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Abstract

We apply the recent results of Galkin et al. [GKMS15] to study
some geometrical features of Keum’s fake projective planes. Among other
things, we show that the bicanonical map of Keum’s fake projective planes
is always an embedding. Moreover, we construct a nonstandard excep-
tional collection on the unique fake projective plane X with H1(X;Z) =
(Z/2Z)4.

1 Introduction

This paper concerns the geometry of Keum’s fake projective planes. Recall that
Keum’s fake projective planes are those planes with automorphism group G21,
where by G21 we denote the non abelian group of order 21. We refer to Section 2
for more details. The first result presented in this paper studies the bicanonical
map of such planes. More precisely, we have the following.

Theorem 1.1. Let X be a fake projective plane with Aut(X) = G21. The
2-canonical map

ϕ|2KX | : X → P9

is an embedding.

Along the way, we also show that the bicanonical map of any fake projective
plane is a birational morphism. This result was originally proved by Lopes and
Pardini in [LP01]. The proof presented here is of a somewhat different flavor.

Furthermore, building on the work of Galkin et al. [GKMS15], we study
exceptional collections on Keum’s fake projective planes. In loc. cit., it is shown
that any of Keum’s planes supports a “standard” exceptional collection. Here
we show that one of Keum’s planes admits a nonstandard exceptional collection,

∗Partially supported by the National Research Fund, Luxembourg, and the Marie Curie
Actions Program of the European Commission (FP7-COFUND).
†This material is based upon work supported by a Grant of the Max Planck Society:

“Complex Hyperbolic Geometry and Toroidal Compactifications”.

1



i.e., a collection which does not coincide with the one already constructed in
[GKMS15]. More precisely, we have the following.

Theorem 1.2. Let X be the fake projective plane with Aut(X) = G21 and with
H1(X;Z) = (Z/2Z)4. We have a nonstandard exceptional collection.

For a more precise statement we refer to Theorem 4.3 in Section 4. The
proof of Theorem 1.2 relies on a vanishing result for certain (Z/7Z)-equivariant
line bundles on Keum’s planes, see Proposition 4.2 in Section 4. This vanishing
result complements the vanishing theorem for G21-equivariant line bundles pre-
sented in [GKMS15]. The techniques used in the proof of this result are distinct
from the ones used in loc. cit.. Finally, we end our treatment with a translation
of our geometrical results into the language of derived categories of coherent
sheaves and semi-orthogonal decompositions. For more details see Corollary 4.5
in Section 4.

Most of the results presented here crucially rely on the detailed analysis pre-
sented by Keum in [Keu08], of the action of the automorphism group on fake
projective planes.

Acknowledgements. The first named author would like to thank Mikhail
Kapranov for helpful conversations. The authors thank the Max Planck Insti-
tute for Mathematics and the Mathematics Research Unit of the University of
Luxembourg for their hospitality at the beginning of this project. Finally, the
authors thank the Insitut des Hautes Études Scientifiques and the Max Planck
Institute for Mathematics for the excellent working environments.

2 Preliminaries

In this section, we recall the general properties of the so-called fake projective
planes. We briefly describe a particular class of highly symmetrical fake projec-
tive planes first studied by Keum. The results and definitions collected in this
section are used throughout the rest of this work.

Definition 2.1. A fake projective plane is a surface of general type X with
c2 = 3 and pg = H0(X;KX) = 0.

Interestingly, any such surface has the same Hodge diamond as P2. A priori
it is not at all clear that any such surface exists. It turns out that it is quite
hard to construct such objects, and the first fake projective plane was obtained
by Mumford in [Mum79] via a highly nontrivial construction. Because of Yau’s
solution to Calabi’s conjecture [Yau77], it is well known that any fake projective
plane is necessarily a compact complex hyperbolic 2-manifold. In other words,
any fake projective plane X is given as the quotient of the complex hyperbolic
2-space H2

C by a torsion free co-compact arithmetic lattice Γ ∈ PU(2, 1). The
arithmeticity of the fundamental group of a fake projective plane is a conse-
quence of the works of Klingler [Kli03] and Yeung [Yeu04].
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The fundamental groups of fake projective planes have been classified by
Prasad-Yeung [PY07] and Cartwright-Steger [CS10]. More precisely, there are
exactly 50 lattices in PU(2, 1) which are fundamental groups of fake projective
planes. This computer assisted classification not only explicitly provides the
possible fundamental groups, but also computes the abelianization and the au-
tomorphism group for any such Γ ∈ PU(2, 1). It turns out that (up to complex
conjugation) there are exactly three fake projective planes with automorphism
group isomorphic to G21, where G21 denotes the unique non abelian group of
order 21. All of the other admissible automorphism groups have smaller car-
dinality and in many cases are just reduced to the identity. Fake projective
planes with automorphism group G21 are called Keum’s planes as the first such
example was described by Keum in [Keu06].

Let us observe that, given a fake projective plane X with π1(X) = Γ, we
have that

H1(X;Z) = Γ/[Γ,Γ]

is a never vanishing torsion group. Recall that since H1(X;O) = 0, we have
that the group H1(X;Z) must always be torsion. For the explicit list of possible
first homology groups, we refer once again to [CS10].

Next, let us collect a few useful facts regarding the Picard group of a fake
projective plane. The vanishing H1(X;O) = 0 implies that the Picard group
Pic(X) is always isomorphic the the cohomology group H2(X;Z). Thus, by the
universal coefficient theorem we compute that Tor(H2(X;Z)) = H1(X;Z) 6= 0.
In other words, on any fake projective plane there are torsion line bundles. Since
this fact will be needed in the rest of this paper, we summarize this discussion
into a lemma.

Lemma 2.2. For a fake projective plane X, we have Pic(X) ' H2(X;Z).
Moreover, the torsion part of H2(X;Z) is equal to H1(X;Z) which is never
vanishing.

Now, by Poincaré duality Pic(X)/Tor(H2(X;Z)) is a one dimensional uni-
modular lattice which is generated by an ample line bundle L such that c1(L)2 =
1. Thus, it is worth making the following definition.

Definition 2.3. For a fake projective plane X, we denote by L1 any ample
generator of the torsion free part of Pic(X).

Of course, the line bundle L1 is not uniquely determined. In fact, the differ-
ent choices are parametrized by the torsion line bundles on X, i.e., they are in
one-to-one correspondence with H1(X;Z).

Let us now denote by “ ≡ ” (resp. “ ∼= ”) the relation of numerical equiva-
lence (resp. linear equivalence) for line bundles. Since a fake projective plane has
Picard number equal to one, given any ample line bundle L with self-intersection
k2 we have that

L ≡ kL1,

where L1 is any ample generator of the torsion free part of Pic(X). For our
purposes, it is then natural to make the following definition.
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Definition 2.4. For a fake projective plane X, we denote by Lk any ample line
bundle L such that c21(L) = k2.

We end this section by briefly describing the notion of an exceptional collec-
tion.

Definition 2.5. LetDb(X) be the bounded derived category of coherent sheaves
on a smooth projective variety X. A collection of objects (E0, . . . , Er−1) in
Db(X) is said to be exceptional if Extk(Ej , Ei) vanishes whenever j > i and for
all k ∈ Z, whereas Hom(Ei, Ei) has rank one for i = 0, . . . , r−1. We will denote
the Ext’s by Hom(Ej , Ei[k]) when no confusion can arise.

Given an exceptional collection, one may ask whether its triangulated enve-
lope, that is, the smallest triangulated subcategory of Db(X) containing such
a collection, coincides with Db(X). The collection is called full if this is the
case. Since this is not always the case (see Remark 4.4), one can consider its
“orthogonal complement” A which then, together with the exceptional collec-
tion, generates Db(X). From a more categorical viewpoint, it also makes sense
to ask whether Db(X) admits a so-called phantom in its Hochschild homology.
That is, a nontrivial subcategory A of Db(X) such that HH•(A) vanishes. We
address this question in our case in Remark 4.6.

For further details and a good review of the literature on derived categories,
we refer the reader to [Bon89], [GKMS15], [Kuz09] and the references therein.
On the other hand, for the basic complex surface theory and complex hyperbolic
geometry, the reader is referred to [BHPV04], [Bea96] and [Gol99].

3 Bicanonical map of Keum’s fake projective
plane

In this section, we study the bicanonical map of fake projective planes. More
precisely, we focus on the bicanonical map of Keum’s fake projective planes. Let
us begin with a series of elementary lemmas regarding the cohomology of line
bundles over fake projective planes. Recall that, on any fake projective plane
X, we denote by Lk any line bundle numerically equivalent to kL1, where L1 is
any generator of Pic(X) and k ≥ 1 any integer.

Lemma 3.1. For any fake projective plane X, we have h0(X;L4) = 3.

Proof. First, let us observe that

χ(X;L4) = h0(X;L4)− h1(X;L4) + h2(X;L4) = 1 +
1

2
4L1 · (4L1 −KX) = 3.

Recall that KX ≡ L3, so that L4 ≡ KX + L1. By Kodaira vanishing, we have
h1(X;L4) = h2(X;L4) = 0. Thus, for any for any L4 on X, we have the identity
h0(X;L4) = 3.
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We now have the following estimate for the cohomology of a L2 on X.

Lemma 3.2. For any fake projective plane X and for any L2, we have h0(X;L2) ≤
2.

Proof. By contradiction, let us assume that h0(L2) > 2. Because of Lemma
15.6.2 in [Kol95], the multiplication map

H0(X;L2)×H0(X;L2)→ H0(X;L4)

is such that h0(X;L2 +L2) ≥ h0(X;L2) + h0(X;L2)− 1 ≥ 5. This fact contra-
dicts Lemma 3.1.

The same reasoning applies to the study of the cohomology of any L1 as
well. More precisely, we have the following.

Lemma 3.3. Let X be a fake projective plane. For any L1, if h0(L1) 6= 0, we
then have h0(X;L1) = 1.

Proof. First, if we assume h0(L1) ≥ 2, the multiplication map

H0(X;L1)×H0(X;L1)→ H0(X;L2)

gives that h0(X;L2) ≥ 3. Then, we can finish by using Lemma 3.2.

We can then formulate the following useful lemma, which gives the finiteness
of curves numerically equivalent to L1 inside a fake projective plane.

Lemma 3.4. Let X be a fake projective plane. There are at most finitely many
curves C1, ..., Ck in X numerically equivalent to L1.

Proof. Let us observe that if there exists an effective L1 on X, this must neces-
sarily correspond to a unique curve, say C1, in X. This fact follows from Lemma
3.3. Now, the number of different L1’s on X is parametrized by H1(X;Z) which
is a finitely generated torsion group, see Lemma 2.2. Thus, there are at most
finitely many Ci’s numerically equivalent to L1. The proof is complete.

Remark 3.5. It seems currently unknown whether or not there exists an effec-
tive L1 on any of the fake projective planes. Nevertheless, it can be proved that
if a curve as in Lemma 3.4 exists, then it is necessarily smooth of genus three.
See Corollary 2.4 in [DiC16].

The finiteness result given in Lemma 3.4 has nice consequences for the bira-
tional geometry of fake projective planes. More precisely, we have the following.

Theorem 3.6. Let X be a fake projective plane. The 2-canonical map

ϕ|2KX | : X → P9

is a birational morphism.
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Proof. First, let us observe that

h0(X; 2KX) = 1 +K2
X = 10

so that the bicanonical map goes into P9 as claimed. Next, let us observe that
in a fake projective plane X, there are no curves C such that C2 = 0,−1. Since
KX is ample with K2

X = 9, the first part of Reider’s theorem (see page 176 in
[BHPV04]) tells us that ϕ|2KX | is indeed a morphism. Because of Lemma 3.4,
there are at most finitely many curves, say C1, ..., Ck, numerically equivalent
to L1. The second part of Reider’s theorem ensures that if two points P and
Q, possibly infinitely near, are not separated by ϕ|2KX |, then they are both
contained in at least one of the Ci’s. Thus, the map ϕ|2KX | is a biholomorphism
on X r C1 ∪ ... ∪ Ck. The proof is then complete.

Remark 3.7. This theorem was originally proved by M. M. Lopes and R.
Pardini with a different argument, see Theorem 1.1 in [LP01].

Next, let us show that Theorem 3.6 can be improved for the so-called Keum’s
fake projective planes. More precisely, using a vanishing theorem first proved in
[GKMS15], it can be proved that the bicanonical map of Keum’s fake projective
planes is actually an embedding. Following loc. cit., Keum’s fake projective
planes are those planes with automorphism group G21. According to the list
given by Cartwright and Steger [CS10], there are exactly 3 distinct such planes
(up to complex conjugation).

Theorem 3.8. Let X be a fake projective plane with Aut(X) = G21. The
2-canonical map

ϕ|2KX | : X → P9

is an embedding.

Proof. Let X be a fake projective plane with automorphism group G21. By
Lemma 2.2 in [GKMS15], there exists a unique G21-equivariant line bundle, say
O(1), such that KX

∼= 3O(1). Recall that “ ∼= ” denotes the notion of linear
equivalence. The main technical result in loc. cit. (see Theorem 1.3 therein) is
the following remarkable vanishing:

H0(X; 2O(1)) = 0.

This vanishing has some interesting consequences. Recall that Cartwright and
Steger explicitly computed H1(X;Z) for any fake projective plane X. In our
case, if X is a fake projective plane with Aut(X) = G21, we have

H1(X;Z) = (Z/2Z)3, (Z/2Z)4, or (Z/2Z)6.

Thus, for any torsion line bundle T ∈ Pic(X) = H2(X;Z), we have 2T ∼= OX .
Given any L1 on X, we can write L1

∼= OX(1) + T for some torsion line bundle
T ∈ Pic(X). This implies that given any L1 on X, we necessarily have 2L1

∼=
2OX(1). We then conclude that

H0(X;L1) = 0
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for any L1 on X. In other words, if X is a fake projective plane with Aut(X) =
G21, there are no curves Ci numerically equivalent to L1. Since on X there are
clearly no curves C with C2 = 0,−1, or −2, the second part of Reider’s theorem
tells us that, if ϕ|2KX | is not an embedding, there has to be at least one curve
numerically equivalent to L1. Since we know that no such curves can exist on
X, the argument is complete.

Remark 3.9. It is certainly tempting to conjecture that there are no effective
L1 on any of the fake projective planes. If this conjecture holds true, the argu-
ment given in Theorem 3.8 would imply that ϕ|2KX | is always an embedding.

4 A nonstandard exceptional collection

In this section, we will again assume that the surface X is a fake projective
plane, so that Pic(X) is of rank one and K2

X = 9. The statement below follows
from the definition of exceptional collection combined with some complex surface
theory, and it has already appeared in the recent literature ([GKMS15], [Keu14],
[LY]). We give the details for the reader’s convenience.

Proposition 4.1. Let X be as above and let L′ be an ample generator of
Pic(X). Then the sequence (OX ,−L′,−2L′) is exceptional if and only if the
dimensions h0(X; 2L′), h2(X;L′) and h2(X; 2L′) vanish.

Proof. We start by noticing that for the bundle L′ in the statement, being an
ample generator of Pic(X) is equivalent to being a numerical cubic root of the
canonical bundle, that is, 3L′ ≡ KX . This said, we check that the sequence in
the statement satisfies the definition of an exceptional collection. First, notice
that h0(X; 2L′) = 0 implies h0(X;L′) = 0 for elementary reasons. Next, let M
denote either L′ or 2L′, and let D be the divisor associated with M . From the
Hirzebruch-Riemann-Roch formula one gets

χ(M) =
1

2
D · (D −KX) + 1− q + pg (1)

where q(X) and pg(X) are respectively the irregularity and geometric genus of
the surface X. Since X is a fake projective plane, we have pg(X) = q(X) = 0
and, by assumption, h2(X;M) = 0. Expanding the Euler characteristic on the
left, we have that −h1(M) is equal to the right hand side of equation (1). But
the latter is in turn zero by direct computation, for M equal to either L′ or 2L′.

Let now (E0, E1, E2) = (OX ,−L′,−2L′), and let k denote 0, 1 or 2. In
order to show that Hom(E2, E0[k]) = 0, notice that, by Proposition III.6.7
in [Har77], these are isomorphic to Extk(OX , 2L

′), that is, to the cohomolo-
gies Hk(X; 2L′). On the other hand, these all vanish by the first part of the
proof. Next, the vanishings of the Hom(E2, E1[k])’s and the Hom(E1, E0[k])’s
are equivalent to those of the Extk(OX , L

′) ' Hk(X;L′) above. We are left
with showing that Hom(Ei, Ei[k]), for i = 0, 1, 2, has rank one for k = 0
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and vanishes for higher values of k. In all of the above instances, we have
Hom(Ei, Ei[k]) ' Hom(E0, E0[k]) ' Hk(X;OX), which has rank one for k = 0
and vanishes for higher values of k, since any fake projective plane has the same
Hodge diamond of a projective plane. Conversely, notice that the implications
in the above argument can be reversed. This concludes our proof.

The next proposition gives a vanishing result for certain Z/7Z-equivariant
line bundles on Keum’s fake projective planes. This vanishing plays a crucial
role in the proof of Theorem 1.2.

Proposition 4.2. Let X be a fake projective plane with Aut(X) = G21. Let
Z/7Z C G21 be the unique 7-Sylow. If the line bundle 2O(1) + T is Z/7Z-
equivariant for some torsion line bundle T , we have H0(X; 2O(1) + T ) = 0.

Proof. By contradiction, let us assume H0(X; 2O(1) + T ) 6= 0. Since the line
bundle 2O(1) + T is Z/7Z-equivariant, we have that Z/7Z acts on projectifica-
tion of H0(X; 2O(1) + T ). By Lemma 3.2, this projective space can either be
P0 or P1. Since any finite group action on P1 has necessarily a fixed point, we
have the existence of a curve in the linear system |2O(1) + T |, say C, which is
Z/7Z-invariant. Next, we claim that such a curve cannot be pointwise fixed by
the Z/7Z-action. This nontrivial fact follows from the ground breaking work
of Keum. More precisely, Theorem 1.1. in [Keu08] implies that the dimension
of the fixed point set of a Z/7Z-action on a fake projective plane is zero di-
mensional. In particular, there cannot be any curve in X pointwise fixed by
the Z/7Z-action. Moreover, since on Keum’s fake projective plane there are
no curves linearly equivalent to L1, the curve C fixed by the Z/7Z-action is
necessarily reduced and irreducible.

Thus, we have a Z/7Z-invariant curve C such that pa(C) = 6. If C is
smooth we have pa(C) = g(C) = 6. Now a nontrivial Z/7Z-action on a genus 6
curve has necessarily 4 fixed point, see Proposition V.2.14 page 285 in [FK92].
This contradicts the fact that X/(Z/7Z) has exactly 3 singular points, see again
Theorem 1.1 in [Keu08]. We therefore conclude that C cannot be smooth and
let us denote by C its normalization. Now, let us observe that the nontrivial
Z/7Z-action on C lifts to the normalization C. Thus, C is a smooth curve
of genus strictly less than 6 with a nontrivial automorphism of order 7. By
Proposition V.2.14. page 285 in [FK92], we conclude that the genus of C must
necessarily be equal to 3. The theory of the Toledo invariant applied to ball
quotient surfaces, see for example Proposition 2.1 in [DiC16], now tells us that

KX · C ≤ 3(g(C)− 1) (2)

with equality if and only if C is a totally geodesic immersed curve. Thus, since
we established g(C) = 3 and

KX · C = 3L1 · 2L1 = 6

we can use (2) to deduce that C is necessarily a totally geodesic immersed
curve. On the other hand it is well known that there are no immersed totally
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geodesic curves in any of the fake projective planes. In fact, the main theorem
in [PY07] combined with [CS10] tells us that any fake projective plane is an
arithmetic ball quotient of the second type. Now, ball quotients of the second
type cannot contain any immersed totally geodesic curve, see for example page
901 in [MT15]. The proof is therefore complete.

We are now ready to produce a nonstandard exceptional collection on at
least one of Keum’s fake projective planes.

Theorem 4.3. Let X be the fake projective plane with Aut(X) = G21 and
H1(X;Z) = (Z/2Z)4. There exist a nontrivial torsion line bundle T ∈ Pic(X),
such that the collection

OX ,−OX(1)− T,−2OX(1)

is exceptional.

Proof. Recall that the standard exceptional collection

OX ,−OX(1),−2OX(1)

was constructed by Galkin et al. in [GKMS15]. In order to construct the
nonstandard collection, by Proposition 4.1 it is enough to show that there exists
a numerical cubic root of KX not linearly equivalent to OX(1), say L′, for which
the cohomologies H0(X; 2L′), H2(X;L′) and H2(X; 2L′) all vanish. First, recall
that we have 2L′ ∼= 2OX(1), thus the vanishing of H0(X; 2L′) follows directly
from Theorem 1.3 in loc. cit.. Next, observe the following. Given any ample
generator of Pic(X), say L′, we can write L′ ∼= OX(1) +Ti, where Ti is a torsion
line bundle. Thus, if X is any of Keum’s fake projective planes, by duality we
have

H2(X; 2L′) = H0(X;KX − 2L′) = H0(X; 3OX(1)− 2OX(1)− 2Ti)

= H0(X;OX(1)) = 0,

since 2Ti ∼= OX . Next, let us observe that

H2(X;L′) = H0(X;KX − L′) = H0(X; 3OX(1)−OX(1)− Ti)
= H0(X; 2OX(1) + Ti),

since any torsion line bundle Ti ∈ Pic(X) has order two. In conclusion, if we can
find a line bundle 2OX(1)+Ti with Ti 6= 0 and such that H0(X; 2OX(1)+Ti) =
0, we have that the collection

OX ,−OX(1)− Ti,−2OX(1) (3)

is exceptional. Now, let X be the unique fake projective plane with H1(X;Z) =
(Z/2Z)4, so that there are exactly fifteen nontrivial torsion line bundles on
X. Thus, there is at least one nontrivial torsion line bundle, say T , which
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is Z/7Z-equivariant. Here the Z/7Z-action comes from the unique 7-Sylow in
Aut(X) = G21. Now, if T is a nontrivial Z/7Z-equivariant torsion line bundle
on X, we then claim that H0(X; 2O(1) + T ) = 0, which is enough to show
that the collection given in (3) is indeed exceptional. In order to show that
H0(X; 2O(1) + T ) = 0, let us observe that the line bundle 2OX(1) + T is
Z/7Z-equivariant. In fact, 2OX(1) is G21-equivariant and the torsion part T is
by construction Z/7Z-equivariant. It then suffices to apply Proposition 4.2 to
conclude the proof. In conclusion, there exists a nontrivial torsion line bundle
T such that the collection

OX ,−OX(1)− T,−2OX(1) (4)

is exceptional.

Remark 4.4. In the terminology of [GKMS15a], a 2-minifold is a two dimen-
sional smooth complex projective variety X admitting a full exceptional collec-
tion of length 3 in its derived category Db(X). Thanks to the classification of
minifolds appearing in Theorem 1.1 of loc. cit., the only 2-minifold is P2, hence
the exceptional collection from (4) cannot be full. In particular, it makes sense
to consider its right orthogonal in Db(X).

The following corollary to our main theorem tells us that we have obtained
yet another semi-orthogonal decomposition of the bounded derived category of
coherent sheaves Db(X).

Corollary 4.5. Let X be as in Theorem 4.3 and let A be a right orthogonal of
the exceptional collection from (4). Then there is a semi-orthogonal decomposi-
tion

Db(X) = 〈OX ,−OX(1)− T,−2OX(1),A〉.

Proof. Again, this is done along the lines of the proof of Corollary 1.2 in
[GKMS15]. Let B denote the triangulated envelope 〈OX ,−OX(1)−T,−2OX(1)〉
in Db(X). Since we proved above that (4) is an exceptional collection, the cat-
egory B is (left- and right-) admissible by Theorem 3.2a in [Bon89]. Now, since
we defined A as B⊥, from Lemma 3.1 in loc. cit. it follows that B and A
generate Db(X).

Remark 4.6. One might ask whether our X is such that its derived category
Db(X) admits an H-phantom. This question has an affirmative answer. In fact,
in our case the canonical class KX is divisible by 3 = dim(X) + 1, hence the
existence of an H-phantom is implied by Corollary 1.2 in [GKMS15]. More in
detail, the subcategory A in the statement is indeed an H-phantom. In order
to see this, one can follow Section 4 in [Keu14] and recall that the Hochschild
homology of X is isomorphic to its Hodge cohomology. Since X is a fake projec-
tive plane, its Hodge cohomology must have dimension equal to 3. Now, since
the sum of the Hodge numbers of our exceptional collection is already 3 and
Hochschild homology is additive on semiorthogonal decompositions (see Section
7.2 in [Kuz09]), we must have that HH•(A) = 0.
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