Nonexistence of weakly almost
complex structures on
Grassmannians

Departement of Mathematics
Graduate School

Academica Sinica

Beijing 100039

P.R. China

Tang Zi-Zhou

MPI1 / 92-87

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3

Germany



Abstract

In this paper we prove that, for 2 < k < n/2, the unoriented Grassmann manifold G;(R")
admits a weakly almost complex structure if and only if n =2k =4 or 6; for 3 <k < n/2,
none of the oriented Grassmann manifolds Gi(R") - except G3(RS), and a few as yet
undecided ones - admits a weakly almost complex structure.

1. Introduction

For 1 < k < n, let @(R") ( Gr(R™) resp.) denote the oriented (unori-
ented) Grassmann manifold of oriented (unoriented) A -dimensional vector subspace of
R". Gi(R") (Gr(R™)) is a smooth manifold of dimension k(n — k). Note that G1(R")

~

Ssn-1 (Gl(R") = RP"‘I), the (n — 1)-sphere (real projective space), and that Gr(R")

——

e e

~

Gn_r(R") (Gk(R") = Gn_k(R")) under the diffeomorphism that sends a & -plane V to
its orthogonal complement V..

Recall that a smooth manifold A is a said to be (weakly) almost complex if its tangent
bundle 7A{ is (stably) isomorphic to the realification of a complex vector bundle over M.
For example, G1(R") = 5"~ is weakly almost complex for all n, but is almost complex
only when n = 3 or 7 ({11); Gi1(R") = RP™! is weakly almost complex only when n
even. It is a classical result that Go(R") = SO(n)/(SO(2) x §O(n — 2)) is an Hermitian
symmetric space, and is therefore almost complex for all n. Our main results are

Theorem 1.1 Let 2 < k < n/2. Then Gi(R") is weakly almost complex if and only if
n =2k =4 orb.

Theorem 1.2 Let 3 < k < n/2. Then C?k(ﬂ") is not weakly almost complex if n is odd
orif (n—k) > 8.

Our results are sharper than that in [6].  Note that G3(R®) is weakly al-
most complex ([6]). The unsolved cases for weakly complexility of é‘,;(nn) are:
G4(R®), G5(R™), Go(R™2), G7(R™), G3(R), G4(RY), G3(R™) and G3(R™). Let
Ynk (7 k) denote the canonical k -plane bundle over Gr(R™) (Gi(R")), and let {m(ﬁn,k)
be its orthogonal complement, whose fiber overa V € @;(R“) (Gr(R™)) is the vector space
V1 ¢ R". We have bundle equivalence

(1.3) Yk ® E,: = ne (’)’n,k O Bui = 'm:‘),
where ¢ denotes a trivial line bundle.

It is well known that the tangent bundle TCA;'I.(R") (1Gr(Ry,)) of @;(R") (Gr(R™)) has the
following description (see [4])

TGL(R") = Fok ® Buk
(TGk(R") = Yk ® ﬁn,k) :
Using (1.3) and (1.4), we obtain

(1.4)

rGr(R™) @ (Tok © Tuk) = nmk

(1.5) N
(TG;.-(R") & (Tng @ Yuk) = N’rn,k)-



For a CW complex X, let » : K(X) — KO(X) denote the homomorphism of Abelian
groups gotten by restriction of scalars to R, and let ¢ : KO(X) — K(X) denote the
complexification, c[{] = [{ ®g C], which is a ring homomorphism.

We have the following identity:
(1.6) re(z) =2z Vz e KOX)

2. The unoriented Grassmannians

Lemma 2.1 G2(R®) is not weakly almost complex.
Proof: It is well known that
H* (G2 (Rﬁ) ; 12) = Zz[wl, W, Wy, We, "Zﬁg,mg;] modulo the
relation (1 +wy +w2)(l+ W1+ Wy +Ws+wWa) =1, so
H*(Gq (RG) 1 2g) = Zg[wl,wg]/(w§ + wyw}, w%wg + wiwg + w%)

The fact H®(G2(R®);Z3) = Z5 implies wj # 0. By (1.5), the total Stiefel-Whitney classes
of G2(R®) are given by

w(G2(R%)) = (1 + w1 + wg)°/ (1 +})
=1+ (w‘l1 + 'wg) + w%w% + w%.
This gives
wa (G;; (RS)) =0, wg (GZ(RG)) = w% # 0.

The following results follows immediately from Wu’s formula sq1w2 = wywy ([5]):

sq(wl) = wl, sq(wiws) = wiwg + whwy,
sq(w%w%) = w%w%, sq(fwg) = 'wg + wgwl.

Therefore, sq? : H®(G2(R®);Z,) — H8(G2(R®);Z,) is zero. Hence, wg(G2(R®)) is not
in the image of H®(G2(R®);Z) under the homomorphism sg® . Our lemma immedaitely
follows from the following criterion ([3]): M 8 admits a weakly almost complex structure
iff dwo(M) = 0 and wo(M) € sq*HS(M;Z).

Lemma 2.2 If Gi(R") is weakly almost complex, then so are Gj—1(R"~2) and Gy (R"72).

Proof: Let us consider the maps

Gro1 (R™2) 5 Gro1 (R™Y) & Gi(R™)
where i regardsa V in R*2 asa V in R*!, j sendsa V to V &R.
It is easy to see that

*(Yam1,k-1) = Y-z =1, *(Ba1k=1) = Po-24-1 D€
k

(2'3) ~ 2 ~
7 (Vuk) = ne1h-1 06, 7*(Bnk) = Bro1 -1 -



So we have

(j 09)* TGR(R") = ¢* 0 * (Yuk © Bnt)

i*(7n~1,k-1 @ E) ® i*(ﬁn—l,k—l)

(’Yn—2,k—1 7 6) ® (ﬁn—z,k—1 D 6)

= Yn-2k-1Q Brn-2k-1 D Yu-2k~1 D Fn-24-1 D€
Z 1GR3 @ (n — 1)e.

2 e e N

So the conclusion for Gj_;(R"2) is true.

Let us consider the maps
Gk (Rn—2) j_l, Gk (Rn-l) 2; Gk(Rn).
By (2.3), we obtain

(i 011)*TGL(R™) 0 75 (Ynk ® B k)
(711—1,k) ® 7; (ﬁn—l,k) be
Tn-2k ® (ﬁn-—-2,k Decdh 5)

TGk(R"_z) B 2vn-2k -

i
i

Nz tz (12 I

By (1.6), 2v,—2 isin the image of 7 : k(G (R""%)) — KO(Gy(R"~?)). These completes
the proof.

Proof of theorem 1.1 The statement that G2(R*) and G3(RC®) are weakly almost complex
was obtained in [6].

We note that G (R2"+!) is not weakly almost complex, since it is not orientable. The “only
if” part of the theorem may be shown by using this fact, lemma 2.1 and lemma 2.2 repeatedly.

Remark: Borel and Hirzebruch [2, p. 526] proved that G2(R") is not almost complex if
n > 5. We extend their results.

3. The oriented Grassmannians

Proof of theorem 1.2 If n is odd, 3 < k£ < n/2, then (?;:.(R”) is not weakly almost
complex. The reason is that w3 (Gk(R”)) # 0 ([6]).

By lemma 2.1, G2(RS) is not weakly almost complex. But 7G2(R®) ® (762 ® v6,2) = 676,2-
So we see that the element 752 ® 76,2 is not in the image of r : K(G2(R®)) —
KO(G2(R%)).

Let ¢ denote the line bundle whose w1(¢) equals wi(762), then £ @ g2 is an orientable
3-plane bundle with

(ED762) ®EDV62) = V6,2 @ Y62 D 2762 D €.

Then we have that
(3.1) (E® ’76,2)2 ®ezImr.
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Now let n be even, ¥ > 3, and n — k > 8 = dim GQ(RG). Since ’Gj;(R") is (n—k)-
universal for orientable k -plane bundles, there exists a map f : G2(R®) — Gi(R") such
that f*(7. k) = € ® Y62 D me, where m = k — 3. We have

P (g ® Tng) = (€@ 76,2)" ® mPe & 2m(€ © 75,2)
FrGr(R™) @ (€ © To2)" & me @ 2m(€ ®62) = nf* (Ynp)-

Using (3.1), (1.6), and the fact that n is even, we see that E?I.(R") is not weakly almost
complex. This completes the proof of theorem.
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