If S is a subset of X, then the r-neighborhood of S, N(S,r), is the set of
all points € X" such that d(z, s) < r for some s € S.

A geodesic path in X is a shortest edge path connecting two vertices. Abusing notations
we will view each edge path as a map of an interval, as the image of this map, and
also as a 1-chain over Z. A bicombing p in X is a function assigning to each ordered
pair (a,b) of vertices in X an oriented edge-path pla,b] from a to b. A bicombing p is
called quasigeodesic if there exist constants A and K such that each pla,b] is (A, K)-
quasigeodesic. .

A homological bicombing ¢ in X is an function which assigns a 1-chain ¢[e, b] to each
ordered pair (a,b) of vertices in X, so that dgla,b] = b — a. A homological bicombing
is called quasigeodesic if there exists a constant » > 0 and a quasigeodesic bicombing p
such that supp gla,b] C N(pla,b],r) for each a,b € X®. A homological bicombing g is
G-equivariant if glg - a,g - b] = g - ¢[a, b] for each a,b € X and each g € G.

A finitely generated group G is called (word) hyperbolic if, for any graph I" with a
free cocompact cellular G-action there exists a constant 0 > 0 such that all the geodesic
triangles in I are d-fine in the following sense: if a, b, and c are vertices in ', {a, b], [b, ],
and [, a] are geodesics from a to b, from b to ¢, and from c to a, respectively, and points
a € [b,cd, v, € [a,b], w,b € [a, ] satisfy

d(b,e) = d(b,a), d(c,a)=d(c,b), d(a,v)=d(a,w) < d(a,&) = d(a,b),

then d(v, w) < 4.

Given G, I', and § as above and vertices a, b, c in I, then a vertex z is called a center
of the triple {a,b, c} if there exist geodesics [a, b], [, ¢, [c,a], points @ € [b,c], b € [c, al,
and € € [a, b] satisfying

d(b,¢) = d(b,a),  d(c,a)=d(c,b), d(a,&) = d(a,b),

and such that d(z,a) < 8, d(z,b) < 4, and d(z, ¢) < 4. Such a center always exists since
one can take z to be a.
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Suppose that a vector space W over Q has a preferred basis {w;, € I'}. The ¢;-norm
on W (with respect to this basis) is given by

Z ;Wi = Z lai].

iel 1 iel

For a linear map ¢ : W — W' between two vector spaces equipped with ¢;-norms,
the £o-norm of @, |¢|w, is the operator norm of ¢, i.e. |p|e is the smallest number K
(possibly infinity) such that |¢o(w)|; < K|w]; for each w € W. One checks that

)0 = sup lo(ws)],,

where {w;, ¢ € I} is the preferred basis of W. The preferred basis on the space of cellular
i-chains, C;(X,Q), will always be the set of i-cells in X and we always equip C;(X,Q)
with the £;-norm.

There are various definitions for bounded cohomology of a group, H; (G, Q) (see [5]).
The one we will use in the paper is by (homogeneous) bar-construction.

3. AUXILIARY STATEMENTS.

For the rest of the paper, fix a hyperbolic group G and some X € Uy,(G). Let § be
an integer such that all geodesic triangles in X" are §-fine. Increase ¢ if needed so that
d > 1. For vertices a, b, and ¢ in X, the Gromov product is defined by

1
(ble)a = 5 [d(a, b) + d(a, ¢) — d(b, c)].
Note that, by the triangle inequality, this product always satisfies
(blc)s < d(a,b), (blc)a < d(a,c), (blc)a =0, d(a,b) = (blc)s + (alc)s,

and analogously for any permutation of letters a, b, and c.
The following lemma immediately follows from the fine-triangles definition of hyperbolic
groups.

Lemma 1 (fine-triangles property). Let G be a hyperbolic group, X € U.(G), and z, «,
y, ', and y' be vertices in X such that ' and y' lie on geodesics connecting z to x and
y, respectively. Suppose also that

d(z,2") = d(z,9) < (z]y).-
Then d(z',y") < 6.

For the rest of the paper, fix some G-equivariant geodesic bicombing p in X, i.e. for
each pair of vertices a and b in X, pick a geodesic path pfa,b], viewed as a 1-chain,
with 8p[a,b] = b — a, and such that g - pla,b] = p[g-a,g - b] for any g € G. Abusing
the notation we will also view p[a,b] as a geodesic path, i.e. an isometric embedding
pla,b] : [0,d(a,b)] = X with pla, b](0) = a and p[a, b](d(a, b)) = b. So pla,b](r) stands
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for the image of r € [0,d(a,b)] via the map pla,b]. In the same way, vertices in X will
also be viewed as 0-chains. '

" A convez combination is a (cellular) 0-chain with non-negative coefficients which sum
up to 1. For v,w € X©®, the flower at w with respect to v is the set

Fl{v,w) := S(v,d(v,w)) N B(w, ) € X,

Proposition 2 (cancelling convex combinations). There erists a function f : X © x
X0 — Co(X,Q) mapping each pair (a,b) to a 0-chain f(a,b) with the following proper-
ties:

(1) f(a,b) is a conver combination.

(2) If d(a,b) > 106, then supp f(a,b) C Fl(a,pla, b](105)).

(3) If d(a,b) < 106, then f(a,b) =b.

(4) f is G-equivariant, i.e. f(g-a,g-b) = g- f(a,b) for any a,b € X© and g € G.
(5) There exist constants L > 0 and 0 < )\ < 1 such that, for any a,b,c € X,

f(a,b) — f(a,c) <L ABl0)a

The proof of this and later statements may look a bit cumbersome, but the main point
should be clear: use the fine-triangles property whenever possible. It is probably also
worth mentioning that the number 104 in the statement is not essential for the proof and
can be replaced by any “sufficiently large” integer.

\ ot - ),

f(a,b)

Figure 1. Convex combination f(a,b).

Proof of Proposition 2. The proof uses the same idea as the dandelion construction
in [7], though in a different context. For each vertex a in X, define the “one-level-lower
projection toward a” prg : X©@ — X a5 follows.

o prq(b) := pla, b](r), where 7 is the largest (integral) multiple of 108 which is strictly
less than d(a, b), provided a # b, and
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e pra(a) :=a.

Now the convex combination f(a,b) is defined inductively on the distance d(a,b). For
vertices a and b with d(a,b) < 104, put f(a,b) := b. If d(a,b) > 106 and d(a,b) is not a
multiple of 106, let f(a,b) := f(a,pra(b)). If d(a,b) > 105 and d(a,b) is a multiple of 104,
let

1
Fle,b) = o= D fla,pra(z)).
#Fl(a’ b) z€Fl(a,b)
It is clear from the definition that f(a,b) is a convex combination and it is G-equivariant
because the the definition uses only metric properties of X9, which are preserved under
the G-action. So properties (1) and (4) are satisfied. Property (3) follows directly from
the definition.
To finish the proof of Proposition 2 it only remains to show parts (2) and (5). Let

w := max{#B(v,0) | v € X},

Obviously, w > 1, and also w < 0o because, up to the G-action, there are only finitely
many balls of radius § in X(®. Note that the cardinality of each flower Fi(a,b) does not
exceed w.

Fist we need the following lemma.

Lemma 3. (a) Leta,b€ X© and let m be any integer satisfying 106 < 106m < d(a, b).
Put v := pla, b](106m). Then

fla,b) = Z azf(a? :B),

zEFl(a,v)

where o are some non-negative coefficients with - Fl(ap) % = 1.

(b) Suppose that vertices a, b, ¢ in X and an integer n > 1 satisfy d(b,c) < & and
d(a,b) = d(a,c) = 100n. Then

1 n—1
B-swa) <2 (1-4)".
flah) - fa0) <2 (1- %)
Proof. (a) follows almost immediately from the definition of f. The main tools here are
the fine-triangles property and the fact that “a convex combination of convex combinations
is again a convex combination”. Fix an arbitrary pair of vertices a and b in X. We prove
the assertion by the inverse induction on m. Let my,,, be the maximal integer among all
m satisfying 106m < d(a,b). Since 106 < d(a,b) by the hypotheses of the lemma, then
M = Mupmae If 100Mye, = d(a,b), then b = v and the O-chain f(a,b) = f(a,v) can
be represented as the trivial linear combination } cpy, ) @ f(a, ), where o, =1 and
oz =0 for all x # v.
If 10070z < d(a,b), then, by the definition of f,

f(a7b) = f(a’p'ra(b)) = f(a1 U)a
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which is again the trivial linear combination.
m + 1 — m If an integer m satisfies 1 < m < Mypqq, then 106 < 106(m + 1) < d(a, b),
so, by induction hypotheses,

flab)= Y f(e,)
zE€FI(a,v")

where v' := p[a,b](106(m + 1)) and ¢, are some non-negative coefficients satisfying
D s Fia) % = 1. By definition, each f (a,z) in the last sum has the presentation

1
f(a7 fL') - m yeﬁ%ﬁ) f(a7MG(y))7
therefore
(1) fla,b) = Z g m Z f(a,pra(y))
z€Fl(av') yeFl(a,x)
T f (@, pra(y))
zeIﬂ;(a ') yEFZl:(a, #Fl(a’ 7)

Now collect like terms in the last double sum. It amounts to grouping the coefficients

_Q—#Fz(a ) We have
> XY wea X lwmes L Y= X e=t
z€F(av') yEF(a,z) zEFl{ap") y€Fl(a,x) z€Fl(a’)

and after grouping the coefficients will still sum up to 1. We have
d(v',y) < d(v',7) + d(z,y) < 26,
then

d(a,pra(y)) = 106m < :}3—[105(m +1) +106(m + 1) — 26] <

< 51, o) +d(a,) - d',9)] = Wi

hence, by the fine-triangles property, d(pr.(v), pla,b](106)) < 4. This implies that all the
points pr,(y) mentioned in formula (1) belong to Fi(a, p[a, b](106m)). Part (a) is proved.
(b) Induction on n.

n =1 In this case d(a,b) = d(a, c) = 104, so, by Proposition 2(3),

1-1
F(a,b) = fla,0)| = b= ch < bl +]ch =2 =2 (1 _ %) ,



STRAIGHTENING AND BOUNDED COHOMOLOGY OF HYPERBOLIC GROUPS 7

n — 1 n Suppose d(b,c) < § and d(a,b) = d{a, ¢) = 106n, where n > 2. Then

fa,b) = f(a,0)| =

Y i)

y€Fl(a,c)

2 = #n(a 5 e;(:b)fap'ra(x))

1
#Fl(a,c)

1

<

= | #Fa, b) ST o L [feprda) - flo,r)]

zEFl(a b) yeFl(a,c)

1

= #Fl((l b #Fl a, c) Z Z ’f a,p?“a(:v (a,pra(y))ll,

zeF(a,b) yEFI(a,c)

By the hypotheses, d(b,¢) < §, so b € Fl(a,b) N Fl(a,c), and therefore there is a term
in the last double sum corresponding to x := y := b. This term is obviously zero. The
remaining #F1(a,b) - #Fl(a,c) — 1 terms in this double sum can be bounded as follows.
Since

d(z,y) < d(z,b) + d(b,¢) +d(c,y) < d+d+ 6 =36,

then we have
d(a, pro(z)) = d(a, pro(y)) = 106(n — 1) <
< %[10(577, + 1067 — 35] < %[d(a, 2) +d(a,y) — d(z, y)} — (aly).,

so, by the fine-triangles property, d(pr.(z), pra(y)) < 6. The induction hypotheses now
apply to the vertices a, pry(z), and pr.(y) giving the bound

1 (n—1)-1
fa.pmale)) - o), <2 (1- )
for each x € Fl(a,b) and y € Fl(a,c). Continuing inequality (2) we have
- |feb - s <
< 1
= #Fl(a,b) - #Fl(a,c)

S5 fame o) <

z€Fl(a,b) yeFl{a,c)
1

1 {(n—1)-1
< TR R (#Fl(a, b) - #Fl(a,c) — 1) ) (1 - E) -
1 1 (n—-1)-1
= (1 " FFab) A c)) 2 (1 - F) =

(n—1)-1 n—1
1 1 1
(1‘;5)'2(1‘;5) =2(1“;ﬁ) :

IA
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Lemma 3 is proved. |
Now part (2) in Proposition 2 can be proved. If d(a,b) > 106, then, by taking m =1
in Lemma 3(a), we obtain v = pla, b](106) and

f(a,b) = Z ayfla,z) = Z 0z T,

zEF(a,v) zeFl(a,w)

so part (2) follows.
Now we finish the proof of Proposition 2(5). Pick any triple of vertices a, b, ¢ in X.
Let

1

e -3
106
)\:=(1———1—5) and L:=2(1——1—2) .
w w

Recallthat1§w<oo,hence0§1—w%<1,L20, and 0 < A < 1.
If (blc), < 206, then

’f(a b) — l lf a b)l ,f(a c)l =2=
=2 (1 —~ 55)_3 (1 - u%)g = LA300 < [)206 < )0l

We can now assume (b|c), > 204. Let m be the maximal integer among those satisfying
106m < (ble),. It easily follows that

(69)a
and
206 < 106m < (blc), < d(a, b),

hence, by Lemma 3(a),

f(a'a b) = Z azf(a'a .'27),

z€Fl(a,v)

where v := pla, b](100m) and a, are some non-negative coefficients summing up to 1. A
similar argument yields

> Byfla,y),

yeF(a,w)

where w := p[a, cJ(100m) and B, are some non-negative coefficients summing up to 1 (see
Fig 2).
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S(a,106(m — 1)) o b

S(a, 106) - S(a, 106m)

FIiGURE 2. Proof of Lemma 3.

fah) - f@o] =] 3 at@n - Y Af @)

zeFl{a,v) yEFl(a,w)
(4) = Z a:cf a,z) - Z By — Z Qg * Z ﬂy a y)
z€Fl(a,v) yeFl(a,w) zeFa,v) yEFl(a,w)

YT s a,m—f(a,y)}

z€Fi{a,v) yeFl{a,w)

< Y Y whfeo) -1 y)l

“z€Fl(a,w) yeF(a,w)

Since, by the choice of v, ﬁz, and m, d(a,v) = d(a,w) = 106m < (b|c),, then the fine-
triangles property yields d(v,w) < 4. If z € Fi(a,v), y € Fl(a,w), 2' € Fl(a,z), and
y' € Fl(a,y), then

d(z',y) < d(z', z) + d(z,v) + d(v,w) + d(w,y) + d(y,y) <O+5+6+5+5 =155
and

d(a, pre(z")) = d(a, pra(y’)) = 106(m — 1) < —;—[105771 + 106m — 55] <

< 5[dta,2) + dia,v) - 4@, )] = @l
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hence, by the fine-triangle property again,
d(pra(z), pra(y) < 0.

Then Lemma 3(b) applies to the vertices a, pra(z'), and pra(y’) giving

© o) - )], <2(1- %) (-5

w w?

Using inequalities (4), (5), (3), and the definition of f, we obtain

lf(a,b)~—f(a,c)lls ooy ax,@ylf(a,:c)—f((a,y)llz
)

z€F{aw) yEFl(a,w

1 ' 1 nNo—
= > 3 azﬁym > f(a,x)—m > ey =

z€Fl(a,v) yeF(a,w) z/€Fl(a,x) ¥ €Fl(a,y) 1

ol > Y [fe)- sy
=2 X ) = fay)]| <
z€Fl(aw) yeFl(a,w) #FZ(CL, ZL‘) ) #Fl (a’ y) z'€Fl(a,z) ¥y €EFl{a,y) [ } 1

0
<y ¥ : > Y |fas)-fay)| <
z€F(a,v) yEEl(a,w) #Fl(a’ iE) ' #Fl(a’ y) ' €Fl(a,z) ¥y €Fl(a,y) !

az'@y 1 m-—2
< Z Z #Fl(a,x) - #Fl(a,y) Z Z 2 (1 B E)

z€Fl(a,w) yeFl(a,w) ' €Fl(a,z) y' EFl(a,y)
(bic)a
1\™2 1\ [Fae-1]-2 1\ 3 1\ i

= LAGl)e,
Proposition 2 is proved. _ g
Now we use the function f to construct another function f having additional properties.

Proposition 4. There ezists a function f: X© x X© — Cy(X,Q) mapping each pair
(a,b) to a 0-chain f(a,b) with the following properties:

(1) f(a,b) is a convez combination.

(2) If d(a,b) > 108, then supp f(a,b) C B(pla, b](106), 85).

(3) If d(a,b) <106, then supp f(a,b) C B(b, 75).

(4) f is G-equivariant, i.e. f(g-a,g-b)=g- f(a,b) for any a,b € X and g € G.
(5) There exist constants L > 0 and 0 < A < 1 such that, for any a,b,c € X©,

.f(a, b) — f(a, c)l1 < LA,
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(6) There erists a constant 0 < X < 1 such that if a,b,c € X satisfy (a]b), < 105 and
(alc)y < 106, then
F,0) = Fle,a)| < 2X.
(7) Let a,b,c € X© v be a geodesic path from a to b, and let ¢ € N(v,95). Then
supp f(c,a) € N(v, 99).
Proof. For each a € X in X we define a 0-chain star(a) by
1
star(a) = ——= Z z.
#B(a, 75) z€B(a,70)

In other words, star(a) is “the uniform spread” of a to all the vertices that are 74-close
to a. Also, star(a) makes sense if a is any O-chain, by linearity:

star ( Z a$:v> = Z o star(z).

zeX®) zeX©
One easily checks the following properties.

e If a is a convex combination, then star(a) is as well.
e supp star(a) lies in the 7d-neighborhood of suppa, for any 0-chain a.
e star is a linear operator Co(X, Q) — Cy(X,Q), i.e.

star(a) + star(b) = star(a +b)

for any 0O-chains a and b.
e This operator is of norm 1, i.e.

|star(a)|; < lal
for any O-chain a.
e star is G-equivariant, i.e.
star(g - a) = g - star(a)
for any O-chain a and any g € G.
Now let f be the function from Proposition 2 and for a,b € X define
f(a,b) == star(f(a, b)).

The properties of star above and parts (1), (2), (3), (4), (5) of Proposition 2 imply parts
(1), (2), (3), (4), (5) of Proposition 4. We show Proposition 4(6) now.
Let wy := max{#B(v,78) | v € X}, and N =1 - 51; We have 1 < w; < o0, and

hence 0 < M < 1. Let us assume that a,b,c € X satisfy the hypotheses
(alb)s <106 and (alc), < 106.

This implies that

(6) d(b, c) = (alb). + (alc)y < 206.
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Without loss of generality, d(a, b) < d(a,c) (interchange b and ¢ otherwise). Additionally
we assume for the moment that

d(a,b) > 106.
Let v := p[b, a](106). By Proposition 2(2),
supp f(b,a) C Fl(b,v),

hence

f(ba) = Z Gz,

ZEFI(b,v)

where o, are some non-negative coefficients summing up to 1. Analogously,

f(C, (L) - Z :Byyy

yEFI(b,w)

where w := p[c, a](100) and 8, are some non-negative coefficients summing up to 1. (See
Fig. 3) '

F1GURE 3. Proof of Proposition 4(6).
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Then we have

fb,a) = flc, a)‘ ‘Stm”(f(b, a)) — star(f(c, a))!1 =

= star Z a,z | — star Z Byy
ZEFI(b,v) yeFi(cw)

1

(7) = Z agstar(z Z Bystar(y)
z€Fl(b,v) yeFi(c,w) 1
= Z agstar(z) - Z By — Z Oy Z Bystar(y); =
zEeFU(b,v) yEFI(c,w) zeFi{bw) yEF(c,w) 1

- Z Z By [star (z) — sta?”(y)]

zeFU(b,v) yeFl{c,w)

< DD b,

z€FI(bw) yEF c,w)

star(z) — star(y)l

Let w’ be the vertex on the geodesic plc, a] satisfying d(a,w') = d(a,v). We have
d(a,w") = d(a,v) = d(a,b) — d(b,v) = d(a,b) — 10 < d(a,c) — 106 = d(a, w),

hence, using inequality (6),
d(a, ") = d(a,v) < = {(d(a b) — 106) + (d(a, c) — 105)]

;[d(a t) +d(a, &) ~ 203] < 5 |d(a,0) + d(a, ¢) - d(b,9)| = (alb),
therefore, by the fine-triangles property, d(v,w') < d. Also
d(w',w) = d(a,c) — d(c,w) — d(a,w') = d(a,c) — 106 — d(a,v) =
= d(a,) - d(a,5) = [(alb)e+ (ble)a] — [(elc)s + (ble)a] =
= (alb). — (alo)s < (alb). < 105
So we have
d(v,w) < d(v,w') + d(w',w) < § + 106 = 114.
If z € FI(b,v) and y € Fl(c,w), then using the last formula we get
d(z,y) < d(z,v) + d(v,w) +d(w,y) < 6+ 116+ ¢ = 136.

This implies that, for each such a pair of vertices = and y, there is a vertex z € B(z,76)N
B(y, 76). (Take z to be a vertex on a geodesic edge path between z and y nearest to the
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midpoint.) Then we have

star(z) — star(y)'1 =

1 , 1 ’
=|l— Z T — — = Z y| <
BT b PO iy |
(8) < 2 > Wy =
# (113 76) #B Ys 75 z'€B(z,70) y' € B(y,76) 1

1
~ #B(z,73) - #B(y, 76 Z 2 I =yh<

a:’EB(a: 78) y' €B(y,78)

1 2(#3(33, 76) - #B(y, 78) — 1) =

= #B(,78) #B(y,70)
! 1 ,
=2 (1 ~ #B(z,79) - #B0, 75)) =2 (1 B wT) =2

Combining inequalities (7) and (8) we obtain
j F(b,a) — t S afev =2y
) zEFI(bv) yEFl(c,w)

This was proved assuming that d(a,b) > 108. Also recall that d(a,b) < d(a, c) holds.

If d(a,b) < d(a,c) < 104, then take v := w := a. If d(a,d) < 106 < d(a,c), then take
v:=a and w := plc, a](106). In the latter case we have

d(v,w) = d(a,w) =d(a,c) — d(c,w) = d(a,c) — 106 < d(a,c) — (alb). = (blc), < 100.
Therefore d(v,w) < 106 in either case, hence, for any = € Fi(b,v) and any y € Fi(c,w),

d(y,z) < 106 + 26 = 124,

so the same argument using formulas (7) and (8) works. Part (6) is proved.

Part (7) of Proposition 4 is almost immediate. If d(a,c) < 105, then supp f(c,a) C
B(a,76) € N(v,98) by Proposition 4(3). Suppose now d(a,c) > 105. Let b’ be the
vertex on v with d(¥',c) < 96. Let also v == plc, a](106) and w be the vertex on v with
d(a, w) = d(a,v). Such a vertex w always exists because

d(a,b’) > d(a,c) — d(c,b) > d(a,c) — 96 > d(a, c) — 106 = d(a,v)
(See Fig 4). Then

d(a,w) = d(a,v) = d(a,c) — 106 = l[d(a ¢) +d(a,c) — 205] <

< ;[ (a,¢) + d(a, o) + d(¥', ¢) - 205] [ (a,c) + d(a,b) — d(b’,c)] = (b|¢)a,

L\.'Jll—-\
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FIGURE 4. Proof of (7).

and, by fine-triangles property, d(v, w) < 4. Since supp f(c, a) C B(v, 86), then supp f(c,a) C
B(w, 96) C B(+,96). Proposition 4 is proved. O

4. STRAIGHTENING

First we will construct a homological bicombing ¢' in X having certain properties.
Recall that p was a choice of a geodesic bicombing in X. The notation p[a, b] makes sense
not only when a and b are vertices in X, but it also can be defined when a is any 0-chain,
by linearity:

p [ Z 0T, b} = Z oplz, b].

ex©® zeX ()
One easily checks that O[a,b] = b — a if a is a convex combination.

Fix a vertex a in X. The 1l-chain ¢[a,b] is defined inductively on d(a,b). If b is a
vertex with d(a,b) < 104, put ¢'[a,b] := pla,b]. Assume now that d(a,b) > 105. By
Proposition 4(2),

supp f(b,a) C B(p(b, a](104),89),
hence, for each vertex x € supp f(b, a),
d(a, ) < d(a, plb, a}(106)) + d(p[b, a}(105), z) < [d(a,b) — 108] + 86 < d(a,b),

so ¢'[a, z] is defined by the induction hypotheses. Now we define ¢'[a, f(b, a)] by linearity
over the second variable, and put

¢'la,b] :== ¢'[a, f(b,a)] + p[f (b, a),D].
One easily checks that d¢'[a,b] := b — a, so ¢’ is a homological bicombing in X.

Proposition 5. The Q-bicombing q' constructed above satisfies the following conditions.
(1) ¢ is G-equivariant.
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(2) ¢' is quasigeodesic.
(3) There exist constants M > 0 and N > 0 such that

d'la,b] — q'[a, ] . <Md(b,c)+N
for all a,b,c € X©.

Proof. (1) is obvious because the definition of ¢’ used p and f, and they are G-equivariant.

(2) First we define a sequence of sets of vertices Vi(a, b) for each pair a,b € X©. Put
Vo(a,b) := {b} and

Viy1(a,b) :==Vi(a,b) U U supp f(c,a).
c€Vi(a,b)

This sequence is increasing and stabilizes at a certain vertex set which we denote by
V(a,b). Tracing the definitions of ¢'[a, b] and V (a,b) we see that ¢'[a, b] is a linear combi-
nation of geodesic paths of length at most 106 whose endpoints lie in V'(a,b). Hence, to
show that ¢' is quasigeodesic, it is enough to show that V'(a,b) lies close to p|a, b].

We prove that Vi(a,b) C N(pla,b],96) inductively on i. Firstly, Vo(a,b) = {b} C
N(pla, b],95). Secondly, if V;(a,b) C N(pla,b],9d), then, by Proposition 4(7),

Viti(a,b) = Vi(a, b) U U supp f(c,a) C N(p[a, b], 96).
ceVi(a,b)

This implies V' (a, b) C N(p[a, d],95), so part (2) is proved.
(3) Up to the G-action, there are only finitely many triples of vertices a, b, ¢, satisfying
d(a,b) + d{(a,c) < 600, hence there exists a uniform bound N’ for the norms

Iq’[a, b — d'[a, c]l1

for such vertices a, b, and c. Let

1-X
where X' is the constant from Proposition 4(6). We prove the statement by induction on
d(a, b) + d(a,c).

If d(a,b) + d(a, c) < 608, then

M:=18 and N := max{N’, 565M} ,

¢'la,b] — ¢'[a, c]l1 <N'<N<Mdbd+N

by the choice of N and N. We assume now that d(a,b) + d(a,c) > 605. Consider the
following two cases.

Case 1. (alc)y > 106 or (alb). > 104.

Assume, for example, that (a|c)s > 106. Then, in particular, d(a,b) > 105, hence, by
definition,

ql[a7 b] = q,[aa ]?(ba a)] + p[f(b, a’): b]
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and supp f(b,a) C B(v, 85), where v := p[b,a](105). Also, d(b,c) > (alc), > 106, so there
exists a geodesic v between b and c, and a vertex v’ on v with d(b,v') = d(b,v) = 104. By
the fine-triangles property, d(v,v') < 6. If z € supp f(b,a), then

9) d(z,b) < d(z,v) + d(v,b) < 86 + 104 = 184,

d(z,c) < d(z,v) + d(v,v') +d(v/, ¢) < 85 + 6 + [d(c, b) — 104] S d(e,b) — 1,
and
d(a,z) < d(a,v) + d(v,z) < [d(a,b) — 106} + 85 < d(a,b),

therefore d(a,z) + d(a,c) < d{a,b) + d(a,c), so the induction hypotheses apply to the
vertices a, z, and ¢, giving

(10) |d'[a,z] — ¢'[a, ] . < Md(z,c)+N < M(d(b,c) —1) + N = M d(b,c) — M + N.
For some non-negative coefficients o, summing up to 1,

f(b7a'): Z Q.

z€B(v,30)

Then, by the definition of ¢'[a, b] and inequalities (9) and (10),

¢1e,8) - ¢le.d|, = |dla, F6,0)] + p[F(,),8) - glo,cl] =

= Z a;q'a, ] + Z azplz, b — d'la, ]| <
z€B(v,80) z€B(v,88) 1

<| Y al(dlesl-dlad)] +| Y. b <
z€B{v,88) 1 z€B(v,88) 1

< Z az\d [a, x] — q’[a,,c]! + Z am{p[a;,b”l <
z€B(v,86) z€ B(v,88)

< N o (Md(be)-MAN)+ Y agd(z,b) <
z€B(v,86) z€B(v,86)

< Md(b,c) — M + N + 185 = M d(b,c) + N.

Case 2. (alc)y < 10§ and (a]b), < 106.
In this case Proposition 4(6) applies. Since d(a,b) + d(a,c) > 606 and d(b,c) = (alc), +
(alb), < 208, then d(a,b) > 106 and d(a,c) > 106. Then, by the definition of ¢'[a, b] and
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¢[a,d,

(1) |¢lo8] - dla,dl| = |¢la, F(b, @) + P, 0), 8] - ¢'lo, Fle, )] - plFle, @), ]| <
< |¢la, F0,0)] - ¢la, Fle, a)]| + |plF(b ), 8l] +|plF(e,a), ]

¢lo, F6,0) - (e )| + [plF(b, @), 8] +[plF(e,0),dl|

The O-chain f(b,a) — f(c,a) (as any other) can be represented in the form f. — f_,
where f, and f_ are 0-chains with non-negative coefficients and disjoint supports. By
Proposition 4(6),

1

\feli 1= = fe = f-l = | f(b,0) = fle,a)], < 2X.
The coefficients of the 0-chain
f+ = f-=f(b,a) - flc,a)
sum up to 0, because f(b,a) and f(c,a) are convex combinations. It follows that
frh =1l <X
Also,
supp fr. C supp f(b,a) C B(pb, a](100), 89)
and :
supp f- C supp f(c,a) C B(p[c, a](106), 85),
hence, for each z € supp f. and y € supp f_, we have

d(z,y) < d(z,b) + d(b,c) + d(c,y) < 185 + 204 + 185 = 564.

Also d(a, z) < d(a,b) and d(a,y) < d(a,c), so, by the induction hypotheses for the vertices
a, z, and y,

}q'[a, 2] - ¢'la, y][l < Md(z,y) + N < M[d(b, c) + 366] + N = M d(b, c) + 365M + N
for each z € supp f, and y € supp f_. Then we continue inequality (11):
!q’[a, b — ¢'[a, 6”1 < lq’[a, f(b,0) - f(c, a)]‘ +pLF(b, @), Bl + |p(fle,0), |, =

= |¢la, 711 = ¢l 1| + [plF®,0),8)], + [plF(c, a).d]], <
SN [M-566+ N]| +185 + 185 =

= [M 566 + N| + (X —1)[M - 566 + N| + 368 <
<M-560+ N+ (N —-1)N<N< Md(b,c)+ N.

Proposition 5 is proved. O
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Lemma 6. There erist constants K > 0 and 0 < X\ < 1 such that if a’,a,b,c € X,
z € XW s a center of the triple {a,b,c}, and a' € N(p|z,a], 105), then

¢'[b,a'] — ¢le,a’] — ¢'[b, 2] + ¢'[c, 7] . <KA+A+M4+ ..+ A=)y,

Proof. Let L and X be the constants from Proposition 4(5) and M and N be the constants
from Proposition 5(3). We take K to be sufficiently large, namely

K := max {440M + 2N, LX"*(266M + N + 186)}.

Note that K and )\ are universal constants, i.e. they depend only on the choice of X.
We prove the lemma by induction on d(z,d’). If d(z,a’) < 22§, then, by Proposi-
tion 5(3),
¢, 0] - 1,1 - ¢, 2] + e, 2| < |aD, 0] = D, 2]+ ale, 0] = ¢l 2|, <
< [Md(z,d') + N] + [Md(z,d') + N] < 446M +2N < K < K(1 + ... + 249,
We now assume that d(z,a’) > 226. Since z is a center of {q,b,c}, there exist a
geodesic y from b to a and a point ¢ € -y with d(a,¢) = (blc), and d(z,¢) < § (see
Fig. 5). Denote v := p[a’, b](10d) and pick an arbitrary z € B(v,85). We want to use the
induction hypotheses for the vertex z, so our first goal is to show that d(z,z) < d(z,a")

and = € N(p[z, a], 108). This will be possible to do because d(z, a') is large enough.
Let u be a vertex on p[z, a] with d(a’,u) < 104. Then

d(z,u) > d(z,d') — d(d',u) > 226 — 10§ > § > d(z,¢) > (ale).,

<

hence
d(a,u) = d(a,2) — d(z,u) = [(2|€)a + (al€).] — d(z,u) < (2]|¢),-

The last inequality implies that there is a vertex u' on v with d(a,v’) = d(a,u) and, by
the fine-triangles property, d(u,u’) < 4. This implies that

d(d,u") < d(a',u) + d(u,u) <100 + 6 = 114,

d(a, &) > d{a,2) — d(z,¢) > [d(a,u) + d(u, 2)] — § > d(a,u) + [d(z,a") — d(a',u)] — 6 >

> d(a,u) + 226 — 106 — § = d(a,u) + 116 = d(a,u’) + 114.
This means that ¢ lies between b and v’ on the geodesic v and

d(v', &) = d(a,¢) — d(a,u’) > 114.

Further, :
d(b,&) = d(b,u') — d(u, &) < d(b,u') —116 <
< d(b,u) — d(d',u') < d(b,u) ~ (a'|b)w = (a'|)p-
Therefore there exists a point r on pla’, b] with d(b,7) = d(b, ¢) and, by the fine-triangles
property, d(r,¢) < 4, so
(12) d(z,r) < d(z,é) +d(¢r) <d+4d =26
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FI1GURE 5. Proof of Lemma 6.

Recall that v was defined as p[d’, b](104), then we have
d(a',v) = 108 < 226 — 20 < d(d',z) — d(z,7) < d(d',2) — (d'|r). = (z|")w,
so there exists a vertex v’ on plz, o'] with d(a’,v") = d(a/, v) = 108 and, by the fine-triangles
property, d(v,v") < 4.
(<fu)er = 5 [de, ) + (!, ) — d(z W] < 2 [d6e ) + dl0) — d(z,a) + d( )] =
a"“2 » ’ ; =75 z7a')+ (a‘au)— (Z,CL)+ (a'7u‘) -
=d(d,u) < 106 = d(a', '),
then
d(z,v") = d(z,d') — d(d’,v") < d(z,d) — (z|u)y = (d'[n),
hence there exists a vertex u” € p[z, a] with d(z,u") = d(z,v'), and, by the fine-triangles
property, d(v',u") < 4.
For any vertex z € B(v, 86),
d(v”,z) < d(u",v") +d{v',v) +d(v,z) < 6 + 6 + 85 = 104,
SO
z € N(u",100) C N(p[z, a}, 106)
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and

d(z,z) < d(z,?') +d(v, z) = [d(z,a") — 108] + d(v', z) <
< [d(z,a") — 106] + 96 < d(z,a") — 1.

The Jast two formulas say that each vertex z € B(v, 87) satisfies the induction hypotheses,
S0

(13) ¢'b, 2] — ¢'le, 2] — ¢'lb, 2] + ¢, z]’l SK@Q+XA+ 22+ + i) <
< K1+ A+ 22 4. 4 2dE@e)-1

The convex combinations f(a’,b) and f(a’, c) have form

fld',b) = Za:c and f(d',c) = Za"w

CEGX(O) :L'EX(D)

for some coefficients o/, and . Define a 0-chain f; by

= E : O‘wza

zeX(©)
where o, := min{c/, o} }. Put
fr=fd,b)~fo and [ :=f(d,c)— fo
Then we have
supp fo = supp f(d',b) N supp f(a, c),
and f; and f_ are with non-negative coeflicients and disjoint supports. Also
f(a',b) - f(d',0) = fr - f-,

hence the coefficients of f, — f_ sum up to 0, so |fy|1 = |f-|1. By Proposition 4(5),
e + 1=l = 1fe = f-l = |F(@,0) = f(d,¢) = LALI)

We recently proved the existence of a vertex r € pla’,b] which is 2d-close to z (see in-
equality (12)). The same argument with ¢ in place of b shows that there exists a vertex
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s € pld/, ] which is 26-close to z. It follows that

(Ble)w = 1[ d(d,b) + d(d, ¢) — d(b, )] >

= [d(a ,0) +d(d, ) — (d(b,r) + d(r, z) + d(z, s) + d(s, c))] =

(14) —;—[(d(a B) — d(b, ) + (d(d, 0) - d(c, ) — dlr, 2) — d(z,5)] =
= 2 [dla,r) +d(@, ) - d(r,2) — d(2,5)]
> [ (@, 2) = d(e,m) + (e, 2) - d(z, 9)) = d(r,2) = d(z,9)] =
> %[d(a’, 2) = 28+ d(d, ) — 26 — 26 — 26] = d(d, z) — 45.
Thus,
(15) Ifeh=1f-h < %LAU"%’ %—LW w4,

Since d(z,a’) is large enough, then d(a’,b) > 10§ and d(d’, ¢) > 106, so, by the definition
of ¢, we have

¢'[b,a'] = ¢'le,d'] — ¢'[b, 2] + '[e, z]l =

= |(¢'[b, F(a',b)] + p[f(d,0),d) — (d'e, F(d, )] + p[f(d,c),a]) — d'[b, z]+q'[c,z]‘1§

<o, Fla, 5] — dle, Fl@, )} — a6, 2] + dle, 2|+ [plF(@ ), @] - plf (@, 0), ]| =
]

1

=416, fo+ £l = dles fo+ -] = db 2] + qle 4| + |plF(@, ), ] - plF(d,6), 0] <
a1, £l = ¢le. fol = fol - o, 21 + ol - e, 2| +

e £ = gle f] = (0= 1foly) - T, 2] + (L= |foh) - ey 2] +

+|plf(a,b) - (@, 0),a1]

(A

We are going to bound each of the three terms in the last sum, let us call them A;, Ag,
and Az, respectively.
The 0-chain fy is supported in the ball B(v, 86), so
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and for each z € B(v,8d), inequality (13) holds, hence

A < QI b, Z Azl “ql ¢, Z QT —lfoll'ql[byz]‘f“fo{l'QI[C,Z]h =

z€B(v,85) z&€B(v,86) 1

= Z o5 (', z] — ¢'le, 2] — ¢'[b, 2] + ¢'[e, 2])| <
z€B({v,88)

< Y o K(I+A+ X+ .+ 2490 =

z€B(v,86)
= |folr - K(L+ XA+ A2+ .+ \4Ee)=h,

1

For the second term, pick any xy € B(v, 86), so inequality (13) holds for zy as well:

¢'[b, zo] — ¢'le, o] — ¢'[b, 2] + '[c, Z] . <K@+ A2 4+ 2620 <
S K(14+ A4 X2 4. 4 adze)-1),

Informally speaking, we are going to move both f, and f_ to z. As before, v =
pla’,b](106), and we denote w := p[d/, |[(106). The O-chains f, and f_ have forms

fe= D B and  fo= ) B

<€ B(v,86) Y€ B(w,85)
Note that
\fili =1f-h = 1@, Ol — 1 folh =1~ | foh.
Also, for each = € B(v, 86),
d(z, zy) < d(z,v) + d(v, z0) < 80 + 85 = 164
and, for each y € B(w, 89),

d(y, z0) < d(y, w) + d(w,d’) + d(a',v) + d(v, z) < 85 + 10 + 106 + 85 = 364.
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Using these observations, Proposition 5(3), and formula (15), we obtain a bound for the
second term:

Ay = |(, £2] - e, £] = [fh b + 1 e 4l <

< |dlb, 7] = gles £ = 1ol - d o] + 15 - les ol +

+llf+]1 - q'[b, zo] — | f-]1 - q'le,zo] — |l - ql[by 2]+ |f-lh -q[c, Z]L =
= Y sl -dbwl)- Y. Bid q'le, zo])| +
z€B(v,86) y€B(w,86) 1

+ el 'ql[b, zo] — ¢'[e, zo] — ¢'[b, 2] — [, Z]il <

> Aokl -dlbal + Y 8

z€B(v,85) y€B(w,84)
el o 0] - dlezo] - 4, 2] + e, Al <
> B (M-165+N)+ Y. 8- (M-365+N)+

z€B(v,86) yEB(w,868)
el K@+ A+ 24 2801 =
= feh (M 525 4 2N) 4 [fieli - K1+ A+ X2 4.4 X607 <

< %Lxd@’a’)’%” (M 526 +2N) + [ frl - KL+ A+ 22 4 L4 X4E=) 1) =
= LA~ (M. 265 + N) + | o] ~K(L+ A+ A2+ ...+ A4=e)7h),

q'[c,y] ~ [c,:cg]’1+

To bound the third term, note that, for any vertex = € supp f(a', b) U supp f(d', c),

lp[a',a:]ll =d(d’, ) < 186,

then, using Proposition 4(5) and formula (14),

Az = |p[f(a’,b) - f(d, | [f @,8) - fla,)| 185 < |
< AUl . 185 < L,\d(“) —49 . 188.
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Combining the three bounds and the definition of K, we obtain

7lo,a) - dle,a) = b, 2] + ¢, 2| < Av+ Az + Ao <

<fol - K(L4+ A+ A2 4. 4 2ad=e)-1) 4

AL (M 265+ N) + |l - K (1 4+ A+ 22+ .+ 2401
+LAH=0)4 185 —

=K(1+ A+ 22+ ..+ x4=0071) 4 TA9(266M + N + 185) 149 <
SK(L+ A+ 224+ 2071 4 gAYE) = K14 X4 2% + .+ 2A4@),

Lemma 6 is proved. |
Now we can state one of the main results of the paper.

Theorem 7. Given a hyperbolic group G and X € Uy (G), there exists a Q-bicombing g
in X with the following properties.

(1) q is quasigeodesic.

(2) q is G-equivariant.

(3) q is anti-symmetric, i.e. gla,b] = —qlb,a] for any a,b € X©,

(4) There ezists a constant T such that, for any a,b,c € X©,

|q[a, b + alb, ] + qlc, a]‘l <T.
Proof. Define ¢ by “anti-symmeterizing” ¢', namely,

dla, 8} = 5 (¢10,8] - b)),

The first three properties follow directly from the definition of ¢ and the fact that ¢ is
quasigeodesic and G-equivariant. Now we prove property (4).

Let a, b, and c be arbitrary vertices in X, and z be a center of the triple {a, b, ¢}. Then,
by Lemma. 6, taking o’ := q,

0
7ol - dle,a] — ¢, 2] + dle, 2| S K(L+A+ X+ AHE0) < K3 N = 1—1—_%

=0
The same argument for cyclic permutations of the vertices a, b, and ¢ yields

K

|¢le.81~ dle b~ dle. 2 + o] < 7=

and
¢la,d— g - a2+ D7) < T
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The three inequalities above provide just what is needed:

‘Q[a, b + alb, ¢ + dle, a]!l =

= %l (<0081~ o]} + (¢, = e 8) + (4ol =~ o]

1

= %l — (q'[b, a] — ¢'lc,a] — ¢'[b, 2] + ¢'e, z]) - (q'[c, b — ¢'[a,b] — ¢'[¢e, 2] + ¢'[a, z]) —
- (q'[a, ] — d'[b,c] — d'[a, 2] + ¢'[b, z]) 1 <
—;—(‘ [6,a] — ¢'[c,a] — d'[b, 2] + d'[c, 2] L + iq’[c,b] —¢'[a,b] — q'[¢, 7] -i—q’[a,z]l1 +
Hdlad — g, - T+ 2] ) < 5370
so we put T := -2T13-I_£/—\—)— Theorem 7 is proved. O

5. BOUNDED COHOMOLOGY.

Recall that X € U,(G) and let Y be the geometric realization of the homogeneous
bar-construction for G. This means that Y is the simplicial complex whose k-simplices
are labeled by ordered (k + 1)-tuples (o, ..., zx) of elements of the group G, and each
simplex labeled (zo, ...%i-1, T4, Tit1, ---, Tx) is identified with the i-th face of (o, ..., 2x) in
the obvious way. The action of G on Y is diagonal:

g (Zoy .y k) = (g - Xy - G * Ti)-

Let C* and CY be the augmented chain complexes of cellular Q-chains on X and Y,
respectively. This means that the complexes have C;(X, Q) and C;(Y, Q), respectively, in
dimensions ¢ > 0, Q in dimension —1, zeros in all the lower dimensions, and the boundary
homomorphisms Cf = Co(X,Q) — CX, = Q and ¢} = Co(Y,Q) — CY, = Q are the
linear operators taking each 0-chain to the sum of its coefficients. Both X and Y are
contractible, hence CX and CY are acyclic. Both CX and CY have free QG-modules in
each non-negative dimension. Once again, C¥ and C¥ are normed vector spaces with
respect to the £;-norm.

Proposition 8. Given a hyperbolic group G and chain complezes CX and C¥ as above,
there exist G-equivariant chain maps @, : C¥ — CX and 9, : CX — CY such that

(1) v, and 1, are identities in each negative dimension, and

(2) @, is bounded in each dimension ot least 2.

Remark. The existence of ¢ and 9 satisfying condition (1) follows from standard argu-
ments for any group G (see below). Since X € Uy (G), then it follows automatically that
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1, is bounded in each dimension. Property (2) is what requires a new argument, and
hyperbolicity of G is essential here.

We give a formal homological proof, but the main idea is that, when G is hyperbolic,
it is possible to represent k-simplices of the bar-construction as k-chains in X of bounded
f1-norm.

Recall the following standard fact from homological algebra (see {1, Lemma 1.7.4] for
the proof).

Lemma 9. Suppose that (C,d) is a free chain complez, (C',d') is an acyclic chain com-
plez, and homomorphisms v; : C; — C} are defined for i < —1 such that &l o; = 1;_100;
for each i < —1. Then the maps v¥; extend to a chain map ¢, : C — C'. This extension is
unique up to a chain homotopy.

The following theorem was proved in [7] using [6, Theorem 5.4].

Theorem 10. Hyperbolic groups satisfy linear isoperimetric inequalities in all positive
dimensions (over Q and over R). More precisely, For each hyperolic group G, each X €
U(G), and each © > 1, there ezists a constant S; such that, for any cellular i-cycle b in
X, there exists an (i + 1)-chain a with Ja = b and |al; < S;|bl;.

It was shown by S. Gersten that, for finitely presented groups, linearity of the isoperi-
metric inequalities for 1-cycles is equivalent to hyperbolicity.

Proof of Proposition 8. Define @; and ; to be the identity maps in all dimensions 7 < —1.
Let 1, be an arbitrary extension of the maps v; guaranteed by Lemma 9.

The chain map g, is constructed inductively on dimension as follows. Cy(Y, Q) is a one-
generated free QG-module, so we can define g : Cop(Y,Q) — Cy(X,Q) by mapping the
unit element of G to some vertex in X and extending by G-equivariance and by linearity
over Q. Define ¢; : C1(Y,Q) — C1(X, Q) on the 1-simplices (zo,z1) by

o1(zo, 71) = Q[Wo(xo): 900(391)],

and extending to Cy(Y, Q) by linearity over Q. In other words, each 1-simplex in ¥ maps
to an element of the homological bicombing ¢. Since ¢ and g are G-equivariant, then ¢;
is a homomorphism of QG-modules. For each 2-simplex (zp, 1, z2) of Y,

01(8(z0, 21, 72)) = 01 ((%1, 72) — (o, T2) + (70, 21)) =
= g[po(z1), ¢o(22)] — g[wo(20), Yo(2)] + gwo(x0), po(z1)] =

= Q[‘Po(fﬂl): wo(z2)] + Q[<P0(332)7 wo(za)] + 4[900(370)» wo(z1)],
hence, by Theorem 7(4),

Sﬂx(a(ﬂlo,xhﬂ?z))ll < 14[900(161), wo(z2)] + Q[%(Ib‘z),%(ﬂ?o)] + Q[QOO(-TG), wo(z1)] . <T,

where the constant 7' is independent of the choice of the triple (zq,z;,72). Since
©01(0(x0, 21, 9)) is a 1-cycle, then, by Theorem 10, there exists a 2-chain ¢ = ¢(zq, 21, T2)
in X with dc = @1(6(270,381,372)) and

lels < S1|1(B(wo, 21,22))|, < S1- T.
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This 2-chain ¢(xg,%1,%Z2) can be chosen G-equivariantly so that the map
@2 1 Co(Y, Q) — (X, Q) defined by
992(‘7;0, Zy, "I;Z) = C(x(h Z, 332)

is a homomorphism of QG-modules and it is bounded, by the inequality above.
The further inductive steps are similar. If a QG-module homomorphism

vi: CGi(Y,Q) = Ci(X, Q)
is constructed for some ¢ > 2 and has norm bounded by some constant R;, then we define

©i+1{Z0, ---» Tiy+1) t0 be an equivariant choice of a filling for the i-cycle ;(d(xo, ..., Tix1))-
Since

i+l
l%‘(a(xo: ---:-'L'i+1))]1 = Z‘(_l)k%(xm cees Thm1y Thy Tht1s ---,-’Ei+1) <
k=0 1
i+1
< Z ‘%(l‘o, ceey Thie1y Thy T 1y -y 37i+1)!1 < (i +2)R;,
k=0

then, by Theorem 10, the filling can be chosen to satisfy
l(piﬂ(:cg, ...,xi+1)[1 < Si;goi(a(xg, ...,xiﬂ))}l < Si(i+2)R;,
i.e. the norm of the map ¢4 : Ci1(Y, Q) = Cix1(X, Q) is bounded by
Ry = Si(i +2)R;.

One easily checks that the maps ¢; constructed above form a chain map ¢, : C¥Y — CX.
Proposition 8 is proved. O
Now we can prove the following theorem stated by M. Gromov [4] for R-coefficients.

Theorem 11. Let G be a hyperbolic group and V' be a normed vector space over Q. Then
the map HP(G,V) — H*G,V) induced by inclusion is surjective for each n > 2.

Remark. Of course, here V is considered a QG-module with the trivial G-action.
Proof of Theorem 11. Apply functor Homge(-,V) to the chain maps ¢, and ¢, from
Proposition 8. With the notations

CX = HomQG(CX7 V): CY = HO?’)’LQG(CY, V)?

@ = Homgg(ps, V), ¢ := Homqa(¥.,V),

we have two cochain complexes, Cx and Cy, and two cochain maps, ¢* : Cx — Cy and
Y* : Cy — Cx. In the positive dimensions, the homologies of the cochain complexes Cx
and Cy are equal to the cohomology of G, H*(G,V), and in these dimensions both ¢*
and ¢* induce endomorphisms of H*(G, V).

The map ¢*o9p* : Cy — Cy and the identity map id* : Cy — Cy coincide in all negative
dimensions, hence, by Lemma 9, they are chain homotopic, so ¢* o9)* induces the identity
maps on H*(G,V) in each positive dimension.
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Let 7 > 2. Given any element of H*(G,V), we represent it by an i-cocycle o € Ci,.
Then the cocycle o o .
(0" o ¥*)(@) = ¢ (' (a)) € Cy
represents the same element of H*(G, V). It remains to show that ¢*(¥*(c)) is bounded.
Since
Y'(a) € Cx = Homqa(C{*, V) = Homgg (Ci(X,Q), V),
then 9*(a) is a G-invariant homomorphism C;(X,Q) — V, i.e. it takes the same values

on the ¢-cells in the same G-orbit. There are only finitely many such orbits in X, hence
|¥i ()|, < o0. Also

[ (@' ()], = [#*() 0 0i] , < (@)oo - |epiloos

and, by Lemma 8(2), |gilee < 00, so the map ¢*(¥*(a)) is bounded. This shows that
each element of H*(G,V), for i > 2, is represented by a bounded cocycle in the bar-
construction. Theorem 11 is proved. O

It was not needed for the proof, but (using the explicit cone-off procedure from [6]) it
is possible to refine the argument above so that each k-simplex o in the bar-construction
maps to a “quasi-straight” k-chain in X, in the sense that the support of this k-chain lies
uniformly close to a union of geodesics connecting the images of the vertices in o. Agaiu,
this is a combinatorial analog of the fact that straight simplices in H" lie close to their
1-skeleta.
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