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J''. In this paper we study eomplete surfaces (M, g) which have finite area and hyberbolic
ends or, what is the same, complete surfaces of finite area whose Gaussian curvature equals
-1 in the complement of some compact subset of M. Such a surface has a deC0111position
into a compact surface with smooth boundary and a finite number of ends called cusps.
Examples are compactly supported conformal deformations of hyperbolic surfaces of finite
area. Let 6. be the Laplace operator on 111 associated to the lnetric g. Since 9 is conlplete,
6., regarded as an operator in L2 (M) with domain Cgo(M) , is essentially self-adjoint [eh]
and we shall denote its unique self-adjoint extension by ß.

Ir M is compact then the spectrum of 6. is a discrete sequence of eigenvalues

where each eigenvalue Aj h(1$ finite multiplicity. A great deal of work has been done to
understand the following problem:
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(0.1) Ta what extent da the eigenvalues determine tbe geometrie strueture oE (M, g) and
viee versa?

See for example [Hu], [Me], [OPSl], [OPS2], [Su], [V], [W]. Part of this theory lnay be
regarded aB inverse speetral theory for eompaet surfaees.

Our purpose is to study the analogous problem for the class of eomplete sUl'faces
defined above. To start with we have to find appropl'iate speetral data whieh ean replaee
the eigenvalues in the eompaet ease. The speetruln of the Laplaee operator on a cOlnplete
surface M of finite area and with hyperbolie ends eonsists of a sequence of eigenvalues
o= AO < Al :::; A2 :::; ... and an absolut eontinuous spectrum which is the interval [1/4,00)
with multiplicity equal to the number of ends of M. Furthermore, Colin de Verdiere
[C2] has shown that, for a generie metrie on M, the Laplaee operator has only finitely
lllany eigenvalues and all of them lie below the eontinuous spectrum. Thus eigenvalues are
eertainly not sufficient for the purpose of spectral geometry.

The additional spectral information is provided by scattering theory. The statiol1ar'y
approach to scattering theory gives rise to a seattering matrix C(s) whieh is a meroillorphic
lnatrix valued function of sEC. Hs coeffieients lnay be interpreted as follows: A plane
wave is sent in from a given eusp and scattered by the compaet part of the surface,
transmitting some part into the other cusps and reflecting another part into the given one.
The asymptotie behaviour of the seattered plane waves obtained in this way is described
by the scattering matrix C(s). In analogy to quantum meehanics we call poles of C(s)
re30nance3. Aetually we are working with the poles of the meromorphie function

if>(s) = det C(s)

and call also these poles resonances. The resonanees are the eomplementary spcctral
parameters to the eigen~alues which we are going to use to develop spectral geolnetry for
the surfaces described above. To combine resonances and eigenvalues in a comnlon set we
write each eigenvalue Aj as

Aj=sj(l-sj), sjEC

and associate to Aj the points Sj given by this equality. Then we introduee the set a(lvl)
which is the union of the following three sets:

(a) The set of all poles and zeros of if>(s) in the half-plane Re(s) < 1/2.

(b) The set of aU s j E C such that S j (1 - S j) is an eigenvalue of 6,.

(c) {!}.

Each point 1J E o(M) oecurs with a eertain multiplicity m(1]) (cf. Definition 5.20).
In abuse of notation we eall o(A1) the re30nance set and we think of the s j-th as being
r~sonances corresponding to L 2 bound states. By means of Lax-Phillips seattering theory
one can identify u(M) with the spectrum of a eertain non-self-adjoint operator B+~I. Here
B is the generator of the Lax-Phillips semi-group Z (t), t 2:: 0, aBsociated to the hyperbolie
wave equation on M. This operator has a compact resolvent and therefore, we can enlploy
standard perturbation theory to study the behaviour of o(M) under perturbations of the
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metric. For hyberbolic sU1faces this approach was first used by Phillips and Sarnak [PSI)
to study 0"(M) as a function on Teichmüller space. The problem analogous to (0.1) can
now be stated as follows:

(0.2) To what extent doe~ the resonanee set a(M) determine the geometrie structure 0/
(M, g) and vice versa P

This may be compared with the forward and inverse problem of scattering on the real
line (cf. [DT]). The role of the potential is played by the metric on M. But now we have
also to deal with the topological structure of the surface.

Of course, we cau not expect to get a completc answer to (0.2) at the prcsent statc
of our knowledge. Even in the compact case there are many open problems related to
(0.1). Our purpose in this paper is to develop some of the machinery which is available far
compact surfaces and to extend some of the results from the compact case.

Now we 8h811 describe the content of this paper. In section 1 we recal! thc basic facts
about the 8pectral decomposition of 6. and we introduce the scattering matrix C(s). In
section 2 we review some results of [Mü] concerning the heat kernel [(Zl, Z2, t), including
the trace fonnula for the truncated heat kernel and the related asymptotic expansion.
Then we study in section 3 the analytic properties of the scattering 111atrix C(s). This
is the forward probleIn of scattering theory. One of the main results is Theorem 3.20
which says that the determinant fjJ(s) of C(s) is a lneromorphic function of order:::; 4. Far
hyperbolic surfaces this result is due to Selberg [SeI]. Our method is different fram his
and it is based on eolin de Verdiere's method of the ana1ytic continuation of Eisenstein
series [Cl]. Another result of section 3 is the following product formula:

(0.3) 1>(s) = qB-l/2 rr s - 1 +P
s-p

p

where p runs over all poles of 1>(s), counted with the order, and q is a certain constant.
This is again due to Selberg {SeI] if N! is hyperbalic. An inlportant consequence of (0.3)
is the following formula for the logarithmic derivative of <p a10ng the line Re(s) = 1/2 :

(0.4). 1>'. " 2Re(p) - 1
-;j;(1/2 + zA) = log q + L, (1/2 _ Re(p))2 + (A _ Im(p))2

p

This formula is important for the further investigation of O"(M).
In section 4 we study the distribution of poles of 1>(s) and the main result - Theare1n

4.23 - cau be restated as follows:

(0.5)

as T -+ 00. This may be regarded as an analogue of Weyl's formula.
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Next we consider in section 5 the following integral

where h is the Fourier transform of some function 9 in Cgo(R).
We wish to express this integral in terms of the poles of </>( s). The Cauchy resielue

theorem can not be applied directly, because the integral obtained by shifting the contour
of integration to the line Re(oS) = er does not disappear in the lilnit er ---+ - 00. Nevertheless,
using (0.4), we are able to prove the following result (Theorem 5.15):

Let 9 be an even function in the Schwartz space S(R). Set h = g and h+ (z) =
Jooo

g(y)eZYdy , Re(z) S; O. Then

(0.6)
1 1+00

</>1 log q 1-- h(A)-(1/2 + iA)dA =-- g(O) + - L n(p){h+(p -1/2) + h+(p - 1/2)},
41T -00 4> 41T 2

P

where q is the constant occurring in (0.3) l P runs over all poles and zeros of cP( s) in
Re( s) < 1/2 and n(p) is the order of the pole 01' the negative of the order of the zero
of 4>(8) at p. If M is hyperbolic and 9 has compact support with support contained in
(0, CX), this formula was proved by Lax aod Phillips [LP,Chapter IX]. For 1\11 hyperbolic,
(0.6) allows us to rewrite the Selberg trace formula in a way which, up to some inessential
terms, resembles the trace formula for a compact ~urface (cf. Theorem 5.31). In the same
way we can rewrite the trace formula for tbe truncated heat kernel anel combined with the
asymptotic expansion for the trace of the truncated heat operator we obtain that (]"(M)
determines Area(M), the Euler characteristic X(M) of M and the number rn of ends of
M. In particular, er(M) determines the conformal type (h, m) of M where h is the genus
of the surface M obtained by compactifying M.

In section 6 we introduce two different zeta functions associated with the Laplace
operator.6.. The first one is the spectral zeta function C~ (s) which is essentially the Mellin
transform of the trace of the truncated heat operator and the second one is the resonance
zeta function

(B (s) = L '(1 - 1]) - S , Re(s) > 2
71EO"(M)

where ~' rneans the surn over all 1] =I=- 1. Here the index B denotes the generator of
the Lax-Phillips semi-group associated to the hyperbolic wave equation. According to
Theorem 5.27 we have er(M) = Spec(B + !I). Therefore we may regard (B(8) as the zeta
function of the non-self-adjoint operator BI = -B + ~I.

The merornorphic continuation of (./l (s) is obtained in the well-known way from the
asymptotic expansion of the trace of the truncated heat operator. Then we use an extended
version of (0.6) to express (./l (s) in terms of er( M). This formula establishes a relation
between (./l (s) and an infinite linear cOlnbination of resonance zeta functions with shiftecl
argument (B(2s + k), k E N and it leads finally to the meromorphic continuation of (B( s).
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Both zeta functions are holomorphic at s = 0 and we cau introduce the corresponding
determinants

det'~ = e-'~(O) and det' BI = e-'~(O).

The complecated relation between (~(s) and (D (s) is reduced to the following simple
equality for the determinants

(0.7) d iA (Area(M) 37r'Y) d 'Bet L.l. = exp - --rn et I
87r 2

where f denotes Euler's constant and m is the number of ends of M. For z E C, Re(z) > 1,
we also introduce regularized determinants det(~+z(z-l))and det(B I +(z-l)) and (0.7)
extends to a corresponding identity for these detenninants. If the surface is hyperbolic,
we use resuIts of 1. Efrat [EI], [E2] to express det( BI + (z - 1)) in terms of 4>(s) and the
Selberg zeta function.

Throughout sections 7 and 8 we assurne that M is hyperbolic and we study the inverse
problem of scattering theory for hyperbolic surfaces. In section 7 we use the version of the
Selberg trace formula established in section 5 to show that a(Al) determines the length
spectrum of the closed geodesics of AtJ and vice versa.

Finally, in section 8 we prove that the resonance set deternlines a hyperbolic surface of
finite area up to finitely many possibilities. For compact hyperbolic surfaces this result is
due to H.McI(ean [Me]. According to S.Wolpert [W] we also know that a generic compact
hyperbolic surface is uniquely determined by the eigenvalues of its Laplacian. In other
words, the eigenvalues are -moduli for generic cOlnpact hyperbolic surfaces. We can ask
the same question: Are the points 77 E a(M) moduli for a generic hyperbolic surface of
finite area ~ The answer is very likely to be yes. \Ve may also try to extend T.Sunada's
results concerning isospectral manifolds [Su]. In our context two surfaces MI and lvJ2 are
called isospectral if the resonance sets o(MI') and a(M 2 ) coincide. We shall not pursue
any of these problems in the present paper, but we shall return to these questions in a
forthcoming publication.

We expect that most of the theory developed in this paper can be done for larger
classes of surfaces. For exalnple, the condition on the ends can certainly bc relax:ecl. In
place of hyperbolic ends we Inay assulne that the metric is asymptotic (in a sense to
be made precise) to the metric of constant curvature -1. Since this is technically more
complicated we have chosen to work with the surfaces introduced above.

Acknoledgtnent: This work was done during the author's visit at the Institute for
Advanced Study at Princeton and the Max-Planck-Institut für Mathematik at Bonn. I am
very grateful to both institutions for financial support and hospitality.
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I.The spectral resolution of the Laplacian
on admissible surfaces

As in the introduction we let (M, g) be a complete surface offinite area whose Gaussian
curvature equals -1 in the complement of some compact subset of M. In other words,
(M, g) is a two-dimensional lliemannian manifold which admits a decomposition of the
form

M = Mo U Zl U ..". U Zm,

where Mo is a compact surface with smooth boundary and

with Gi > 0 and the metric on Zi equals

ds 2 = dy2 + dx
2

y2

where (y, x) E [ai, 00) X SI. Each end Zi will be called cusp and the surface M will be
called admissible.

Any admissible surface is diffeomorphic to the complement of a finite number of points
z), ... , Zm in a compact surface M. Let h be the genus of M. The pair (h, m) is called the
conformal type of the surface Al. If the metric 9 on M has constant curvature -1, then
we call M a hyperbolic surface. Any hyperbolic surface is of the form r\H where H is the
upper half-plane and r is a torsion free discrete subgroup of SL(2, R). Finally, we note
that for an admissible surface M the Gauss-Bonnet theorem holds:

X(M) = 2- r 1(z)dz.
27r 1M

Here x(M) is the Euler characteristic and 1(z) the Gaussian curvature of M at z E M
(cf. [CGJ).

Now let ß : COO(M) ---+ COO(M) be the Laplace operator on M. We denote by L2 (l\1)
the Hilbert space of measurable functions on M which are square integrable with respect
to the measure dj1. defined by the Riemannian metric g. Since (M, g) is c0l11plete, it follows
from [Ch] that ß, regarded as an operator in L2 (l\1) with domain Cgo(M), is essentially
self-adjoint. We denote its unique self-adjoint extension by ß. In this section we recall
some facts about the spectral resolution of 6.. Details are contained in [Mü] anel [C2].

The spectrum of 6. is the union of a point spcctrum up and a continuous spectrum
(Je' The point spectrun1 up is a sequence üf eigenvalues

where each eigenvalue A.j has finite multiplicity and it is repeated in this sequence according
to its multiplicity. Für a generic metric on M this sequence is finite (cf. [C2]). Let N(T)
be the counting function, i.e.,

(1.1 )
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where T is a given positive real number. Then

(1.2) 1
. N(T) < Area(M)
Imsup - T2 - 4 .
T-+oo 7r

Remark. This is not the standard definition of the counting function. But in the surface
case one usuaUy writes the eigenvalues as ,\ j = 1/4 + 1'1, r j E Ru i{-1/2, 1/2], and counts
the number of Tj with Iril ~ T.

The continuous spectrum Oe is the interval [1/4,00) with multiplicit.y eq~al to the
number of cusps of M. The spectral decomposition of the absolutely continuous part of 6.
is described by generalized eigenfunctions E;(z, s), i = 1, ... , m, which have the following
properties:

Each E;(z, s) is a meromorphic function of sEC with poles contained in the union
of the half-plane Re(s) < 1/2 and the interval (1/2, 1]. Furthennore, each Ei (z, s) 18 a
smooth function of z E M and satisfies

(1.3)

If we expand E;(z, s) in a Fourier series on the cusp Zj then the zeroth Fourier coefficient
takes the form

(1.4) e5;jyJ + C;j(s)yj-S,

where Yj E [aj, 00) is the radial variable for the cusp Zj ~ {aj, 00) X SI. Put

(1.5) C(s) = (C;j(s»).

Then C(s) is a m x m matrix which is a merolnorphic function of sEC and satisfies

(1.6) C(s)C(l - s) = Id, C(s) = C(s) and C(s)* = C(s).

(1. 7)

All poles of C(s) are contained in the union of the half-plane Re(s) < 1/2 and the interval
(1/2,1] and those contained in (1/2,1] are simple. In analogy to quantum mechanics we
shall eaU C(s) scattering matrix and its poles resonances. Set

E(z, s) = (El(~'S) ) .
Em(z, s)

Regarded as a vector valued function it satisfies the following functional equation

(1.8) E(z, s) = C(s)E(z, 1 - s).

Let L~(M) be the subspace of L2(M) which is spanned by thc eigenfunctions of ~ and let
<Po, <.p 1, ... be an orthonormal basis for L~(M) consisting of eigenfunctions wi th eigenvalues
o= Ao < Al ~ .... Then the Fourier expansion of a given f E Cü(M) takes the form

fez) = ~(<pj, f)<pj

(1.9)
J

1 m 1+00

[+ 411" (; -00 Ek(z, 1/2 +iA) } M Ek(w, 1/2 - i>')f(w)dl'(w )d>..
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2.The heat kernel and Weyl's formula.

In this seetion we review some results concerning the heat kernel of the Laplace op
erator /:i. on an admissible surface M. In seetion 4 of [Mü] we eonstrueted a unique kernel
](( Zl , Z2, t) for the heat operator exp(- t.6.) whieh satisfies the following properties:

(a) K(zI, Z2, t) is a smooth function on Mx M X R+ which is symmetrie with respect to
(Zl' Z2) and satisfies the semi-group property.

(b) (tt + .6. z1 )]{(zt, Z2, t) = O.
(e) limz1 - z2 K(Zl' Z2, t) = 8(Zl - Z2), the Dirac delta measure.

(d) Let i be the funetion on A1 which is defined as

'() { 1, if zEintMo;
tZ = Yj, ifzEZjanclz=(Yj,x).

For each T > 0 there exist eonstants Cl, C2 > °such that

IK(ZI, Z2, t)1 :s; CI (i( ZJli(Z2 ))J/2r Jexp ( -C2d2(z~, Z2))

uniformly for °< t < T and Zl, Z2 E M. Here d(Zl, Z2) denotes the geodesic distance
of Zl and Z2'

See [DM] for another proof of (d).

k.« ) (' ') t) _ V(YY') (_! _lOg2(y/yl»)
J y, X , Y ,x, - v'47ft exp 4 4t .

Then kj(zt, Z2, t) is the constant term of the heat kernel !(Zl, Z2, t) on the cusp Zj. Set

k( t) - {kj(ZI, Z2, t), if ZI, Z2 E Zj for some j, 1 ::; j:S; m;
Zl, Z2, - .

0, otherwlse.

In other words, k is the sum of the constant terms kj. Then oue can show that ]«z, z, t)
k(z, z, t) is an absolutely integrable function on M (cf. section 8 in [Mü]). Furtherrnare,
set

(2.1) 1>(s) = det C(s),

where C(s) is the scattering matrix and let dj.L be the measure on M associated to the
Riemannian metric on M. Then, by Theorem 8.13 in [Mü], we have the following trace
formula:

(2.2)

r 1 1+00

4>'J)K(z, z, t) - k(z, z, t))dll(Z) = 2:>-Aj
t - 411" -00 e-(J/HiA

2

>-"i(1/2 + iA)dA
J

1 e- t / 4 m

+ -e- t
/

4 Tr(C(1/2» + ~ L logaj.
4 v47ft j=1

8



Using Theorem 8.20 of [Mü] we obtain the following asymptotic expansion as t --+ 0:

(2.3)

1 Area(M) m log t (31 m ~ ) 1
(K(z, z, t) - k(z, z, t))dp(z) = + -2 r;-::; + -2- + 6 log aj ~

M 47rt V 47rt j=1 V 47rt

+ x(~) + O(Vi),

where x( M) is the Euler characteristic of M, m is the number of cusps of M and 1
denotes Euler's constant. To obtain (2.3) we sirnply have to determine the constants
occurring in the asymptotic expansion of Theorem 8.20 of [Mül. In our case we have
(j(5) = 2(25) where ( 5) denotes the Riemann zeta function. There are also two misprints
in the statement of the theorem. Namely log a j has to be 2 log a j and bj ,N = (j (0) +1. We
note that the asymptotic expansion (2.3) exists to all orders. This can be easily extracted
from the proof of Theorem 8.20 of [Mü]. It is of the form

(2.4) 1(I{z,z,t) - k(z,z,t))dJl(z) ~ 'fakC J+k/2 + 'fbkCJ+k/2Iogt .
M k=O k=l

as t --+ O.

As usually, we write the eigenvalues as

(2.5) Aj = 1/4 +r; with rj E Ru i[-1/2, 1/2].

(2.6)

Note that each eigenvalue Aj f=. 1/4 determines two points rj and -rj. Then (2.2) combined
with (2.3) gives

L -r?t 1 100

_..\2 t if/( / '\)d\ _ Area(M) O(lOg t)e J - - e - 1 2 + ZA A - + --.
. 47r 00 <P 47rt Vi

J

Let N(T) be the counting function (1.1). If we apply a standard Tauberian theorem to
(2.6) we get the following analogue of the Weyl theorem for adlnissible surfaces

TheorelTI 2.7. AJ T --+ 00, we haue

1 jT <p'
N(T) - - -(1/2 + i>-")dA ~

47r -T 4>

Area(M)T2

47r

For hyperbolic surfaces this result is due to Selberg [SeI]. In this case the asYluptotic
expansion can be improved and includes two relnainder terms

(2.8)

N(T) - ~ jT ~ (1/2 + i'\)d'\ = Area(M)T2_m T log T
47r -T '+' 47r 7r

m(1 -log 2) T O(~)
+ + 1 T'7r og

9



(cf. [Se2]).

For a generic metric on M the number of eigenvalues is finite and all eigenvalues are
contained in [0, 1/4) (cf. [C2]), i.c., there are no eigenvalues embedded in the continuous
spectrum. By Theorem 2.7, we get in this case

(2.9) _~ [T 1>' (1/2 + iA)dA f"V Area(M) T2
47r J-T 4> 47r .

as T --+ (X). In other words, the spectral information is essentially contained in cP. Note
that this is analogous to the behaviour of the spectrum of the self-adjoint extension H
associated to the Schrödinger operator -d2 /dx 2 + q where q E cgo (R).

On the other hand, for congruence subgroups of SL(2, Z) it is known that

rT
cP'J-T -;;(1/2 + iA)dA = O(T log T).

This follows from the explicit description of 1> (cf. [Hx]) in terms of Dirichlet L-functions
and standard results from analytic number theory.
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3.Analytic properties of the scattering matrix

As before let M be an adrnissible surface and fjJ( s) the detenninant of the corre
sponding scattering matrix. In this seetion we shall ~urther investigate this lneromorphic
function. It follows from (1.6) that fjJ( s) satisfies

(3.1)

Note that (3.1) implies

(3.2)

fjJ(s)<p(l - s) = 1, ,pes) = <p(s), sEC.

1</>(1/2 + iA)1 = 1, AE R.

(3.3)

Furthermore, we know that the poles of <p(s) are contained in the union of the half-plane
Re(s) < 1/2 and the interval (1/2,1].

If M is a surface of constant negative curvature, Selberg {SeI] proved that ,p(s) has
the following two important properties:

1 ) 1J(s) is a meromorphic lunction 01 order::; 4.

2 ) The poles 0/ 1J( s) are contained in a strip Cl < Re( s) < C2.

We shall extend 1) to all adluissible surfaces. Our n1ethod to establish 1) is different
from the one used by Selberg. It is based on Colin de Verdiere's approach to obtain the
analytic continuation of Eisenstein series (cf. [ClJ). We briefly recall this method. eoEn
de Verdiere works with the assulnption that the surface has a single cusp, but there is no
difficulty to extend everything to the case of several cusps.

Let M = Mo U Zl U ... U Zm be the decon1position of M into a compact surface Mo
and the hyperbolic ends Zj ~ [aj,oo) X Sl,aj > O,j = 1, ...m. Let b = max{l,al, ... ,am }

and choose c.p E Cü(R) satisfying c.p(y) = °for y < b and c.p(y) = 1 for y > b + 1. For
j,l :::; j :::; m, and 8 E C we set

() '(z 8) _ { 0, if Z E M - Zj;
) , - c.p(y)yS, if Z = (y, x) E Zj.

Note that, for each sEC, Oj(., 8) E COO(M). Put

(3.4) VJj = (~- s(1 - s))(Oj(s)), j = 1, ... , m.

Then VJj is a smooth function on ],,1 with compact support. In particular, it belongs to
L2(M) and, for Re(s) > 1, the generalized eigenfunction Ei(z, s) is given by

(3.5) , Ei(Z,S) = Oi(Z,S) - (~ - 8(1- S))-l(7j;i(.,S))

(cf. [C2]). To obtain the analytic continuation we have to introduce a cut-off Laplacian
~a' We denote by H 1 ( M) the firs t Sobolev space. For fEH 1 (M) we define its constant

term 1;0) in the j -th cusp as the zeroth Fourier coefficient of Ij = I1 Zj' i.e,

(3.6)
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Note that liO\y) exists for allmost all y E (aj, 00) and liO) belongs to H1
((aj, 00». Givcn

a > b, we introduce the following subspace of the Sobolev space

(3.7)

This is a closed subspace of H 1(M). Hs closure in L2 (M) will be denoted by Ha- Now
consider the quadratic form qa on H~ (M) which is given by

(3.8)

This quadratic form is closed and therefore it is represented by a self-adjoint operator .6 a

acting in the Hilbert space 'Ha. The operator ~a has a pure point spectrum consisting of
eigenvalues of finite multiplicity. In particular, the resolvent of ß a is a compact operator
in Ha. Now assume that a > b + 2. Then it follows from (3.3) and (3.4) that each
'l/;i, i = 1, _.. , m, belongs to 'Ha. Hence we can define the following functions

Since the resolvent of .6. a is compact, each F i ( Z, s) is a meromorphic function of sEC_ As
a function of z E M it is snl00th in the comple1uent of the curves {aj} X 51 C Zj C lvI, j =
1, .__ , m. Moreover the nonzero Fourier coefficients of Fi(z, s)jZj are slnooth on (aj,oo).

The zeroth Fourier coefficient Fi(o)(y, s) of F i(., s)jz· has the form
, 1

(3.10) F.(O) ( s) = { 8ij y
S

, ~f Y > aj
1,) y, A· '(S)y8 + B"(s)y1-" If a· < y < aI) l) , ) _ _ ,

where Aij(s) and B ij (s) are meromorphic functions of sEC.
Let Xa,j be the characteristic function of [a, 00) X 51 regarded as a submanifold of

Zj r'V [aj, 00) X SI and set

m

Gi(Z,s) = Fi(z,s) + LXa,j(z){Aij(S)YJ + B ij (s)yj-8 - Oijyj}
j=l

where Yj denotes the radial variable with respect to the cusp Zj. This is a meromorphic
function of sEC. Now set

and

G(z,s) = (Gl(~'S)).
Gm(z,s)

One can show that detA( s) t= O. Therefore A(S )-1 is a meromorphic function of sEC.
Furthermore, for Re(s) > 1, one has

(3.11) ~(Z, s) = A(s)-1 G(z, s)

12



where E(z, s) is defined by (1. 7). The right hand side provides the analytic continuation
of E(z, s). Moreover, the scattering luatrix is given by

(3.12) C(8) == A(S)-l 0 B(s), 8 E C.

We shall employ this description of the scattering matrix to show that </>( s) is of order
::;; 4. Let

0< J-Lo(a) ::;; f-tl(a) ::;; ...

be the eigenvalues of ~a. It follows from Theorem 5 in [C2] that zero is not an eigenvalue
of ~a. Moreover, by the estimations on pp. 96, 97 in [C2], there exists C > 0 such that

(3.13)

This implies that

(3.14)
00

L J-Lj(a)-q < 00

j=O

for ()' > 1. Given p E N, let

(
u2 UP)

e(u,p)==(l-u)exp u+ 2 + ... +-p ,

By (3.14), the infinite product

u E C.

00

F(z) == rr e(-=:'-,l)
j=O J-L j

converges uniformlyon compact subsets of C and p(z) is an entire function of order 1
whose zeros are J.lo, J.ll, ... (cf. pp. 18-19 in [Ba]). FOI~ sEC put

pes) == (8 - 1/2)P(s(1 - s».

Lenuua 3.15. Let Aij (s) and Bij (s), i, j == 1, ... , ffi, be the meromorphic fUllctions defilled
by (3.10). Then P(8)Aij (8) and P( s)Bij (8) are entire.

Proof. First recall that (~a - zId)-l is a meromorphic function of z E C with simple
poles at z == J-Lo, J.l], .... By (3.9) it follows that P(s(l- s»Fi(z, 8), i == 1, .", m, is an entire
function of 8. Hs constant term along Zj is also entire. In view of (3.10) this implies that
.P(s(l - 8»(Aij (s)yS + Bij(s)yl-") is entire for aj ::;; y ::;; a. Hence .P(s(1 - s»)Aij(s) and
P(s(1 - s»Bij(s) are holomorphic on C - {1/2} und they can have at most simple poles
at s == 1/2. Q.E.D.

We shall now estimate the order of growth of P( s)Aij (s) and P( s)Bij (s), i, j == 1, ... , 1n.

First we need an auxiliary lemlua. For each JEN, put

- rr zPj ( z) == e(~, 1).
k:l:j J-lk

13



Lemma 3.16. There exists a constant C > 0 such that

Proof. We have

To estimate 51 observe that Izl/J-lk 2: 1/2 and

I z I Izllog 1 - - ::; -.
J.lk Il'k

Hence
Z Izl 2

logJe(-, 1)1 ~ 4-2 .
Ilk Ilk

Together with (3.14) we obtain

51 ~ 41z1 2 L J--l;;2 = Cl lzl 2
.

1l1l.$21 zl

Now consider 52. In this case Izl/ j.lk < 1/2. Using 2.6.3 in [Bo], we get

and, by (3.14),

52 ~ 21z1 2 L JL;2 = C21z1 2
•

21z1<1l1:

Q.E.D.

Lemnla 3.17. Let Ra(s) = (ß a - s(l - S))-l and let 'l/Ji(S) be defined by (3.4), where
sEC. Then P(s)Ra(S)(VJi(S)) is entire and there exist constants Ch C2 > 0 such that ,
for 1 E L 2 (M), sEC and i=l, ... ,ill,

IP(s)II(Ra(s)('l/Ji(s)), 1)1 ~ Cl exp(C2 IsI4
) 11 1 11·

Proof. Let Ta,j E D'(M),j = 1, ... ,m, be defined by (Ta,jjg) = gJO\a) where gJO) is
given by (3.6). If we extend Theorem 1 in [C2] to the case of several cusps, it follows that
the domain of ß a consists of all f in H~(M) for which there exist Cj E C,j = 1, ... ,1'11.,

such that ßI - L:i=l CjTa,j is contained in L2(M). Moreover, if they exist the constants
C j are uniquely determined and ßaf = ~I - Lj'~l CjTa,j where ßI is defined in the
distributional sense. Using the definition of 'l/Ji (s) it follows immediately that 'l/Ji (s) belongs

14



to the domain of ß a and D.a'l/;i(S) = b,.'l/;i(S). Now let {<Pj}jEN be an orthonormal basis of
eigenfunctions of ß a corresponding to the eigenvalues J.1.o ::; !-J.l ::; .... Using the observation
above, we get

(3.18)

Let f E L2 (M). Then by (3.18)

Note that by (3.14) the series is absolutely convergent. By (3.14) and Lemma 3.16, it
follows that the right hand side, multiplied by P(s) , is entire and can be estilnated by

for certain constants Cl, C2 > O. Using the definition of 'l/Ji (s), one can estimate 11 6.'l/Ji (s) 11

by exp(Clsl) for some C > O.Q.E.D.

Let f E Cü(M) with supp f contained in (aj, a) X SI C Zj. Using (3.9) and Lemma
3.17, it follows that there exist constants C3 , C4 > 0 (which depend on a) such that

(3.19)

If we assunle that f depends only on the radial variable y, i.e., f E COO(R) with supp f
contained in (aj,a) then, by (3.10), we obtain

Now we make a special choice for f. Let gE COO(R) with suppg C (aj, a) and set

Then the second integral involving f vanishes and the first one equals (28 - 1) IR g(y)dy.
Assurne that 9 ;::: 0, 9 f. O. Together with (3.19) we obtain

for some constants C, c > 0 and i, j = 1, ... , m. In the same way we get

IP(s)Bij(s)l::; Cexp(clsI 4
), 8 E C,i,j = 1, ... ,1n.

Combining our results, we have proved that P(s)mdet A(s) and p(s)mdet B(s) are entire
functions of order::; 4 and ,by (3.12), we get

15



Theorem3.20. Let fjJ( s) be the detenninant oE the scattering matrix associated to tlle
Laplacian on an admissible surface ],,1. There exist entire functions FI (s) and F2 (s) of
order ~ 4 such that .

A..( ) = F1(s)
'P S F2(s)'

To continue the investigation of the scattering niatrix we need the following

Lemlna 3.21. There exists ql > 1 and 0"0 > 1 sucl] tbat

for Re(s) ;::: 00.

Proof. Let Re(s) > 1. By (3.3) we have Bi(z, s) = yf for z = (Yi, x) E Zi, Yi > b+ 1.
Using (1.4) and (3.5), it follows that the zeroth Fourier coefficient of (~ - s(l- S) )-1 ('l/Ji (S))
on Zj equals

for Yj > b+ 1. Now observe that

(3.22)
- I 1

11 (~ - s(l - s))- 11= dist(s(l _ s), Spec(~))

(cf. Ch.V,3.8 in [I(]). But Spec(~) C [0,00). This irnplies

(3.23) dist(s(l - s), Spec(~)) ~ Isl

for Re(s) ~ 2. Put P = b+ 1. A simple computation shows that

(3.24) 11 'l/Ji(S) Il~ C [sI pRe(.'l), i = 1, ... , m,

for Re(s) ;::: 2 and some constant C > O. Using the description of the constant term of
(~ - s(l - S))-l(?jJi(S)) given above and (3.22)-(3.24) we obtain

(3.25)

for Re(s) ~ 2. Since p > 1, (3.25) implies

ICt')'(s)1 <_ Cl p2Re(.'l), .. 1'l.,J = , ... ,m,

for Re(s) ~ 2. This implies

Idet C(s)J ~ C2 p2mRe(.'ll,' Re(s) ~ 2.
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Put ql = p4m and CTO = log 2 C2 (2m log p )-1. Then our lemma follows with these constants.
Q.E.D.

Now we can proceed in essentially the same way as on pp. 655 - 656 in [SeI] and
factorize <p(s ) . At some place the lnethod of Selberg has to be modified, because (8.3) in
[SeI] is not available in our case. For the convenience of the reader we indude details.

Let CT), ••. ,CTh E (1/2,1] be the poles of <p(s) in Re(s) ~ 1/2. Put

(3.26)
h

II s + 1/2 - (1i

~(s)=q~" / 4>(8+1/2).s - 1 2 + (1'
i=l t

Then ~(8) has the following properties:

1 )~(s)~(-s)=l,SEC.

2 ) 1~(8)1 = 1 far Re(s) = O.

3 ) ~(8) is holomorphic in the half-plane Re(s) > 0 and satisfies l~(s)1 ::; 1 for Re(s) ~ o.

1) and 2) follow from (3.1). The first part of 3) is deal' from the definition of ~(s).
To prove the second part consider any strip Sq = {s E Cl 0 .:s; Re(s) ::; er}, er > O. By
Lemma 8.8 in [Mü], <p(s) is bounded in the domain 1/2 ::; Re(s) ::; (1 +1/2, IIm(8)I ~ 1 and
therefore, ~(s) is bounded in Sq. If (1 is sufficiently la:rge it follows frolll Lemma 3.21 that
1~(s)1 < 1 on the verticalline Re(s) = (1. Finally, by (3.1), ~(s) satisfies ~(s) = ~(s), sEC.
Combining these observations with 2) and a Phragmen - Lindelöf type theoreln, we obtain
the desired result.

Next consider the series

(3.27)

where 1] runs over all zeros, counted with the order, of ~(s) in the half-plane Re(s) > O.
Then we have

Lenlnla 3.28. Tbe series (3.27) C011verges.

Proof. By 3), ~(8) is analytic in the half-plane Re(s) > 0 and continuous and bounded
in Re(s) ~ O. The convergence follows from Carlenlan's theoren1 [T, section 3.71]. Q.E.D.

Corollary 3.29. Let p run over all poles, counted with the order, of </>(s) in Re( s) < 1/2.
Then

" 1 - 2Re(p)
Lt Ip - 1/2]2 < 00.

p

Praof. This follows from Lemlna 3.28, (3.26) and (3.1). Q.E.D.
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Now observe that, by Theorem 3.20,

where H I (s) and H2 (s) are entire functions of order ~ 4. Let 1] be a zero of ~(s). Then it
follows from (3.1) that 17 is a zero and -7], -i] are poles of ~(8). By Hadamard's factorization
theorem we get

(3.30)

where 1] runs over half the zeros of ~(s) in Re(s) > 0 and we have chosen one representative
for each pair {77, 17} of zeros. Moreover P(s) is a polynomial in S of degree ~ 4 and e( z, 4)
is the Weierstrass elementary factor defined above.

Now consider the expression

111 1
[k(77) = k + -k - -()k - -(-)k

1] 7] -7] -1]

for 1 ~ k ::; 4,7] E C. If k is even then 1k = O. For k = 1 we have 11 (1]) = 4Re(17)/1171 2 and
it follows from Lemma 3.28 that

(3.31 )

It remains to investigate [3. Put 7] = 17]1 eiß. Then

4
[3(77) = 1771 3 cos(319).

Now Icos(3t9)1 ::; 41 cos t91· Hence II3 ( 1])1 ::; 41 111- 21[) (77 )1· Together with (3.31) this implies

(3.32)

In view of (3.31) and (3.32) the exponential factors in (3.30) can be cOlnbined to give

~(s) = eQ(") n (s - 7]) (8 - i])
(S+77)(S+ij)

'/

for some polynomial Q(s) of degrce ::; 4. The infinite product can be rewritten as

n(l - 4s_R~e(77~)~)
(s+1])(s+ij)

'1

18



and by Lemma 3.28, this product is absolutely convergent.
Now consider Q(s). The equatian e(iA)e( -iA) = 1, A E R, implies Q(iA) +Q(-iA) =

27ril for same 1E Z. Thus
Q(s) = a3s3 +als +'7ril.

By (3.1),e(s) = e(s). Hence aI,a2 E R. Assume that a3 t= O. If a3 > 0 then e(a) '"
exp(a303) for (j E R,O" -Jo 00. This contradicts le(s)l :::; 1 in Re(s) ~ O. Next assume that
a3 < O. Then we can choose s in the half-plane Re(s) > 0 so that Re( S3) < 0 and Re( 8

3
)

tends to -00 as s -Jo 00. Again we get le(s)1 -Jo 00. Thus Q(s) = al S +7ril. Repeating this
argument it follows that al :::; O. Put

(3.33)

where ql is the constant from Lemma 3.21. Combining our results and using the definition
(3.26) of e(s) we obtain

Theorem 3.34. Let p ron over all poles of </>(s), counted with tbe order, and let q be
given by (3.33). Then

fjJ(s) = fjJ(1/2) qS-l/2 rr s -1 + p.
s-p

p

This allows us to compute the logarithlnic derivative of </>(s).

Corollary 3.35. Let the notation be the same as in Theorem 3.34. Then

(3.36) </>'. " 2Re(p)-1
~(1/2+ ZA) = log q + Lt (1/2 _ Re(p»)2 +(..\ _ Im(p»2' ..\ E R.

p

The convergence of the series on the right hand side follows from Corollary 3.29.
Indeed, let ( = 1/2 + i..\. Then

" 1 - 2Re(p) ~ 1 - 2Re(p)
LJ I 12 ::; 4 L.,.. I 12

Ipl>21<1 p - ( p p

which is convergent by Corollary 3.29, because only finitely many poles occur in Re(s) >
1/2. The same argument gives

Lemma 3.37. The series on tbe rigbt hand side of (3.36) is uniformly convergent for ..\
in any finite interval [-T, T].
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4.0n the distribution of poles of the
scattering matrix

We continue in this section with the investigation of the poles of 4>( s). To begin with
we shall estimate the winding number of 4>(1/2 + i..\):

Proposition 4.1. There exists a constant C > 0 such that

i: ~ (1/2 + iA)dA :s; C T
2

for a11 T 2: o.
Proof. Let a > max{ a], ... , a m } and set

By (1.6), Ca(s) is unitary for Re(s) = 1/2 and hence, can be diagonalized. Moreover,
Ca(s) is holomorphic in a neighborhood of Re(s) = 1/2. Therefore we can apply Rel
lich's theorem [Bau,p.142] which implies that therc exist real-valued real analytic functions
ßl(..\)' ·.. ,ßm(..\) of ..\ ERsuch that eißl(.~), ... , eißmP.) are the eigenvalues of Ca(1/2 + i..\).
Each ßj(..\) is ooly determined up to 27fZ. Furthennore, the functional equation (1.6)
implies Ca (1/2)2 = I d. Hence ßj(O) = 7rnj, nj E Z, j = 1, ... , m. Put

j = l, ... ,m.

Then we can choose either ßj = ßj or ßj = ßj + 7r and we get

jT d m ... ...

(4.2) -T ds log det Ca (1/2 + iA)dA :s; 2f; Ißj(T)1 :s; 2m ffi,;u Ißj(T)I·

Let nj(T) be the number of points W E [0, T] such that eißj(w) = -1, i.e., ßj(w) = (2k+1)7i"
for same k E Z. Obviously we have

(4.3)

Let n(T) be the number of w E [0, T] such that Ca (1/2 + iw) has at least one eigenvalue
equal to -1. Then nj(T) ::; n(T), j = 1, ... , m, and by (4.2) and (4.3), we get

(4.4) jT d
-log det Ca (1/2 + i..\) d..\ :::; 87i"n~ n(T).

-T ds

Thus it is sufficient to estimate n(T). For hypcrbolic surfaces Lax and Phillips proved in
[LP,pp. 205-216] that n(T) is bounded by the number of eigenvalues of .6a which are less
than 1/4 + T 2

• Their method extends \Vithout any difficulty to Dur case.
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Assurne that (bI, ... , bm ) is an eigenvector of Ca (1/2+iw) with eigenvalue -1 for some
w E [0, Tl. Then

(4.5)

Set

(4.6)

m

bja1
/

2+iw +L bkCkj(1/2 + iw)a1
/

2
-

iw = O.
k=1

m

<p(z) = L bjEj(z, 1/2 + iw).
j=1

Then <P is a Cco function on Al and , by (1.3), it satisfies

(4.7)

Moreover, by (1.4), the constant ternl <P}O) of <P on the j-th cusp is given by

(4.8)
m

(0)( ) b 1/2+iw "b C (/2 ') 1/2-iw<Pj Yj = jYj +~ k kj1 +tW Yj .

k=l

This shows that r.p 1= O. Now observe that in view of (4.5), the constant terms satisfy

(4.9) <p;O)(a) = 0, j = 1, ... , m.

Let Xa,j be the characteristic function of [a, 00) X SI regarded as a submanifold of Zj ~
[aj,oo) x SI. Set

(4.10)
m

" (0)<Pa = <p - ~ Xa,j'f'j .

j=1

Then <Pa is smooth except for the O-th Fourier coefficients which, by (4.9), are continous
and smooth for Yj =1= a, j = 1, ... , m. Hence <Pa belongs to the Sobolev space H l (M). Using
(4.7), (4.10) and the description of the domain of .6. a (cf. proof of Lemma 3.17), a dircct
computation shows that <Pa belongs to the donlain of .6.a and

Let

where /Lo (a) ~ fll (a) :::; ... are the eigenvalues of .6.a' Then our discussion abovc in1plies
that

(4.11 )
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Combining (4.4), (4.11) and (3.13) gives the desired estimate. Q.E.D.

Now we can proceed and estimate the number of poles of 4>(s) in the half-plane Re(s) <
1/2. If we use Corollary 3.35 combined with Proposition 4.1, it follows that

(4.12) j 2T L 1 - 2Re(p) d>' < Cl T 2

-2T (1/2 - Re(p))2 + (A - Im(p))2 -
P

for T ~ 1. Here p runs over all poles of 4>( s) in Re( s) < 1/2, counted with the order of the
poles. Since all terms on the left hand side are positive, we obtain

(4.13) L j2T 1 - 2Re(p) d)" < C T 2

-2T (1/2 - Re(p))2 + (A - Im(p))2 - 1
Ipl<T

(4.16).

for T ~ 1. Since IRe(p)I < T and IIm(p)I < T, each of the integrals occurring in (4.13) is
bounded from below by J~l (1 + )..2)-ld)". Thus

LI::; C2 T 2
, T ~ 1.

lpl<T

This proves

Theoreln 4.14. Let Np(T) be the !lumber of poles p of 1;(s) satisfying [pi< T. There
exists a constant C > 0 such that

An immediate consequence 1S the following

Corollary 4.15. For Re(s) > 2,

where p runs over the poles of 4>( s), counted with the order of tbe poles.

Next we shall relate Np(T) to the winding nUlnber of 1;. For a hyperbolic surface of
finite area Selberg has shown that

1 l T
4>' 1-- -(1/2 + iA)dA = -Np(T) + O(T)

27r 0 4> 2

Actually, Selberg uses a slightly different counting function Np(T) which is the nUlnber
of poles of 4>(s) in 0 ::; Im( s) ::; T. However it is not difficult to show that Np(T) =
2Np(T) +O(T) (cf. (0.15) in (Se2J). Combined with (2.8) this implies

(4.17) N(T) + ~N (T) = Area(M)T2 - m T logT +O(T) as T --+ 00.
2 P 47r 7r
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We shall establish a similax but weaker result for an arbitrary adlnissible surface M. By
Corollary 3.35 and Lemma 3.37 we have

(4.18)
1 jT <P'. 1 jT 1 - 2ß

- - -:;:(1/2 + zA)dA = L - (ß /)2 ( A)2 dA + O(T)
41T -T If/ . 47f -T - 1 2 + f-

P=ß+1J

where p runs over all poles of <p(s). Assurne that ß < 1/2. Then

j T 1 - 2ß {( T - f ) ( T +, )}
-T (ß - 1/2)2 +(.." - ;\)2 dA = 2 aretan 1/2 - ß + aretan 1/2 - ß .

Now we use that

x + y {Oaretan x + aretan y = aretan +'
1 - xy 7f,

Then we get

if xy < 1;
if xy > 1, x > O.

(4.20)

j T 1-2ß {(1-2ß)T( T2 )-1}
-T (ß - 1/2)2 +(,- A)2 dA = 2 aretan Jp -1/212 1- Ip - 1/212 .

{
0, if IP - 1/21 > T;

+ 21T, if lp - 1/21 < T.

Combined with (4.18) this implies

1 jT <P'
(4.19) - 41T -T --;;;(1/2 + iA) dA =

1 1 { 1 - 2Re(p) ( T 2
) -1 }= -Np(T) + - L aretan I / 12 T 1 - I / 12 + O(T).2 21T p P - 1 2 p - 1 2

Re(p)< 1/2

We split the sum over p as follows

L + L
IT-lp-l/211>.JT IT-lp-l/211<..;T

To estimate the first surn we relnark that Iaretanxl ~ lxI. Furthermore, if IT-lp-1/211 >
vT then

I
T2 1-1

1 - Ip _ 1/21 2 ::; 2vT.
This irnplies that the first surn can be estimated by

2 L 1 - 2Re(p) T 3 / 2

Re(p}<1/2 Ip - 1/21
2

23



By Corollary 3.29, the series over p converges and therefore, the firs t sum in (4.20) IS

o(T3 /2 ). Since Iarctan x I~ 7r' /2 the second sum can be estimated by

Lemma 4.21. We have

Proof. By Theorem 4.14 we know that

°< Np(T ± VT) < c
- T2 -, T 2:: 0,

for some constant C > 0. Let a 2:: 0 be any point of accumulation of Np(T + VT) T- 2 .

Then a is also a point of accumulation of Np(T ~ VT) T- 2 and vice versa. Hence

Q.E.D.

This lemma implies that the second sum is o(T2
). Together with (4.19) we obtain

(4.22)
1 jT cP' 1-- 'T(1/2 + iA) dA = -Np(T) + o(T2

).
47r' -T lfJ 2

Remark. For a hyperbolie surface we know from [Se2,(O.15)] that the remainder term
is actually O(T). We conjecture that this is true for an arbitrary admissible surface.

If we combine Theorem 2.7 and (4.22), we get

Theorenl 4.23. As T ----7 00,

N(T) + -21 Np(T) "'"' Area(M) T 2 .
47r'

This is another analogue of Weyl's fonnula for an admissible surface. In contrast to
Theorem 2.7 we are now dealing with a discrete set of spectral parameters. Theorem 4.23
also suggests that the right set of spectral parameters for an admissible surface is the union
of the eigenvalues and the set of poles of cP(s). On the spectral side this set should replace
the eigenvalues in the case of a compact surface. We sha11 return to this point in the next
section.
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In view of (4.17) we expect that the remainder term in the asymptotic formula of The
orem 4.23 is O(T log T). We also remark that in general it is very difficult to study N(T)
and Np(T) separately. However Colin cle Verdiere [C2J has shown that a generic c01l1pactly
supported conformal deformation of the n1etric will destroy all embedded eigenvalues anel
convert them into poles of 4>( s). In this case there are only finitely many eigenvalues which
are all contained in [0,1/4). Hence we get

Corollary 4.24. For a generic metric on M,

as T -t 00.

On the other hand, if M = r(N)\H where reN) denotes the principal congruence
subgroup of level N of SL(2, Z), then the detenninant 4>(s) of the scattering lnatrix can
be computed explicitely [Hx] and it turns out that, up to a Gamma factor, 4J(s) is the
product of certain Dirichlet L-series. Standard results from analytic nUlnber theory [P]
imply then

1 jT 4>'-- -:J:(1/2+i..\)d..\=O(T logT)
47r -T 'Y

and, by (4.16) and (4.1 7), we get

(4.25)

(4.26)

Np(T) = O(T log T)

. N(T) = Area(M) T 2 + O(T logT).
41T

In view of the results of Colin de Verdiere [C2] and Phillips-Sarnak [PS2] one rnay conjec
ture that (4.25) is the minimal growth for an aclmissible surface with X(M) < 0 and that
in this case N(T) has the maximal possible growth.

For further results about the distribution of poles of <p(s) in the hyperbolic case we

refer the reader to [Se2J.

Another important feature of the scattering matrix for a hyperbolic sUlface is property
2) mentioned at the begining of section 3. vVe do not know if this continues to hold for an
arbitrary admissible surface.
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5.The resonance set and a trace formula

Let 9 E C{f(R+) and let h = g. Für a hyperbülic surface M = r\H, Lax and Phillips
prüved in sectiün 9 üf [LPJ the füllüwing mini-trace fürmula

(5.1) 1 100 1>' n-- h(y)-(1/2 + iA) dA = L h(i(1/2 - p)) - L h(i(1/2 - Gj)).
47r -00 <P . 1

P J=

Here P runs over the poles of 1>(s) in Re(s) < 1/2, GI, ... , G n E (1/2, 1] are the poles üf
1J(s) in Re(s) > 1/2 and each pole is counted according to its order. For (5.1) to hold it
is important that the support üf 9 is contained in (0,00). We wish to extend (5.1) to all
admissible surfaces and we want a formula whieh works für functions like h(A) = (a2+A2)- 3

01' h(A) = exp(_(a2 + ,,\2)t), a > O. Our approach to this problem is based on Corollary
3.35.

Let 9 E C{f(R) and assume that 9 is even. Let h = 9 and T > O. From (3.36) and
Lemma 3.37 it follows that

(5.2)
1

T
~' 1T

-T h(A)-;j;(1/2 + iA) d"\ = logq -T h(A) dA

1
T 2ß-1

+ L. _ h(A) (ß _ 1/2)2 + (A _ ,)2 dA.
P=ß+1"f T

If we integrate by parts, the left hand side equals

(5.3) h(T) I: ~ (1/2 + iA) dA - I: h'(A) l A

~ (1/2 + iu)du dA,

Since h is rapidly decreasing it follows from Proposition 4.1 that the limit as T -) 00 of
(5.3) exists and therefore

100 h(A) 1J' (1/2 + iA) dA = Ern 1T

h(A) ~ (1/2 + iA) dA
-00 <p T-oo -T V'

is well-defined.
To compute the right hand side , we consider the individual integrals

(5.4) 100 2ß-1
-00 h(A) (ß - 1/2)2 + CA _ ,)2 dA.

We would like to shift the contour of integration and apply the residue theorem to compute
(5.4). However this works only if the support of 9 is contained in (0,00). We proceed as
follows: Given 0 < c < 1/2 let x~ E Coo(R+) be such that 0 ~ x~ ~ 1 , X~(y) = 1 for
2e < y < (2e)-1 and X~(y) = 0 für y < e and y > l/e.
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Set

h.(z) = LX> x.(y )g(y)eiYz dy.

Then, for Im(z) ~ 0,

(5.5)

uniformly in the half-plane Im(z) ~ O. Furthermore,

(5.6) 100 2ß - 1
-00(h~(A) + h~( -A)) (ß _ 1/2)2 + (A _ ,)2 dA

converges to (5.4) as c ---+ O. Now observe that (5.6) can be written as

(5.7) 1 l . .) 1 - 2Re(p)-;- (h~(z(1/2-s))+h~(-z(1/2-s) ()( _) ds.
z Re(")=1/2 s - P s - 1 + p

(5.8)

(5.9)

Assume that Re( p) < 1/2 and let Cf > Re(1 - p). By the residue theorem, (5. 7) equals

11 . 1 - 2Re(p)+-:- h~(z(1/2 - s)) ( ) ( _) ds
Z Re(.'l)=-u S - P s - 1 + p

11 . 1 - 2Re(p)+-:- h~(-Z(1/2-s))()( _) ds.
Z Re(,,)=u s - P s - 1 + p

From the defini ton of h~ i t follows that 1 for Im(z) > 01

This shows that the itegrals in (5.8) can be made arbitrarily small as Cf ~ 00 and therefore,
they are identically zero. Thus (5.6) equals

Since Im( i(1/2 - p)) = 1/2 - Re(p) > 0, it follows from (5.5) that the limit as c ~ 0 exists
and (5.4) equals

-211"100

g(y)e(p-l!2)Ydy - 211"100

g(y)e(P-l!2)Ydy.

The case Re(p) > 1/2 can be treated in the same way. Any such pole is real and (5.4)
equals

(5.9')
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Note that there are only finitely many poles in Re(.5) > 1/2.

Next we shall investigate the convergence of the series which we obtain by summing
(5.9) over all poles p. If we integrate by parts and employ the fact that g'(O) = 0, it follows
that (5.9) can be estimated by

1 - 2Re(p) C
27r Ip - 1/212 + Ip - 1/21 3

where the constant C is independent of p. Hence, by Corollary 3.29 and Corollary 4.15,
the sum of (5.9) over all p, Re(p) < 1/2, is absolutely convergellt and therefore, the series

(5.10) 100 2ß-1
L. _ h(>") (ß -1/2)2 + (>.. -,)2 d>"

P=ß+li 00

is absolutely convergent.

Dur next goal is to show that the limit as T ~ 00 of the series on the right hand side
of (5.2) equals (5.10). For this purpose we observe that the series (5.10) remains absolutely
eonvergent if we replace h by (1 + >..2)-3. This function is not of the form g, 9 E C~(R),

but the method used above can be easily extended to cover this case too. Let R> O. Then

1
T 2ß-}

L T h(>..) (ß _ 1/2)2 + (>.. _ ,)2 d>"
Ipl>R -
p=~+i-y

100 12ß - 11
::; C L (1 + A

2
)-3 (ß _ 1/2)2 + (A _ -y)2 dA

Ipl>n -00
p:=oP+h

for all T 2": O. Ey the remark above, for every c > 0, we ean ehoose Ra such that the right
hand side is < c for R 2": Ra. This gives the desired result. Set

h+(z) =1= g(y)eZYdy, z E C.

Combining our results we have established the following equality

(5.11 ) 1 100
4>' log q- - h(,.\)-(1/2 + i"\) d,.\ = -- g(O)

47r _00 4> 47r

+~ ;;={h+(p - 1/2) + h+(p - 1/2)} - t h+(1/2 - Gj)

where p runs over all poles of 4>(s) in Re(.5) < 1/2, counted wi th the order of the pole,
and a), ... , an are the poles of 4>(s) in Re( s) > 1/2, also counted wi th the order of thc
corresponding pole. This agrees with the formula of Lax and Phillips if the support of 9

is eontained in (0,00). In this case the series L: p h+(p - 1/2) is absolutely convergent.
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It is not difficult to extend (5.11) to a larger class of functions, say to all even 9
in the Schwartz space S(R). Let g E S(R) be even. We choose X E COO(R) satifying
o :S X :S 1, X(Y) = 1 for lyl < 1/2 and x(y) = 0 for lyl > 1. For € > 0 we define Xe- by
X~(y) = X(c:y). Then (5.11) can be applied to g~ = X~g and we have to investigate the
behaviour of (5.11) as € ~ O. Let h = 9 and, für c > 0, let he- = g~. If we integrate by
parts and use Proposition 4.1, it follows that

(5.12) 100 4>' 100

4>'Ern he-(,\)-(1/2 + i'\) d'\ = h('\)-:z(1/2 + i,\) d'\.
~-o -00 4> -00 lf'

Now consider the right hand side of (5.11). Set

h~(z) =100

x.(y)g(y)eZYdy, z E c,

and

h+(z) = 100

g(y)e'Ydy, Re(z)::; O.

Assurne that Re(z) ::; O. Integrating by parts it follows that there exists a constant C > 0
such that

(5.13)

for all c > 0 and

(5.14)

This implies

I
h~ ( ) + g(O) I < S!-
+ z z - Iz13'

which is finite by Corollary 3.29 and Corollary 4.15. The constants Cl and O2 are inde
pendent of c. From (5.14) follows in the SaIne way that

I:(h+(p - 1/2) + h+(p - 1/2»)
p

is absolutely convergent and it is the limit as c -+ 0 of

I:(h+(p - 1/2) +h+(p - 1/2)).
p

Finally we observe that by (3.1), s t--+ 1 - s sets up a one-to-oue correspondence between
the poles of 4>(s) in Re(s) > 1/2 and the zeros of 4>(s) in Re(s) < 1/2. Let p be a pole 01' a
zero of 4>( s). Then we denote by n(p) the order of the pole p 01' the negative of the order
of the zero p. With this notation we can summarize our results as follows:
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Theorem 5.15. Let 9 E S(R) be even. Set h = 9 and h+(z) = Jo
oo

g(y)ezYdy, Re(z) ::; O.
Tben

(5.16)

1 100
4>' log q-- h()")-(1/2 + i)") ).. =-- g(O)

41r _ 00 4> 41r
1+ 2L n(p){ h+(p - 1/2) + h+(p - 1/2)}

p

where p runs over a1l poles and zeros oE if;(s) in Re( s) < 1/2.

We apply Theorem 5.15 to the funetion g(y) = (47rt)-~ exp(_y2 /4t). Aeeording to
[BI], p.146, we have

where Erle denotes the complementary error function. Thus, by (5.16)

(5.17)
1 100

A..' I -t/4__ e-(~+)?)t'!:..-(1/2+iA)dA=- ogq ~e_
41r -00 cP (47r)3/2 ..fi

+ ~ L n(p){e-tp(l-p) Erfc(Vi (1/2 - p» + e-tp(I-PlErfc(Vi (1 - ji»}.
p

Now let Aj be an eigenvalue of ~. As usually, write Aj = S j (1 - S j) with S j E C, Re( S j) 2::
1/2 and lm(sj) 2:: O. First assume that Aj 2:: 1/4. Then Re(sj) = 1/2 and it follows that

(5.18) e->'; t = ~ e- s ; (I-s;)t Erfc(Vi (1/2 - Sj» + ~e-Si (I-s;)t Erfc(Vi (1/2 - Sj ».

On the other hand, if Aj < 1/4 then Im(sj) = 0 and Sj E (1/2,1]. In this case we get

(5.19)

This allows us to combine the contribution of the eigenvalues and resonances to the trace
formula (2.2) in a single formula. For this purpose we assign to each point 1) in C a certain
multiplieity m(7]) as follows:

1 ) If Re(1]) 2:: 1/2, 1] f 1/2, we define 1n(1}) to be the dimension of the eigenspace of D.
for the eigenvalue 1J(1 - 1J)'

2 ) If Re(1]) < 1/2 then m (1]) is the dimension of the eigenspaee for the eigenvalue
1](1 -1J) plus the order of the pole 01' the negative of the order of the zero of if;(s) at 1J.

3 ) m(1/2) equals (Tr(C(1/2)) +m )/2, where m is the number of cusps of M, plus twice
the dimension of the eigenspaee with eigellvalue 1/4.

4 ) For all other points 1] in C which are not among 1) - 3) we set m(17) = O.
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Definition 5.20. The resonance set t7(M) is the set of all 7] in C such that m(7]) > O.

Remarks.
1 ) Note that , by (1.6) , C(1/2)2 = Id. Therefore the eigenvalues of C(1/2) are ±1.

Hence (Tr(C(1/2)) + m)/2 equals the number of eigenvalues +1 of C(I/2).
2 ) For a hyperbolic surface M = r\H the resonance set was first introduced by

R.Phillips and P.Sarnak in [PSI]. They actually use a slightly different definition called
the ~ingular set t7(r). It is related to our definition by 't] E t7( M) ~ i(1 /2 - 7]) E (J(r).

Assumption. To sirnplify notation we shall use the following convention fron1 now
on. Whenever we surn over t7(M) or sorne subset of t7(M) we count each point 1] in this
subset according to its rnultiplicity 7n( 't]).

If we ernploy (2.3) we obtain the following asymptoytic expansion as t ---+ 0:

(5.22) ~ L {e-t~(I-~) Erfc(Vi (1/2 - 7/» + e-tij(l-ij) Erfc(Vi (1/2 - ry»}
11Eo-(M)

= Area(M) + m logt + (31 m + logQ)_1_ + X(M) + 1n +O(vt).
47rt 2 vi47rt 2 47r vi47rt 6 4

This implies

Theorem 5.23. Let M be an admissible surface. Tbe resonance set t7(M) detennines
Area(M) , tbe number m of CUSPS of A1 and X(M). In particular, tbe conformal type
(h, m) of M is determined by tlle resonance set.

This is the analogue of a known result for cornpact surfaces. Another property satisfied
by the resonance set is the following asymptotic fonnula

(5.24)

which is an immediate consequence of Theorem 4.23. This is our final version of vVeyl's
law for admissible surfaces. For later use we note that (5.24) implies

Proposition 5.25. For Re( s) > 2, the sel'ies

is absolutely convergent.

For hyperbolic surfaces Phillips and Sarnak showed in [PSI] that the resonance set
can be identified with the spectrurn of the generator of a cut-off wave equation. This is
very useful, because one lnay ernploy standard techniques of perturbation theory to study
the resonance set. The approach used by Phillips and Sarnak to prove the result above is
based on Lax-Phillips scattering theory applied to the hyperbolic wave equation [LP]. Thc
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assumption that the surface is hyperbolie is not essential für this theory to work, because
at most places one uses only the strueture of the eusps. An important tool to establish
the main result of [PSI] is the mini-trace fonnula (5.1). By Theoreln 5.15, this formula is
available for all admissible surfaces. Hence the main result of [PSI] extends to admissible
surfaces.

To make the statement precise we have to introduee some notation. Set

L=-~+iI.

The hyperbolic wave equation is then

with initial values I = {I}, J2}

u(z,O)=I)(z) and
a
Bi u(z, 0) = J2(Z).

Let HG be the completion of Cgo(M) x Cgo(M) with respeet to the modified energy norm
G (cf. seetion 5 of [LP]). One may rewrite the wave equation in the form

~f=AJ
&t

where the infinitesimal generator A is given by

defined as the closure of A , restrieted to C~(M) x C~(M). The operator A generates a
group of bounded operators U(t) in He.

The incolning subspace D_ and the outgoing subspace D+ of Ha are defined in the
same way as in [LP]' [PSI]. Let H be the orthogonal complement of D_ EB D+ in He and
let P denote the G-orthogonal projection of Ha onto H. Let a > lnax{ a), ... , Gm}. Then
P is given by

P J = f except for the zero Fourier coefficients in each eusp

(Pf);O)(y) = {(fl);O)(a) (y/a)1/2,O} for y > a in the eusp Zj.

Set

(5.26) Z (t) = P U(t) P, t ~ o.

As in (LP], Theorem 2.7, it can be shown that Z(t) is a strongly eontinuous selnigroup of
operators in H. Let B denote the infinitesimal generator of Z(t). Then B has pure point
speetrum of finite multiplicity and one has
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Theorem 5.27. Let M be an admissible surface and B tbe generator oftbe corresponding
semigroup (5.26). Tben

a(lvI) = Spec(B + ~I)

and, for eacb 1] E a(M), m(7]) equals tbe dilnension of the generalized eigenspace of B with
eigenvalue TI - 1/2.

Thus in place of a(M) we mayasweH study the operator B. For exarnple, let gu, u E
(-e, e), be areal analytic family of metries on an adrnissible surface M and assulne that
gu = go, u E (-e, e), outside a fixed compact subset of M. Let Eu be the infinitesin1al
generator of the cut-off wave equation on (M, gu)' In the salne way as in [PSI] one cau
prove

Theorem 5.28. The resolvent (B u - ),,1)-1 is real analytic in u on tbe resolvent set oE
Ba for lul sufficiently small.

This theorem tells us how the resonance set a(ll/I, gu) varies with respect to u.

At the end of this section we consider the case of a hyperbolic surface M = f\H.
Then (5.16) allows us to rewrite the Selberg trace fonnula in a way which resembles the
trace formula for a compact hyperbolic surface.

As above let Ai be an eigenvalue of .6. and assurne that Ai = si(l - si)' If Si =
! + iri' ri E R, then it follows from the definition of hand h+ that

(5.29)

and, if Si E (1/2, 1J and Si = ~ + iri' we have

(5.30)

Let a(f) denote the resonance set in the present case. Then the Selberg trace fonnula
[H1J, [H3] cau be rewritten as

Theorem 5.31. Let 9 E Ge(R) be even and set h = g, h+(z) = Jo
oo

g(y)ezYdy, z E C.
Tben

1 '"' Area(M) 100

- Lt (h+(1] - 1/2) + h+(il - 1/2)) = h(A)A tanh(7rA) dA
2 47r

'7Eu(r) -00

(5.32) ~'"' logN('"'() m 100 r' .+ LJ LJ N( )k/2 _ N( )-k/2 g(k logN('"'()) - 27r h(A) r(l + ~A) dA
k=l {,.tl I 1 -00

- 9 (0) (In log 2 + l~:q )

where {I} runs over a11 primitive hyperbolic conjugacy c1asses in r and N(f) is the norm
of tbe hyperbolic element f (cf. [H1J).
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Remark. In our case r has no fixed points. If we consider discrete subgroups of
SL(2, R) which are not torsion free we have to add the usual fixed point contribution to
the right hand side of (5.32).

Apart from the inessentiallast two tern1S the right hand side of (5.32) agrees with the
right hand side of the Selberg trace formula for a compact quotient. .
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6.The zeta function and the determinant
of the Laplacian

The determinant of the Laplacian on a compact surface is a very useful functional in
spectral geometry (cf. [0 P 81], [0P 82]). We wish to have a similar fune tional available for
admissible surfaces. Since for a eompaet surfaee the determinant is defined via the zeta
function of the Laplaeian we begin with the study of the zeta function of Laplaeians on
admissible surfaees . To define the zeta function we take the Mellin transfonn of (2.2) and
collect all terms which involve spectral invariants. The resulting analytic funetioil is the
spectral zeta function

Actually we have modified the last term by adding 7(~)-s. The reasoil for it will becoIne
clear below when we introduce the second kind of zeta functions -the re.sonance zeta
function.s-and relate C~ (8) to them.

By (1.2) and Proposition 4.1, the series and the integral are absolutely convergent for
Re(8) > 1. Furthermore, by (2.2) we have

1 100 r 4~-1 m
(6.2) (6(8) = r(s) t s

-
1 j" (J((z,z,t)- k(z,z,t)) dJ1.(z) dt- l1r ?=logaj + ~l4s.

o M Y Jl ;=1

Using (2.3) and (2.4), we obtain

Theorem 6.3. (~(s) admits a ll1eromorphic extension to C. Tbe ol1ly poles in tbc ha1[
plane Re(s) > -1/2 occur at s = 1 and s = 1/2. Tbe pole at s = 1 is siInplc witb
residue Area(A1)/47r and tbe pole at s = 1/2 bas order 2. Let f be Euler's constBJlt. Tbe
coefflcients of(8-1/2)-2 and (s-I/2)-1 in tbe Laurent expansion at s = 1/2 are 3m"Y/2
and m/2, respectively. In particular, C:~(8) is holomorphic at s = O.

Remarks.
1)Since the asymptotic expansion (2.4) involves fractional powers of t and log t,C:~.. (s)

has in general infinite many poles which may have order> 1. This is the main difference
to the zeta function of the Laplacian on a cOlllpact surface.

2) The right hand side of (6.2) may be regarded as a relative zeta function in thc fol
lowing sense: The kernel k(Zl' Z2, t) is the heat kernel of the self-adjoint operator obtaincd
by restricting the Laplacian to the zero Fourier eoefficients on eaeh cusp and iInposing
Dirichlet boundary conditions. In other words, this operator is the direct SU1n of operators
of the form _y2 cF /dy2 acting in the Hilbert space L 2([a, 00), dy/y2) with an appropri
ate choice of the domain. In this sense we compare the Laplacian with the direct sum
of I-dimensional Laplacians on a half-line and the difference of the corresponding heat
operators turns out to be traee dass. A similar definition of a relative zeta fUllction was
used by R.Lundelius [L] in his thesis. The advantage of our definition is that (6.1) is an
intrinsie definition.
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3)For hyperbollc surfaces 1.Efrat introduced a zeta function similar to (6.1) [E21.

Using the zeta function (6 (s) we define the regularized determinant of the Laplacian
~ in the same way as in the compact case as

(6.4)

In view of (3.36), the zeta function is con1pletely detennilled by a( M) and q and our next
goal is to find an explicit formula expressing the zeta function in tenns of a(M). Note
that (5.16) is not applicable, because the functions hand g are not in S(R), hut we may
proceed in the same way as in the previous section and extend (5.16) so that the zeta
function is included.

The function h equals now (1/4 + ..\2
)-" and therefore, for Re(s) > 1, we have

(cf. [B1],p.11, (7) ), where K lJ denotes the modified Bessel function. For Re(v) > -1/2 we
have the following integral representation of ]{lJ:

]{ (y) == ~ ylJ e-
Y 1<Xl e- yt (t (1 + t/2»)lJ-l/2 dt

lJ 2r(v+1/2) 0

(cf. [MO]), which shows that 9 is rapidly decreasing at infinity, hut it is not sn100th at
the origin. However, smoothness at the origin is not necessary to derive (5.16). We need
ooly formulas (5.13) and (5.14) and for these to hold it is sufficient to know that g is three
tilnes continuously differntiable at the origin. If Re(s) > 2 then 9 is containecl in C3 (R).
Furthermore, by formula (23) on p.131 in [B2], we have

r(2s) -2" ( Z + 1/2)
h+(z) = res) res + 1) (1/2 - z) F 2s, s; s + 1; z _ 1/2 ' Re(z) < 0,

where F( 0', ß; ,; w) denotes the hypergeometric series. Now recall that the hypergeometric
series admits an analytic continuation to C - [1,00). If we employ arguments similar to
those used to prove Theorem 5.15, we ohtain

1 r(2s) ,,{ )-28 ( 1] )
(6.5) (6(S) = 2 res) res + 1) L., (1 - 1] F 2s, s; s + 1; 'fJ _ 1

11=r!:1

--2" ( Ti)} logqr(2s-1)
+(1-1]) F 2s,s;s+1;Ti_l - 4)2; r(s)2

for Re(s) > 2 . Note that Re(1]) < 1 for all 'fJ E a(lvf)- {I}. Therefore, (1 _1})-28 is well
defined as exp( -28 log(1 - 1]» where log z is the brauch of the logarithm which satisfies
log 1 == O. Furthermore note that 'fJ/(1] - 1) E C - [1,00) for 1] E a(M) - {1} and on this
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domain the hypergeometric function is defined by analytic continuation. The series (6.5)
is absolutely convergent for Re(s) > 2.

We consider a single term of this series and cornpute its derivative at s = O. If 71 is
a pole 01' a zero of 4> in Re(s) < 1/2 then 177/(77 - 1)1 < 1 and F(2s, s; s + 1; 71/(7} - 1)) is
given by the usual power series and from its definition follows immediately that

d
d F(2s, s; s + 1; _77_) I = o.
S 7} - 1 ,,=0

Furthermore, f(2s) (f(s) f(s+l))-l = 1/2 f(2s+1) f(s+I)-2 and a direct cornputation
shows that the derivative at s = 0 vanishes. Hence the derivative of a single term of the
series (6.5) equals -log 11 - 7]1, so that formally

,~ logq
(~(O) = - L.J log 11- 7}1 + fiL'

71#1 Sv 211'

This suggests to introduce the following zeta function

(6.6) (B(S) = L(1 - 7} )-8
71#1

which by Proposition 5.25 converges for Re(s) > 2. Here B denotes the generator of the
Lax-Phillips semi-group Z(t), t 2: 0, associated to the hyperbolic wave equation on 111. Vle
call (B(S) the resonance zeta function. As explained' in the introductioll, we 111ay regard
(B(S) as the zeta function of the non-self-adjoint operator B r = -B + &1. Dur next goal
is to show that (B( s) admits a meromorphic continuation to C which is holomorphic at
s = 0 and to compare its derivative at 8 = 0 with (~(O). This is then the rigorous version
of the formal equality above.

We employ formula (1) of section 2.10 in [B3] for the analytic continuation of the
hypergeometrie series . It gives

r(2s) ( -2" ( '} )
r(s)f(s+l) 1-77) F 28,s;s+1;7}_1

(6.7) f(2s)f(1-2s) -2" ( 1 )
= r(s)r(l-s) (l-TJ) F 2s,Sj2S;1_ry

r(2s - 1) 1 ( 1 )+ f()2 -- F 1 - s, 1; 2 - 2s; --
s 1-7] . 1-7]

which holds if both sides are defined. For exarnple, this is the case if 11 - 71[ > 1 and
Re(s) :s: 1/2. Let

al = a(M) - {1} E a(M) 111 -ryl ::; I}.
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Then we consider the following series

For each sEC, there exists C > °such that IF(2s, s; 2s; 1/(1 - 7]))1 ::; C for 7] E 0"1'

Hence, by Proposition 5.25, the series is absolutely convergent for Re(s) > 1. Since(6.5) is
absolutely convergent for Re(s) > 2, it follows that

(6.8) L {_l_ F(1- 5 l' 2 - 25' _1_) + _1_ F(1- s l' 2 _ 25' _1_)}
1 ' , '1 1 - , 1 '1--"1 -7] -7] -1]

'7E u 1

is also absolu tely convergent for Re(s) > 2. Using the definition of the hypergeornetric
series and Proposition 5.25, it follows that

{
1 1 1 1 1 1 }--+--+- +-L 1 - 7] 1 - fj 2 (1 - 7] )2 2 (1 - ij)2

'7i: 1

is absolutely convergent too. This series equals

If "1 (1 - 7]) is an eigenvalue 2: 1/4, then Re(7]) = 1/2. Hence, by Corollary 3.29

(6.9)

This implies

Proposition 6.10. The series

L
1 - 2Re(1])

1 1
2 < 00.

1-7]
'7r!:1

is convergent.

Remark. For a hyperbolic surface we know that there exists C > -00 such that C ::;
Re(7]) ::; 1 for all 1] E O"(M). Proposition 6.10 is then a consequence of Proposition 5.25.
However, for an arbitrary adruissible surface we don't have this estimate and Proposition
6.10 sheds some new light on the distribution of poles of 4>(s) in the generalease. For
example, it implies that, for any t > 0,

1
1771 2 < 00.
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This can be restated as folIows. Given T > 0 and c: > 0, let

N(T, c:) = #{ 11 E a(M) 11111 ~ T, IRe111 > c:] Imry1}.

Then

1
. lV(T,c:)
lmsup T2 = o.
T-oo

In other words, the main contribution to the asymptotic formula (5.24) comes from reso
nances which are "elose" to the line Re(s) = 1/2.

Now (6.9) and Proposition 6.10 combined with Proposition 5.25 imply that the series
(6.8) is absolutely convergent for all 5 f:. k +~, k E N, and defines a meromorphic function
on C with simple poles at 5 = k + ~,k E N.

Lemma 6.11. Tbe series

is absolutely convergent for Re(s) > 1 and admits a meromolphic cOlltinuatioI1 to C. The
only poles in the half-plBJle Re(s) > -1/2 aeeur at 5 = 1 and 5 = 1/2 and they are silnple.
The residue at s = 1 equals -Area(M)/27r and tlle residue at 5 = 1/2 equals -37rm, where
f is Euler's constant.

Proof. The faet that the series is absolutely convergent for Re(s) > 1, was proved
abave. Furthermore, by (6.5) and (6.7), we have for Rc(s) > 1

~ -28 ( 1) f(5)f(1-s) - f(1-5) logq
(6.12) L--(1-ry) F 2S,3;2s; 1-1] = r(25)r(1-2s) (6.(5)-r(5)r(2-2s) 4)2;

'lEUl

r(l - 5) 1 {I ( 1) 1 ( 1 ) }+ () ( ) - ~ -- F 1-5,1; 2-25; -- +--_ F 1-5,1; 2-25; --_r 5 r 2 - 23 2 L-- 1 - 1] 1 - 1] 1 - 1] 1 - 1]
'lEul

where (6.(5) is the right hand side of (6.5) with the sum running over 11 E al in place of
1] f:. 1. Note that (.6 (5) differs froln (.6 (s) by an enti re funetion. By Theorern 6.3 and the
observation above, the right hand side is a meromorphie function on C. Now recall that
l/f(5) is entire with zeros at the negative integers. This shows that the last two tcrn1S
on the right hand side of (6.12) are enti re fune tions. The rest follows frolu Thearern 6.3.
Q.E.D.
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Corollary 6.13. The series

(B(8) = L(1 - 1])-~

11#1

is absolutely convergent for Re(s) > 2 and admits a lneromorphie eontinuation to C. The
only poles in tbe half-plane Re(s) > -1 oeeur at 8 = 2 and 8 = 1 and tllCy are siznple. The
residue at s = 2 equals -Area(M)/7r and the residue at s = 1 equals Area(M)/27r - 67fffi"

Proof. It suffices to prove the Corollary for the following partial zeta function

(6.14) (l(S) = L (1 - TJ)-~·
'lEu)

The first statement follows from Proposition 5.25. Suppose that (1 (s) has been analytically
continued to the half-plane Re(s) > 2-k, k E N. Using the definition of the hypergeometrie
series and Lemma 6.11, it follows that, for Re(s) > 1,

(6.15)

(1(8) = -~ (l(S + 1) - ... - (8/2)k (l(S + k)
2 k!

- L (1 - I))-.-k-I f: (s!.;)j (1 - I))k+1-j + F(s)
11Eu) j=k+1 J.

where F(s) is a Ineronl0rphic function on C. The double series is absolutely convergent
for Re(s) > 2 - k - 1 and defines a holomorphic function on this half-plane. This follows
from Proposition 5.25. All remaining tenns on the right hand side are merolnorphic on
Re(s) > 2 - k - 1. Hence (1(8) admits a merolnorphic continuation to Re(s) > 2 - k - 1.

To detennine the poles of (1 (s) in Re(s) > -1 we first note that, by Proposi tion 5.25
and Lemma 6.11, the right hand side is holomorphic in Re(s) > 2 and the only pole in
Re(s) > 3/2 occurs at 8 = 2 which is the pole of F(s) at s = 2. If we repeat this argulnent,
we can determine all poles and their residues in Re(s) > -1. Q.E.D.

By Corollary 6.13, (B(S) is holomorphic at s = 0 and therefore we nlay cOlnpute its
first derivative at 8 = O. We use again the partial zeta function (1 ( 8 ). By (6.14)

Furthennore, by (6.15)
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To compute d/d3F(s )I.~=o we shall employ (6.12). This gives

d d log q 1 Loo
1 L-F(s)1 _ = -(~(s)l _ - -- + - - (1(k) + 10g11-rylds ,,-0 ds ,,-0 sy'2; 2 k

-' ,1,;=3 0<[1-711:51

1 {I 1 1 1 1 1 }+- --+~-+- +- .
2 L 1 - 1] 1 - 17 2 (1 - 1])2 2 (1 - 77)2

'1EO'l

To compute the remaining terms we use again (6.15) with s replaced by s + 1 and s + 2,
respectively. The final result is

d d 1 d 2
-d(B(3)1 -0 = -d (~(s)1 -0 + - Res,,=2(n(S) + 7f -d (s (~(s + 1/2))1 -0·s ,,- s ,,- S S 8-

Finally, we use Theorem 6.3 and Corollary 6.13 to compute the last two terms on the right
hand side. This proves

Proposition 6.16. We have

where 1 denotes Euler's constant.

Since (8(5) is the zeta function of the operator BI = -B + ~I, we ean introduce its
regularized determinant by

(6.17)

Note that formally

det' B 1 = TI ).. j TI 11 - pI 2
,

Aj #0 p#1

where p runs over the poles of ifJ (s ). By Proposition 6.16, we get

Corollary 6.18. We have the identity

d IA (Area(M) 37fT ) d 'B 'et L.1 = exp - - m et 1.
SJr 2

This equality is important for the further investigation of the determinant. For ex
ampIe, det' ~ is well-sui ted for deriving variational formulas similar to those in (0PSI] .
On the other hand, dee B) is den.ned via the resonance zeta function and this lnakes it
transparent how the determinant depends on the resonance set.
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Let z E C, Re(z) > 1. In the same way as above Olle ean define the determinant of the
operator ~ + z(z -1)1. For Re(s) > 1, the eorresponding speetral zeta funetion is defined
as

- 1 100

-8 rjJ' .(~(z, s) = L(.\j + z(z - 1)) "- - ((z - 1/2)2 + .\2) -(1/2 + z.\) dA
..\. 471" -00 rjJ

)

+ Tr(C(1/2)) + m (z _ 1/2)-28
4 .

As a funetion of s, (~(z, s) admits a meromorphic continuation to C which is holomorphie
at s = O. Then we define the determinant of ~ + z( z - 1) to be

(6.19)

Similarly we can also introduce the following resonance zeta funetion

(B(Z, s) = L (z - 1])-8.
l1EC1(M)

Since Re(1]) :::; 1 for all 1] E a(M), the eomplex powers are well-defined and the series is ab
solutely and uniformly eonvergent on any compact subset of Re(s) > 1. As above, (B(Z, s)
nlay be regarded as the zeta fune tion of the operator BI + (z - 1). Furthennore, (B (Z I s)
can be analytically continued to a luerolllorphie funetion of sEC whieh is hololTIorphic
at s = 0 and the same method that we used to prove Proposition 6.16 gives

(6.20)

Set

d d I Area(M) 2 37r,m
-d (B(z,s)l -0 = -d (~(z, s) -0 - 8 (2z - 1) + -- (2z - 1).s ,,- s ,,- 7r 2

Then (6.20) leads to the following relation between the two determinants

Proposition 6.21. We have the identity

det(~+ z(z - 1)) = e(z) det(B1 + (z - 1))

where

(
Area(M) 37f,rn )

e(z) = exp (2z - 1)2 - -- (2z - 1) .
8~ 2
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Now let r\H be a hyperbolic sUlface of finite area. Recall that the Selberg zeta
function of r\H is defined as

00

Z(s) = TI TI (1 - e- I(,)(.9+k)) , Re(s) > 1,
{,} k=O

where the {,} run through the prilnitive hyperbolic conjugacy classes in rand l(T) denotes
the length of the closed geodesie on r\H whieh is determined by {1'}(cf. [H3], [Se1],[McJ).

The Selberg zeta fune tion Z (s) has a meromorphie eontinuation to C. 1.Efrat has
shown how the determinant det(ß + z(z - 1)) is related to Z (s) [EI] 1 [E2] 1 and therefore,
we can also express det(B1 + (z - 1)) by the Selberg zeta funetion. We silnply have to
use (1. 7) in [EI] combined with Proposition 6.21. However note that in the eorreeted
version of (1.7) in [E2] one has to use the determinant defined by (6.19) luultiplied by
(z - 1/2)(m-TrC(1/2)). Using these remarks we get

Theorem 6.22. We bave

where
c = m(37r,- log 2)

Area(M) ~ ~
d = (2('( -1) -loge v27r)) + 2m log v27r

7r

Here ( denotes the lliemanll zeta function a.nd

with r 2 (s) being tbe double Gamma. function (cf. [Bar]).

Note that Theorem 6.22 implies that det2(B1 +(z - 1)) admits a meromorphic con
tinuation to C.
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7.The length spectrum and the resonance set

In this section we consider only hyperbolic surfaees r\H. Recall that the length
spectrum of r\H is defined as follows: Each hyperbolie conjugacy dass {,} in r detennines
a unique closed geodesie in r\H whose length 1(,) is given by

1(,) = 2 cosh- 1 ~tr(,).

Note that lCr) = logN(,) where N(,) E (1,00) is the norm of,. The length speetn.1ln is
then by definition the set of all 1(,) where {,} runs over all hyperbolic conjugacy classes in
r. Eaeh 1(,) is counted with multiplieity m(,) whieh is the number of different hyperbolie
eonjugaey classes with length 1(,). As pointed out by Selberg [Se1] and [Hu], for a compact
hyperbolic surface r\H the Selberg traee formula has the following important eonsequenee:

( 7.1) The eigenvalues 0/6. determine the 1ength spectrum 0/ r\H and vice vcrsa.

We shall employ the trace formula (5.32) to establish a similar result for a non compaet
hyperbolie surface r\H of finite area. The role of the eigenvalues is now played by thc
resonance set a (r) and the statement eorresponding to (7.1) is the following

Proposition 7.2. Let r\H be a hyperbolic sunace of finite area. The resonancc set a(r)
determines the length spectrum of r\H and vice versa. Moreover, the length spectrum
also determines Area(r\H) and the nUDlber m of cusps of r\H.

Proof. We apply (5.32) to g(y) = exp( _y2 /4t). By Proposition 5.24, Area(r\H) and
m are determined by a(r). Therefore, a(f) detennines also

logq +~ '" 1(,) e- IlC ,II)1 2 /4t
4 Lt Lt . h 1 1( k)7r .1.:= 1 {,} Sln 2 ,

and 1 as explained in seetion 3.4 of [Me], from the latter one ean determine log q and thc
length speetrum. To prove the eonverse we apply the traee formula to the funetion

g(y) = lvl n
-

1 e-"IYI, n > 2, Re(s) > 1/2.

Note that 9 is not smooth at the origin. However, in the same way as above, we ean extend
the trace formula to cover this case. Then (5.32), extended to g, gives

L (s + 1/2 - t])-n = Area(f\H) 100

{(8 - i,X)-n + (8 + i,X)-n} A tanh(rrA) dA
47r 00

'1Eucr) -

(7.3)
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Here {f} nms over all hyperbolic conjugacy classes in r and {,o} denotes the primitive
conjugacy dass associated to {f}' The series over {f} is convergent for Re(s) > 1/2 (cf.
p.429 in [H3]). Since n > 2, the left hand side is absolutely convergent by Proposition 5.25
and the convergence is uniform for s in any cOlnpact subset of C which contains no points
of a(r). Therefore, the left hand side is a meromorphic function of sEC whose poles
are the points 1] - 1/2,1] E a(r). By shifting the contour of integration appropriately it
follows that the first and the third term on the right hand side also admit meromorphic
continuations to C with poles at k + 1/2, k E Z, and k, k E Z, respectively. Since a(r) is
contained in Re(s) < 2, this implies that the length spectrum determines Area( M) and
m. Hence it also determines the meromorphic function on the left hand side of (7.3) aod
therefore its pole divisor, Le., a(r). Q.E.D.
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8.Moduli and the spectrum

Let r\H be a compact hyperbolic surface. LM.Gelfand raised in [G] the following
question:

Ta what extent is the surlace f\H determined by the cigenvalue8 01 its Laplace oper
ator~

H.P.MeI<ean [Me] has shown that a eompact hyperbolie surfaee is determined by its
eigenvalue spectrum up to finitely many possibilities.. Then S.Wolpert [W] proved that in
the Teiehmüller spaee Th of eompaet Riemann surfaees of genus h there exists a proper real
analytie subvariety Vh whieh is invariant undel' the extended Teichmüller modular group f h

such that a surfaee f\H E Th/fh is uniquely detennined by its eigenvalue spectrun1 if and
only if r\H is eontained in the eomplement of Vh/rh. Thus a generic compact hyperbolic
surfaee is uniquely determined by its eigenvalue spectrmn. Thel'e exist also examples of
non-isometrie isospeetral surfaces [V], [Sul. Actually, T.Sunada [Su] has shown that Vh

has positive dimension for special values of h.

In this section we shall briefly dieuss the same problem for noncompact hypcrbolic
surfaees r\H of finite area. The question is then:

To what extent i8 the surlace f\H determined by its re80nance set a(f)?

We do not intend to answer this question in all generality in the present paper, hut
we shall return to this point in a forthcoming paper. Here we shall extend McI(ean's result
to the noneompact ease.

By Proposition 5.23 and Proposition 7.2, the resonance set a(f) determines the eon
formal type (g, m) of the surfaee f\H and its length spectrum, 01' what is the same, the
eommon absolute trace ltr(1')1 of the elements of each hyperbolie conjugacy cIass {1'} in
r. Now we reeall some facts from the theory of Frieke anel I<lein [FI<]. Note that , by
assumption, r is a torsion free diserete subgroup of SL(2, R) of cofinite area. A standard
8et 01 generator~ for r consists of hyperbolic elements Ai, Bi E f, i = 1, ... , 9 and parabolic
elements D j E r, j = 1, ... rn, which satisfy the single relation

(8.1) Dm'·· D1B;-1 A;l BgAg··· B;-l A~lB 1 A1 = 1

(cf. [I<e]). Then we have the following result which is due to Fricke and I<lein if 1n = 0:

Theorem 8.2. Let r be a torsion free discrete subgroup oE SL(2, R) oE cofinite area. Let
(g, m) be the conformal type ofr\H and choose a standard set ofgenerators 1'1, ... ,1'2g+m
for r. Then the single, double and tripie traces

tr(1'd, tr(1'i1'j), i < j, tr(1'i1'j1'k), i < j < k, i, j, k = 1, ... , 2g + rn"

determine r up to a conjugation in SL(2, R)/{±l} and a possible reflection

o)r(l
-} 0
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Proof. Let r and r/ be two torsion free discrete subgroups of SL(2, R) with cofinite
area and of conformal type (g, m). If 9 ~ 1 then we just repeat the proof given by McI(ean
for the compact ease (cf. pp.243-244 in {Me]). It works equally weH for m =1= O. What
remains is the ease 9 = O. Letfl , ... , Im (resp. I~' ... , ,:n) be a set of standard generators
for r (resp. r/). All these elements are parabolie. Suppose that the single, double and
triple traees of eorresponding elements coineide. After a eouple of eonjugations, we may
assume that

(11) ,
11 = 0 1 = 11"

Let

Then, for i > 1, we have

(8.3)

and

(
a.

'Yi = I
c·I

/ (al.and "Y. = 1
11 C'.

1

ai +di = 2 = ai +di.

b'· )
d~ .

tr('YI'Yd = ai + di + Ci = tr('Y~/D = a~ + d~ + c~.

Note also that Ci =1= °for i > 1. Hence

(8.4) Ci = c~ and Ci =1= 0, i > 1.

Set

and k' = G-a~/c~ )
1 .

Then, by (8.4),

-1/C2 ) k / I k /-1
2 = "f2" .

Hence, after another couple of conjugations, we have

I (1
/1 = f1 = °

for same x i= O. Then, for i > 2,

and, by (8.4),

(8.5)

Furthermore, we also have

(bi - bi)x = 2(d~ - dd·

I

tr(/1/2fd = (ai + bi)x - Ci + 2Ci + 2di = tr('Y~ 'Y~,D = (a~ + b~)x - Ci + 2c~ + 2d~.
x x
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By (8.3) and (8.4), we get

(bi - b~)x = (2 - x)(d~ - dd.

Since x f. 0, this equality combined with (8.5) implies bi = bi, di = di, i > 2. Thus f'i = f';
for all i. Q.E.D.

Actually a smaller number of traces suffices to determine r up to conjugation and/or
a reflection. Trus is a consequence of the following remarkable result proved by Fricke and
I<:lein (cf. pp.366 in [FI<]):

Proposition 8.6. Let 91l 92, 93 E SL(2, R). Tben tbe triple trace t 123 = tr(919293)
is an algebraic function of degree two of tbe single and double traces ti = tr(gd and
tij = tr(gigj), i < j.

McI<ean's proof of the fact that a compact hyperbolic surface r\H is determined by
the spectrum of its Laplacian up to finitely many possibilities depends on the following
bouud due to D.Mumford [Mf]:

diam(r\H)· min{l('Y) I / E r hyperbolie} ~ Area(r\H)

where diam(r\H) denotes the diameter of the surface r\H. This bound is not available
in the noneompaet case and we have to find an appropriate substitute.

Let pER U {oo} be a parabolic fixed point of r and let r p be th~ stabilizer of p in
r. Let Up be the domain interior to a horocycle through p, chosen so that r p \Up has area

equal to 1. If r p is generated by (~ ~) then

Up = {z E C I Im(z) > I}.

It is known that two points in Up are r equivalent only if they are r p equivalent. Hence
r p \Up is isometrie to a subset of r\H. Furthennore, if p, q E RU {oo} are two different
parabolic fixed points of r then

(8.7) Up n Uq = 0.

This can be seen as follows. After conjugation we may assume that p = 00 and r p is

generated by (~ ~). If'Y E r - r p, 'Y = (~ ~), then 'Y does not fix 00, hence c t= O.

But then we know that c must satisfy lei 2: 1 (cf. p.58 in [I<r]) which implies (8.7).
Let f2(r) denote the complelnent in H of the union of aH Up where p runs over thc

parabolic fixed points of r. Then n(r) is a c10sed r invariant subset of H. Set

Mr = f\n(r).

This is a compact hyperbolic surface with boundary. The following lenlma is a consequenee
of Lemma 5 in [Be):
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Lemma 8.8. There exists a constant c > 0 which depends only on the confolmal type
(9, m) oE f\H such that

diam(Mr)' min{/(,) I, Er hyperbolic}::; c.

Lemma 8.9. Let,), ... , '2g+m be a standard set of generators for r. Then the absolute
values of the single, double and tripie traces tr(,d, tr( ,iTj) and tr(Tiljlk) are bounded by

6 cosh(cl min 1(,))

where c is the same constant as in LemnlB 8.8.

Proof. The generators ,1, ... , 1'2g+m of rare connected with a distinguished funda
mental domain D for r called Fricke polygon (cf. [Ke]). The polygon D is bounded by
4g + 2m geodesic arcs in Hand, if the sides of D are suitably labeled in order, say

then

Let ql, ... , qm E Ru { oo} denote the fixed points of the parabolic elements 1'2g+1, ... , 1'2g+m
and set

Jl1

D'=D-U(UpnD).
i=l

Then D' is a fundamental domain for r acting on Ocr). Each generator 1'i maps D' to an
adjacent fundamental domain 1'i(D'). This shows that Itr(1'dl,ltr(1'i1'j)1 and Itr(1'i1'j1'k) I
are bounded by 6 cosh(diarn(Mr)) and our estimate follows from Lemma 8.8.Q.E.D.

We are now ready to prove the main result of this section

Theorenl 8.10. Let r\H be a hyperbolic sUlface oE finite area. Then the resonance set
a(r) determines r\H up to finitely many possibilities.

Proof. The resonance set determines the conformal type (9, m) of r\H and the length
spectrum of r\H. Hence it determines the numbers

Itr(-y)I= 2 cash 1(;)

for all hyperbolic elements l' in r. Let'l,"" 1'2g+m be a standard set of generators for
r. Since r is torsion free each of the products 1'i, 1'i1'j, 1'i,j1'k is either parabülic or
hyperbolic. Heuce we know Itr(ii)J, ItrCriTj)l, Itr(ii"Yj"Yk)! and those which are> 2 are
of the form 2 cash( l(1)/2) for some hyperbolic ele1uent l' E r. Now recall that für every
C > 0 there exist only finitely 1nany hyberbolic conjugacy classes {"Y} in r with 1('1) ::; C
(cf. p.475 in (H3]). Since 1uin I( I) = /1 is fixed, it follows from Le1nnla 8.9 that the set of
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possible values for the single, double and tripIe traces is finite. The theorem follows fronl
Theorem 8.2. Q.E.D.

Ifwe recall the definition of the resonance set u(f), then Theorem 8.10 can be restated
as follows:

A hyperbolic surface f\H of finite aren is deterrnined , up to finitely many possibilities,
by the following numbers:

1 ) The eigenvalues 0 = AO < Al ~ A2 ::; ... of the Laplace operator ~r on r\H.
2 ) The poles of the determinant 1(s) of the scattering matrix together with their orders.

3 ) Tr(C(l /2)) which occurs in the multiplicity of the special point 1/2.
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