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A CHARACTERIZATION OF TITS BUILDINGS BY METRICAL PROPERTIES

Rudolf ScharIlau

1. Introduction

The basic combinatorial theory of "abstract" buildings has been developed
by Tits in [7], Chapters | to 4 and [8], Sections 1,2,3. The book [7] is
primarily concerned with the classification of buildings of

spherical type. To that end, Tits uses a definition of buildings which

is closely related to that of a BN;pair in a éroup. He introduces buildings
as structured simplicial complexes, that is, complexes with a family of
subcomplexes called apartments. The hardest result by far in the general
part of (7] is.the "reduction theorem" 4.1.2 which states that certain
locally defined maps between buildings of spherical type can be extended

to isomorphisms. Using this purely combinatorial result, Tits is able to
prove that any building of spherical type and rank at least 3 is isomorphic

to one of the "known" buildings.

The main ingredient in the proof of the reduction theorem is the existence

of certain "projection maps" from the whole building onto the star of any

fixed simplex, that is, the set of simplices containing this simplex. The
projection maps induce partial automorphisms of the two buildings in question

which have to commute with the desired isomorphism and conversely allow the canstruc
tion of this isomorphism. This fact suggests the possibility of developing

the theory of buildings by taking the existence of projection maps as one

main axiom,

In this paper, we shall make this idea precise by showing that the existence
of projections together with a rather weak kind of homogeneity implies that
a geometry actually is a building. (For the purpose of this introduction,
the term "geometry" stands for any of the three notions '"geometry" in the
sense of [6], [8], "numbered complex", [2] Chap. 4, Exerc. 15 f££.,{7], [8],
or “chamber system” [3].) The additional homogeneity assumption is the
following: the diameter of any rank 2 star only depends on the "type" of
that star. This holds trivially if the geometry is of type M for some
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Coxeter diagram M , or if it has a chamber transitive automorphism group.

Our result is not restricted to any particular class of diagrams. It is
independent of the proof of the above mentioned reduction theorem of [7].

Instead of [7], we have to use the results of [8], where Tits presents

the basic notions and theorems concerping a characterization of buildings distinc
from that in [7]. He characterizes in several ways, for a fixed Coxeter

diagram M , the buildings of type M among the larger class of all geo-

metries of type M . Our main theorem uses the "first characterization"
Theorem 2 of [8]. If one is willing to take this as a definition, our

paper is more or less independent of [8].

Apart from the reduction theorem, our interest in the projection maps
comes from the observation that their existence is sufficient to imply
the bouquet-property (Cohen-Macaulay'ness) of buildings ([S], proof of
Lemma 4, [1], Appendix and [4]). This fact, however, is not sufficient
to prove our main result , because a geometry belonging to a Coxeter
diagram may possess the bouquet-property without being a building. This
is shown by the well—knomn1"A7-geometry" with diagram C, , consisting of
the "points" of a 7-element set X , all 3-subsets of X as "lines" and
one A,-orbit of projective-plane structures on X as ''planes".

In a final section we show that the conclusion of our theorem becomes falsge if
the assumption of homogeneity (in the sense explained above) ist dropped.

To clarify this failure, we consider a certain "exchange property" for
galleries, introduced by A. Dress in [3], which generalizes the well-known
exchange property of Coxeter groups. This property is intermediate between

the building property and the existence of projection maps, so in the
homogeneous cage they are all equivalent, by our theorem. We construct

one class of examples which show that in the non-homogeneouscase the

existence of projection maps does not imply the exchange property. A

second (fairly obvious) class of examples shows that the exchange pro-

perty does not imply homogeneity, in particular it does not imply the buil-

ding property.

I would like to thank Andreas Dress for valuable discussions on the

topics of this paper,



We shall now collect the main definitions and results of Sections 2 and 3

of [8], with some minor complements.

A chamber system over an (index) set I is an object (C,i,i €1) , where

C is a set and the ~ are equivalence relations on C . The elements of
C are called chambers, we write C A D if C,D E€C, C-i D,C=#*D
and say that C and D are i-adjacent in this case. The rank of ( is
by definition the cardinality of I ,

The principal examples are given by the sets C(aA) of chambers, that is
maximal simplices of a building A with type set I , or more generally
any numbered complex over I . "Numbered" means that the vertex set X

of the complex is partitioned as X = LR (Xi the "vertices of type i")
such that every chamber has exactly onzezertex of each type. Two chambers

C and D are by definition i-adjacent if they differ exactly in the
vertex of type i.

There is also a construction which conversely associates a numbered complex
A(C) over I to any chamber system C over I . One has a canonical
surjective morphism A (C(a)) » o resp. C + C(A(C)) for any given 4
resp., C , which is an isomorphism under well-known conditions. See {3]

for details.

We shall say that a chamber system ( corresponds to a building if it is

isomorphic to a system C(aA) , where A is a building. This holds if and
only if A(C) is a building and C » A(C(a)) is an isomorphism. We
include the case of "non-thick" buildings, e. g. the “"Coxeter chamber
system”" of a given Coxeter matrix M = (m,.).

ij’i,jer
of chambers is by definition the Coxeter group (Weyl group)

over I . Here the set

WO = od €1 | () a1,

and w and w' are i-adjacent if w = w'i (where i 1is identified with
the corresponding involution in W(M)). This chamber system can be identi-
fied with C(a) , where A is the Coxeter complex of W(M) .

By a slight deviation from the terminology of (8], we define a gallery

of length n of a chamber system (C,~,i€1) as a sequence



G = (C,C auenyCsipyeneni) ,

1
t

where Co""’cn €EC, il,...,in €I and ct—l Ct for t=1,...,n.

The word -il...in is called the type of G . The gallery is gi_@gle if
C,.; #C, and it-—l $ J'.t for all t . A simple closed gallery (i. e.

Co = Cn) is called a circuit if furthermore Ct + C:' for all ¢t,t'

such that 0 <t <t' <n . If any two chambers can be joined by a gallery,

C 1is connected.

A gallery of minimal length for given extremeties C and D is called

geodesic, its length is the distance d(C,D) between C and D .

The relations ~ are extended to equivalence relations . for all sub-
sets J c I as follows:
c I D g there exists a gallery (C = CO,CI,...,C

nnD s il""’in)
such that it €J forall ¢t .

(Thus i is the smallest upper bound of the X , 1 €J , in the lattice

of all equivalence relations Rc CxC .)

. J .
We call J-star (in () aa equivalence class of ~ , because in case C(
corresponds to a complex, it consists of all chambers in the star of a

simplex A . A J-star is naturally a chamber system over J , in particular

it possesses a rank |{J} .

Tits considers the following condition on a chamber system C of rank 2,

say over I = {i,j} , for m a natural number >2 or=,

(CS 1): TForany C€C and k € I there exists a chamber C' ¢ C which
is k~adjacent to C .

(CSmZ): C contains no circuit of length < 2m .

(CSm3): If C and C' can be joined by a gallery of type iji...
(m factors), they can also be joined by a gallery of type

jij... (m factors).

(In case m = » , this means that C , regarded as a graph, is a tree.)



It is easily seen that for given m , a chamber system of rank 2 satis-
fies (CS 1), (CSm2) and (CSm3) if and only if it corresponds to a buil-
ding of rank 2 and diameter m , that is, a generalized m-gon. This fact
is formally contained in the criterion below, because the condition (P)

of that criterion is automatically true in the rank 2 case. The various
well known characterizations of generalized polygons suggest the following

remark on the corresponding chamber systems.

Remark. Consider the following property, for m % = ,
(CSmA): For any two chambers C and D , there exists a circuit of length

2m containing C and D .
For given m , a chamber system C of rank 2 satisfies (CS 1), (CSmZ) and
(csm3) if and only if it satisfies (CSm2) and (CSmA) if and only if 2m is
the minimal length of a circuit and (CSm4) holds. Here, (CS_4) means (CS 1),

The proof is straightforward, using the following consequences of (CSmZ):
Any simple gallery of length <m is geodesic, any closed simple gallery

of length 2m 1is a circuit.

If C has the properties (CS 1) to (CSm4), then in particular m is the
diameter

diam C := sup d(C,D)
C,DEC

of C , considered as a graph.

It seems convenient in our context to call a chamber system of rank 2 a

generalized m-gon if it satisfies (CS 1), (CSmZ) and (CSm3) , and of course

a generalized polygon if it is a generalized m—gon for some m . We in-

clude the case m =1 in this definition. The remark above remains trivially
true in this case, however, for m = | the corresponding complex does not

exist, i. e. € 1is not isomorphic to C(a(C)) .

Returning to the case of arbitrary rank, we can now state the definition

in Section 3.2 of [8] as follows,

Let M = <mij)i,j€1 be a symmetric matrix with entries in {1,2,...,=} .

A chamber system C over I 1is of type M or has diagram M , if each




{i,j}-star in C 1is a generalized mij—gon, for any subset {i,j} of
cardinality 2 of I .

Thus C is of type M for some ‘M if all rank 2 stars in C are gene-

ralized polygons, and their diameter only depends on their type.
The following statement is essentially Theorem 2 of [8].

Let M = (mij)i,j€I be a Coxeter matrix, i. e. m. = I, mij € {2,3,...,=}
for i # j . A chamber system C over I corresponds to a building with
diagram M if and only if it has diagram M and the following condition

holds.

(P) Consider simple galleries G and G' with common origin and common
extremity, suppose that their types f and f' are reduced words
(with repsect to 1), i. e, of minimal length among all words repre-
senting the same element in the Weyl group W(M) . Then the images of

f and f' in W(M) coincide.

We finally recall the notion of “projection maps'", following [3]. For the
moment, let (C, d : CxC( +]R>o) be any metric space. A subset Ac (C

is called gated, more precisely gated inside C , if the following holds:

For any C € C , there exists D € A such that
d(C,A) = d(C,D) + d(D,A) for all A € A.

Pictorially, D is the gate of A with respect to C .

Obviously, D only depends on C and A , we call D the projection of
C onto A.

If C is a chamber system corresponding to a building and A< C any

star, then A 1is gated, by (7], 3.19.6 . See also Section 3 below.



2. The result

We are now prepared to formulate and prove our main theorem which in par-
ticular says that the buildings are characterized among all the geometries
with some given Coxeter diagram by the existence of projection maps onto
all stars of simplices. It is even sufficient to require the existence for
stars of rank | and rank 2 only.

Although we have recalled some generalities in Section !, some familiarity
with Coxeter groups and with Sections 2 and:3 of [8] will be required in
the proof.

Theorem. Let C be a chamber system such that every star A of rank | or 2

is gated inside C . Then the following is true.

a) Any two star A of C is a generalized polygon. In particular, if

diam A only depends on the type of A , then C is of type M = (m,.)

Bii’i,jer

where mij is the diameter of any {i,j}-star.’

b) Suppose that C is of type M for some Coxeter matrix M . Then C

corresponds to a building.

Proof of a): We may suppose that (C 1is of rank 2 , and that C is not
a tree. Let 2m be the length of a shortest circuit. We have to show
that property (CS _4) holds. ‘
Consider a circuit of minimal length 2m and a fixed chamber C of that
circuit, We will show the following.
(*) For any chamber D , there is a circuit of length 2m containing

C and D . |

This will be proved by induction on d := d(C,D) .

Let (C,Dl,Dz,...,Dd-D;ij...) be a geodesic.

Let (C'CI’CZ""’Cm'c&’C;-l’""c;’cl;"') be the given circuit, where
the notation is such that i is the last symbol in its type.
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We will first show the following:

(**) For t <m t< d , the gallery Gt = (Dt’Dt-l’""Dl’cl""’cm+l-t;"')

of length m (and the appropriate tyoe, depending on the parity of t )
is geodesic, and there also exists a gallery G: joining Dt to
Cm+l—t of the opposite type (i and j interchanged).

Note that the closed gallery obtained by composing Gt and the inverse of

v . . . . . ..
Gt necessarily is a circuit, for otherwise m would not have been minimal.

1f (*¥) is proved for some t and we want to prove it for t+l , we can
replace C by Dt , the original circuit by the circuit consisting of G,
and G: , and can then apply the case t =1 to get the result. Thus it

is sufficient to treat the case t =1 ,

We first show that d(Dl’Cm) = m . Because of the equalities d(Cm,C]) = m-1
and d(Cm,C‘) = m , the chamber C, is the projection of c, onto the
i-star of C, , and d(cm’Dl) = d(Cm,Cl) + d(Cl,D‘) =m~-1+1=m,.
Analogously, we have d(Dl,C;) =m.

Now let D' denote the projection of D, onto the {k}-star of Cm (or

1
C;) , where k =i if m is even and k = j if m is odd, in particular

k ] : - ' = 1 ") =
C,—— C, - The equations d(Dl,Cm) d(Dl’Cm) m imply that d(DI,D ) = m-1 .,

A geodesic of the form (Dl,...,D',Cm;...k) has the required opposite type.

For the proof of (*) , it is now sufficient to show that d <m . If d
were greater than m , we could apply the following observation to D.»

C] and Dm+l to get a contradiction:

Let E,F be chambers which for either type k € {i,j} can be joined by
a simple gallery (E,...,Fjk...) of length m . Then d(E',F) <m for

any chamber E' adjacent to E .



The property (csm4) now readily follows. Consider any two chambers D,
and D,. Apply (*) to the C considered above and D, , then replace
C by Dl and Dl by D, and apply (*) once again.

We finally want to point out that the proof includes the case m =1 : If
there exists a pair of distinct chambers which are simultaneously i-adjacent
and j-~adjacent, the same holds for any two distinct chambers, i. e. (CSI4)
holds.

Proof of b): Let M = (mij)i,j€1 .

A, and m.. =1 .As in Section 1, denote by W(M) the Weyl group corres-

ponding to M,

thus mii = diam A for any {i,j}-star

m, .
WM) = <i €T | (ij) Y3 =15,

and by f — w(f) the canonical map from the set of words over 1 to
W(M) . We will write CfD for short, if there exists a gallery of type f

joining C to D . Pictorially, we represent this as

C>f—D.

Consider the following condition (An) , for a natural number =n :

(A) Let C,C',D,D' €C, i,k €I such that CXC', DED', let £

be the type of a geodesic from C to D , so CfD . Suppose
d(C,D) = d(C',D') =: n
d(C,D') = d(C',D) = n+l

C >~f —D

|«

c' D' .

Then the relations
C'fD' and w(if) = w(fk)
hold.

We -first show, by induction on n , that (Am) for all m < n-1 implies

the following Property (Bn) .
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(Bn) Let (Co,...,Cn;il,...,in) and (Do,...,Dn;ji5...,jn) 'be geodesics
such that C =D and C =D . Then
o o n n

Wi pyeensi) = wlipseni)

To prove this, let the index m be such that

d(c__,,D__,) <d(C__,,C)

m-1? m-1>

d(C D ) > d(C ,C )

Cm > 1m+l"'1n — C
lm Jn
Co1 D1 -

We claim that the second inequality is strict. Assume the contrary, and
let C' be the projection of Cm onto the {jn}—star of Cn . It satis~
fies

= = '
d(Cm,Cn) d(cm’Dn-l) d(Cm,C y + 1.

Together with the inequality d(Co,C') f-d(co’cm) + d(Cm,C') = n-l1 , this
implies n = d(Co,Cn) = d(Co,C') + 1 . The last equality means that C'
is also the projection of Co onto the {jn}-star of Cn , therefore

= ' - . .
d(Co’Dn—l) d(Co,C ) + 1 =n, a contradiction.

We now can apply the Property (An_m) to Cm’ Cn’ Cm—l’ D _; and conclude
the relations

Cm—llm+l"'1nnn-l ’

w(1m1m+l...1n) = W(1m+l"'1n3n) .
By the induction hypothesis, applied to C, and D _, , we have

w(1l...1m_|1m+l...1n) = w(J]..-Jn_,) s

thus W(JI...jn) = w(ll...lm_llm...ln) .

We now turn to the proof of (An) , again by induction on n . For n =0,
we necessarily have C' = D' , i =k , For n>0 , let f = f'j for a
word f' of length n-! and j € I and let D" the penultimate term

of the geodesic in question:
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C>~—-—f'——-rn"—j-D.
i k

c' D'

Consider the {j,k}~star A of D and the projections E = Pr,C

E'= prAC' . By the general properties of pr, we have

d(c,D) = d(C,E) + d(E,D)
d(Cc,D') = d(C,E) + d(E,D")
d(c',D) = d(C,E') + d(E',D)
d(c',p') = d(C',E') + d(E',D')
d(E,E') < 1

Together with our assumption this implies

d(E,D') = d(E,D) + 1
d(E',D) = d(E',b") + I
d(C,E) + d(E,D) = d(C',E') + 4(E',D") ,
in particular E # E'
and therefore
d(C,E') = d(C,E) + d(E,E') = d(C,E) + 1
d(C',E) = d(C',E') + | .
On the other hand, d(C,E') <1 + d(C',E') , so d(C,E) < d(C',E") ,
and by symmetry
d(C,E) = d(C',E') .
We finally conclude
d(E,D) = d(E',D") ,
so altogether we have the following picture
C- . -E=~,,, -D" A D
|2 k

C'- see * E'- Pece v '——D'

1

for the appropriate £ € {j,k} .

Let m = d(E',D) = d(E,D') and
G = (E-E‘,Ez,...,Em_l-D",Em-D;...)
G' = (E'-Ei,Eé,...,E&-D';...)

be geodesics joining E and D resp. E' and D' . Then
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d(ES,D) < d(Es,D')
and d(E;,D) > d(E;,D')

holds for all s , so Es * Et , for all s,t . That is,
type G = type G' =: h =: h'j , and m is the diameter of the generalized
polygon A , i. e., the entry mii of our Coxeter matrix defining W .
This implies

w(£h) = w(hk)

E>h —D
2| | k

E'>—h —— D'

Now let g be the type of a geodesic from C to E . By the induction
hypothesis the following relations hold:
C'gE', w(ig) = w(gh) .

By the Property (B , applied to C and D" , we have w(gh') = w(f'), thus

n—l)
w(gh) = w(f) .

Together with the relation C'ghD' and the reducedness of gh and f , this

implies the desired relation
c'fp'.

Also,

w(if) = w(igh) = w(glh) = w(ghk) = w(fk) .
Having proved the Properties (Ah) and (Bn) for all n , we finally show that
the Property (P) of Section ! holds. Let C,D € C and £,g be reduced
words such that CfD and CgD . By (Bn) » it is sufficient to show that
any gallery (Co’cl"";il’iZ"") of reduced type is geodesic., Assume
the contrary and let the index t be such that

d(co,ct) =t

d(c ,C.,) =t

write j := it+l . If D denotes the projection of C, onto the {j)}-star

of . Ct , we have d(Co,D) = t-1 . (Of course, E =C may occur.)

t+l
Choose any geodesic (Co,...,D;g) , thus the word g has length t-1 .

Then, (Co""’D’Ct;gj) is geodesic as well. From the property (Bt)

we conclude w(gj) = w(il"°it) , thus w(il...i = w(g) . This contra-

t+l)

dicts the fact that il"'it+l is reduced.
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The following corollary is a specialisation of our Theorem which is for-

mulated entirely in terms of groups with a distinguished set of generators
of order 2.

Corollary. Let W be a group and S © W a set of generators such that
82 =1 for all 8 €S, denote by £ the length function on W with
respect to S . Suppose that £(ws) # £(w) holds for all s €S ,w€EW,
and that &£(wx) = £(w) + £(x) holds for all subsets {s,s'} €S of car-
dinality 2 , all x € <s,s8"> and all w € W which are of smallest length
in the coset w<s,s'> .

Then (W,S) 1is a Coxeter system.

For the proof, consider W as a chamber system over § by defining
w——ws forall w€W and s €S . This chamber system is of type M ,
where M = (ord(s,s'))s’s.€s . The assumptions of the corollary express the
fact that the projection of 1 onto the {s}-star resp. {s,s'l}-star containing
w, exists. Therefore, by the transitive action of W on the chamber system,
the projection of any chamber onto any star of rank | or 2 exists. By the
theorem, W corresponds to a building, i. e. the Property (P) holds. This

means that the canonical map W(M) + W is an isomorphism.
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3. A general construction and some counterexamples

For the rest of this paper, we want to give a name to the property of
chamber systems that appeared as a condition in part b) of our theorem.

We call a chamber system C over I homogeneous if for all subsets J

of I of cardinality 2, the diameter of any J-star only depends on J .

We shall show that the assumption of homogeneity cannot be dropped in our
theorem. More precisely, we shall naturally break up the conclusion of

the theorem into two consecutive implications, and we shall see that neither

of them remains true in the general case.

For this purpose, we shall formulate a condition which is intermediate
between the building property and the gate property. (Here and in the
sequel, we say that a chamber system C has the “gate property" for short
if all stars of C are gated inside C .) The intermediate property is
that the following condition on certain galleries, introduced by A. Dress

in [3], is always fulfilled.

Exchange condition. Let (Co,...,Cn;il,...,in) be a geodesic and D a

. b 8 . s . .
chamber, i € I such that Cm — D . If (Co,...,Cm,D;xl,...,ln,;) is
not a geodesic, then there exists a gallery of the form

(] ] .2 .A : . . |-
(Co"':’cn—l’ll""’lv""’ln) (1v omitted) such that Co C° and

' 1
C —Cc .

n-1 n
We observe that this condition is an immediate generalization of the usual
exchange condition which holds for a Coxeter group. One merely has to
formulate the latter condition as a condition on the corresponding Coxeter
chamber system., Note that the Property (An) used in the proof of our theorem
is a special case of the exchange property. Conversely, if (An) holds for
all n and if in addition all rank | stars are gated, the exchange con-

dition is satisfied.

The important point about the exchange property is that it easily implies
the gate property, see [3] for a proof. Fﬁrthermore, it is easily seen that
a chamber system corresponding to a building, i. e. of type M for some
Coxeter matrix M and possessing the Property (P) of Section |, satisfies

the exchange condition. One reduces the assertion to the ordinary exchange
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condition for the Weyl group. Combining these two facts with our theorem
we see that for homogeneouschamber systems, the building property, the
exchange property and the gate property are all equivalent. We shall now
show that in general, neither the gate property implies the exchange

property, nor the exchange property implies the building property.

Example. Let C be the following chamber system over the type set (1,2,3} .

1 2
C3 — 04 — C5
3! 3 |3
2 1
Cl e 02 —_— 0 D
ll 2 2
C o o o
° 2 1 3

It is easily checked that all stars are gated. On the other hand, for the
geodesic (co’cl’CZ’C3’C4’C5;l23123) and the chamber D , the exchange
condition is violated because the unique geodesic joining Co and D has
the type 2132 ,

This chamber system lacks the property (CS 1) that every rank ! star com-
tains at least two chambers. We shall improve our example by using the

following general construction of "free thin extensions".

A chamber system is called thin if every rank | star consists of exactly

two chambers. The free thin chamber system over I consists of all words
-1

f over I, with f ~— fi for all £ and i . This is the Coxeter

chamber system corresponding to the Coxeter matrix over I with all off-

diagonal entries equal to e . As a graph, it is a tree with all valencies

equal to the cardinality of I .

Now let C be a chamber system over I such that each rank | star con-
tains at most two chambers. For each pair (C,i) such that the {i}-star
of C consists of C alone, let C(C,i) be the set of all (C,f) ,
where f is a word over I beginning with i . This is a chamber system
by defining (C,f)-—i—-(C,fj) for all (C,f) and j . It may be regarded
as 'one half" of the free chamber system over I . We construct a new

chamber system by attaching C(C,i) to ( wvia an edge of type i , for
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each (C,i) as above. More precisely, let

C=Cuy vy C,i)
(c,i)

where (C,i) ranges over all pairs as above and where the edges 1
of C are defined to be the old edges inside C or the C(C,i) together
with the edges C —— (C,i) . In this way, C becomes a thin chamber system

over I . We call C the free thin extension of C .

It is easy to describe all geodesics in € in terms of the geodesics of
C . We omit the proof of the following proposition, which is lengthy but

straightforward, from the description of the geodesics in C .

Proposition. Let C be a chamber system such that every rank | star con-

sists of at most two chambers, and let C be the free thin extension of C .

a) If C has the gate property, the same holds for C .

b) If C satisfies the exchange condition, the same holds for C .

Applying part a) to the above example one obtains the required improvement
of that example, because C( also does not satisfy the exchange condition.
Part b) of the proposition supplies examples of chamber systens satisfying
the exchange condition which are not homogenous and therefore do nmot
correspond to buildings. For this purpose, let us start with any Coxeter
chamber system C over some I , excluding only the free thin chamber

systems. The most simple case is

1

N
Qe O
0— 0

N

l

Now add one further symbol k to the type set I and consider C as a
chamber system over I Y {k} . The corresponding extension C 1is not
homogenous because for some subhset J of I of cardinality 2 , it con-

tains finite as well as infinite J-stars.
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